
Operating Systems

Prof. Yongkun Li
中科大-计算机学院特任教授
http://staff.ustc.edu.cn/~ykli

Chapter 2
Operating System Structures

1

2

Objectives

• Operating System Services
– User Operating System Interface

– System Calls

• Operating System Structure

• Operating System Design and Implementation

• MISC: Debugging, Generation & System Boot

Operating System Services

Services Overview, User Interface

3

4

Operating System Services

• Operating systems provide

– an environment for execution of programs and

– services to programs and users

• Services may differ from one OS to another

• What are the common classes?

– Convenience of the user

– Efficiency of the system

5

Overview of Operating System Services

6

OS Services for Helping Users

• Program execution

– Load a program into memory

– Run the program

– End execution

• either normally or

• abnormally (indicating error)

7

OS Services for Helping Users

• I/O operations - A running program may require
I/O, which may involve a file or an I/O device

– Common I/Os: read, write, etc.

– Special functions: recording CD/DVD

• Notes: Users usually cannot control I/O devices
directly, so OS provides a mean to do I/O

– Mainly for efficiency and protection

8

OS Services for Helping Users

• File-system manipulation - The file system is of
particular interest

– OS provides a variety of file systems

• Major services

– read and write files and directories

– create and delete files and directories

– search for a given file

– list file Information

– permission management: allow/deny access

9

OS Services for Helping Users

• Communications: information exchange between
processes

– Processes on the same computer

– Processes between computers over a network

• Implementations

– Shared memory

• Two or more processes read/write to a shared section of mem.

– Message passing

• Packets of information are moved between processes by OS

10

OS Services for Helping Users

• Error detection – OS needs to be constantly aware
of possible errors

• Error types
– CPU

– memory hardware: memory error, power failure, etc.

– I/O devices: parity error, connection failure, etc.

– user program: arithmetic overflow, access illegal mem.

• Error handling
– Ensure correct and consistent computing

– Halt the system, terminate an error-causing process etc.

11

OS Services for Ensuring Efficiency

• Systems with multiple users can gain efficiency by
sharing the computer resources

• Resource allocation
– Resources must be allocated to each user/job

– Resource types - CPU cycles, main memory, file storage,
I/O devices

– Special allocation code may be required, e.g., CPU
scheduling routines depend on
• Speed of the CPU, jobs, number of registers, etc.

12

OS Services for Ensuring Efficiency

• Accounting - To keep track of
– which users use how much and what kinds of resources

• Usage
– Accounting for billing users

– Accumulating usage statistics, can be used for
• Reconfiguration of the system

• Improvement of the efficiency

13

OS Services for Ensuring Efficiency

• Protection and security
– Concurrent processes should not interfere w/ each other

– Control the use of computer

• Protection
– Ensure that all access to system resources is controlled

• Security
– User authentication by password to gain access

– Extends to defending external I/O devices from invalid
access attempts

14

OS Services for Helping Users

• User interface - Almost all operating systems have a
user interface (UI).

– Three forms

• Command-Line (CLI)
– Shell command

• Batch
– Shell script

• Graphics User Interface (GUI)
– Windows system

15

User Operating System Interface - CLI

• Command line interface or command interpreter

– Allows direct command entry

– Included in the kernel or treated as a special program

• Sometimes multiple flavors implemented – shells

– Linux: multiple shells (C shell, Korn Shell etc.)

– Third-party shell or free user-written shell

– Most shells provide similar functionality (personal
preference)

16

Bourne Shell Command Interpreter

17

User Operating System Interface - CLI

• Main function of CLI

– Get and execute the next user-specified command

– Many commands manipulate files

• Two ways of implementing commands

– The command interpreter itself contains the code
• Jump to a section of its code & make appropriate system call

• Number of commands determines the size of CLI

– Implements commands through system program (UNIX)
• CLI does not understand the command

• Use the command to identify a file to be loaded into memory and executed

• Exp: rm file.txt (search for file rm, load into memory and exe w/ file.txt)

• Add new commands easily

18

User Operating System Interface - GUI

• User-friendly graphical user interface

– Mouse-based window-and-menu system (desktop metaphor)

– Icons represent files, programs, actions, etc

– Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open
directory (known as a folder)

– Invented at Xerox PARC in early 1970s

• Many systems now include both CLI and GUI interfaces

– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

– Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

19

Touchscreen Interfaces

• Touchscreen devices
require new interfaces
– Mouse not possible or not desired

– Actions and selection based on
gestures

– Virtual keyboard for text entry

– Voice commands

Choices of Interfaces

• Personal preference

• CLI: more efficient, easier for repetitive tasks

– System administrator

– Power users who have deep knowledge of a system

– Shell scripts

• GUI: user-friendly

• The design and implementation of user interface is
not a direct function of the OS

20

System Call

Usage, Implementation, Types

21

22

System Calls

• Programming interface to the services provided by
the OS

• Implementation language
– Typically written in a high-level language (C or C++)

– Certain low-level tasks (direct hardware access) are
written using assembly language

• Example of using system call
– Read data from a file and copy to another file

– open()+ read() + write()?

23

Example of System Calls

• System call sequence to copy the contents of one file to another file

System Call

• Simple programs may make heavy use of the OS
– A system executes thousands of system calls per second

– Not user-friendly

• Each OS has its own name for each system call
– This course/textbook uses generic examples

24

System Call

• How to use?
– Mostly accessed by programs via a high-level API rather

than direct system call use

• Why prefer API rather than invoking system call?
– Easy of use

• Simple programs may make heavy use of the OS

– Program portability
• Compile and run on any system that supports the same API

25

26

API

• Application Programming Interface (API)
– A set of functions that are available to application

programmers

27

API

• Application Programming Interface (API)
– A set of functions that are available to application

programmers

• Three most common APIs
– Win32 API for Windows

– POSIX API for POSIX-based systems
• including virtually all versions of UNIX, Linux, and Mac OS X

– Java API for the Java virtual machine (JVM)

• How to use API?
– Via a library of code provided by OS

– Libc: UNIX/LINUX with C language

28

System Call Implementation

• Who invokes system call: System call interface

– Provided by the run-time support system, which is

– a set of functions built into libraries within a compiler

• How?

– intercepts function calls in the API

– invokes necessary system calls

• Implementation

– Typically, a number associated with each system call

– System-call interface maintains a table indexed
according to the numbers

29

API – System Call – OS Relationship

30

Standard C Library Example

• C program invoking printf() library call, which calls write()
system call

31

Implementation Benefits

• The caller needs to know nothing about

– how the system call is implemented

– what it does during execution

– Just needs to obey API and understand what OS will do
as a result call

• Most details of OS interface are hidden from
programmer by API

– Managed by run-time support library

32

System Call Parameter Passing

• More information is required than simply the identity of
desired system call
– Parameters: file, address and length of buffer

• Three methods to pass parameters to the OS
– Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers

– Table-based
• Parameters stored in a block, or table, in memory, and address of block

passed as a parameter in a register

• This approach taken by Linux and Solaris

– Stack-based
• Parameters are placed, or pushed, onto the stack by the program and

popped off the stack by the operating system

33

Parameter Passing via Table

Types of System Calls

• Six major categories

– Process control

– File manipulation

– Device manipulation

– Information maintenance

– Communications

– Protection

34

35

Types of System Calls

• Process control

– end(), abort()
• Halt a running program normally or abnormally

• Transfer control to invoking command interpreter

• Memory dump & & error message
– Written to disk and examined by debugger

– Respond to error: alert window (GUI system) or terminate the entire job (batch system)

• Error level: normal termination (level 0)

36

Types of System Calls

• Process control

– end(), abort()

– load(), execute()
• Where to return?

– Return to existing program: save mem. image

– Both programs continue concurrently: multiprogram

– create_process(), terminate_process()

– get_process_attributes(), set_process_attributes()

• Job’s priority, maximum allowable execution time, etc

37

Types of System Calls

• Process control

– end(), abort()

– load(), execute()

– create_process(), terminate_process()

– get_process_attributes(), set_process_attributes()

– wait_time()

– wait_event(), signal_event()

– acquire_lock(), release_lock()

38

Example of Process Control: MS-DOS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program
– No process created

• Single memory space

• Loads program into memory,
overwriting all but the kernel

• Program exit -> shell reloaded

At system startup running a program

39

Example of Process Control: FreeBSD

• Unix variant

• Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork() system call to create
process
– Executes exec() to load program into process

– Shell waits for process to terminate or continues with
user commands

• Process exits with:
– code = 0 – no error

– code > 0 – error code

40

Types of System Calls

• File management

– create file, delete file

– open, close file

– read, write, reposition

– get and set file attributes

• Device management: physical/virtual devices

– request device, release device

– read, write, reposition

– get device attributes, set device attributes

– logically attach or detach devices

41

Types of System Calls

• Information maintenance

– Get time or date, set time or date

– Get system data, set system data

• Num. of current users, os version, amount of free mem. & disk

– Debugging

• Dump memory

• Single-step execution

• Time profile: timer interrupt
– The amount of time that the program executes at a particular location

42

Types of System Calls

• Communications

– Message-passing model
• Host name, IP, process name

• Get_hostid(), get_processid(), open_connection(),
close_connection(), accept_connection(),
read_message(), write_message()

• Useful for exchanging smaller amounts of data

– Shared-memory model
• Remove the normal restriction of preventing one process from accessing

another process’s memory

• Create and gain access to shared mem. region
– shared_memory_create(), shared_memory_attach()

• Threads: memory is shared by default

• Efficient and convenient, having protection and synchronization issues

43

Types of System Calls

• Protection

– Control access to resources

– All computer systems must be concerned

– Permission setting

• get_permission(), set_permission()

– Allow/deny access to certain resources

• allow_user(), deny_user()

44

Examples of Windows and Unix System Calls

https://www.kernel.org/doc/man-pages/
http://man7.org/linux/man-pages/

https://www.kernel.org/doc/man-pages/
http://man7.org/linux/man-pages/

Operating System Structures

45

46

Operating System Structure

• General-purpose OS is a very large program

• Various ways to structure ones

– Simple structure – MS-DOS

– Monolithic-- UNIX

– Layered – an abstraction

– Microkernel –Mach

– Modules

– Hybrid system – most OSes

47

Simple Structure -- MS-DOS

• MS-DOS – written to provide the
most functionality in the least space

– Do not have well-defined structures

– Not divided into modules

– Its interfaces and levels of functionality
are not well separated
• Application programs can access basic I/O

routines

• Vulnerable to errant programs

• Limited by hardware

48

Monolithic Structure -- UNIX

• UNIX

– The original UNIX operating system had limited structuring, it
consists of two separable parts
• Systems programs

• The kernel
– Consists of everything below the system-call interface and above the physical hardware

– A series of interfaces and device drivers

– Monolithic structure: combine all functionality in one level
• File system, CPU scheduling, memory management, and other operating-

system functions

• Difficult to implement and maintain

• Performance advantage

49

Traditional UNIX System Structure

• Beyond simple but not fully layered

50

Layered Approach

• The operating system is divided into a number of layers (levels),
each built on top of lower layers
– The bottom layer (0), is the hardware; the highest layer (N) is the user

interface

• Implementation
– Each layer is an implementation of an abstract

object made up of data and operations

• Advantages
– Simple to construct and debug

– Hides the existence of DS, Ops, hardware
from upper layers

• Challenges
– How to define various layers?

– Efficiency problem
• I/O->memory manage->CPU scheduling->hardware

51

Microkernel System Structure

• Moves as much from the kernel into user space as possible
– Provides minimal process, memory management and communication

– Mach: example of microkernel (developed by CMU in mid-1980s)
• Mac OS X kernel (Darwin) partly based on Mach

• Main function
– Communication between client program and services (also in user space)

– Provided through message passing

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

52

Microkernel System Structure

• Moves as much from the kernel into user space as possible
– Provides minimal process, memory management and communication

– Mach: example of microkernel (developed by CMU in mid-1980s)
• Mac OS X kernel (Darwin) partly based on Mach

• Main function
– Communication between client program and services (also in user space)

– Provided through message passing

• Benefits
– Easier to extend a microkernel: add services to user space, no changes to kernel

– Easier to port the operating system to new architectures

– More reliable & more secure (less code is running in kernel mode)

• Detriments
– Performance overhead of user space to kernel space communication

53

Modules

• Many modern operating systems implement loadable
kernel modules

– The Kernel has a set of core components

– Links in additional services via modules (boot time or run time)

– Common in most modern OSes

54

Modules

• Many modern operating systems implement loadable
kernel modules

– The Kernel has a set of core components

– Links in additional services via modules (boot time or run time)

– Common in most modern OSes

• Similar to layered system

– Any module can call any other model

– More flexible

• Similar to the microkernel

– Primary module has only core functions

– No need to invoke message passing

– More efficient

55

Hybrid Systems

• Most modern operating systems combine different
structures, resulting in hybrid systems

– Why? Address performance, security, usability needs

• Examples

– Linux kernel
• Monolithic: single address space (for efficient performance)

• Modular: dynamic loading of functionality

– Windows
• Mostly monolithic, plus microkernel for different subsystem personalities

(running in user-mode), also support loadable kernel module

– Apple Mac OS X
• Mach microkernel, BSD Unix parts, plus I/O kit and dynamically loadable

modules (called kernel extensions)

• Layered system: user interface + application environment &
services + kernel (Mach+BSD UNIX)

• Mach Microkernel

– Memory management

– inter-process communication

– Thread scheduling

• BSD UNIX

– CLI

– POSIX API

– Networking

– File system

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

56

Mac OS X Structure

57

iOS

• Apple mobile OS for iPhone, iPad

– Structured on Mac OS X

– Added functionality

– Does not run OS X applications natively
• Also runs on different CPU architecture (ARM vs. Intel)

• Structure

– Cocoa Touch is Objective-C API for developing apps

– Media services layer for graphics, audio, video

– Core services provides cloud computing, databases

– Core operating system, based on Mac OS X kernel

58

Android

• Developed by Open Handset Alliance (mostly Google)

– Similar stack to IOS

– Open Source

• Based on Linux kernel

– Provides process, memory, device-driver management

• Optimization

– Adds power management

Operating System Design and
Implementation

59

60

Operating System Design and Implementation

• Design and Implementation of OS not “solvable”, but some
approaches have proven successful

• First problem: Design goals and specifications

– Affected by choice of hardware, type of system (batch, time-
sharing, single/multiple users, distributed, real-time, etc)

– User goals
• Convenient to use, easy to learn, reliable, safe, and fast

– System goals
• Easy to design, implement, and maintain, as well as flexible, reliable, error-

free, and efficient

– No unique solution to the problem of defining the requirements

61

Operating System Design and Implementation

• Important principle to separate

– Mechanism: How to do it?

– Policy: What will be done?

• Examples

– Timer mechanism (for CPU protection)

• Policy decision: How long the timer is to be set?

– Priority mechanism (in job scheduling)

• Policy: I/O-intensive programs have higher priority than CPU-
intensive ones or vice versa

• Benefits: maximum flexibility

– Change policy without changing mechanism

62

OS Implementation

• Much variation

– Early OSes in assembly language

– Now C, C++

• Actually usually a mix of languages

– Main body in C

– Lowest levels in assembly

– Systems programs in C, C++, scripting languages

• Pros and cons

– Code can be written faster, easier to understand/debug

– More high-level language, easier to port to other hardware

– Slower & increased storage requirement

63

Implementation

• Performance?

– Major performance improvements: better data
structures and algorithms

– How about developing excellent assembly-language
code in OS implementation?

• Modern compiler is well optimized

• A small amount of the code is critical to performance, easy to
do specialized optimization
– Interrupt handler

– I/O manager

– Memory manager

– CPU scheduler

MISC

Debugging, Generation, Booting

64

65

Operating-System Debugging

• Failure analysis

– log files: written with error information when process fails

– core dump: a capture of the memory of the processes

– crash dump: memory state when OS crashes

• Performance tuning

– Trace listings of system behavior

– Interactive tools: top displays resource usage of processes

• Kernighan’s Law

– “Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

66

Operating System Generation

• Operating systems are designed to run on any of a class of
machines

– The system must be configured or generated for each specific
computer site

• SYSGEN program obtains information concerning the
specific configuration of the hardware system

– Read from file, ask the operator or probe

– Generation methods
• Modify source code and completely recompile

• Select modules from precompiled library and link together

67

System Boot

• System booting on most computer systems

– Bootstrap program (residing in ROM) locates the kernel, loads it
into memory, and starts it
• ROM needs no initialization, cannot be easily infected by virus

• Diagnostics to determine machine state

• Initialization: CPU registers, device controllers, memory

– Some use two-step process: a simple bootstrap loader fetches a
more complex bootstrap program, which loads kernel (large OSes)

– Some store the entire OS in ROM (Mobile OS)

• Common bootstrap loader allows selection of kernel from
multiple disks, versions, kernel options (GRUB)

Summary

• Operating system services

• System calls

– Relationship between system call and API

• Operating system structures

– Modular is important

– Generally adopt a hybrid approach

• Design principles

– Separate policy from mechanism

68

Summary of Part I (Ch1 & Ch2)

• OS Overview

– OS Functionality

– Multiprogramming & Multitasking

• OS Operations

– Dual Mode & System Call

• OS Components

– Process Management

– Memory Management

– Storage Management

• Computing Environment

• Ch2 OS Structure
– Operating system services

– System calls

– Operating system structures

– Design principles

• Process management
– Concept, scheduling,

operation, communication,
synchronization

• Memory management
– Main memory, virtual mem

• Storage management
– Storage, FS, I/O

70

End of Chapter 2

	幻灯片 1: Chapter 2 Operating System Structures
	幻灯片 2: Objectives
	幻灯片 3
	幻灯片 4: Operating System Services
	幻灯片 5: Overview of Operating System Services
	幻灯片 6: OS Services for Helping Users
	幻灯片 7: OS Services for Helping Users
	幻灯片 8: OS Services for Helping Users
	幻灯片 9: OS Services for Helping Users
	幻灯片 10: OS Services for Helping Users
	幻灯片 11: OS Services for Ensuring Efficiency
	幻灯片 12: OS Services for Ensuring Efficiency
	幻灯片 13: OS Services for Ensuring Efficiency
	幻灯片 14: OS Services for Helping Users
	幻灯片 15: User Operating System Interface - CLI
	幻灯片 16: Bourne Shell Command Interpreter
	幻灯片 17: User Operating System Interface - CLI
	幻灯片 18: User Operating System Interface - GUI
	幻灯片 19: Touchscreen Interfaces
	幻灯片 20: Choices of Interfaces
	幻灯片 21
	幻灯片 22: System Calls
	幻灯片 23: Example of System Calls
	幻灯片 24: System Call
	幻灯片 25: System Call
	幻灯片 26: API
	幻灯片 27: API
	幻灯片 28: System Call Implementation
	幻灯片 29: API – System Call – OS Relationship
	幻灯片 30: Standard C Library Example
	幻灯片 31: Implementation Benefits
	幻灯片 32: System Call Parameter Passing
	幻灯片 33: Parameter Passing via Table
	幻灯片 34: Types of System Calls
	幻灯片 35: Types of System Calls
	幻灯片 36: Types of System Calls
	幻灯片 37: Types of System Calls
	幻灯片 38: Example of Process Control: MS-DOS
	幻灯片 39: Example of Process Control: FreeBSD
	幻灯片 40: Types of System Calls
	幻灯片 41: Types of System Calls
	幻灯片 42: Types of System Calls
	幻灯片 43: Types of System Calls
	幻灯片 44: Examples of Windows and Unix System Calls
	幻灯片 45
	幻灯片 46: Operating System Structure
	幻灯片 47: Simple Structure -- MS-DOS
	幻灯片 48: Monolithic Structure -- UNIX
	幻灯片 49: Traditional UNIX System Structure
	幻灯片 50: Layered Approach
	幻灯片 51: Microkernel System Structure
	幻灯片 52: Microkernel System Structure
	幻灯片 53: Modules
	幻灯片 54: Modules
	幻灯片 55: Hybrid Systems
	幻灯片 56: Mac OS X Structure
	幻灯片 57: iOS
	幻灯片 58: Android
	幻灯片 59
	幻灯片 60: Operating System Design and Implementation
	幻灯片 61: Operating System Design and Implementation
	幻灯片 62: OS Implementation
	幻灯片 63: Implementation
	幻灯片 64
	幻灯片 65: Operating-System Debugging
	幻灯片 66: Operating System Generation
	幻灯片 67: System Boot
	幻灯片 68: Summary
	幻灯片 69: Summary of Part I (Ch1 & Ch2)
	幻灯片 70

