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Chapter 8
Mass Storage



Topics in Part 3 (Storage Management)
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Topics
  - Disk structure
  - Disk scheduling
  - Solid-state drives (SSDs)
  - RAID & Erasure coding



Hard Disk Structure – Physical view

Physical address (cylinder, track, sector)

Track: 
The surface of a platter is divided into tracks  
Sector: 
Track is divided into sectors (512B data + ECC)
Cylinder: 
Set of tracks that are at one arm position

Access: Seek + Rotate

Seek time: 
move disk arm to desired cylinder

Rotational latency: 
spin at 5400/7200/10K/15K RPM



Hard Disk Structure – Physical view

Constant liner velocity (CLV)
➢ Uniform density of bits per track, 

outer track hold more sectors
➢ Variable rotation speed to keep the 

same rate of data moving
➢ CD-ROM/DVD-ROM

Constant angular velocity (CAV)
➢ Constant rotation speed 
➢ Higher density of bits in inner tracks
➢ Hard disks



Hard Disk Structure – Logical view

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

Address mapping
Logical block number -> (cylinder #, track #, sector #)

Disk management is required

➢ Disk formatting

➢ Disks are prone to failures: defective sectors are 
common (bad blocks)
✓ Need to handle defective sectors: bad block 

management



Disk Management

Disk Formatting

Step 1: Low-level formatting/physical formatting

✓ Divide into sectors so disk controller can read/write

✓ Fills the disk with a special data structure for each sector (data area(512B), 
header and trailer (sector number & ECC))
• The controller automatically does the ECC processing whenever a sector 

is read/written

✓ Done at factory, used for testing and initializing (e.g., the mapping). It is also 
possible to set the sector size (256B, 512B, 1K, 4K)



Disk Management

Disk Formatting

Step 2: How to use disks to hold files after shipment?

➢ Choice 1: File system
✓ Partition into one or more groups of cylinders (each as a separate disk)
✓ Logical formatting: creating a FS by storing the initial FS data structures 
✓ I/O optimization: Disk I/O (via blocks) & file system I/O (via clusters), why?

• More sequential access, fewer random access

➢ Choice 2: Raw disk
✓ Use disk partition as a large sequential array of logical blocks, without FS 
✓ Raw I/O: bypass all FS services (buffer cache, prefetching…), be able to 

control exact disk location 



Disk Management

Bad Block Management

✓ Maintain a list of bad blocks (initialized during low-level formatting) and 
preserve an amount of  spare sectors

✓ Sector sparing/forwarding: replace a bad sector logically with one spare 
sector
• Problem: invalidate disk scheduling algorithm
• Solution: spare sectors in each cylinder + spare cylinder

✓ Sector slipping: remap to the next sector (data movement is needed)
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Topics
  - Disk structure
  - Disk scheduling
  - Solid-state drives (SSDs)
  - RAID & Erasure coding



Why needed?

• Requests are placed in the queue of pending 
requests for that drive if the drive/controller is busy
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R1 R2 Rn…Pending 
queue

Read/write, disk address, memory address, 
number of sectors to be transferred



What is disk scheduling

• I/O access procedure

– Seek
• move the head to the desired cylinder

– Rotate
• spin to the target sector on the track
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Request ordering significantly affects 
the access performance (seek + rotate), 

so scheduling is needed

Disk scheduling：Choose the next 
request in the pending queue to service 
so as to minimize the seek time 
(scheduling algorithms)



FCFS Scheduling

• First-come, first-served (FCFS)

– Intrinsically fair, but does not provide the fastest service
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FCFS Scheduling

• First-come, first-served (FCFS)
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FCFS Scheduling

• Scheduling diagram
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Total head movement

  (640 cylinders)

Wild swing is very common

E.g.: 122 to 14, then to 124

How to reduce the head 
movement?

 Handle nearby requests first



SSTF Scheduling

• Shortest seek time first (SSTF)

– Choose the request with the least seek time

– Choose the request closest to the current head position
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SSTF Scheduling

• Shortest seek time first (SSTF)
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SSTF Scheduling

• Scheduling diagram
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Total head movement: 236 
cylinders (it is 640 for FCFS)

Essentially a form of SJF 
scheduling

It is not optimal

The sequence of 53-37-14-65… 
could reduce the head 
movement to 208

It may cause starvation



SCAN Scheduling

•  Scan back and forth
– Starts at one end, moves toward the other end
– Service the requests as it reaches each cylinder
– Reverse the direction 
– Elevator algorithm
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SCAN Scheduling

•  Scan back and forth
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SCAN Scheduling

• Scheduling diagram

23

Any problem?

Assume a uniform request 
distribution

The heaviest density of requests 
is at the other end of the disk

They need to wait for a long 
time

Can we do something about this?



C-SCAN Scheduling

• Circular Scan back and forth
– A variant of SCAN: immediately return when reaches the end
– Aim for providing a more uniform wait time
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C-SCAN Scheduling

• Circular scan
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C-SCAN Scheduling

• Scheduling diagram
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No need to move across the full width of the disk, but only need to reach the 
final request

Improved SCAN and C-SCAN: LOOK and C-LOOK

Unnecessary



C-LOOK Scheduling

• Goes only as far as the final request

– Look for a request before moving
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C-LOOK Scheduling

• Scheduling diagram
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Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN



Summary of scheduling algorithms
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SSTF outperforms FCFS, but may suffer from starvation

SCAN and C-SCAN perform better for heavy load systems, 
and they are less likely to cause starvation

FCFS SSTF SCAN

C-SCAN C-LOOK



Selection of a scheduling algorithm
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File allocation method 
Large sequential I/O or 
small random I/O

Number and 
types of requests

Location of directories and 
index blocks (metadata I/O)

Disk Performance

Implementing scheduling in OS is necessary to satisfy other constraints 
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).
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Topics
  - Disk structure
  - Disk scheduling
  - Solid-state drives (SSDs)
  - RAID & Erasure coding
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- Solid-state drives (SSDs)
  -SSD architecture
  -SSD operations
  -Flash translation layer
 



SSDs are widely used
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Advantages of flash-based SSDs: non-volatility, shock resistance, 
high speed and low energy consumption;



Flash Types
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• NAND flash and NOR flash

– NAND flash: denser capacity, only allow access in 
units of pages, faster erase operation

– Most SSD products are based on NAND flash

• NAND flash: SLC and MLC

– SLC: each cell stores one bit

• Longer life time, lower access latency, higher cost

– MLC: each cell stores two (or three) bits

• Higher capacity



Flash Cell

35

• Program operation can only change the value from 1 to 0 (erase 
operation changes the value from 0 to 1)
– No overwritten

• The floating gate becomes thinner as the cell undergoes more 
program-erase cycles
– Decreasing reliability



Flash Package
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• Package > die/chip > plane > block > page 

   

  Samsung K9XXG08UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)



SSD Architecture
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• SSD components

– Multiple flash packages, controller, RAM 
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- Solid-state drives (SSDs)
  -SSD architecture
  -SSD operations
  -Flash translation layer



Read
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• Read: in unit of pages (4KB)

   page register
data read: 25 μs

controller
serial bus: 100 μs



Write
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• Write: in unit of pages (4KB)

   page register
program: 200 μs

controller
serial bus: 100 μs



Erase
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• Erase

– In unit of blocks (64/128 pages) 

– Change all bits to 1

– Much slower than read/write: 1.5ms

• Each block can only tolerate limited number of P/E cycles

– SLC: 100K, MLC: 10K, TLC (several K to several hundred)

• The number of maximum P/E cycles decreases when

– More bits are stored in one cell

– The feature size of flash cell decreases (72nm, 34nm, 25nm)



Overwrite & Delete
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• Delete

– Simply mark the page as invalid

• Overwrite/update

– Does not support in-place overwrite

– Data can only be programmed to clean pages



Software layer in controller 
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• How to further improve write performance?

– Address mapping is needed

• Page states

– Garbage collection is also necessary
free/clean

validinvalid

write

update

erase
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- Solid-state drives (SSDs)
  -SSD architecture
  -SSD operations
  -Flash translation layer
  -



Flash Translation Layer
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• Three functionalities

– Address mapping

– Garbage collection

– Wear-leveling



Address Mapping
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• Sector mapping

• Block mapping

• Hybrid mapping

• Log-structured mapping



Sector Mapping

Mapping table is large: requires a large amount of RAM
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Block Mapping
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• The  logical sector offset is the same with the physical 
sector offset

Smaller mapping table

If the FS issues writes with identical lsn, many erases



Hybrid Mapping
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• First use block mapping, then use sector mapping in 
each block

Small mapping table

Avoid a lot of erase operations

Longer time to identify the location of a page



Log-structured Mapping
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Log-structured Mapping
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Short summary
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• The performance of address mapping is 
workload dependent

– Block mapping is suitable for sequential workloads

– Sector mapping is suitable for random workloads

– Log-structured mapping is suitable for workloads 
with large sequential and small random requests

• Tradeoff exists



Garbage Collection
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• Due to the existence of invalid pages, GC must 
be called to reclaim storage

– Choose a candidate block

– Write valid pages to another free block

– Erase the original block
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Design Issues of GC Algorithms

54

• Tradeoff in GC design

– Efficiency: minimize writes

– Wear-leveling: erase every block as even as possible

– Tradeoff

– GC is considered together with wear-leveling

• Algorithms

– Greedy, random, and their variants

– Hot/cold identification



Other Technologies

• 3D NAND flash

• Non-volatile memory (NVRAM)

– PCM, STTRAM, ReRAM, etc…

– Byte-addressable and non-volatile

– 3D XPoint

55
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RAID Motivation

Reliability 

Performance

Cost

One disk failure 
incurs data loss

Disks are slow

Fast and 
reliable disks 
are expensive



RAID Introduction

✓ In the past
➢ Combine small and cheap disks as a cost-effective 

alternative to large and expensive disks

✓Nowadays
➢Higher performance
➢Higher reliability via redundant data
➢ Larger storage capacity

✓Many different levels of RAID systems
➢Different levels of redundancy, capacity, cost…

RAID: Redundant Array of Inexpensive (independent) Disks
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RAID 0

• Block-level striping, no redundancy

• Provides higher data-transfer rate

• Does not improve reliability. Once a disk fails, data loss 
may happen (MTTF: mean time to failure)
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RAID 1

• How to improve reliability?

• Data mirroring (RAID1)
✓ Two copies of the data are held 

on two physical disks, and the 
data is always identical.

✓ Replication

• High storage cost
✓ Twice as many disks are required 

to store the same data when 
compared to RAID 0.

✓ Even worse storage efficiency 
with more copies

60
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Combinations

• RAID 0 provides reliability and 
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

Same storage 
cost as RAID 1
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Combinations

• RAID 0 provides reliability and 
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

• RAID 1+0 (RAID10)
✓ First data mirroring
✓ Then data striping Same storage cost
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RAID01 vs RAID10

Both suffer from high storage cost



RAID 4

• Balance the tradeoff between 
reliability and storage cost?
• Redundancy with parities

• Parity generation: Each parity 
block is the XOR value of the 
corresponding data disks

• Block-level data striping
• Data and parity blocks are 

distributed across disks
• Dedicated parity disk

• Any problem? 

𝐴𝑝 = 𝐴1⨂𝐴2⨂𝐴3

64
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How to update data

• Suppose A1 will be updated 
to A1’
• Both A1 and Ap need to 

be updated
• Read-modify-write (RMW)

RMW: 𝐴𝑝
′ = 𝐴𝑝⨂𝐴1⨂𝐴1′

𝐴𝑝′ = 𝐴1⨂𝐴2⨂𝐴3⨂𝐴1⨂𝐴1′

= 𝐴2⨂𝐴3⨂𝐴1′
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How to update data

• Suppose A1 will be updated to 
A1’
• Both A1 and Ap need to 

be updated
• Read-modify-write (RMW)

• How about updating both A1 
and A2 simultaneously?
• RMW? 
• Read-reconstruct-write 

(RRW)

• Selection of RMW/RRW

RRW: 𝐴𝑝
′ = 𝐴3⨂𝐴1′⨂𝐴2′

Both RMW and RRW incur 
extra reads and writes



Problems of RAID 4

• Problems of RAID 4

• Disk bandwidth are not fully 
utilized
• Parity disk will not be 

accessed under normal 
mode

• Parity disk may become the 
bottleneck
• E.g., updating A1, B2, C3

Read: A1, B2, C3, Ap, Bp, Cp
Write: A1’ B2’, C3’, Ap’, Bp’, Cp’
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RAID 5

• Similar to RAID 4
• One parity per stripe

• Key difference
• Uniform parity distribution

• RAID 5 is an ideal combination of 
• good performance
• good fault tolerance
• high capacity
• storage efficiency

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

...

𝐸𝑃 = 𝐸1⨁𝐸2⨁𝐸3⨁𝐸4

Parity update overhead still 
exist
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RAID 6

• How to tolerate more disk 
failures?

• RAID-6 protects against two disk 
failures by maintaining two 
parities

• Encoding/decoding operations:
➢ Based on Galois field

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

𝐴𝑞 = 𝑐0𝐴1⨁𝑐
1𝐴2⨁𝑐

2𝐴3⨁𝑐
3𝐴4

Parity update overhead 
becomes larger

69



Parity Update Overhead

• RAID provides device-level fault tolerance

– Each stripe contains data and parity

• Limitation: Parity updates

– Update data -> update parity
• Update 𝐷1 to 𝐷1′

• RMW: 𝑃0
′ = 𝑃0⨁𝐷1⨁𝐷1′

• RRW: P0
′ = D0⨁𝐷1′⨁𝐷2

– Extra I/Os and GC

• SSD RAID

– Parity update influences both performance and endurance

Parity chunks: 
𝑃0 = 𝐷0⨁𝐷1⨁𝐷2
𝑃1 = 𝐷3⨁𝐷4⨁𝐷5
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Design tradeoff

• Design trade-off in SSD RAID arrays

– RAID improves reliability

– Parity updates incur extra I/Os and GC operations

• Degrade performance and endurance

How to address the parity update overhead?
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Parity Logging

• Original Parity logging

– Incoming reqs: {𝐴0, 𝐵0, 𝐶0 },{𝐴1, 𝐵1, 𝐶1 }, {𝐵0′, 𝐶0′, 𝐴1′}

• Drawbacks

– Pre-read: Extra reads

– Per-stripe basis: Extra log chunks; Partial parallelism
72



EPLOG
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No pre-read

Full parallelism

      (Elastic)

Our solution: New RAID Design via Elastic Parity 
Logging (EPLOG)



EPLOG

• Benefits of EPLOG
– General RAID

– High endurance: Reduce parity writes to SSDs

– High performance: Reduce extra I/Os

– Low-cost deployment: Commodity hardware

74

No pre-read

Full parallelism

      (Elastic)

✓ Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. "Elastic Parity Logging for SSD RAID 
Arrays."  IEEE/IFIP DSN (Regular paper), Toulouse, France, June 2016.

✓ Helen H. W. Chan,Yongkun Li, Patrick P. C. Lee, and Yinlong Xu."Elastic Parity Logging for SSD RAID 
Arrays: Design, Analysis, and Implementation.“ IEEE TPDS, volume: 29 , issue: 10 , Oct. 2018.



Tolerate any number of failures?

➢Erasure codes

– General-fault tolerant: Cauchy Reed-Solomon (CRS)

➢Generate m code blocks from k data blocks, so as 

to tolerate any m disk failures

A B A+B A+2BA B
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XOR-based Codes

➢ 2-fault tolerant: RDP, EVENODD, X-Code

➢An RDP code example with 6 disks

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,5

d1,5

d2,5

d3,5

⊕
⊕
⊕
⊕

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

⊕
⊕
⊕
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Summary on Erasure Codes

➢The motivation to introduce erasure codes in 

large-scale storage systems

➢ In practice, erasure codes have seen widely 

deployment
• Google File System [Ford, OSDI’10]

• Windows Azure Storage [Huang, ATC’12]

• Facebook [Borthakur, Hadoop User Group Meeting 2010]

• …

The need to reduce the tremendous cost of storage
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Summary of Ch8
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SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

✓ Cylinder, Track, Sector: CLV, CAV
✓ Access time
✓ FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

✓ Structure and features
✓ Operations (read/write/erase/GC)

✓ RAID structures (RAID0, 1, 4, 5, 6)
✓ Parity update
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