Operating Systems

Prof. Yongkun Li

FRER-THENL B FHEBER
http://staff.ustc.edu.cn/~ykli

Chapter 8
Mass Storage

File system
Implementation

FAT32, EXT2/3

File System Operations
KV, Distributed FS,

Graph System...

'\ registers g

v

optical disk

—

magnetic tapes

Disk Scheduling

SSD Features/Issues

Erasure Coding

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

Hard Disk Structure — Physical view

(o

hysical address (cylinder, track, sector)

\

Track:

The surface of a platter is divided into tracks
Sector:

Track is divided into sectors (512B data + ECC)

Cylinder:
Qet of tracks that are at one arm position /

<— arm assembly

3 4 Access: Seek + Rotate

track t <«— spindle

sector s

cylinder ¢ —

head

(move disk arm to desired cylinder
platter

0y — Rotational latency:
el Qpln at 5400/7200/10K/15K RPM /

|
|
|
| read-write Seek time:
|
|

Hard Disk Structure — Physical view

gtant liner velocity (CLV) \

» Uniform density of bits per track,

track t e spindle outer track hold more sectors
» Variable rotation speed to keep the
. -~ . same rate of data moving

sector s

l > CD-ROM/DVD-ROM

| Constant angular velocity (CAV)
|) » Constant rotation speed
: read-write

|
|
|
|
|
|
|
. |
cylinder ¢ —
|
|

head » Higher density of bits in inner tracks

(| > Hard disks
platter K /
d am~"

rotation

Hard Disk Structure — Logical view

-

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

\

>/Address mapping

Logical block number -> (cylinder #, track #, sector #)

Disk management is required

> Disk formatting

> Disks are prone to failures: defective sectors are

common (bad blocks)

v Need to handle defective sectors: bad block
management

N

_/

Disk Management

a I
Disk Formatting

Step 1: Low-level formatting/physical formatting

v Divide into sectors so disk controller can read/write

v" Fills the disk with a special data structure for each sector (data area(512B),
header and trailer (sector number & ECC))
 The controller automatically does the ECC processing whenever a sector
is read/written

v" Done at factory, used for testing and initializing (e.g., the mapping). It is also
possible to set the sector size (256B, 512B, 1K, 4K)

Disk Management

a I
Disk Formatting

Step 2: How to use disks to hold files after shipment?

Choice 1: File system

Partition into one or more groups of cylinders (each as a separate disk)

Logical formatting: creating a FS by storing the initial FS data structures

|/O optimization: Disk 1/O (via blocks) & file system I/O (via clusters), why?
 More sequential access, fewer random access

N N\N\YV

> Choice 2: Raw disk

Use disk partition as a large sequential array of logical blocks, without FS
v' Raw I/O: bypass all FS services (buffer cache, prefetching...), be able to
control exact disk location

Disk Management

track t

sector s }

. |
cylinder ¢ —

platter

le— spindle

3 a
|

J a
|
|

read-write
! head

k) am "

rotation.

<«— arm assembl

Bad Block Management

v' Maintain a list of bad blocks (initialized during low-level formatting) and

preserve an amount of spare sectors

sector

v Sector sparing/forwarding: replace a bad sector logically with one spare

* Problem: invalidate disk scheduling algorithm

e Solution: spare sectors in each cylinder + spare cylinder

&ector slipping: remap to the next sector (data movement is needed) /

N

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

* Requests are placed in the queue of pending
requests for that drive if the drive/controller is busy

Read/write, disk address, memory address,
number of sectors to be transferred

track t I spindle

* |/O access procedure

< arm assembl

sector s

éﬁ% — Seek
@ * move the head to the desired cylinder

|
|
|
| | .
cylinder ¢ — | read-write
| |
| |
I |
| |

heag — Rotate

platter — * spin to the target sector on the track

k) arm

rotation

Request ordering significantly affects

Track/
Cylinder

the access performance (seek + rotate),
so scheduling is needed

Disk scheduling: Choose the next
request in the pending queue to service

so as to minimize the seek time
(scheduling algorithms)

* First-come, first-served (FCFS)

— Intrinsically fair, but does not provide the fastest service

N

N\
1
122 124

* First-come, first-served (FCFS)
11 [

0

\/

/

~
N

N

~14 37 536567

* Scheduling diagram

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124
| | L1l | Ll
|

Total head movement
(640 cylinders)

Wild swing is very common
E.g.: 122 to 14, then to 124

How to reduce the head
movement?

uandle nearby requests first/

* Shortest seek time first (SSTF)

— Choose the request with the least seek time

— Choose the request closest to the current head position

11
122 124

1
98

* Shortest seek time first (SSTF)

dn
~Jd4 37 536567

0

* Scheduling diagram

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124
I | Ll | I
|

@I head movement: 236\

cylinders (it is 640 for FCFS)

Essentially a form of SJF
scheduling

It is not optimal

The sequence of 53-37-14-65...
could reduce the head
movement to 208

Qnav cause starvation /

 Scan back and forth

— Starts at one end, moves toward the other end
— Service the requests as it reaches each cylinder
— Reverse the direction

— Elevator algorithm

11
122 124

|
98

Suppose the head is moving from 53 to 0

Scan back and forth

~Jd4 37 536567

* Scheduling diagram

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124
L | Ll | I
|

/

Any problem?

\

Assume a uniform request
distribution

The heaviest density of requests
is at the other end of the disk

They need to wait for a long
time

C\ we do something about thj

e Circular Scan back and forth
— A variant of SCAN: immediately return when reaches the end
— Aim for providing a more uniform wait time

11
122 124

|
98

~NT NN
11

~Jd4 37 536567

e Circular scan
/-»I/"

* Scheduling diagram

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
|
[

Unnecessary

o

No need to move across the full width of the disk, but only need to reach the
final request

\Improved SCAN and C-SCAN: LOOK and C-LOOK)

I
183

11
122 124

|
98

~NT NN
L1

~Jd4 37 536567

— Look for a request before moving

* Goes only as far as the final request

* Scheduling diagram

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
|
|

\
Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN
_ J

Summary of scheduling algorithms

queue = 98, 183, 37, 122, 14, 124, 65, 67 queue = 98, 183, 37, 122, 14, 124, 65, 67 queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53 head starts at 53 head starts at 53

0 14 37 536567 98 122124 183199 0 14 37 536567 98 122124 183199 ? 1|4 37 5§6ﬁ67 98 122124 183199
| | | [| 11 | | | | 1l | 1l I
[[

e \ <\\
(D

e FCFS SSTF SCAN L

queue =98, 183, 37, 122, 14, 124, 65, 67 queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53 head starts at 53

C-SCAN C-LOOK
}

SSTF outperforms FCFS, but may suffer from starvation

0 14 37 536567 98 122124 183199 0 14 37 536567 98 122124 183199
\
‘ | | ||

SCAN and C-SCAN perform better for heavy load systems,
and they are less likely to cause starvation

Selection of a scheduling algorithm

Disk Performance

-
Number and

&

types of requests
AN

— T
N N

File allocation method

Large sequential I/O or
small random 1/0O

~

Location of directories and
index blocks (metadata 1/0)

VAN J

Implementing scheduling in OS is necessary to satisfy other constraints
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).

30

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

SSDs are widely used

Advantages of flash-based SSDs: non-volatility, shock resistance,
high speed and low energy consumption;

33

Flash Types

e NAND flash and NOR flash

— NAND flash: denser capacity, only allow access in
units of pages, faster erase operation

— Most SSD products are based on NAND flash

rol gate (CG)

R ST
+ NAND flash: SLC and MLC ﬂ=\-ﬂr -,

sssssssss

— SLC: each cell stores one bit
* Longer life time, lower access latency, higher cost

— MLC: each cell stores two (or three) bits
* Higher capacity

34

floating gate (FG) control gate (CG)

Drain (D) Source (S)

D
s

electrons
(a) (b)

{(a) Floating zate memory cell and (b) its schematic symbol

 Program operation can only change the value from 1 to O (erase
operation changes the value from O to 1)

— No overwritten

* The floating gate becomes thinner as the cell undergoes more
program-erase cycles
— Decreasing reliability

* Package > die/chip > plane > block > page

|____________________________.I_____________________________I
1 I Serial Connection I 1
1 1
1 1
1 Plane 0 Plane 1 Plane 2 Plane 3 Plane 0 Plane 1 Plane 2 Plane 3 1
1 Block 0 Block 1 Block 4096 Block 4097 Block 0 Block 1 Block 4096 Block 4097 1
1 1
1 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 1
1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 1
o o o o o o o o
1 ° ° o ° o o o ° 1
1 Page 63 ‘ ‘ Page 63 Page 63 ‘ ‘ Page 63 Page 63 ‘ | Page 63 Page 63 ‘ | Page 63 1
1 1
1 1
o o o o o ° o o
1 1
o o o o o ° o o
1 o ° o o o o o ° 1
1 o o o ° o ° o ° 1
1 1
1 Block 4094 Block 4005 Block 8190 Block 8191 Block 4094 Block 4095 Block 8190 Block 8191 1
: Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 :
I Page 1 Page 1 Pagel Pagel Pagel Pagel Pagel Page 1 1
o o o o o o o o
1 o o o o o o o o 1
1 ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ 1
1 1
1 4K Register | [4K Register | | 4K Register || || 4K Register | 4K Register | 4K Register | [4K Register | 4K Register | 1
1 1
! Die 0 i !
1 Flash Package (4 GB) Die 1 1
- mm o Em M EE EE EE EE RN EN EE BN N MM MM BN MM N EN N MM R M R EE EE MM R EN EE RN EN MM MM MM MM EN MM EN MM BN N BN EE B EE Em EE Em Em Em R Em Em Em

Samsung K9XXGO8UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)

* SSD components
— Multiple flash packages, controller, RAM

Multiple
Parallel
Host Elements SSD Controlier «++NAND Flash
Interconnect A
(L Al

Flash Translation Layer

(Log-structured with
cleaning & wear-

leveling)

i Gangs of flash |
| packages with :
ultiple planes |

|

————

Flash
Controller
and Memory
Buffers

Host Computer =+ SSD Controller

SSD Controlier «+ DRAM

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

* Read: in unit of pages (4KB)

Serial Connection
Plane 0 Plane 1 Plane 2 Plane 3 Plane 0 Plane 1 Plane 2 Plane 3
Block 0 Block 1 Block 4096 Block 4097 Block 0 Block 1 Block 4096 Block 4097
Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0
Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1
o o o o o o o o
o o o o o o o o
Page 63 ‘ ‘ Page 63 Page 63 ‘ ‘ Page 63 Page 63 ‘ | Page 63 Page 63 ‘ | Page 63
o o o o o ° o o
o o o o o ° o o
o o o o o ° o o
o o o ° o ° o °
Block 4094 Block 4005 Block 8190 Block 8191 Block 4094 Block 4095 Block 8190 Block 8191
Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0
Page 1 Page 1 Pagel Pagel Pagel Pagel Pagel Page 1
o o o o o o o o
o o o o o o o o
‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘
4K Register | [4K Register | | 4K Register || || 4K Register | 4K Register | 4K Register | [4K Register | 4K Register |

Flash Package (4 GB)

* Write: in unit of pages (4KB)

|m = = = e = = e === - 1
1 Serial Connection 1
1 1
1 1
1 Plane 0 Plane 1 Plane 2 Plane 3 Plane 0 Plane 1 Plane 2 Plane 3 1
1 Block 0 Block 1 Block 4096 Block 4097 Block 0 Block 1 Block 4096 Block 4097 1
1 1
1 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 1
1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 1
o o o o o o o o
1 ° ° o ° o o o ° 1
1 Page 63 ‘ ‘ Page 63 Page 63 ‘ ‘ Page 63 Page 63 ‘ | Page 63 Page 63 ‘ | Page 63 1
1 1
1 1
o o o o o ° o o
1 1
o o o o o ° o o
1 o ° o o o o o ° 1
1 o o o ° o ° o ° 1
1 1
1 Block 4094 Block 4005 Block 8190 Block 8191 Block 4094 Block 4095 Block 8190 Block 8191 1
: Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 :
I Page 1 Page 1 Pagel Pagel Pagel Pagel Pagel Page 1 1
o o o o o o o o
1 o o o o o o o o 1
1 ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ ‘ Page 63 ‘ | Page 63 ‘ 1
1 1
1 4K Register | [4K Register | | 4K Register || || 4K Register | 4K Register | 4K Register | [4K Register | 4K Register | 1
1 1
! Die 0 i !
1 Flash Package (4 GB) Die 1 1

Erase

* Erase
— In unit of blocks (64/128 pages)
— Change all bitsto 1
— Much slower than read/write: 1.5ms

* Each block can only tolerate limited number of P/E cycles
— SLC: 100K, MLC: 10K, TLC (several K to several hundred)

 The number of maximum P/E cycles decreases when
— More bits are stored in one cell
— The feature size of flash cell decreases (72nm, 34nm, 25nm)

41

e Delete

— Simply mark the page as invalid

* Overwrite/update
— Does not support in-place overwrite

— Data can only be programmed to clean pages

 How to further improve write performance?

— Address mapping is needed

* Page states
— Garbage collection is also necessary

O free/clean
eras% \Nlrite

invalid ‘ Eupdate ' valid

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

* Three functionalities
— Address mapping
— Garbage collection

W | I . Applications
— ea r- eve Ing ! ! file system API
File System
| | /O withjlogical sector number
FTL (Flash Translation Layer)
1/0 with physical sector number
Flash Memory

* Sector mapping
* Block mapping
* Hybrid mapping

* Log-structured mapping

seclor area spare arca

Isn psn psn0
0 12 psnl Block 0
1 11 psn2 }
2 10 =
“write(9, A)” 3 9
4 8 } Block 1
5 7
6 6
s }
8 4 Block 2
— > 9 3
10 2
11 1 }
Block 3
12 0
mapping table psn 15

flash memory

Mapping table is large: requires a large amount of RAM

 The logical sector offset is the same with the physical
sector offset

t pare ar
Ibn: logical block number
pbn : physical block number psn 0
psn 1 Block 0
psn 2
“write(9, A)” TE—— > A Block 1
0 3
v] 2
Ibn: 9/4 =2 s[5 1
offset: 1 bn: 1
3 0 pon: Block 2
offset: 1
mapping table T
} Block 3
psn 15

flash memory

Smaller mapping table
If the FS issues writes with identical Isn, many erases

* First use block mapping, then use sector mapping in
each block

psn 0

psn 1 Block 0

psh 2

“WI‘ite(9, A)” Ibn pbn
0 3

Block 1

1 2

bn:9/4=2—1s 2 1

}
!
Isn: 9 30 pbn: 1 }
!

Isn: 9

mapping table Block 2

Block 3

psn 15

flash memory

Small mapping table
Avoid a lot of erase operations
Longer time to identify the location of a page

lbn
o Data blocks: block mapping
5 Log blocks: sector mapping
o
pbn :
(Isn, (pbn, off))
(Ibn, pbn)
_ (0,0
& (1,2)
5 (2,1)
5 (3,5)
pbn 4 3 BMT >MT
In Flash In RAM

lbn

. Data blocks: block mapping

5 Log blocks: sector mapping

o

pbn : (Isn, (pbn, off))
(Ibn, pbn) (0, (4,0))

:

%_ variants (2’1)

5 (3,5)

b L BMT SMT

In Flash In RAM

Short summary

 The performance of address mapping is
workload dependent

— Block mapping is suitable for sequential workloads
— Sector mapping is suitable for random workloads

— Log-structured mapping is suitable for workloads
with large sequential and small random requests

 Tradeoff exists

52

* Due to the existence of invalid pages, GC must
be called to reclaim storage

— Choose a candidate block
— Write valid pages to another free block
— Erase the original block

>
/ 2

* Tradeoff in GC design
— Efficiency: minimize writes
— Wear-leveling: erase every block as even as possible
— Tradeoff
— GCis considered together with wear-leveling

e Algorithms
— Greedy, random, and their variants
— Hot/cold identification

Other Technologies

e 3D NAND flash

3D NAND
Architecture

* Non-volatile memory (NVRAM)
— PCM, STTRAM, ReRAM, etc...
— Byte-addressable and non-volatile

— 3D XPoint

e 3 -~
NG <
nw
::"§/
n""§/
n‘°§/
anw
hnh/
nqh“
hqh“
nh"§/
nh‘;“
LN &
..nv”
unv‘
U
nnn/
§ AN
Q=Q/
P il
\Aﬁ\{—{l

=
S—
=
=z

v
v' /

Source Plate
Memory Cell

55

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

-~

-

Disks are slow

Performance

N\

Reliability At

One disk failure
incurs data loss

Fast and
reliable disks
are expensive

~

RAID Introduction

RAID: Redundant Array of Inexpensive (independent) Disks

/\/ In the past X

» Combine small and cheap disks as a cost-effective
alternative to large and expensive disks

v Nowadays
» Higher performance
» Higher reliability via redundant data
» Larger storage capacity

v’ Many different levels of RAID systems

\ » Different levels of redundancy, capacity, cost... /

58

RAID O

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Block-level striping, no redundancy
Provides higher data-transfer rate

Does not improve reliability. Once a disk fails, data loss
may happen (MTTF: mean time to failure)

4

59

RAID 1

g _ S
ﬁ-low to improve reliability: \ RAID 1

e Data mirroring (RAID1) |
v Two copies of the data are held
on two physical disks, and the
data is always identical.
v’ Replication

* High storage cost
v' Twice as many disks are required
to store the same data when
compared to RAID 0.

v' Even worse storage efficiency
with more copies

Disk 1 Disk 2

60

Combinations

-~

RAID 1 provides reliability
 RAID 0+1 (RAIDO1)

v" First data striping
v Then data mirroring

Q@

~

* RAID 0 provides reliability and

4

RAID 0+1
RAID 1
RAID 0 RAID O
AL A2 g AL N A2
A3 N Ad A3 LAY
AS | A6 A5 4 N A6

Disk 0

Disk 1

Disk 2

Disk 3

Same storage
costas RAID 1

61

Combinations

~

 RAID O provides reliability and
RAID 1 provides reliability

. RAID 0+1 (RAIDO1)
v" First data striping
v Then data mirroring

« RAID 1+0 (RAID10)
v’ First data mirroring
v Then data striping

RAID 1+0
RAID 0
RAID 1 RAID 1
AL AL A2 A2
NAS A 4 AB g N AG
_J U

9 4

Disk 0

Disk 1 Disk 2 Disk 3

Same storage cost

62

RAID 0+1

RAID 1
RAID 0 RAID 0
AL NAZ g AL A2
A3 | AY A3 NAd
A5 | K_Ab | A5 1 A6
A7 NAB AT 4 A8
~) ~_ ~
Disk 0 Disk 1 Disk 2 Disk 3

RAID 1+0
RAID O
RAID 1 RAID 1
S o
AL AL A2 g A2
A3 A A N Ad
A5 1 NAS 4 NLAG A6
A7 AT A8 | A8
Disk0 Disk 1 Disk2 Disk 3

Both suffer from high storage cost

RAID 4

KBalance the tradeoff betweh

* Redundancy with pariti

corresponding data disks
* Block-level data striping

distributed across disks
* Dedicated parity disk

KAny problem?

reliability and storage cost?

es

* Parity generation: Each parity
block is the XOR value of the

e Data and parity blocks are

4

RAID 4
D D @ @
AL A2 4 KA A
Bl {4 B2 4 | B3 4 K. Br 4
Cl | N C2 1 C3 4 K Cr 4
DBl 4 D2 4 D3 4 KD
U R U N R
Disk O Disk 1 Disk 2 Disk 3

Ay = A1IQAZ2QA3

How to update data

v

A

S

e Suppose Al will be updated
to A1’

 Both Al and Ap need to
be updated
e Read-modify-write (RMW)

4

Disk 0

Disk 1

Disk 2

Disk 3

RMW: A, = 4, QA1RAT’

A, = A1QA2®@A3®A1QAL’
= A2®@A3Q®A1’

65

How to update data

(Suppose Al will be updated)

Al’
 Both Al and Ap need to
be updated
 Read-modify-write (RMW)

* How about updating both Al
and A2 simultaneously?
e RMW?
e Read-reconstruct-write
(RRW)

KSelection of RMW/RRW /

Disk 0 Disk 1 Disk 2 Disk 3
RRW: A;D = A3QA1'QA2’

Both RMW and RRW incur
extra reads and writes

66

Problems of RAID 4

v

<

S

* Problems of RAID 4

e Disk bandwidth are not fully
utilized

* Parity disk will not be
accessed under normal
mode

e Parity disk may become the
bottleneck

 E.g.,updating Al, B2, C3

4

RAID 4
D D @ @
AL A2 4 KA A
Bl {4 B2 4 | B3 4 K. Br 4
Cl | N C2 1 C3 4 K Cr 4
DBl 4 D2 4 D3 4 KD
U R U N R
Disk O Disk 1 Disk 2 Disk 3

Read: A1, B2, C3, Ap, Bp, Cp
Write: A1’ B2/, C3’, Ap’, Bp’, Cp’

67

RAID 5

e

e Similarto RAID 4
* One parity per stripe

* Key difference

e good performance

e good fault tolerance
* high capacity

e storage efficiency

* Uniform parity distribution

e RAID 5 is an ideal combination of

=

4

RAID 5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

AP — Al@AZ @Ag @A4

Ep — El@EZ @Eg @E4

Parity update overhead still
exist

68

RAID 6

4 h

e How to tolerate more disk
failures?

* RAID-6 protects against two disk
failures by maintaining two
parities

* Encoding/decoding operations:
» Based on Galois field

< 4

Disk O

Disk 1

Disk 2

Disk 3

Disk 4

Ap — Al @AZ @Ag @Azl-

ACI — COAl@C1A2®C2A3 ®C3A4

Parity update overhead
becomes larger

69

Parity Update Overhead

* RAID provides device-level fault tolerance
— Each stripe contains data and parity

J
J

e Limitation: Parity updates D,

— Update data -> update parity
« Update D, to D’
« RMW: P} = P,@®D;®D,’

* RRW: P! = D,@®D,'®D,
— Extra I/Os and GC

E-LRIE
EO0EE

SSD

Parity chunks:
Py = Do®D;,®D;

* SSD RAID P, = D;®D,®Ds

— Parity update influences both performance and endurance

70

* Design trade-off in SSD RAID arrays
— RAID improves reliability

— Parity updates incur extra I/Os and GC operations
* Degrade performance and endurance

How to address the parity update overhead?

Parity Logging

* Original Parity logging
— Incoming reqs: {4y, By, Co }1,{A1, B, C1 },{By', Co', A1}

Stripe 0 A0 | |BO’| |CO’| |PO B0+B0’+C0+C0’
Stripe 1 A1’ |B1] |P1]| [C1 A1+A7T’
SSD RAID-5 Log Device

* Drawbacks
— Pre-read: Extra reads
— Per-stripe basis: Extra log chunks; Partial parallelism

Our solution:

Stripe 0 |AO0| |BOL [COL [PO| BO'+CO0'+AT’

No pre-read
Full parallelism
(Elastic)

SSD RAID-5 Log Device

| Stripe 0 |A0 BDH col [Po] i BO'+C0'+A1’

No pre-read
Full parallelism
(Elastic)

SSD RAID-5 Log Device

* Benefits of EPLOG
— General RAID
— High endurance: Reduce parity writes to SSDs
— High performance: Reduce extra |/Os
— Low-cost deployment: Commodity hardware

v" Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. "Elastic Parity Logging for SSD RAID
Arrays." IEEE/IFIP DSN (Regular paper), Toulouse, France, June 2016.

v" Helen H. W. Chan,Yongkun Li, Patrick P. C. Lee, and Yinlong Xu."Elastic Parity Logging for SSD RAID
Arrays: Design, Analysis, and Implementation.” IEEE TPDS, volume: 29, issue: 10, Oct. 2018.

74

——————————————————————

> Erasure codes

— General-fault tolerant: Cauchy Reed-Solomon (CRYS)

» Generate m code blocks from k data blocks, so as
to tolerate any m disk failures

——————————————————————

» 2-fault tolerant: RDP, EVENODD, X-Code
» An RDP code example with 6 disks

Ol
RN -

Summary on Erasure Codes

» The motivation to introduce erasure codes in
large-scale storage systems

The need to reduce the tremendous cost of storage

» In practice, erasure codes have seen widely

deployment
« Google File System [Ford, OSDI’'10]
* Windows Azure Storage [Huang, ATC'12]
« Facebook [Borthakur, Hadoop User Group Meeting 2010]

77

B

Disk Structure

W/

—

-

Disk Scheduling

~

—
SSD Features/Issues

Erasure Coding

-

_

v Cylinder, Track, Sector: CLV, CAV
v" Access time
v" FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

j

v Structure and features
v' Operations (read/write/erase/GC)

v" RAID structures (RAIDO, 1, 4, 5, 6)
v’ Parity update

	幻灯片 1
	幻灯片 2: Topics in Part 3 (Storage Management)
	幻灯片 3: Storage Hierarchy
	幻灯片 4: Topics (Mass Storage)
	幻灯片 5
	幻灯片 6: Hard Disk Structure – Physical view
	幻灯片 7: Hard Disk Structure – Physical view
	幻灯片 8: Hard Disk Structure – Logical view
	幻灯片 9: Disk Management
	幻灯片 10: Disk Management
	幻灯片 11: Disk Management
	幻灯片 12
	幻灯片 13: Why needed?
	幻灯片 14: What is disk scheduling
	幻灯片 15: FCFS Scheduling
	幻灯片 16: FCFS Scheduling
	幻灯片 17: FCFS Scheduling
	幻灯片 18: SSTF Scheduling
	幻灯片 19: SSTF Scheduling
	幻灯片 20: SSTF Scheduling
	幻灯片 21: SCAN Scheduling
	幻灯片 22: SCAN Scheduling
	幻灯片 23: SCAN Scheduling
	幻灯片 24: C-SCAN Scheduling
	幻灯片 25: C-SCAN Scheduling
	幻灯片 26: C-SCAN Scheduling
	幻灯片 27: C-LOOK Scheduling
	幻灯片 28: C-LOOK Scheduling
	幻灯片 29: Summary of scheduling algorithms
	幻灯片 30: Selection of a scheduling algorithm
	幻灯片 31
	幻灯片 32
	幻灯片 33: SSDs are widely used
	幻灯片 34: Flash Types
	幻灯片 35: Flash Cell
	幻灯片 36: Flash Package
	幻灯片 37: SSD Architecture
	幻灯片 38
	幻灯片 39: Read
	幻灯片 40: Write
	幻灯片 41: Erase
	幻灯片 42: Overwrite & Delete
	幻灯片 43: Software layer in controller
	幻灯片 44
	幻灯片 45: Flash Translation Layer
	幻灯片 46: Address Mapping
	幻灯片 47: Sector Mapping
	幻灯片 48: Block Mapping
	幻灯片 49: Hybrid Mapping
	幻灯片 50: Log-structured Mapping
	幻灯片 51: Log-structured Mapping
	幻灯片 52: Short summary
	幻灯片 53: Garbage Collection
	幻灯片 54: Design Issues of GC Algorithms
	幻灯片 55: Other Technologies
	幻灯片 56
	幻灯片 57: RAID Motivation
	幻灯片 58: RAID Introduction
	幻灯片 59: RAID 0
	幻灯片 60: RAID 1
	幻灯片 61: Combinations
	幻灯片 62: Combinations
	幻灯片 63: RAID01 vs RAID10
	幻灯片 64: RAID 4
	幻灯片 65: How to update data
	幻灯片 66: How to update data
	幻灯片 67: Problems of RAID 4
	幻灯片 68: RAID 5
	幻灯片 69: RAID 6
	幻灯片 70: Parity Update Overhead
	幻灯片 71: Design tradeoff
	幻灯片 72: Parity Logging
	幻灯片 73: EPLOG
	幻灯片 74: EPLOG
	幻灯片 75: Tolerate any number of failures?
	幻灯片 76: XOR-based Codes
	幻灯片 77: Summary on Erasure Codes
	幻灯片 78: Summary of Ch8

