
Operating Systems

Prof. Yongkun Li
中科大-计算机学院特任教授
http://staff.ustc.edu.cn/~ykli

1

Chapter 8
Mass Storage

Topics in Part 3 (Storage Management)

2

File System Operations

Operating System
Kernel

User Space

Devices

Processes

File system
Implementation

FAT32, EXT2/3
KV, Distributed FS,

Graph System…

Storage Hierarchy

3

Topics (Mass Storage)

4

SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

5

Topics
 - Disk structure
 - Disk scheduling
 - Solid-state drives (SSDs)
 - RAID & Erasure coding

Hard Disk Structure – Physical view

Physical address (cylinder, track, sector)

Track:
The surface of a platter is divided into tracks
Sector:
Track is divided into sectors (512B data + ECC)
Cylinder:
Set of tracks that are at one arm position

Access: Seek + Rotate

Seek time:
move disk arm to desired cylinder

Rotational latency:
spin at 5400/7200/10K/15K RPM

Hard Disk Structure – Physical view

Constant liner velocity (CLV)
➢ Uniform density of bits per track,

outer track hold more sectors
➢ Variable rotation speed to keep the

same rate of data moving
➢ CD-ROM/DVD-ROM

Constant angular velocity (CAV)
➢ Constant rotation speed
➢ Higher density of bits in inner tracks
➢ Hard disks

Hard Disk Structure – Logical view

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

Address mapping
Logical block number -> (cylinder #, track #, sector #)

Disk management is required

➢ Disk formatting

➢ Disks are prone to failures: defective sectors are
common (bad blocks)
✓ Need to handle defective sectors: bad block

management

Disk Management

Disk Formatting

Step 1: Low-level formatting/physical formatting

✓ Divide into sectors so disk controller can read/write

✓ Fills the disk with a special data structure for each sector (data area(512B),
header and trailer (sector number & ECC))
• The controller automatically does the ECC processing whenever a sector

is read/written

✓ Done at factory, used for testing and initializing (e.g., the mapping). It is also
possible to set the sector size (256B, 512B, 1K, 4K)

Disk Management

Disk Formatting

Step 2: How to use disks to hold files after shipment?

➢ Choice 1: File system
✓ Partition into one or more groups of cylinders (each as a separate disk)
✓ Logical formatting: creating a FS by storing the initial FS data structures
✓ I/O optimization: Disk I/O (via blocks) & file system I/O (via clusters), why?

• More sequential access, fewer random access

➢ Choice 2: Raw disk
✓ Use disk partition as a large sequential array of logical blocks, without FS
✓ Raw I/O: bypass all FS services (buffer cache, prefetching…), be able to

control exact disk location

Disk Management

Bad Block Management

✓ Maintain a list of bad blocks (initialized during low-level formatting) and
preserve an amount of spare sectors

✓ Sector sparing/forwarding: replace a bad sector logically with one spare
sector
• Problem: invalidate disk scheduling algorithm
• Solution: spare sectors in each cylinder + spare cylinder

✓ Sector slipping: remap to the next sector (data movement is needed)

12

Topics
 - Disk structure
 - Disk scheduling
 - Solid-state drives (SSDs)
 - RAID & Erasure coding

Why needed?

• Requests are placed in the queue of pending
requests for that drive if the drive/controller is busy

13

R1 R2 Rn…Pending
queue

Read/write, disk address, memory address,
number of sectors to be transferred

What is disk scheduling

• I/O access procedure

– Seek
• move the head to the desired cylinder

– Rotate
• spin to the target sector on the track

14

Request ordering significantly affects
the access performance (seek + rotate),

so scheduling is needed

Disk scheduling：Choose the next
request in the pending queue to service
so as to minimize the seek time
(scheduling algorithms)

FCFS Scheduling

• First-come, first-served (FCFS)

– Intrinsically fair, but does not provide the fastest service

15

FCFS Scheduling

• First-come, first-served (FCFS)

16

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

FCFS Scheduling

• Scheduling diagram

17

Total head movement

 (640 cylinders)

Wild swing is very common

E.g.: 122 to 14, then to 124

How to reduce the head
movement?

 Handle nearby requests first

SSTF Scheduling

• Shortest seek time first (SSTF)

– Choose the request with the least seek time

– Choose the request closest to the current head position

18

SSTF Scheduling

• Shortest seek time first (SSTF)

19

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

SSTF Scheduling

• Scheduling diagram

20

Total head movement: 236
cylinders (it is 640 for FCFS)

Essentially a form of SJF
scheduling

It is not optimal

The sequence of 53-37-14-65…
could reduce the head
movement to 208

It may cause starvation

SCAN Scheduling

• Scan back and forth
– Starts at one end, moves toward the other end
– Service the requests as it reaches each cylinder
– Reverse the direction
– Elevator algorithm

21

SCAN Scheduling

• Scan back and forth

22

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

Suppose the head is moving from 53 to 0

SCAN Scheduling

• Scheduling diagram

23

Any problem?

Assume a uniform request
distribution

The heaviest density of requests
is at the other end of the disk

They need to wait for a long
time

Can we do something about this?

C-SCAN Scheduling

• Circular Scan back and forth
– A variant of SCAN: immediately return when reaches the end
– Aim for providing a more uniform wait time

24

C-SCAN Scheduling

• Circular scan

25

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

C-SCAN Scheduling

• Scheduling diagram

26

No need to move across the full width of the disk, but only need to reach the
final request

Improved SCAN and C-SCAN: LOOK and C-LOOK

Unnecessary

C-LOOK Scheduling

• Goes only as far as the final request

– Look for a request before moving

27

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

C-LOOK Scheduling

• Scheduling diagram

28

Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN

Summary of scheduling algorithms

29

SSTF outperforms FCFS, but may suffer from starvation

SCAN and C-SCAN perform better for heavy load systems,
and they are less likely to cause starvation

FCFS SSTF SCAN

C-SCAN C-LOOK

Selection of a scheduling algorithm

30

File allocation method
Large sequential I/O or
small random I/O

Number and
types of requests

Location of directories and
index blocks (metadata I/O)

Disk Performance

Implementing scheduling in OS is necessary to satisfy other constraints
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).

31

Topics
 - Disk structure
 - Disk scheduling
 - Solid-state drives (SSDs)
 - RAID & Erasure coding

32

- Solid-state drives (SSDs)
 -SSD architecture
 -SSD operations
 -Flash translation layer

SSDs are widely used

33

Advantages of flash-based SSDs: non-volatility, shock resistance,
high speed and low energy consumption;

Flash Types

34

• NAND flash and NOR flash

– NAND flash: denser capacity, only allow access in
units of pages, faster erase operation

– Most SSD products are based on NAND flash

• NAND flash: SLC and MLC

– SLC: each cell stores one bit

• Longer life time, lower access latency, higher cost

– MLC: each cell stores two (or three) bits

• Higher capacity

Flash Cell

35

• Program operation can only change the value from 1 to 0 (erase
operation changes the value from 0 to 1)
– No overwritten

• The floating gate becomes thinner as the cell undergoes more
program-erase cycles
– Decreasing reliability

Flash Package

36

• Package > die/chip > plane > block > page

 Samsung K9XXG08UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)

SSD Architecture

37

• SSD components

– Multiple flash packages, controller, RAM

38

- Solid-state drives (SSDs)
 -SSD architecture
 -SSD operations
 -Flash translation layer

Read

39

• Read: in unit of pages (4KB)

 page register
data read: 25 μs

controller
serial bus: 100 μs

Write

40

• Write: in unit of pages (4KB)

 page register
program: 200 μs

controller
serial bus: 100 μs

Erase

41

• Erase

– In unit of blocks (64/128 pages)

– Change all bits to 1

– Much slower than read/write: 1.5ms

• Each block can only tolerate limited number of P/E cycles

– SLC: 100K, MLC: 10K, TLC (several K to several hundred)

• The number of maximum P/E cycles decreases when

– More bits are stored in one cell

– The feature size of flash cell decreases (72nm, 34nm, 25nm)

Overwrite & Delete

42

• Delete

– Simply mark the page as invalid

• Overwrite/update

– Does not support in-place overwrite

– Data can only be programmed to clean pages

Software layer in controller

43

• How to further improve write performance?

– Address mapping is needed

• Page states

– Garbage collection is also necessary
free/clean

validinvalid

write

update

erase

44

- Solid-state drives (SSDs)
 -SSD architecture
 -SSD operations
 -Flash translation layer
 -

Flash Translation Layer

45

• Three functionalities

– Address mapping

– Garbage collection

– Wear-leveling

Address Mapping

46

• Sector mapping

• Block mapping

• Hybrid mapping

• Log-structured mapping

Sector Mapping

Mapping table is large: requires a large amount of RAM

47

Block Mapping

48

• The logical sector offset is the same with the physical
sector offset

Smaller mapping table

If the FS issues writes with identical lsn, many erases

Hybrid Mapping

49

• First use block mapping, then use sector mapping in
each block

Small mapping table

Avoid a lot of erase operations

Longer time to identify the location of a page

Log-structured Mapping

50

2

1

0

3

6

5

4

7

10

9

8

11

14

13

12

15

0 1 2 3

0 2 1 5

lbn

pbn

D
ata b

lo
cks

5

0

0

3

10

9

5

4 3pbn

Lo
g b

lo
cks

(lbn, pbn)

(0,0)
(1,2)
(2,1)
(3,5)

In Flash In RAM

BMT

(lsn, (pbn, off))

SMT

Data blocks: block mapping
Log blocks: sector mapping

Log-structured Mapping

51

2

1

0

3

6

5

4

7

10

9

8

11

14

13

12

15

0 1 2 3

0 2 1 5

lbn

pbn

D
ata b

lo
cks

5

0

0

3

10

9

5

4 3pbn

Lo
g b

lo
cks

(lbn, pbn)

(0,0)
(1,2)
(2,1)
(3,5)

In Flash In RAM

BMT

(lsn, (pbn, off))

(0, (4,0))

SMT

Data blocks: block mapping
Log blocks: sector mapping

0’
Multiple
variants

Short summary

52

• The performance of address mapping is
workload dependent

– Block mapping is suitable for sequential workloads

– Sector mapping is suitable for random workloads

– Log-structured mapping is suitable for workloads
with large sequential and small random requests

• Tradeoff exists

Garbage Collection

53

• Due to the existence of invalid pages, GC must
be called to reclaim storage

– Choose a candidate block

– Write valid pages to another free block

– Erase the original block

2

1

0

3

2

0

Design Issues of GC Algorithms

54

• Tradeoff in GC design

– Efficiency: minimize writes

– Wear-leveling: erase every block as even as possible

– Tradeoff

– GC is considered together with wear-leveling

• Algorithms

– Greedy, random, and their variants

– Hot/cold identification

Other Technologies

• 3D NAND flash

• Non-volatile memory (NVRAM)

– PCM, STTRAM, ReRAM, etc…

– Byte-addressable and non-volatile

– 3D XPoint

55

56

Topics
 - Disk structure
 - Disk scheduling
 - Solid-state drives (SSDs)
 - RAID & Erasure coding

57

RAID Motivation

Reliability

Performance

Cost

One disk failure
incurs data loss

Disks are slow

Fast and
reliable disks
are expensive

RAID Introduction

✓ In the past
➢ Combine small and cheap disks as a cost-effective

alternative to large and expensive disks

✓Nowadays
➢Higher performance
➢Higher reliability via redundant data
➢ Larger storage capacity

✓Many different levels of RAID systems
➢Different levels of redundancy, capacity, cost…

RAID: Redundant Array of Inexpensive (independent) Disks

58

RAID 0

• Block-level striping, no redundancy

• Provides higher data-transfer rate

• Does not improve reliability. Once a disk fails, data loss
may happen (MTTF: mean time to failure)

59

RAID 1

• How to improve reliability?

• Data mirroring (RAID1)
✓ Two copies of the data are held

on two physical disks, and the
data is always identical.

✓ Replication

• High storage cost
✓ Twice as many disks are required

to store the same data when
compared to RAID 0.

✓ Even worse storage efficiency
with more copies

60

61

Combinations

• RAID 0 provides reliability and
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

Same storage
cost as RAID 1

62

Combinations

• RAID 0 provides reliability and
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

• RAID 1+0 (RAID10)
✓ First data mirroring
✓ Then data striping Same storage cost

63

RAID01 vs RAID10

Both suffer from high storage cost

RAID 4

• Balance the tradeoff between
reliability and storage cost?
• Redundancy with parities

• Parity generation: Each parity
block is the XOR value of the
corresponding data disks

• Block-level data striping
• Data and parity blocks are

distributed across disks
• Dedicated parity disk

• Any problem?

𝐴𝑝 = 𝐴1⨂𝐴2⨂𝐴3

64

65

How to update data

• Suppose A1 will be updated
to A1’
• Both A1 and Ap need to

be updated
• Read-modify-write (RMW)

RMW: 𝐴𝑝
′ = 𝐴𝑝⨂𝐴1⨂𝐴1′

𝐴𝑝′ = 𝐴1⨂𝐴2⨂𝐴3⨂𝐴1⨂𝐴1′

= 𝐴2⨂𝐴3⨂𝐴1′

66

How to update data

• Suppose A1 will be updated to
A1’
• Both A1 and Ap need to

be updated
• Read-modify-write (RMW)

• How about updating both A1
and A2 simultaneously?
• RMW?
• Read-reconstruct-write

(RRW)

• Selection of RMW/RRW

RRW: 𝐴𝑝
′ = 𝐴3⨂𝐴1′⨂𝐴2′

Both RMW and RRW incur
extra reads and writes

Problems of RAID 4

• Problems of RAID 4

• Disk bandwidth are not fully
utilized
• Parity disk will not be

accessed under normal
mode

• Parity disk may become the
bottleneck
• E.g., updating A1, B2, C3

Read: A1, B2, C3, Ap, Bp, Cp
Write: A1’ B2’, C3’, Ap’, Bp’, Cp’

67

RAID 5

• Similar to RAID 4
• One parity per stripe

• Key difference
• Uniform parity distribution

• RAID 5 is an ideal combination of
• good performance
• good fault tolerance
• high capacity
• storage efficiency

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

...

𝐸𝑃 = 𝐸1⨁𝐸2⨁𝐸3⨁𝐸4

Parity update overhead still
exist

68

RAID 6

• How to tolerate more disk
failures?

• RAID-6 protects against two disk
failures by maintaining two
parities

• Encoding/decoding operations:
➢ Based on Galois field

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

𝐴𝑞 = 𝑐0𝐴1⨁𝑐
1𝐴2⨁𝑐

2𝐴3⨁𝑐
3𝐴4

Parity update overhead
becomes larger

69

Parity Update Overhead

• RAID provides device-level fault tolerance

– Each stripe contains data and parity

• Limitation: Parity updates

– Update data -> update parity
• Update 𝐷1 to 𝐷1′

• RMW: 𝑃0
′ = 𝑃0⨁𝐷1⨁𝐷1′

• RRW: P0
′ = D0⨁𝐷1′⨁𝐷2

– Extra I/Os and GC

• SSD RAID

– Parity update influences both performance and endurance

Parity chunks:
𝑃0 = 𝐷0⨁𝐷1⨁𝐷2
𝑃1 = 𝐷3⨁𝐷4⨁𝐷5

70

Design tradeoff

• Design trade-off in SSD RAID arrays

– RAID improves reliability

– Parity updates incur extra I/Os and GC operations

• Degrade performance and endurance

How to address the parity update overhead?

71

Parity Logging

• Original Parity logging

– Incoming reqs: {𝐴0, 𝐵0, 𝐶0 },{𝐴1, 𝐵1, 𝐶1 }, {𝐵0′, 𝐶0′, 𝐴1′}

• Drawbacks

– Pre-read: Extra reads

– Per-stripe basis: Extra log chunks; Partial parallelism
72

EPLOG

73

No pre-read

Full parallelism

 (Elastic)

Our solution: New RAID Design via Elastic Parity
Logging (EPLOG)

EPLOG

• Benefits of EPLOG
– General RAID

– High endurance: Reduce parity writes to SSDs

– High performance: Reduce extra I/Os

– Low-cost deployment: Commodity hardware

74

No pre-read

Full parallelism

 (Elastic)

✓ Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. "Elastic Parity Logging for SSD RAID
Arrays." IEEE/IFIP DSN (Regular paper), Toulouse, France, June 2016.

✓ Helen H. W. Chan,Yongkun Li, Patrick P. C. Lee, and Yinlong Xu."Elastic Parity Logging for SSD RAID
Arrays: Design, Analysis, and Implementation.“ IEEE TPDS, volume: 29 , issue: 10 , Oct. 2018.

Tolerate any number of failures?

➢Erasure codes

– General-fault tolerant: Cauchy Reed-Solomon (CRS)

➢Generate m code blocks from k data blocks, so as

to tolerate any m disk failures

A B A+B A+2BA B

75

XOR-based Codes

➢ 2-fault tolerant: RDP, EVENODD, X-Code

➢An RDP code example with 6 disks

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,5

d1,5

d2,5

d3,5

⊕
⊕
⊕
⊕

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

⊕
⊕
⊕

76

Summary on Erasure Codes

➢The motivation to introduce erasure codes in

large-scale storage systems

➢ In practice, erasure codes have seen widely

deployment
• Google File System [Ford, OSDI’10]

• Windows Azure Storage [Huang, ATC’12]

• Facebook [Borthakur, Hadoop User Group Meeting 2010]

• …

The need to reduce the tremendous cost of storage

77

Summary of Ch8

78

SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

✓ Cylinder, Track, Sector: CLV, CAV
✓ Access time
✓ FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

✓ Structure and features
✓ Operations (read/write/erase/GC)

✓ RAID structures (RAID0, 1, 4, 5, 6)
✓ Parity update

	幻灯片 1
	幻灯片 2: Topics in Part 3 (Storage Management)
	幻灯片 3: Storage Hierarchy
	幻灯片 4: Topics (Mass Storage)
	幻灯片 5
	幻灯片 6: Hard Disk Structure – Physical view
	幻灯片 7: Hard Disk Structure – Physical view
	幻灯片 8: Hard Disk Structure – Logical view
	幻灯片 9: Disk Management
	幻灯片 10: Disk Management
	幻灯片 11: Disk Management
	幻灯片 12
	幻灯片 13: Why needed?
	幻灯片 14: What is disk scheduling
	幻灯片 15: FCFS Scheduling
	幻灯片 16: FCFS Scheduling
	幻灯片 17: FCFS Scheduling
	幻灯片 18: SSTF Scheduling
	幻灯片 19: SSTF Scheduling
	幻灯片 20: SSTF Scheduling
	幻灯片 21: SCAN Scheduling
	幻灯片 22: SCAN Scheduling
	幻灯片 23: SCAN Scheduling
	幻灯片 24: C-SCAN Scheduling
	幻灯片 25: C-SCAN Scheduling
	幻灯片 26: C-SCAN Scheduling
	幻灯片 27: C-LOOK Scheduling
	幻灯片 28: C-LOOK Scheduling
	幻灯片 29: Summary of scheduling algorithms
	幻灯片 30: Selection of a scheduling algorithm
	幻灯片 31
	幻灯片 32
	幻灯片 33: SSDs are widely used
	幻灯片 34: Flash Types
	幻灯片 35: Flash Cell
	幻灯片 36: Flash Package
	幻灯片 37: SSD Architecture
	幻灯片 38
	幻灯片 39: Read
	幻灯片 40: Write
	幻灯片 41: Erase
	幻灯片 42: Overwrite & Delete
	幻灯片 43: Software layer in controller
	幻灯片 44
	幻灯片 45: Flash Translation Layer
	幻灯片 46: Address Mapping
	幻灯片 47: Sector Mapping
	幻灯片 48: Block Mapping
	幻灯片 49: Hybrid Mapping
	幻灯片 50: Log-structured Mapping
	幻灯片 51: Log-structured Mapping
	幻灯片 52: Short summary
	幻灯片 53: Garbage Collection
	幻灯片 54: Design Issues of GC Algorithms
	幻灯片 55: Other Technologies
	幻灯片 56
	幻灯片 57: RAID Motivation
	幻灯片 58: RAID Introduction
	幻灯片 59: RAID 0
	幻灯片 60: RAID 1
	幻灯片 61: Combinations
	幻灯片 62: Combinations
	幻灯片 63: RAID01 vs RAID10
	幻灯片 64: RAID 4
	幻灯片 65: How to update data
	幻灯片 66: How to update data
	幻灯片 67: Problems of RAID 4
	幻灯片 68: RAID 5
	幻灯片 69: RAID 6
	幻灯片 70: Parity Update Overhead
	幻灯片 71: Design tradeoff
	幻灯片 72: Parity Logging
	幻灯片 73: EPLOG
	幻灯片 74: EPLOG
	幻灯片 75: Tolerate any number of failures?
	幻灯片 76: XOR-based Codes
	幻灯片 77: Summary on Erasure Codes
	幻灯片 78: Summary of Ch8

