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Ch7
Memory Management 

from a Programmer’s Perspective
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Why we need memory management

• The running program code requires memory 
– Because the CPU needs to fetch the instructions from 

the memory for execution

• We must keep several processes in memory
– Improve both CPU utilization and responsiveness
– Multiprogramming
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It is required to efficiently manage the memory



Topics in Ch7
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What is the address space of a process?
How are the program code and data stored in memory?

How to allocate/free memory (malloc() + free())?
How much memory can be used in a program?

What are segmentation and segmentation fault?

From a programmer’s perspective: user-space memory management

What is virtual memory?
How to realize address mapping (paging)?

How to support very large programs (demand paging)?
How to do page replacement?

What is TLB?
What is memory-mapped file?

From the kernel’s perspective: How to manage the memory
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Part 1: User-space memory

Global variable

Local variable

Dynamically-allocated 
memory

Code + 
constants

Process

Do you remember this? 
- Content of a process (in user-space   

memory)

How does each part use the memory?
- From a programmer’s perspective

Let’s forget about the kernel for a 
moment. We are going to explore the 
user-space memory first.
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Address space
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Data Segment & BSS –
Global and static 

variables

Heap – Dynamically 
allocated memory

Code + Constant

Stack - Local variables

How does a programmer 
look at the memory space?

- An array of bytes?

- Memory of a process is 
divided into segments 

- This way of arranging 
memory is called 
segmentation



Address space
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Data Segment & BSS –
Global and static 

variables

Heap – Dynamically 
allocated memory

Code + Constant

Stack - Local variables
Increasing 

address

$ ./addr
Local variable  = 0xbfa8938c
malloc() space  =  0x915c008
Global variable =  0x804a020
Code & constant =  0x8048550
$ _

Note
The addresses are not necessarily the 
same in different processes

What is the process address space?
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Address space

Data Segment & BSS –
Global and static 

variables

Heap – Dynamically 
allocated memory

Code + Constant

Stack - Local variables
0xffffffff = 0x100000000 - 1

1 ‘1’ bit + 16 ‘0’ bits

= 2^32 - 1

= 4G - 1

0xf = 1111

In a 32-bit system,
- One address maps to one byte.
- The maximum amount of memory 

in a process is 4GB.

Increasing 
address

Note
- This is the so called logical address 

space
- Each process has its own address 

space, and it can reside in any part 
of the physical memory

How large is the address space?



9

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Program code & constants
• A program is an executable file

• A process is not bounded to one 
program code.
– Remember exec*() family?

• The program code requires 
memory space because…
– The CPU needs to fetch the 

instructions from the memory for 
execution.
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Data Segment 
& BSS

Heap

Code +
Constant

Stack

instruction



Program code & constants

• Question #1. What are the printouts from Line 
3 & 4?

• Question #2. What is the printout from Line 6?
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1  int main(void) {
2      char *string = "hello";
3      printf("\"hello\"      = %p\n", "hello");
4      printf("String pointer = %p\n", string);
5      string[4] = '\0';
6      printf("Go to %s\n", string);
7      return 0;
8  }

Data Segment 
& BSS

Heap

Code +
Constant

Stack

Segmentation fault

"hello"    = 0x8048520
String pointer = 0x8048520



Program code & constants
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• Constants are stored in code segment.
– Accessing of constants are done using 

addresses (or pointers).

• Codes and constants are both read-only.

Data Segment 
& BSS

Heap

Code +
Constant

Stack

1  int main(void) {
2      char *string = "hello";
3      printf("\"hello\"      = %p\n", "hello");
4      printf("String pointer = %p\n", string);
5      string[4] = '\0';
6      printf("Go to %s\n", string);
7      return 0;
8  }
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Data Segment & BSS – properties
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int global_int = 10;
int main(void) {

int local_int = 10;
static int static_int = 10;
printf("local_int addr = %p\n", &local_int );
printf("static_int addr = %p\n", &static_int );
printf("global_int addr = %p\n", &global_int );
return 0;

}

$ ./global_vs_static
local_int addr = 0xbf8bb8ac
static_int addr = 0x804a018
global_int addr = 0x804a014
$_

They are stored next 
to each other.

This implies that they 
are in the same 
segment!

Data Segment 
& BSS

Heap

Code +
Constant

Stack

Note: A static variable is treated as the 
same as a global variable!



Data Segment & BSS – properties
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• Data
– Containing initialized global and static 

variables.

• BSS (Block Started by Symbol)
– Containing uninitialized global and 

static variables. Data Segment 
& BSS

Heap

Code +
Constant

Stack



Data Segment & BSS – locations
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$ ./data_vs_bss
global  bss = 0x804a028
static  bss = 0x804a024
global data = 0x804a014
static data = 0x804a018
$_

1  int global_bss;
2  int global_data = 10;
3  int main(void) {
4      static int static_bss;
5      static int static_data = 10;
6      printf("global  bss = %p\n", &global_bss );
7      printf("static  bss = %p\n", &static_bss );
8      printf("global data = %p\n", &global_data );
9      printf("static data = %p\n", &static_data );
10 }

BSS

Data

Data Segment 
& BSS

Heap

Code +
Constant

Stack



Data Segment & BSS – sizes
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Guess!  Which one is large?

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 –o data_small data_small.c

$ ls –l data_small data_large

No optimization.

Program: data_large.c

char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

} What is the difference between data 
and BSS?



Program: data_large.c

Data Segment & BSS – sizes
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char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

}

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 -o data_small data_small.c

$ ls –l data_small data_large
-rwxr-xr-x ... 1004816 ... data_large
-rwxr-xr-x ...    4916 ... data_small
$_

Wow!

The data segment has the required 
space already allocated.



Program: bss_large.c

Data Segment & BSS – sizes
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char a[1000000];

int main(void) {
return 0;

}

Program: bss_small.c

char a[100];

int main(void) {
return 0;

}

$ gcc -O0 -o bss_large bss_large.c
$ gcc –O0 -o bss_small bss_small.c

$ ls –l bss_small bss_large
-rwxr-xr-x ... 4775... bss_large
-rwxr-xr-x ... 4775... bss_small
$_

Same size!

To the program, BSS is just a bunch of symbols. 
The space is not yet allocated.

The space will be allocated to the process once 
it starts executing.

This is why BSS is called “Block Started by 
Symbol”.



Data Segment & BSS – limits 
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$ ulimit -a
core file size   (blocks, -c) 0
data seg size    (kbytes, -d) unlimited
......

$ _

In  Linux, “ulimit”  is a built-in 
command in “/bin/bash”.

It sets or gets the system 
limitations in the current shell.

How large is the data segment?

Does the “unlimited” mean that you can define a global array 
with large enough size?



Data Segment & BSS – limits 
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$ gcc -Wall -O0    global_2gb.c   -o global_2gb
global_2gb.c:6: warning: integer overflow in expression
global_2gb.c:6: error: size of array ‘a’ is negative
$ _

#define ONE_MEG (1024 * 1024)

char a[2048 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“2GB OK\n");

}

The size of an array is a 32-bit signed integer, no matter 32-bit or 64-bit systems. 
Therefore…

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");

}



Data Segment & BSS – limits 
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Segmentation fault
why?

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];
char b[1024 * ONE_MEG];
char c[1024 * ONE_MEG];
char d[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");
memset(b, 0, sizeof(b));
printf(“2GB OK\n");
memset(c, 0, sizeof(c));
printf(“3GB OK\n");
memset(d, 0, sizeof(d));
printf(“4GB OK\n");

}

Program: global_4gb.c

On a 32-bit Linux system, the 
user-space addressing space 
is around 3GB.

The kernel reserves 1GB 
addressing space.



Data Segment & BSS – summary

• Remember, “global variable == static variables”.
– Only the compiler cares about the difference!

• Everything in a computer has a limit!
– Different systems have different limits: 32-bit VS 64-bit.
– Your job is to adapt to such limits.
– On a 32-bit Linux system, the user-space addressing 

space is around 3GB.
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Stack – properties 

• The stack contains:
– all the local variables,
– all function parameters,
– program arguments, and
– environment variables.
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Data Segment 
& BSS

Heap

Code +
Constant

Stack

How are the data stored and what is the 
size limit?



Stack – properties 
• Stack: FILO

• When a function is called, the local 
variables are allocated in the stack.

• When a function returns, the local 
variables are deallocated from the stack.
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Data Segment 
& BSS

Heap

Code +
Constant

Stack



main() starts

Stack – push & pop mechanisms
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a = 1
b = 2

variable ‘a’ in main().

variable ‘b’ in main().

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}



return addr 1

1
2

Stack – push & pop mechanisms
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a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Will become u in fun1().

Will become v in fun1().

Calling function “fun1()” starts.
It is the beginning of the call, and the CPU has not 
switched to fun1() yet.

“return addr 1” 
is approx. here.

main() starts



return addr 1

u = 1
v = 2

Stack – push & pop mechanisms
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a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun1()” takes place. The CPU has 
switched to fun1() .

fun1() starts

main() starts



return addr 2

u = 1
v = 2

Stack – push & pop mechanisms
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a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” starts.
It is the beginning of the call, and the CPU has not 
switched to fun2() yet.

2
1

return addr 1
Will become x in fun2().

Will become y in fun2().

return addr 2 is 
approx. here.

fun1() starts

main() starts



return addr 2

u = 1
v = 2

Stack – push & pop mechanisms
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a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” takes place. The CPU has 
switched to fun2() .

x = 2
y = 1

return addr 1

fun1() starts

fun2() starts

c = 10 Local variables are allocated 
once the function starts.

main() starts



u = 1
v = 2

Stack – push & pop mechanisms
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a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}return addr 1

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to fun1().

x = 2
y = 1

return addr 2

fun1() starts

fun2() starts

c = 10

EAX: 13

main() starts



u = 1
v = 2

return addr 1
x = 2
y = 1

return addr 2
c = 10

Stack – push & pop mechanisms
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a = 1
b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to main().

fun1() starts EAX: 13

main() starts



u = 1
v = 2

return addr 2
x = 2
y = 1

return addr 3
c = 10

a = 1
b = 13

Stack – push & pop mechanisms

34

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 13

Upon “return”, the value of 
EAX is then copied to “b”

Those memory is NOT 
returned to the OS!!

Those memory will be re-
used when you call 
functions again.

main() starts



u = 1
v = 2

return addr 2
x = 2
y = 1

return addr 3
c = 10

a = 1
b = 13

Stack – push & pop mechanisms
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int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 0

Eventually, the main 
function reaches 
“return 0”.

This takes the CPU 
pointing to the C library.

Inside the C library, we 
will eventually reach the 
system call exit().



Stack – limits 
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$ ulimit -a
core file size   (blocks, -c) 0
data seg size    (kbytes, -d) unlimited
......
stack size       (kbytes, -s) 8192
......

$ _

So, the limit is:
8192 x 1024 = 8MB.

$ ulimit -a
core file size   (blocks, -c) 0
data seg size    (kbytes, -d) unlimited
......
stack size       (kbytes, -s) 8192
......

$ ulimit -s 81920

Now, the limit is:
81920 x 1024 = 80MB.

Can you define a local array larger that the limit? Segmentation 
fault



Stack – summary 

• What if it is a chain of endless 
recursive function calls?

• What will happen?
– Exception caught by the CPU!

• Stack overflow exception!

– Program terminated!
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No! I’m full!



Stack – summary 
• “I really need to play with recursions.” Any 

workaround?
– Minimize the number of arguments
– Minimize the number of local variables
– Minimize the number of calls
– Use global variables

• Note: A function can ask the CPU to read 
and to write anywhere in the stack, not 
just the “zone” belonging to the running 
function!
– Isn’t it horrible (profitable and fun)?
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No! I’m full!
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Dynamically allocated memory – properties 

• Its name tells you its nature:
– The dynamically allocated memory is 

called the heap.
• Don’t mix it up with the binary heap;
• It has nothing to do with the binary heap.

– Dynamic: not defined at compile time.

– Allocation: only when you ask for 
memory, you would be allocated the 
memory.

40

Data Segment 
& BSS

Heap

Code +
Constant

Stack



Dynamically allocated memory – properties 
• Lecturers of a programming course would 

tell you the following:
– “malloc()” is a function that allocates 

memory for you.

– “free()” is a function that gives up a piece of 
memory that is produced by previous 
“malloc()” call.

• The lecturer of the OS course is to define 
and to defy what you know about the 
malloc() and free() library functions.
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Data Segment 
& BSS

Heap

Code +
Constant

Stack



malloc()
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Data Segment 
& BSS

Heap

Code +
Constant

Stack
When a program just starts running, the entire 
heap space is unallocated, or empty.

An empty heap.



allocated space

malloc()
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Data Segment 
& BSS

Heap

Code +
Constant

Stack
When “malloc()” is called, the “brk()” system call is invoked 
accordingly.

“brk()” allocates the space required by “malloc()”. But, it 
doesn’t care how “malloc()” uses the space.

An empty heap.

grow



allocated space

malloc()
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Data Segment 
& BSS

Heap

Code +
Constant

Stack

The allocated space growing or shrinking depends on the 
further actions of the process. That means the “brk()” system 
call can grow or shrink the allocated area. 

In malloc(), the library call just invoke brk() for growing the 
heap space.

The free() call may shrink the heap space.

An empty heap.

grow

shrink



malloc()
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int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap

The return value of malloc() is of type 
“void *”, which means it is just a memory 
address only, and can be of any data types.

Such a memory address is the starting 
address of a piece of memory of 16 bytes 
(“16” is the request of malloc() call).



malloc()

46

int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap16 
bytes

Address returned by 1st malloc() call.

Data structure maintained by malloc().



malloc()
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int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap16 
bytes

Data structure maintained by malloc().

Address returned by 1st malloc() call.

Address returned by 2nd malloc() call.

16 
bytes



malloc()
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int main(void) {
char *ptr1, *ptr2;
ptr1 = malloc(16);
ptr2 = malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap16 
bytes

16 
bytes

ptr2 - ptr1
The result should be > 16. Let’s try the real program!



free()
• “free()” seems to be the opposite to “malloc()”:

– It de-allocates any allocated memory.
– When a program calls “free(ptr)”, then the address “ptr” 

must be the start of a piece of memory obtained by a 
previous “malloc()” call.
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Heap16 
bytes

16 
bytes

16 
bytes

16 
bytes

ptr



free() – case #1

• Case #1: de-allocating the last block.
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Old
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

ptr The last block is not needed.

New
Heap

16 
bytes

16 
bytes

16 
bytes shrink

This is accomplished by calling brk() system call. This heap has become smaller.



free() – case #2

• Case #2: de-allocating an intermediate block.
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Old
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

ptr We don’t want an intermediate block.

New
Heap

16 
bytes

16 
bytes shrink

Calling brk() system call without using your brain is not acceptable!



free() – case #2

• Case #2: de-allocating an intermediate block.
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Heap16 
bytes

16 
bytes

16 
bytes

16 
bytes

NULL size

This pointer is used for creating a linked list of de-allocated block.

This size record the size of de-allocated block.

address

Here comes the role of the data structure created by malloc()!

32-bit system: 4+4 = 8 bytes
64-bit system: 8+8 = 16 bytes



free() – case #2

• Case #2: de-allocating an intermediate block.
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New
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

A global variable
NULL

The “Head” variable is a pointer 
acting as the start of the list of the 
free blocks.

“NULL” defines the end of the free list.

We have to keep the de-allocated blocks 
because they cannot be returned to the 
system.

As the number of de-allocated blocks 
cannot be known in prior, we need a 
linked list.



free() – case #2

• Case #2: another example.
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Old
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

free()

16 
bytes

16 
bytes

16 
bytes

free() free() free()

New
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes shrink

Head NULL



free() – cautions
• The calling program is assumed to be carefully written.

– After malloc() has been invoked, the program should read 
and write inside the requested area only.

– Now, you know why you’d have troubles when you write 
data outside the allocated space.
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Heap16 
bytes

16 
bytes

16 
bytes

16 
bytes

You can only play within this zone. Please behave!
Note: be careful of the consequences of misbehaves…



free() – cautions
• The calling program is assumed to be carefully written.

– When free() is called, the program should provide free()
with the correct address…

• i.e., the address previously returned by a malloc() call.
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Heap16 
bytes

16 
bytes

16 
bytes

incorrect address 
passed to free() A mis-calculated header based on the 

incorrect address.



When malloc() meets free blocks…

• Problem: whether to use the free blocks or not?
– Is there any free block that is large enough to satisfy the 

need of the malloc() call?
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16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL



When malloc() meets free blocks…case #1

• Case #1: if there is no suitable free block…
– then, the malloc() function should call brk() system 

call…in order to claim more heap space.
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16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL

32 bytes

Original heap size New space 
by brk()

New malloc() 
request

New 
header

Call invoked: 
malloc(32);



When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block
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16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL

Original heap size

Call invoked: 
malloc(16);



When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block
– the malloc() function should reuse that free block.

60

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL

Original heap size

Call invoked: 
malloc(16);



When malloc() meets free blocks…
• There can be other cases:

– A malloc() request that takes a partial block;
– A malloc() request that takes a partial block, but leaving 

no space in the previously free block.

• We will skip those subtle cases…
– It boils to implementation only...
– You already have the big picture about malloc() and 
free().
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When malloc() meets free blocks…

• Now, let us look at some implementations…
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Implicit free list

• Needs two information for each block
– size & is_allocated
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free allocated Allocated & unused

How about memory allocation and free?



Implicit free list
• Contiguous Allocation: May need linear time search

– Allocate the whole block or splitting
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First fit: allocate the first hole that is big enough (fast)
Next fit: similar to first fit, but start where previous search finishes
Best fit: allocate the smallest hole that is big enough (helps 
fragmentation, larger search time)
Worst fit: allocate the largest hole



Fragmentation

• External fragmentation
– The heap memory looks like a map with many holes
– It is the source of inefficiency because of the 

unavoidable search for suitable space
– Sol: Compaction (need to move data to merge free mem)

• Internal fragmentation
– Payload is smaller than allocated block size
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Implicit free list

• Free: Coalescing
– Coalescing with next block: easy
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– How about coalescing 
with previous block?

• [Knuth 73] Add a 
boundary tag in the footer



Implicit free list

• Constant time coalescing w/ boundary tag (4 cases) 
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Implicit free list: summary

• May not be used in practical malloc() and free() 
implementations
– High memory allocation cost

• Some ideas are still useful and important
– Splitting available blocks
– Boundary tag

68



Explicit free list

• Track only free blocks (LIFO or address-ordered)
• Block splitting is useful in allocation
• Boundary tag is still useful in coalescing
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Segregated free list
• Segregated free list (分离空闲链表)

– Different free lists for different size classes

– Allocation
• Search appropriate list (larger size)
• Found and split
• Not found: search next

70

Approximates best -fit



Segregated free list

• Special example
– Buddy system (power-of-two block size)
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Issues raised by malloc() and free()

• The kernel knows how much memory should be 
given to the heap.
– When you call brk(), the kernel tries to find the 

memory for you.

• Then…one natural question…
– Is it possible to run out of memory (OOM)?
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Out of memory?

• Try this!  
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Is it safe to run this 
program on a 32-bit 
machine?

What is the output?



Out of memory?

• On 32-bit Linux, why does the OOM generator stop 
at around 3055MB?

• Still remember what we said when we are talking 
about data segment?
– Every 32-bit Linux system has an addressable memory 

space of 4G-1 bytes.
– The kernel reserves 1GB addressing space.
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Out of memory?

• Try this!  Yet another OOM Generator!
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Yet, what is the output?

#define ONE_MEG  1024 * 1024
char global[1024 * ONE_MEG];
int main(void) {

void *ptr;
int counter = 0;
char local[8000 * 1024];
while(1) {

ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}



Real OOM!
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Warning #1. Don’t run this program on 
any department’s machines.

Warning #2. Don’t run this program 
when you have important tasks running 
at the same time.

Explanation is in Part 2.

Lazy allocation
That is why previous programs 

run very fast.
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



What is segmentation fault?

• Someone must have told you:

– When you are accessing a piece of memory that is 
not allowed to be accessed, then the OS returns you 
an error called – segmentation fault.

• As a matter of fact, how many ways are there to 
generate a segmentation fault?
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What is segmentation fault?
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Data Segment 
& BSS

Allocated 
Heap

Code +
Constant

Allocated 
Stack

Unallocated 
Heap

Unallocated 
Stack

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

From illustration to reality…

Forget about the illustration, 
the memory in a process is 
separated into segments.

So, when you visit a segment 
in an illegal way, 
then…segmentation fault.

grow

grow

0xffffffff

0x00000000



0xffffffff

How to “segmentation fault”?
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Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

0x00000000



0xffffffff

0x00000000

How to “segmentation fault”?
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Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

Now, we can understand:

char *ptr = NULL;
char c = *ptr;

will generates

Segmentation fault

NULL = 0x00000000

*ptr is reading



Summary of segmentation fault

• When you have a so-called address (maybe it is just 
a random sequence of 4 bytes), one of the following 
cases happens:
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Read-only 
segments

Allocated 
segments

Unused or 
unallocated 

segments

Reading No problem No problem Segmentation 
fault

Writing Segmentation 
fault No problem Segmentation 

fault

See if you have luck…



Summary of segmentation fault

• Now, you know what is a segmentation fault, and 
the cause is always carelessness!

– Now, you know why “free()” sometimes give you 
segmentation fault…

• because you corrupt the list of free blocks!

– Now, you know why “malloc()”-ing a space that is 
smaller than required is ok…

• because you are overwriting the neighboring blocks!
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Summary of part 1 
• Memory of a process is divided into 

segments (segmentation):
– codes and constants;
– global and static variables;
– allocated memory (or heap);
– local variables (or stack);

• When you access a memory that is not 
allowed, then the OS returns you 
segmentation fault

• Every process’ segments are independent 
and distinct.
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Data Segment 
& BSS

Heap

Code +
Constant

Stack



Summary of part 1

• The dynamically allocated memory is not as simple 
as you learned before.

– Allocating large memory blocks is not efficient; instead, 
allocating small memory blocks can make use of the 
holes in the heap memory efficiently.

– Keep calling malloc() without calling free() is 
dangerous…

• because there is no garbage collector in C or the OS…
• OOM error awaits you!
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End of part 1
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