
Operating Systems

Prof. Yongkun Li
中科大-计算机学院特任教授
http://staff.ustc.edu.cn/~ykli

Chapter 3
Process Concepts & Operations

1

2

Outline

• Process Concept

– Program vs process

– Process in memory & PCB

– Process state

• Processes Operations

– Process creation, program execution, process
termination

– UNIX example: fork(), exec*(), wait()

What is a process?

3

Process

Relationship?

Differences?

Execution?

Program

Informally, a process is a program in execution.

4

Program

What is a program?

What is a program?

• What is a program?

– A program is a just a piece of code.

• But, which code do you mean?

– High-level language code: C or C++?

– Low-level language code: assembly code?

– Not-yet an executable: object code?

– Executable: machine code?

5

Flow of building a program (1 of 2)

6

Pre-processor

Compiler &
Optimizer

Assembly code: hello.s

C code: hello.c Expanded C code: hello.c

#define TXT “hello”

int main(void) {
 printf(“%s\n”, TXT);
 return 0;
}

(Still…1 of 2) Pre-processor

• The pre-processor expands:

– #define, #include, #ifdef, #ifndef, #endif, etc.

– Try: “gcc –E hello.c”

7

#define TXT “hello”

int main(void) {
 printf(“%s\n”, TXT);
 return 0;
}

Pre-processor

int main(void) {
 printf(“%s\n”, "hello");
 return 0;
}

Original code Expanded codegcc –E hello.c

(Still…1 of 2) Pre-processor

• Another example: the macro!

8

#define SWAP(a,b) { int c; c = a; a = b; b = c; }

int main(void) {
 int i = 10, j = 20;
 printf("before swap: i = %d, j = %d\n", i, j);
 SWAP(i, j);
 printf("after swap: i = %d, j = %d\n", i, j);
}

Pre-processor

int main(void) {
 int i = 10, j = 20;
 printf("before swap: i = %d, j = %d\n", i, j);
 { int c; c = i; i = j; j = c; };
 printf("after swap: i = %d, j = %d\n", i, j);
}

(Still…1 of 2) Pre-processor

• How about: #include?

9

#include “header.h”

int main(void) {
 add_fun(1,2);
 return 0;
}

int add_fun(int a, int b) {
 return (a + b);
}

int add_fun(int a, int b) {
 return (a + b);
}

int main(void) {
 add_fun(1,2);
 return 0;
}

Pre-processorProgram: include.c

Program: header.h

(Still…1 of 2) Compiler and Optimizer

• The compiler performs:

– Syntax checking and analyzing;

– If there is no syntax error, construct intermediate codes,
i.e., assembly codes;

• The optimizer optimizes codes

– It improves stupid codes!

– Check the parameter of gcc

10

“-O” means to optimize.

The number followed is the
optimization level. Max is level 3,
i.e., “-O3”. Default is level is “-O1”.

“-O0”: means no optimization.

Flow of building a program (2 of 2)

11

Assembly code: hello.s

Assembler
“as” in Linux.

Linker
“ld” in Linux.

Object code: hello.o

Executable: hello
Static/Dynamic

library

(Still…2 of 2) Assembler and Linker

• The assembler assembles “hello.s” and
generates an object code “hello.o”

– A step closer to machine code

– Try: “as hello.s –o hello.o”

• The linker puts together all object files as well as
the libraries

– There are two kinds of libraries: statically-linked and
dynamically-linked ones

12

Sidetrack: Library files

• A library file is…

– just a bunch of function implementations.

– for the linker to look for the function(s) that the target C
program needs.

13

A bunch of “dot-o” files.

Shared library
with “.so” file
extension.

A static library
with “.a” file
extension. It is
also called an
archive.

.so

.a

Sidetrack: Library files

14

.a .so

Linking with static library file.

.o.o

The final
program is the
combination of
the above two
codes.

The linker only
checks whether the
functions used in
“.o” files exists in
the “.so” files or
not.

A smaller
program!

Linking with dynamic library file.

How to compile multiple files?

• gcc by default hides all the intermediate steps.

– Executable: “gcc -o hello hello.c” generates
“hello” directly.

– Object code: “gcc -c hello.c” generates “hello.o”
directly.

• How about working with multiple files?

15

How to compile multiple files?

16

Step 1.

Prepare all the source files.
Important: there must be
one and only one file
containing the main function.

Step 2.

Compile them into object
codes one by one.

Step 3.

$ gcc –o prog *.o

Construct the program
together with all the object
codes.

$ gcc –c code.c
......

Remember, below shows one of the solution.

*.c

*.o

prog

Conclusion on “what is a program?”

• A program is just an executable file!

– It is static;

– It may be associated with dynamically-linked files;

• “*.so” in Linux and “*.dll” in Windows.

• It may be compiled from more than one file

17

18

What is a process?

Process
Process

Process
Process

Process

Process in Memory

• A process is a program in execution

– A program (an executable file) becomes process when it
is loaded into memory

– Active

• Process in memory

– What are they? Only the program code?

19

Process in Memory

• Text section

– Program code

• Data section

– Global variables

• Stack

– Temporary data (function parameters, return addresses,
local variables)

• Heap

– Dynamically allocated memory during process run time

• Program counter and contents of registers

20

21

Process State

• As a process executes, it changes state, which is
defined in part by the current activity

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

• I/O completion or reception of a signal

– ready: The process is waiting to be assigned to a
processor

– terminated: The process has finished execution

Diagram of Process State

• State diagram

• Only one process can be running on any processor
at any instant

• Many processes may be ready or waiting

22

23

How to switch processes?

Example: CPU switch from process to process

24

How to locate/represent a process?

• Process control block (PCB) or task control block

– Process state (running, waiting, etc)

– Program counter
• location of next instruction to execute

– CPU registers
• contents of all process-centric registers

– CPU scheduling information
• priorities, scheduling queue pointers

– Memory-management information
• memory allocated to the process

– I/O status information
• I/O devices allocated to process, list of open files

– Accounting information
• CPU used, clock time elapsed since start, time limits

25

Process Data Structure in Linux

• Represented by C structure task_struct

– <linux/sched.h>

pid t_pid; /* process identifier */

long state; /* state of the process */

struct sched_entity se; /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
structure

(PCB)
Kernel code
with system

calls

26

Relationship between Process Data & PCB

Kernel Space

User space

Process Invoking system
calls. E.g., fork(),
exec*(), wait().

Access
process’
internal

Conclusion on “what is a process?”

• A process is a program in execution

– process (active entity) != program (static entity)

– Why active?

• A program counter specifying the next instruction to execute +
a set of associated resources

• Only one process can be running on any processor
at any instant

27

Conclusion on “what is a process?”

• Two processes maybe associated with the same
program (Two users are running the same program)

– Example

• The same user invokes two copies of the web browser

– Separate execution sequences

• The text section may be equivalent

• The data, heap, and stack sections vary

• A process can be an execution environment for
other code

– Java programming environment

– java Program (java runs JVM as a process)

28

29

Process Operations

Process
Process

Process
Process

Process

Process Operations

• Process

– It associates with all the files opened by that process.

– It attaches to all the memory that is allocated for it.

– It contains every accounting information,

• running time, current memory usage, who owns the process,
etc.

• You couldn’t operate any things without processes.

30

31

Process Operations

• System must provide mechanisms for:

– process identification

– process creation

– program execution

– process termination

• Some basic and important system calls

– getpid()

– fork()

– exec*()

– exit()

– wait()

32

Process
Process

Process
Process

Process

Process Operations
 - process identification

Process identification

• How can we identify processes?

– Each process is given an unique ID number, and is called
the process ID, or the PID.

– The system call, getpid(), prints the PID of the calling
process.

33

$./getpid
My PID is 1234
$./getpid
My PID is 1235
$./getpid
My PID is 1237

#include <stdio.h> // printf()
#include <unistd.h> // getpid()

int main(void) {
 printf("My PID is %d\n”, getpid());
}

34

Process
Process

Process
Process

Process

Process Operations
 - process identification
 - process creation

35

Process Creation

• A process may create several new processes

– Parent process: the creating process

– Children processes: the new processes

• The first process

– The kernel, while it is booting up, creates the first
process – init.

– The “init” process:

• has PID = 1, and

• is running the program code “/sbin/init”.

– Its first task is to create more processes…

36

Process Creation

• Tree hierarchy

– Each of the new process may in turn create other
processes, and form a tree hierarchy

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

Process blossoming

• You can view the tree with the command:

– “pstree”; or

– “pstree –A” for ASCII-character-only display.

37

init

SSH
serverfork()

& exec*()
Shell

top

fork()
& exec*() fork()

& exec*()

also implies the parent-child relationship.

Process blossoming…with orphans?

• However, termination can happen, at any time and in any
place…
– All the resources are deallocated to OS when a process terminates

– A process may become an orphan when its parent terminated

– An orphan turns the hierarchy from a tree into a forest!

– Plus, no one would know the termination of the orphan.

38

init

SSH
server Shell

top

Now, this poor
process becomes
an orphan.

Process blossoming…with re-parent!

• In Linux…
– We have the re-parent operation.

– The “init” process will become the step-mother of all
orphans.

• Well…Windows maintains a forest-like hierarchy.

39

init

SSH
server Shell

top

re-parent

A short summary

• Observation 1

– The processes in Linux is always organized as a tree.

– Because of the re-parent operation, there is always only
one process tree.

• Observation 2

– The re-parent operation allows processes running
without the need of a parent terminal.

– Thus, the background jobs survive even though the
hosting terminal is closed.

40

41

Relationship between Parent and Child

• Resource sharing options

– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution options

– Parent and children execute concurrently

– Parent waits until children terminate

• Address space options

– Child is a duplicate of parent

– Child has a new program loaded into it

• We focus on UNIX examples to illustrate

Process creation

• To create a process, we use the system call fork()

42

Original execution flow
of a process

The process
invokes fork().

The process splits into two!

Flow of original process

Flow of newly-created process

Which process will be
executed after fork()?

Process creation – fork() system call

• So, how do fork() and the processes behave?

43

int main(void) {
 printf(“Ready (PID = %d)\n”, getpid());
 fork();
 printf(“My PID is %d\n”, getpid());
 return 0;
}

PID 1234

PID 1235

My PID is 1235
$ _

Process 1234 is the original
process, and we call it the
parent process.

Process 1235 is created by
the fork() system call, and
we call it the child process.

Why is this line of code executed twice?

$./fork_example_1

Ready (PID=1234)

My PID is 1234

Process creation – fork() system call

• So, how do fork() and the processes behave?

44

What do we know so far?

-Both the parent and the child execute the same program before and after fork().
-The child process starts its execution at the location that fork() is returned, not
from the beginning of the program.

int main(void) {
 printf(“Ready (PID = %d)\n”, getpid());
 fork();
 printf(“My PID is %d\n”, getpid());
 return 0;
}

Process creation – fork() system call

45

1 int main(void) {
 2 int result;
 3 printf("before fork ...\n");
 4 result = fork();
 5 printf("result = %d.\n", result);
 6
 7 if(result == 0) {
 8 printf("I'm the child.\n");
 9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...

PID 1234

One more example

Process creation – fork() system call

46

1 int main(void) {
 2 int result;
 3 printf("before fork ...\n");
 4 result = fork();
 5 printf("result = %d.\n", result);
 6
 7 if(result == 0) {
 8 printf("I'm the child.\n");
 9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...

PID 1234 PID 1235fork()

One more example

Process creation – fork() system call

47

$./fork_example_2
Before fork …

PID 1234 PID 1235fork()

Let there be only ONE CPU. Then…
- Only one process is allowed to be executed at one time.
- However, we can’t predict which process will be chosen by the OS.
- By the time, this mechanism is called process scheduling.

In this example, we assume that the parent, PID 1234,
runs first, after the fork() call.

Assumption

Process creation – fork() system call

48

1 int main(void) {
 2 int result;
 3 printf("before fork ...\n");
 4 result = fork();
 5 printf("result = %d.\n", result);
 6
 7 if(result == 0) {
 8 printf("I'm the child.\n");
 9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...

PID 1234
(running)

PID 1235
(waiting)

Important

For parent, the return
value of fork() is the
PID of the created child.

result = 1235

Process creation – fork() system call

49

1 int main(void) {
 2 int result;
 3 printf("before fork ...\n");
 4 result = fork();
 5 printf("result = %d.\n", result);
 6
 7 if(result == 0) {
 8 printf("I'm the child.\n");
 9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.

PID 1234
(dead)

PID 1235
(waiting)

Process creation – fork() system call

50

1 int main(void) {
 2 int result;
 3 printf("before fork ...\n");
 4 result = fork();
 5 printf("result = %d.\n", result);
 6
 7 if(result == 0) {
 8 printf("I'm the child.\n");
 9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.
result = 0

PID 1234
(dead)

PID 1235
(running)

Important

For child, the return value
of fork() is 0.

Process creation – fork() system call

51

1 int main(void) {
 2 int result;
 3 printf("before fork ...\n");
 4 result = fork();
 5 printf("result = %d.\n", result);
 6
 7 if(result == 0) {
 8 printf("I'm the child.\n");
 9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.
result = 0
I’m the child.
My PID is 1235
program terminated.
$ _

PID 1234
(dead)

PID 1235
(dead)

Process creation – fork() system call

• fork() behaves like “cell division”.

– It creates the child process by cloning from the parent
process, including…

52

Cloned items Descriptions

Program code
[File & Memory]

They are sharing the same piece of code.

Memory Including local variables, global variables, and dynamically
allocated memory.

Opened files
[Kernel’s internal]

If the parent has opened a file “A”, then the child will also have
file “A” opened automatically.

Program counter
[CPU register]

That’s why they both execute from the same line of code
after fork() returns.

Process creation – fork() system call

• However…

– fork() does not clone the following...

– Note: they are all data inside the memory of kernel.

53

Distinct items Parent Child

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent
as that of the parent process.

Running time Cumulated. Just created, so should be 0.

54

Process
Process

Process
Process

Process

Process Operations
 - process identification
 - process creation
 - program execution

fork() can only duplicate…

• fork() is rather boring…

– If a process can only duplicate itself and always runs the
same program, then…

– how can we execute other programs?

• We want CHANGE!

– Meet the exec() system call family.

55

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

56

int main(void) {

 printf("before execl ...\n");

 execl("/bin/ls", "/bin/ls", NULL);

 printf("after execl ...\n");

 return 0;
}

$./exec_example
before execl ...

Arguments of the execl() call

1st argument: the program name, “/bin/ls” in the
example.
2nd argument: 1st argument to the program.
3rd argument: indicate the end of the list of arguments.

Program execution

• Example #1: run the command "/bin/ls"

57

execl("/bin/ls", "/bin/ls", NULL);

Argument
Order

Value in above
example

Description

1 "/bin/ls" The file that the programmer wants to execute.

2 "/bin/ls" When the process switches to "/bin/ls",
this string is the first program argument.

3 NULL This states the end of the program argument
list.

Program execution

• Example #2: run the command "/bin/ls -l"

58

execl("/bin/ls", "/bin/ls", "-l", NULL);

Argument
Order

Value in above
example

Description

1 "/bin/ls" The file that the programmer wants to execute.

2 "/bin/ls" When the process switches to "/bin/ls",
this string is the first program argument.

3 "-l" When the process switches to "/bin/ls",
this string is the second program argument.

4 NULL This states the end of the program argument
list.

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

59

int main(void) {

 printf("before execl ...\n");

 execl("/bin/ls", "/bin/ls", NULL);

 printf("after execl ...\n");

 return 0;
}

$./exec_example
before execl ...

What is the output?

The same as the output of running
“ls” in the shell.

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

60

int main(void) {

 printf("before execl ...\n");

 execl("/bin/ls", "/bin/ls", NULL);

 printf("after execl ...\n");

 return 0;
}

$./exec_example
before execl ...
exec_example
exec_example.c

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

61

int main(void) {

 printf("before execl ...\n");

 execl("/bin/ls", "/bin/ls", NULL);

 printf("after execl ...\n");

 return 0;
}

$./exec_example
before execl ...
exec_example
exec_example.c

GUESS:
What happens next?

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

62

$./exec_example
before execl ...
exec_example
exec_example.c
$ _

int main(void) {

 printf("before execl ...\n");

 execl("/bin/ls", "/bin/ls", NULL);

 printf("after execl ...\n");

 return 0;
}

WHAT?!
The shell prompt appears!

The output says:
(1) The gray code block is not reached!
(2) The process is terminated!

WHY IS THAT?!

Program execution

• The exec system call family is not simply a function
that “invokes” a command.

63

int main(void) {

 printf("before execl ...\n");

 execl("/bin/ls", "/bin/ls", NULL);

 printf("after execl ...\n");

 return 0;
}

Process
Originally, the process is executing the
program “exec_example”.

Program execution

• The exec system call family is not simply a function
that “invokes” a command.

64

int main(void) {

 printf("before execl ...\n");

 execl("/bin/ls", "/bin/ls", NULL);

 printf("after execl ...\n");

 return 0;
}

Process
The execl() call changes the execution from
“exec_example” to “/bin/ls”

/* The program “ls” */

int main(int argc, char ** argv)
{

 exit(0);
}

Program execution

• The exec system call family is not simply a function
that “invokes” a command.

65

Process

The “return” or the “exit()”
statement in “/bin/ls” will terminate
the process…

Therefore, it is certain that the process
cannot go back to the old program!

/* The program “ls” */

int main(int argc, char ** argv)
{

 exit(0);
}

Program execution - observation

• The process is changing the code that is executing and never
returns to the original code.
– The last two lines of codes are therefore not executed.

• The process that calls any one of the member of the exec
system call family will throw away many things, e.g.,
– Memory: local variables, global variables, and dynamically

allocated memory;
– Register value: e.g., the program counter;

• But, the process will preserve something, including:
– PID;
– Process relationship;
– Running time, etc.

66

67

Process
Process

Process
Process

Process

Process Operations
 - process identification
 - process creation
 - program execution
 - fork() + exec*() = ?

When fork() meets exec*()…

• The mix can become:

– A shell,

– The system() library call, etc…

68

Execute
command

Switch to
target program

Terminate

Resume

Parent

Child

fork() + exec*() = system()?

69

1 int system_test(const char *cmd_str) {
 2 if(cmd_str == -1)
 3 return -1;
 4 if(fork() == 0) {
 5 execl(cmd_str, cmd_str, NULL);
 6 fprintf(stderr,
 "%s: command not found\n", cmd_str);
 7 exit(-1);
 8 }
 9 return 0;
10 }
11
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

$./system_implement_1
before...

system_implement_1
system_implement_1.c

after...
$ _

Is this the
only result?

fork() + exec*() = system()?!

70

1 int system_test(const char *cmd_str) {
 2 if(cmd_str == -1)
 3 return -1;
 4 if(fork() == 0) {
 5 execl(cmd_str, cmd_str, NULL);
 6 fprintf(stderr,
 "%s: command not found\n", cmd_str);
 7 exit(-1);
 8 }
 9 return 0;
10 }
11
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

$./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

Some strange cases
happened when the
program is executed
repeatedly!! Why?

fork() + exec*() = system()...

71

1 int system_test(const char *cmd_str) {
 2 if(cmd_str == -1)
 3 return -1;
 4 if(fork() == 0) {
 5 execl(cmd_str, cmd_str, NULL);
 6 fprintf(stderr,
 "%s: command not found\n", cmd_str);
 7 exit(-1);
 8 }
 9 return 0;
10 }
11
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

Let’s re-color the program!

Parent process

Child process

Both processes

$./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

$./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

fork() + exec*() = system()...

72

Parent Childfork()

Parent

then

Expected execution
sequence.

$./system_implement_1
before...

after...
system_implement_1
System_implement_1.c
$ _

$./system_implement_1
before...

system_implement_1
System_implement_1.c

after...
$ _

Possible execution
sequence.

Parent

Child

Parent

then

fork()

73

fork() + exec*()

Is it enough?

fork() + exec*() = system()...

• Don’t forget that we’re trying to implement a system()-
compatible function…

– It is very weird to allow different execution orders.

• How to let the child to execute first?

– But…we can’t control the process scheduling of the OS to
this extent.

• Then, our problem becomes…

– How to suspend the execution of the parent process?

– How to wake the parent up after the child is terminated?

74

fork()+ exec*() + wait() = system()

75

1 int system_test(const char *cmd_str) {
 2 if(cmd_str == -1)
 3 return -1;
 4 if(fork() == 0) {
 5 execl("/bin/sh", "/bin/sh",
 "-c", cmd_str, NULL);
 6 fprintf(stderr,
 "%s: command not found\n", cmd_str);
 7 exit(-1);
 8 }
 9 wait(NULL);
10 return 0;
11 }
12
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

What is the
output now?

fork()+ exec*() + wait() = system()

76

1 int system_test(const char *cmd_str) {
 2 if(cmd_str == -1)
 3 return -1;
 4 if(fork() == 0) {
 5 execl("/bin/sh", "/bin/sh",
 "-c", cmd_str, NULL);
 6 fprintf(stderr,
 "%s: command not found\n", cmd_str);
 7 exit(-1);
 8 }
 9 wait(NULL);
10 return 0;
11 }
12
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

$./system_implement_2
before...

system_implement_2
System_implement_2.c

after...
$ _

The parent is
suspended until
the child
terminates

wait() – properties explained

• The wait() system call suspend the calling parent
process (Case 1).

• When to wake up?

– wait() returns and wakes up the calling process when
the one of its child processes changes from running to
terminated.

77

wait()

fork() Terminate

wake up

Case 1.

Parent is
suspended.

wait() – properties explained

• What happens if

– There were no running children;

– There were no children;

• wait() does not suspend the calling process
(Case 2)

78

wait()

fork() Terminate

Case 2.

no suspension
is needed.

wait() – summary

• The wait() system call suspend
the calling parent process (Case 1).

• wait() returns and wakes up the
calling process when the one of its
child processes changes from
running to terminated.

• wait() does not suspend the
calling process (Case 2) if
– There were no running children;

– There were no children;

79

wait()

fork() Terminate

wake up

Case 1.

Parent is
suspended.

wait()

fork() Terminate

Case 2.

no suspension
is needed.

More powerful wait()?

• Limitation of wait()?

– waits for any one of the children

– Detect child termination only

• How to wait for a particular process?

– waitpid()

80

wait() VS waitpid()

81

wait() waitpid()

Wait for any one of the children. Depending on the parameters,
waitpid() will wait for a particular
child only.

Detect child termination only. Depending on the parameters,
waitpid() can detect child’s status
changing:
-from running to suspended, and
-from suspended to running.

For more details, you must read the man pages of wait() and waitpid().

Summary of Process Operations

• A process is created by cloning
– fork() is the system call that clones processes
– Cloning is copying

• What are inherited?
• What are not?
• Metaphor of father-son relationship

– wait() can be used to suspend the parent process, so as to
guarantee the expected execution sequence

• Program execution is fundamental, but not trivial
– A process is the place that hosts a program and run it
– exec() system call family changes the program that a

process is running.
– A process can run more than one program…

• as long as there is a set of programs that keeps on calling the exec
system call family.

82

Summary of Ch3

• Concepts

– Process data in memory

– PCB

• Operations

– fork(), exec*(), wait()

– Just introduced how they could be used to create
processes and execute programs

– How about the internal working of these system calls?

• How does the kernel behaves when calling these system calls?

83

84

End of Chapter 3

	幻灯片 1: Chapter 3 Process Concepts & Operations
	幻灯片 2: Outline
	幻灯片 3: What is a process?
	幻灯片 4
	幻灯片 5: What is a program?
	幻灯片 6: Flow of building a program (1 of 2)
	幻灯片 7: (Still…1 of 2) Pre-processor
	幻灯片 8: (Still…1 of 2) Pre-processor
	幻灯片 9: (Still…1 of 2) Pre-processor
	幻灯片 10: (Still…1 of 2) Compiler and Optimizer
	幻灯片 11: Flow of building a program (2 of 2)
	幻灯片 12: (Still…2 of 2) Assembler and Linker
	幻灯片 13: Sidetrack: Library files
	幻灯片 14: Sidetrack: Library files
	幻灯片 15: How to compile multiple files?
	幻灯片 16: How to compile multiple files?
	幻灯片 17: Conclusion on “what is a program?”
	幻灯片 18
	幻灯片 19: Process in Memory
	幻灯片 20: Process in Memory
	幻灯片 21: Process State
	幻灯片 22: Diagram of Process State
	幻灯片 23: How to switch processes?
	幻灯片 24: How to locate/represent a process?
	幻灯片 25: Process Data Structure in Linux
	幻灯片 26: Relationship between Process Data & PCB
	幻灯片 27: Conclusion on “what is a process?”
	幻灯片 28: Conclusion on “what is a process?”
	幻灯片 29
	幻灯片 30: Process Operations
	幻灯片 31: Process Operations
	幻灯片 32
	幻灯片 33: Process identification
	幻灯片 34
	幻灯片 35: Process Creation
	幻灯片 36: Process Creation
	幻灯片 37: Process blossoming
	幻灯片 38: Process blossoming…with orphans?
	幻灯片 39: Process blossoming…with re-parent!
	幻灯片 40: A short summary
	幻灯片 41: Relationship between Parent and Child
	幻灯片 42: Process creation
	幻灯片 43: Process creation – fork() system call
	幻灯片 44: Process creation – fork() system call
	幻灯片 45: Process creation – fork() system call
	幻灯片 46: Process creation – fork() system call
	幻灯片 47: Process creation – fork() system call
	幻灯片 48: Process creation – fork() system call
	幻灯片 49: Process creation – fork() system call
	幻灯片 50: Process creation – fork() system call
	幻灯片 51: Process creation – fork() system call
	幻灯片 52: Process creation – fork() system call
	幻灯片 53: Process creation – fork() system call
	幻灯片 54
	幻灯片 55: fork() can only duplicate…
	幻灯片 56: Program execution
	幻灯片 57: Program execution
	幻灯片 58: Program execution
	幻灯片 59: Program execution
	幻灯片 60: Program execution
	幻灯片 61: Program execution
	幻灯片 62: Program execution
	幻灯片 63: Program execution
	幻灯片 64: Program execution
	幻灯片 65: Program execution
	幻灯片 66: Program execution - observation
	幻灯片 67
	幻灯片 68: When fork() meets exec*()…
	幻灯片 69: fork() + exec*() = system()?
	幻灯片 70: fork() + exec*() = system()?!
	幻灯片 71: fork() + exec*() = system()...
	幻灯片 72: fork() + exec*() = system()...
	幻灯片 73
	幻灯片 74: fork() + exec*() = system()...
	幻灯片 75: fork()+ exec*() + wait() = system()
	幻灯片 76: fork()+ exec*() + wait() = system()
	幻灯片 77: wait() – properties explained
	幻灯片 78: wait() – properties explained
	幻灯片 79: wait() – summary
	幻灯片 80: More powerful wait()?
	幻灯片 81: wait() VS waitpid()
	幻灯片 82: Summary of Process Operations
	幻灯片 83: Summary of Ch3
	幻灯片 84

