
Operating Systems

Prof. Yongkun Li
中科大-计算机学院特任教授
http://staff.ustc.edu.cn/~ykli

Ch7
Memory Management

from a Programmer’s Perspective

1

Why we need memory management

• The running program code requires memory
– Because the CPU needs to fetch the instructions from

the memory for execution

• We must keep several processes in memory
– Improve both CPU utilization and responsiveness
– Multiprogramming

2

It is required to efficiently manage the memory

Topics in Ch7

3

What is the address space of a process?
How are the program code and data stored in memory?

How to allocate/free memory (malloc() + free())?
How much memory can be used in a program?

What are segmentation and segmentation fault?

From a programmer’s perspective: user-space memory management

What is virtual memory?
How to realize address mapping (paging)?

How to support very large programs (demand paging)?
How to do page replacement?

What is TLB?
What is memory-mapped file?

From the kernel’s perspective: How to manage the memory

4

Part 1: User-space memory

Global variable

Local variable

Dynamically-allocated
memory

Code +
constants

Process

Do you remember this?
- Content of a process (in user-space

memory)

How does each part use the memory?
- From a programmer’s perspective

Let’s forget about the kernel for a
moment. We are going to explore the
user-space memory first.

5

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Address space

6

Data Segment & BSS –
Global and static

variables

Heap – Dynamically
allocated memory

Code + Constant

Stack - Local variables

How does a programmer
look at the memory space?

- An array of bytes?

- Memory of a process is
divided into segments

- This way of arranging
memory is called
segmentation

Address space

7

Data Segment & BSS –
Global and static

variables

Heap – Dynamically
allocated memory

Code + Constant

Stack - Local variables
Increasing

address

$./addr
Local variable = 0xbfa8938c
malloc() space = 0x915c008
Global variable = 0x804a020
Code & constant = 0x8048550
$ _

Note
The addresses are not necessarily the
same in different processes

What is the process address space?

8

Address space

Data Segment & BSS –
Global and static

variables

Heap – Dynamically
allocated memory

Code + Constant

Stack - Local variables
0xffffffff = 0x100000000 - 1

1 ‘1’ bit + 16 ‘0’ bits

= 2^32 - 1

= 4G - 1

0xf = 1111

In a 32-bit system,
- One address maps to one byte.
- The maximum amount of memory

in a process is 4GB.

Increasing
address

Note
- This is the so called logical address

space
- Each process has its own address

space, and it can reside in any part
of the physical memory

How large is the address space?

9

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Program code & constants
• A program is an executable file

• A process is not bounded to one
program code.
– Remember exec*() family?

• The program code requires
memory space because…
– The CPU needs to fetch the

instructions from the memory for
execution.

10

Data Segment
& BSS

Heap

Code +
Constant

Stack

instruction

Program code & constants

• Question #1. What are the printouts from Line
3 & 4?

• Question #2. What is the printout from Line 6?

11

1 int main(void) {
2 char *string = "hello";
3 printf("\"hello\" = %p\n", "hello");
4 printf("String pointer = %p\n", string);
5 string[4] = '\0';
6 printf("Go to %s\n", string);
7 return 0;
8 }

Data Segment
& BSS

Heap

Code +
Constant

Stack

Segmentation fault

"hello" = 0x8048520
String pointer = 0x8048520

Program code & constants

12

• Constants are stored in code segment.
– Accessing of constants are done using

addresses (or pointers).

• Codes and constants are both read-only.

Data Segment
& BSS

Heap

Code +
Constant

Stack

1 int main(void) {
2 char *string = "hello";
3 printf("\"hello\" = %p\n", "hello");
4 printf("String pointer = %p\n", string);
5 string[4] = '\0';
6 printf("Go to %s\n", string);
7 return 0;
8 }

13

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Data Segment & BSS – properties

14

int global_int = 10;
int main(void) {

int local_int = 10;
static int static_int = 10;
printf("local_int addr = %p\n", &local_int);
printf("static_int addr = %p\n", &static_int);
printf("global_int addr = %p\n", &global_int);
return 0;

}

$./global_vs_static
local_int addr = 0xbf8bb8ac
static_int addr = 0x804a018
global_int addr = 0x804a014
$_

They are stored next
to each other.

This implies that they
are in the same
segment!

Data Segment
& BSS

Heap

Code +
Constant

Stack

Note: A static variable is treated as the
same as a global variable!

Data Segment & BSS – properties

15

• Data
– Containing initialized global and static

variables.

• BSS (Block Started by Symbol)
– Containing uninitialized global and

static variables. Data Segment
& BSS

Heap

Code +
Constant

Stack

Data Segment & BSS – locations

16

$./data_vs_bss
global bss = 0x804a028
static bss = 0x804a024
global data = 0x804a014
static data = 0x804a018
$_

1 int global_bss;
2 int global_data = 10;
3 int main(void) {
4 static int static_bss;
5 static int static_data = 10;
6 printf("global bss = %p\n", &global_bss);
7 printf("static bss = %p\n", &static_bss);
8 printf("global data = %p\n", &global_data);
9 printf("static data = %p\n", &static_data);
10 }

BSS

Data

Data Segment
& BSS

Heap

Code +
Constant

Stack

Data Segment & BSS – sizes

17

Guess! Which one is large?

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 –o data_small data_small.c

$ ls –l data_small data_large

No optimization.

Program: data_large.c

char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

} What is the difference between data
and BSS?

Program: data_large.c

Data Segment & BSS – sizes

18

char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

}

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 -o data_small data_small.c

$ ls –l data_small data_large
-rwxr-xr-x ... 1004816 ... data_large
-rwxr-xr-x ... 4916 ... data_small
$_

Wow!

The data segment has the required
space already allocated.

Program: bss_large.c

Data Segment & BSS – sizes

19

char a[1000000];

int main(void) {
return 0;

}

Program: bss_small.c

char a[100];

int main(void) {
return 0;

}

$ gcc -O0 -o bss_large bss_large.c
$ gcc –O0 -o bss_small bss_small.c

$ ls –l bss_small bss_large
-rwxr-xr-x ... 4775... bss_large
-rwxr-xr-x ... 4775... bss_small
$_

Same size!

To the program, BSS is just a bunch of symbols.
The space is not yet allocated.

The space will be allocated to the process once
it starts executing.

This is why BSS is called “Block Started by
Symbol”.

Data Segment & BSS – limits

20

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
......

$ _

In Linux, “ulimit” is a built-in
command in “/bin/bash”.

It sets or gets the system
limitations in the current shell.

How large is the data segment?

Does the “unlimited” mean that you can define a global array
with large enough size?

Data Segment & BSS – limits

21

$ gcc -Wall -O0 global_2gb.c -o global_2gb
global_2gb.c:6: warning: integer overflow in expression
global_2gb.c:6: error: size of array ‘a’ is negative
$ _

#define ONE_MEG (1024 * 1024)

char a[2048 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“2GB OK\n");

}

The size of an array is a 32-bit signed integer, no matter 32-bit or 64-bit systems.
Therefore…

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");

}

Data Segment & BSS – limits

22

Segmentation fault
why?

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];
char b[1024 * ONE_MEG];
char c[1024 * ONE_MEG];
char d[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");
memset(b, 0, sizeof(b));
printf(“2GB OK\n");
memset(c, 0, sizeof(c));
printf(“3GB OK\n");
memset(d, 0, sizeof(d));
printf(“4GB OK\n");

}

Program: global_4gb.c

On a 32-bit Linux system, the
user-space addressing space
is around 3GB.

The kernel reserves 1GB
addressing space.

Data Segment & BSS – summary

• Remember, “global variable == static variables”.
– Only the compiler cares about the difference!

• Everything in a computer has a limit!
– Different systems have different limits: 32-bit VS 64-bit.
– Your job is to adapt to such limits.
– On a 32-bit Linux system, the user-space addressing

space is around 3GB.

23

24

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Stack – properties

• The stack contains:
– all the local variables,
– all function parameters,
– program arguments, and
– environment variables.

25

Data Segment
& BSS

Heap

Code +
Constant

Stack

How are the data stored and what is the
size limit?

Stack – properties
• Stack: FILO

• When a function is called, the local
variables are allocated in the stack.

• When a function returns, the local
variables are deallocated from the stack.

26

Data Segment
& BSS

Heap

Code +
Constant

Stack

main() starts

Stack – push & pop mechanisms

27

a = 1
b = 2

variable ‘a’ in main().

variable ‘b’ in main().

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

return addr 1

1
2

Stack – push & pop mechanisms

28

a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Will become u in fun1().

Will become v in fun1().

Calling function “fun1()” starts.
It is the beginning of the call, and the CPU has not
switched to fun1() yet.

“return addr 1”
is approx. here.

main() starts

return addr 1

u = 1
v = 2

Stack – push & pop mechanisms

29

a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun1()” takes place. The CPU has
switched to fun1() .

fun1() starts

main() starts

return addr 2

u = 1
v = 2

Stack – push & pop mechanisms

30

a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” starts.
It is the beginning of the call, and the CPU has not
switched to fun2() yet.

2
1

return addr 1
Will become x in fun2().

Will become y in fun2().

return addr 2 is
approx. here.

fun1() starts

main() starts

return addr 2

u = 1
v = 2

Stack – push & pop mechanisms

31

a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” takes place. The CPU has
switched to fun2() .

x = 2
y = 1

return addr 1

fun1() starts

fun2() starts

c = 10 Local variables are allocated
once the function starts.

main() starts

u = 1
v = 2

Stack – push & pop mechanisms

32

a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}return addr 1

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to fun1().

x = 2
y = 1

return addr 2

fun1() starts

fun2() starts

c = 10

EAX: 13

main() starts

u = 1
v = 2

return addr 1
x = 2
y = 1

return addr 2
c = 10

Stack – push & pop mechanisms

33

a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to main().

fun1() starts EAX: 13

main() starts

u = 1
v = 2

return addr 2
x = 2
y = 1

return addr 3
c = 10

a = 1
b = 13

Stack – push & pop mechanisms

34

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 13

Upon “return”, the value of
EAX is then copied to “b”

Those memory is NOT
returned to the OS!!

Those memory will be re-
used when you call
functions again.

main() starts

u = 1
v = 2

return addr 2
x = 2
y = 1

return addr 3
c = 10

a = 1
b = 13

Stack – push & pop mechanisms

35

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 0

Eventually, the main
function reaches
“return 0”.

This takes the CPU
pointing to the C library.

Inside the C library, we
will eventually reach the
system call exit().

Stack – limits

36

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
......
stack size (kbytes, -s) 8192
......

$ _

So, the limit is:
8192 x 1024 = 8MB.

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
......
stack size (kbytes, -s) 8192
......

$ ulimit -s 81920

Now, the limit is:
81920 x 1024 = 80MB.

Can you define a local array larger that the limit? Segmentation
fault

Stack – summary

• What if it is a chain of endless
recursive function calls?

• What will happen?
– Exception caught by the CPU!

• Stack overflow exception!

– Program terminated!

37

No! I’m full!

Stack – summary
• “I really need to play with recursions.” Any

workaround?
– Minimize the number of arguments
– Minimize the number of local variables
– Minimize the number of calls
– Use global variables

• Note: A function can ask the CPU to read
and to write anywhere in the stack, not
just the “zone” belonging to the running
function!
– Isn’t it horrible (profitable and fun)?

38

No! I’m full!

39

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Dynamically allocated memory – properties

• Its name tells you its nature:
– The dynamically allocated memory is

called the heap.
• Don’t mix it up with the binary heap;
• It has nothing to do with the binary heap.

– Dynamic: not defined at compile time.

– Allocation: only when you ask for
memory, you would be allocated the
memory.

40

Data Segment
& BSS

Heap

Code +
Constant

Stack

Dynamically allocated memory – properties
• Lecturers of a programming course would

tell you the following:
– “malloc()” is a function that allocates

memory for you.

– “free()” is a function that gives up a piece of
memory that is produced by previous
“malloc()” call.

• The lecturer of the OS course is to define
and to defy what you know about the
malloc() and free() library functions.

41

Data Segment
& BSS

Heap

Code +
Constant

Stack

malloc()

42

Data Segment
& BSS

Heap

Code +
Constant

Stack
When a program just starts running, the entire
heap space is unallocated, or empty.

An empty heap.

allocated space

malloc()

43

Data Segment
& BSS

Heap

Code +
Constant

Stack
When “malloc()” is called, the “brk()” system call is invoked
accordingly.

“brk()” allocates the space required by “malloc()”. But, it
doesn’t care how “malloc()” uses the space.

An empty heap.

grow

allocated space

malloc()

44

Data Segment
& BSS

Heap

Code +
Constant

Stack

The allocated space growing or shrinking depends on the
further actions of the process. That means the “brk()” system
call can grow or shrink the allocated area.

In malloc(), the library call just invoke brk() for growing the
heap space.

The free() call may shrink the heap space.

An empty heap.

grow

shrink

malloc()

45

int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap

The return value of malloc() is of type
“void *”, which means it is just a memory
address only, and can be of any data types.

Such a memory address is the starting
address of a piece of memory of 16 bytes
(“16” is the request of malloc() call).

malloc()

46

int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap16
bytes

Address returned by 1st malloc() call.

Data structure maintained by malloc().

malloc()

47

int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap16
bytes

Data structure maintained by malloc().

Address returned by 1st malloc() call.

Address returned by 2nd malloc() call.

16
bytes

malloc()

48

int main(void) {
char *ptr1, *ptr2;
ptr1 = malloc(16);
ptr2 = malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap16
bytes

16
bytes

ptr2 - ptr1
The result should be > 16. Let’s try the real program!

free()
• “free()” seems to be the opposite to “malloc()”:

– It de-allocates any allocated memory.
– When a program calls “free(ptr)”, then the address “ptr”

must be the start of a piece of memory obtained by a
previous “malloc()” call.

49

Heap16
bytes

16
bytes

16
bytes

16
bytes

ptr

free() – case #1

• Case #1: de-allocating the last block.

50

Old
Heap

16
bytes

16
bytes

16
bytes

16
bytes

ptr The last block is not needed.

New
Heap

16
bytes

16
bytes

16
bytes shrink

This is accomplished by calling brk() system call. This heap has become smaller.

free() – case #2

• Case #2: de-allocating an intermediate block.

51

Old
Heap

16
bytes

16
bytes

16
bytes

16
bytes

ptr We don’t want an intermediate block.

New
Heap

16
bytes

16
bytes shrink

Calling brk() system call without using your brain is not acceptable!

free() – case #2

• Case #2: de-allocating an intermediate block.

52

Heap16
bytes

16
bytes

16
bytes

16
bytes

NULL size

This pointer is used for creating a linked list of de-allocated block.

This size record the size of de-allocated block.

address

Here comes the role of the data structure created by malloc()!

32-bit system: 4+4 = 8 bytes
64-bit system: 8+8 = 16 bytes

free() – case #2

• Case #2: de-allocating an intermediate block.

53

New
Heap

16
bytes

16
bytes

16
bytes

16
bytes

Head

A global variable
NULL

The “Head” variable is a pointer
acting as the start of the list of the
free blocks.

“NULL” defines the end of the free list.

We have to keep the de-allocated blocks
because they cannot be returned to the
system.

As the number of de-allocated blocks
cannot be known in prior, we need a
linked list.

free() – case #2

• Case #2: another example.

54

Old
Heap

16
bytes

16
bytes

16
bytes

16
bytes

free()

16
bytes

16
bytes

16
bytes

free() free() free()

New
Heap

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes shrink

Head NULL

free() – cautions
• The calling program is assumed to be carefully written.

– After malloc() has been invoked, the program should read
and write inside the requested area only.

– Now, you know why you’d have troubles when you write
data outside the allocated space.

55

Heap16
bytes

16
bytes

16
bytes

16
bytes

You can only play within this zone. Please behave!
Note: be careful of the consequences of misbehaves…

free() – cautions
• The calling program is assumed to be carefully written.

– When free() is called, the program should provide free()
with the correct address…

• i.e., the address previously returned by a malloc() call.

56

Heap16
bytes

16
bytes

16
bytes

incorrect address
passed to free() A mis-calculated header based on the

incorrect address.

When malloc() meets free blocks…

• Problem: whether to use the free blocks or not?
– Is there any free block that is large enough to satisfy the

need of the malloc() call?

57

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

When malloc() meets free blocks…case #1

• Case #1: if there is no suitable free block…
– then, the malloc() function should call brk() system

call…in order to claim more heap space.

58

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

32 bytes

Original heap size New space
by brk()

New malloc()
request

New
header

Call invoked:
malloc(32);

When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block

59

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

Original heap size

Call invoked:
malloc(16);

When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block
– the malloc() function should reuse that free block.

60

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

Original heap size

Call invoked:
malloc(16);

When malloc() meets free blocks…
• There can be other cases:

– A malloc() request that takes a partial block;
– A malloc() request that takes a partial block, but leaving

no space in the previously free block.

• We will skip those subtle cases…
– It boils to implementation only...
– You already have the big picture about malloc() and
free().

61

When malloc() meets free blocks…

• Now, let us look at some implementations…

62

Implicit free list

• Needs two information for each block
– size & is_allocated

63

free allocated Allocated & unused

How about memory allocation and free?

Implicit free list
• Contiguous Allocation: May need linear time search

– Allocate the whole block or splitting

64

First fit: allocate the first hole that is big enough (fast)
Next fit: similar to first fit, but start where previous search finishes
Best fit: allocate the smallest hole that is big enough (helps
fragmentation, larger search time)
Worst fit: allocate the largest hole

Fragmentation

• External fragmentation
– The heap memory looks like a map with many holes
– It is the source of inefficiency because of the

unavoidable search for suitable space
– Sol: Compaction (need to move data to merge free mem)

• Internal fragmentation
– Payload is smaller than allocated block size

65

Implicit free list

• Free: Coalescing
– Coalescing with next block: easy

66

– How about coalescing
with previous block?

• [Knuth 73] Add a
boundary tag in the footer

Implicit free list

• Constant time coalescing w/ boundary tag (4 cases)

67

Implicit free list: summary

• May not be used in practical malloc() and free()
implementations
– High memory allocation cost

• Some ideas are still useful and important
– Splitting available blocks
– Boundary tag

68

Explicit free list

• Track only free blocks (LIFO or address-ordered)
• Block splitting is useful in allocation
• Boundary tag is still useful in coalescing

69

Segregated free list
• Segregated free list (分离空闲链表)

– Different free lists for different size classes

– Allocation
• Search appropriate list (larger size)
• Found and split
• Not found: search next

70

Approximates best -fit

Segregated free list

• Special example
– Buddy system (power-of-two block size)

71

Issues raised by malloc() and free()

• The kernel knows how much memory should be
given to the heap.
– When you call brk(), the kernel tries to find the

memory for you.

• Then…one natural question…
– Is it possible to run out of memory (OOM)?

72

Out of memory?

• Try this!

73

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Is it safe to run this
program on a 32-bit
machine?

What is the output?

Out of memory?

• On 32-bit Linux, why does the OOM generator stop
at around 3055MB?

• Still remember what we said when we are talking
about data segment?
– Every 32-bit Linux system has an addressable memory

space of 4G-1 bytes.
– The kernel reserves 1GB addressing space.

74

Out of memory?

• Try this! Yet another OOM Generator!

75

Yet, what is the output?

#define ONE_MEG 1024 * 1024
char global[1024 * ONE_MEG];
int main(void) {

void *ptr;
int counter = 0;
char local[8000 * 1024];
while(1) {

ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Real OOM!

76

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Warning #1. Don’t run this program on
any department’s machines.

Warning #2. Don’t run this program
when you have important tasks running
at the same time.

Explanation is in Part 2.

Lazy allocation
That is why previous programs

run very fast.

77

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

What is segmentation fault?

• Someone must have told you:

– When you are accessing a piece of memory that is
not allowed to be accessed, then the OS returns you
an error called – segmentation fault.

• As a matter of fact, how many ways are there to
generate a segmentation fault?

78

What is segmentation fault?

79

Data Segment
& BSS

Allocated
Heap

Code +
Constant

Allocated
Stack

Unallocated
Heap

Unallocated
Stack

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

From illustration to reality…

Forget about the illustration,
the memory in a process is
separated into segments.

So, when you visit a segment
in an illegal way,
then…segmentation fault.

grow

grow

0xffffffff

0x00000000

0xffffffff

How to “segmentation fault”?

80

Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

0x00000000

0xffffffff

0x00000000

How to “segmentation fault”?

81

Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

Now, we can understand:

char *ptr = NULL;
char c = *ptr;

will generates

Segmentation fault

NULL = 0x00000000

*ptr is reading

Summary of segmentation fault

• When you have a so-called address (maybe it is just
a random sequence of 4 bytes), one of the following
cases happens:

82

Read-only
segments

Allocated
segments

Unused or
unallocated

segments

Reading No problem No problem Segmentation
fault

Writing Segmentation
fault No problem Segmentation

fault

See if you have luck…

Summary of segmentation fault

• Now, you know what is a segmentation fault, and
the cause is always carelessness!

– Now, you know why “free()” sometimes give you
segmentation fault…

• because you corrupt the list of free blocks!

– Now, you know why “malloc()”-ing a space that is
smaller than required is ok…

• because you are overwriting the neighboring blocks!

83

Summary of part 1
• Memory of a process is divided into

segments (segmentation):
– codes and constants;
– global and static variables;
– allocated memory (or heap);
– local variables (or stack);

• When you access a memory that is not
allowed, then the OS returns you
segmentation fault

• Every process’ segments are independent
and distinct.

84

Data Segment
& BSS

Heap

Code +
Constant

Stack

Summary of part 1

• The dynamically allocated memory is not as simple
as you learned before.

– Allocating large memory blocks is not efficient; instead,
allocating small memory blocks can make use of the
holes in the heap memory efficiently.

– Keep calling malloc() without calling free() is
dangerous…

• because there is no garbage collector in C or the OS…
• OOM error awaits you!

85

End of part 1

86

	Ch7�Memory Management �from a Programmer’s Perspective
	Why we need memory management
	Topics in Ch7
	Part 1: User-space memory
	幻灯片编号 5
	Address space
	Address space
	Address space
	幻灯片编号 9
	Program code & constants
	Program code & constants
	Program code & constants
	幻灯片编号 13
	Data Segment & BSS – properties
	Data Segment & BSS – properties
	Data Segment & BSS – locations
	Data Segment & BSS – sizes
	Data Segment & BSS – sizes
	Data Segment & BSS – sizes
	Data Segment & BSS – limits
	Data Segment & BSS – limits
	Data Segment & BSS – limits
	Data Segment & BSS – summary
	幻灯片编号 24
	Stack – properties
	Stack – properties
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – push & pop mechanisms
	Stack – limits
	Stack – summary
	Stack – summary
	幻灯片编号 39
	Dynamically allocated memory – properties
	Dynamically allocated memory – properties
	malloc()
	malloc()
	malloc()
	malloc()
	malloc()
	malloc()
	malloc()
	free()
	free() – case #1
	free() – case #2
	free() – case #2
	free() – case #2
	free() – case #2
	free() – cautions
	free() – cautions
	When malloc() meets free blocks…
	When malloc() meets free blocks…case #1
	When malloc() meets free blocks…case #2
	When malloc() meets free blocks…case #2
	When malloc() meets free blocks…
	When malloc() meets free blocks…
	Implicit free list
	Implicit free list
	Fragmentation
	Implicit free list
	Implicit free list
	Implicit free list: summary
	Explicit free list
	Segregated free list
	Segregated free list
	Issues raised by malloc() and free()
	Out of memory?
	Out of memory?
	Out of memory?
	Real OOM!
	幻灯片编号 77
	What is segmentation fault?
	What is segmentation fault?
	How to “segmentation fault”?
	How to “segmentation fault”?
	Summary of segmentation fault
	Summary of segmentation fault
	Summary of part 1
	Summary of part 1
	幻灯片编号 86

