
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Ch10, part 1
Details of FAT32

1

Topics in Ch10

• Case study

2

File attributes and directory entries, file operations

Details of FAT32

Detailed layout, detailed inode structure (file attributes), FS operations…

Details of Ext2/3/4

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

3

Microsoft Extensible Firmware Initiative FAT32 File System
Specification (FAT: General Overview of On-Disk Format),
Version 1.03, December 6, 2000, hardware white papers @
Microsoft Corporation.

Recall on FAT allocation

• The layout

4

A block is named a cluster.

File System FAT12 FAT16 FAT32

Cluster addr length
12 bits 16 bits 32 bits (28?)

Number of

clusters 4K 64K 256M

Trivia

• Cluster Size:

– Try typing “help format” in the command prompt in
Windows.

• Calculating the maximum partition size

– with the cluster size = 32KB…

5

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB

When a sector is > 512B …

32 × 210 × 228 = 243 (8𝑇𝐵)

Typical layout of a FAT32 partition

6

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

Propose Size

Boot sector Store FS-specific parameters 1 sector, 512 bytes

FSINFO Free-space management 1 sector, 512 bytes

Reserved
sectors

Don’t ask me, ask Micro$oft! Variable, can be changed during format.

FAT (2 pieces)
A robust design: if “FAT 1” is
corrupted or containing bad sectors,
then “FAT 2” can act as a backup.

Variable, depends on disk size and
cluster size.

Root directory Start of the directory tree.
At least one cluster, depend on the
number of director entries.

Typical layout of a FAT32 partition

7

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

Format the disk, “-F32” means FAT32.

Read the information stored in the boot sector.

Running “dosfsck”, DOS
file system check, on a
FAT32 FS.

This program reads
details from the Boot
Sector.

Typical layout of a FAT32 partition

8

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkfs.fat"
Media byte 0xf8 (hard disk)
 512 bytes per logical sector
 512 bytes per cluster
 32 reserved sectors
First FAT starts at byte 16384 (sector 32)
 2 FATs, 32 bit entries
 516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)
 129022 data clusters (66059264 bytes)
......

The boot sector says:
A cluster is made of 1 sector.

One cluster size: 512
bytes in this case

Details of the Boot Sector

32 sectors

Typical layout of a FAT32 partition

9

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkdosfs"
Media byte 0xf8 (hard disk)
 512 bytes per logical sector
 512 bytes per cluster
 32 reserved sectors
First FAT starts at byte 16384 (sector 32)
 2 FATs, 32 bit entries
 516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)
 129022 data clusters (66059264 bytes)
......

The boot sector says:
2 FATs and each of them is of
size 516,608 bytes.

32 sectors 1009 1009

Number of FATs and the
length of each entry in a FAT.

Good! No slack space between
reserved sectors of the first FAT.

Typical layout of a FAT32 partition

10

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkdosfs"
Media byte 0xf8 (hard disk)
 512 bytes per logical sector
 512 bytes per cluster
 32 reserved sectors
First FAT starts at byte 16384 (sector 32)
 2 FATs, 32 bit entries
 516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)
 129022 data clusters (66059264 bytes)
......

The first data cluster is
Cluster #2 and it is usually,
not always, the root
directory.

Cluster #0 & #1 are
reserved.

32 sectors 1009 1009 2050 and beyond…

32 + 1009 x 2 = 2050

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

11

Directory Traversal

12

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Cluster #2

Filename Attributes Cluster #

. ?

.. ?

......

windows 123

A directory
entry

c:\> dir c:\windows
……
06/13/2012 2,033,216 explorer.exe
08/04/2015 169,120 notepad.exe
……
c:\> _

How does this work?

Check this out by yourself.

Whether those two
directory entries exist or
not.

Step (1) Read the directory file of the root
directory starting from Cluster #2.

“C:\windows” starts from Cluster #123.

Directory Traversal

13

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

......

notepad.exe 456

c:\> dir c:\windows
……
06/13/2012 2,033,216 explorer.exe
08/04/2015 169,120 notepad.exe
……
c:\> _

How does this work?

Step (2) Read the directory file of the
“C:\windows” starting from Cluster #123.

But, where are the
information, e.g., file size,
modification time, etc?

Directory entry

14

Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

How?

what?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

Note. This is the 8+3 naming convention.

8 characters for name +
3 characters for file extension

Filename Attributes Cluster #

explorer.exe 32

• Directory entry is just a structure.

Directory entry

15

• Directory entry is just a structure.

Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Filename Attributes Cluster #

explorer.exe 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

How to calculate the first
cluster address?

Directory entry

16

• Directory entry is just a structure.

Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Lower 2
bytes

Filename Attributes Cluster #

explorer.exe 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

00 00 20 00

Higher 2
bytes

Cluster
address

8192=

It is not 32, why?

Big Endian vs Little Endian

17

• Endian-ness is about byte ordering.

– It means the way that a machine (we mean the entire
computer architecture) orders the bytes.

4-byte integer value:
0x89ABCDEF

Ending (small) value
in small address

Ending (small) value
in large address

89 AB CD EF

Increasing address

EF CD AB 89

Increasing address

Big
endian

Little
endian

Big Endian vs Little Endian

18

• Directory entry is just a structure.

Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Filename Attributes Cluster #

explorer.exe 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

00 00 20 00 8192=

00 00 00 20 32=

Big
endian

Little
endian

The FAT is defined to use little-endian byte
ordering, as its original implementation was
on the Intel x86 platform

https://en.wikipedia.org/wiki/File_Allocation_Table

The file size…

19

Filename Attributes Cluster #

explorer.exe 32Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

So, what is the largest size of a file?

what?

4G – 1 bytes

Directory entry

20

Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Note. This is the 8+3 naming convention.

8 characters for name +
3 characters for file extension

• Any problem with this design?

Example:

How to store the file:
“I_love_the_operating_syste
m_course.txt”

How to store long
filename?

FAT series – LFN directory entry

• LFN: Long File Name.

– In FAT32, the 8+3 naming convention is removed by…

– Adding more entries to represent the filename

21

Directory file

LFN #3

LFN #2

LFN #1

Normal Entry
The normal directory entry is still there.

Each LFN entry represents 13 characters in
Unicode, i.e., 2 bytes per character.
Yet, the sequence is upside-down!

FAT series – LFN directory entry

22

Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Bytes Description

0-0 Sequence Number

1-10
File name characters
(5 characters in Unicode)

11-11 File attributes - always 0x0F

12-12 Reserved.

13-13 Checksum

14-25
File name characters
(6 characters in Unicode)

26-27 Reserved

28-31 File name characters
(2 characters in Unicode)

LFN entryNormal entry

FAT series – LFN directory entry

• Filename:
“I_love_the_operating_system_course.txt”.

23

436d 005f 0063 006f 0075 000f 0040 7200 Cm._.c.o.u...@r.
 7300 6500 2e00 7400 7800 0000 7400 0000 s.e...t.x...t...

 0265 0072 0061 0074 0069 000f 0040 6e00 .e.r.a.t.i...@n.
 6700 5f00 7300 7900 7300 0000 7400 6500 g._.s.y.s...t.e.

 0149 005f 006c 006f 0076 000f 0040 6500 .I._.l.o.v...@e.
 5f00 7400 6800 6500 5f00 0000 6f00 7000 _.t.h.e._...o.p.

 495f 4c4f 5645 7e31 5458 5420 0064 b99e I_LOVE~1TXT .d..
 773d 773d 0000 b99e 773d 0000 0000 0000 w=w=....w=......

Normal

LFN #1

LFN #2

LFN #3

Byte 11 is always 0x0F to indicate that is a LFN.

FAT series – LFN directory entry

24

436d 005f 0063 006f 0075 000f 0040 7200 Cm._.c.o.u...@r.
 7300 6500 2e00 7400 7800 0000 7400 0000 s.e...t.x...t...

 0265 0072 0061 0074 0069 000f 0040 6e00 .e.r.a.t.i...@n.
 6700 5f00 7300 7900 7300 0000 7400 6500 g._.s.y.s...t.e.

 0149 005f 006c 006f 0076 000f 0040 6500 .I._.l.o.v...@e.
 5f00 7400 6800 6500 5f00 0000 6f00 7000 _.t.h.e._...o.p.

 495f 4c4f 5645 7e31 5458 5420 0064 b99e I_LOVE~1TXT .d..
 773d 773d 0000 b99e 773d 0000 0000 0000 w=w=....w=......

Normal

LFN #1

LFN #2

LFN #3

Directory file

LFN #3: “m_cou” “rse.tx” “t”

LFN #2: “erati” “ng_sys” “te”

LFN #1: “I_lov” “e_the_” “op”

Normal Entry

This is the sequence number, and they are
arranged in descending order.

The terminating directory entry has the
sequence number OR-ed with 0x40.

FAT series – directory entry: a short summary

• A directory is an extremely important part of a FAT-
like file system.

– It stores the start of the content, i.e., the start cluster
number.

– It stores the end of the content, i.e., the file size;
without the file size, how can you know when you
should stop reading a cluster?

– It stores all file attributes.

25

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

–Read files

– Write files

– Delete files

– Recover deleted files

26

How to read a file?

27

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Step 1. Read the content from Cluster #32.

Note. The file size may also help determine if
the last cluster is reached (remember where it
is stored?)

Suppose we already read out the
directory entry…

You know the process of
directory traversal, right?

How to read a file?

28

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

1 ...

... ...

32 33

33 EOF

34 0
Step 1. Read the content from Cluster #32.
Note. The file size may also help determining
if the last cluster is reached.

Step 2. Look for the next cluster and it is
Cluster #33 (from the FAT table)

35 0

0 ...

How to read a file?

29

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 EOF

34 0
Step 3. Since the FAT has marked “EOF”, we
have reached the last cluster.

Note. The file size help determine how many
bytes to read from the last cluster.

35 0

1 ...

0 ...

FAT entry structure??
Remember: 28bits are used to

 represent cluster number for FAT32

How to read a file?

30

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 EOF

34 0
Step 3. Since the FAT has marked “EOF”, we
have reached the last cluster.

Note. The file size help determine how many
bytes to read from the last cluster.

35 0

1 ...

0 ...

Damaged = 0x0ffffff7

EOF >= 0x0ffffff8

Unallocated = 0x0

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

31

How to write a file?

32

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0
Step 1. Locate the last cluster.

Step 2. Start writing to the non-full cluster.35 0

1 ...

0 ...

How to write a file?

33

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0

Step 3. Allocate the next cluster through FSINFO.

35 0

1 ...

0 ...

What is stored in FSINFO?
How to allocate?

How to write a file?

34

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0

FSINFO

of free clusters 4

Next free cluster # 34

Step 3. Allocate the next cluster through FSINFO.

35 0

1 ...

0 ...

How to write a file?

35

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 34

34 EOF

Step 3. Allocate the next cluster through FSINFO.

Step 4. Update the FATs and FSINFO.

Step 5. When write finishes, update the file size.FSINFO

of free clusters 3

Next free cluster # 35

35 0

1 ...

0 ...

How to write a file?

36

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 34

34 EOF Q: How to obtain the next free cluster?

FSINFO

of free clusters 3

Next free cluster # 35

35 0

1 ...

0 ...

How to write a file?

37

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 34

34 EOF

FSINFO

of free clusters 3

Next free cluster # 35

35 0

The search for the next free cluster is a circular,
next-available search.

Why implementing next-available?
Principle of locality

Why circular?
To find out every free block

1 ...

0 ...

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

38

How to delete a file?

39

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

... ...

32 33

33 34

34 EOF

FSINFO

of free clusters 3

Next free cluster # 35

35 0

Step 1. De-allocate all the blocks
involved. Update FSINFO and FATs.

... ...

32 0

33 0

34 0

35 0

FSINFO

of free clusters 6

Next free cluster # 32

1 ...

0 ...

1 ...

0 ...

How to delete a file?

40

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

explorer.exe 32

notepad.exe 456

How about the directory entry

How to delete a file?

41

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

_xplorer.exe 32

notepad.exe 456

How about the directory entry

Step 2. Change the first byte of
the directory entry to 0xE5.

LFN entries also receive the
same treatment.

That’s the end of deletion!

The first character
becomes “0xE5”.

Bytes Description

0-0
1

st
 character of the filename

(0x00 or 0xe5 means unallocated)

Really delete a file?

42

• Can you see that: the file is not really removed
from the FS layout?
– Perform a search in all the free space. Then, you will find

all deleted file contents.

• “Deleted data” persists until the de-allocated
clusters are reused.
– This is an issue between performance (during deletion)

and security.

• Any way(s) to delete a file securely?

How to delete a file “securely”?

43

Mac OS X Secure Disk Erase

Brute Force?
http://www.ohgizmo.com/2009/06/01/manual-hard-drive-destroyer-looks-like-fun/

What will the research community tell you?

http://cdn.computerscience1.net/2006/fall/lectures/8/articles8.pdf

http://www.ohgizmo.com/2009/06/01/manual-hard-drive-destroyer-looks-like-fun/
http://cdn.computerscience1.net/2006/fall/lectures/8/articles8.pdf

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

44

How to “rescue” a deleted file?

45

• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from
being over-written.

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

_xplorer.exe 32

notepad.exe 456

All the things are still here!

The first character
becomes “0xE5”.

How to “rescue” a deleted file?

46

• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from
being over-written.

File size <= 1
cluster

Because the first cluster address is still readable, the recovery is having a
very high successful rate.

Note that filenames with the same postfix may also be found.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.

How to “rescue” a deleted file?

47

• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from
being over-written.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.

File size > 1
cluster

It is still possible as the clusters of a file are likely to be contiguously
allocated.

The next-available search provides a hint in looking for deleted blocks.

If not, you’d better have the checksum and the exact file size beforehand,
so that you can use a brute-force method to recover the file.

How to “rescue” a deleted file?

48

• What if the value of the 32nd cluster is not 0?

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

It is hard to find them
out without some hints.

The use of checksum
may be a good hint…

... ...

32 0

33 0

34 0

35 0

1 ...

0 ... _xplorer.exe 32

The first cluster is the one
that we can be sure of…

FAT series – conclusion

• It is a “nice” file system:

– Space efficient: 4 bytes overhead (FAT entry) per data
cluster.

• Deletion problem:

– This is a lazy yet fast implementation.

– Need extra protection for deleted data.

• Deployment:

– It is everywhere: SD cards, USB drives, disks…

49

	幻灯片 1: Ch10, part 1 Details of FAT32
	幻灯片 2: Topics in Ch10
	幻灯片 3: Details of FAT32
	幻灯片 4: Recall on FAT allocation
	幻灯片 5: Trivia
	幻灯片 6: Typical layout of a FAT32 partition
	幻灯片 7: Typical layout of a FAT32 partition
	幻灯片 8: Typical layout of a FAT32 partition
	幻灯片 9: Typical layout of a FAT32 partition
	幻灯片 10: Typical layout of a FAT32 partition
	幻灯片 11: Details of FAT32
	幻灯片 12: Directory Traversal
	幻灯片 13: Directory Traversal
	幻灯片 14: Directory entry
	幻灯片 15: Directory entry
	幻灯片 16: Directory entry
	幻灯片 17: Big Endian vs Little Endian
	幻灯片 18: Big Endian vs Little Endian
	幻灯片 19: The file size…
	幻灯片 20: Directory entry
	幻灯片 21: FAT series – LFN directory entry
	幻灯片 22: FAT series – LFN directory entry
	幻灯片 23: FAT series – LFN directory entry
	幻灯片 24: FAT series – LFN directory entry
	幻灯片 25: FAT series – directory entry: a short summary
	幻灯片 26: Details of FAT32
	幻灯片 27: How to read a file?
	幻灯片 28: How to read a file?
	幻灯片 29: How to read a file?
	幻灯片 30: How to read a file?
	幻灯片 31: Details of FAT32
	幻灯片 32: How to write a file?
	幻灯片 33: How to write a file?
	幻灯片 34: How to write a file?
	幻灯片 35: How to write a file?
	幻灯片 36: How to write a file?
	幻灯片 37: How to write a file?
	幻灯片 38: Details of FAT32
	幻灯片 39: How to delete a file?
	幻灯片 40: How to delete a file?
	幻灯片 41: How to delete a file?
	幻灯片 42: Really delete a file?
	幻灯片 43: How to delete a file “securely”?
	幻灯片 44: Details of FAT32
	幻灯片 45: How to “rescue” a deleted file?
	幻灯片 46: How to “rescue” a deleted file?
	幻灯片 47: How to “rescue” a deleted file?
	幻灯片 48: How to “rescue” a deleted file?
	幻灯片 49: FAT series – conclusion

