
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Ch10, part2

Details of Ext2/3 File System

1

Trivia

• Extended File System (Ext2/3/4)

– Follow index-node allocation

– Primary FS for Linux distribution

– Ext4 was merged in the Linux 2.6.28 and released in 2008

– Backward-compatible

– For simplicity, we focus on Ext2/3

– Features of Ext2/3/4

– https://ext4.wiki.kernel.org/index.php/Main_Page

– http://e2fsprogs.sourceforge.net/ext2.html

https://ext4.wiki.kernel.org/index.php/Main_Page

Details of Ext2/3

 - Layout
 - Inode and directory structure
 - Link file
 - Buffer cache
 - Journaling
 - VFS

3

Details of Ext2/3

 - Layout
 - Inode and directory structure
 - Link file
 - Buffer cache
 - Journaling
 - VFS

4

5

Index-node allocation

Filename Index

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Root

Directory

F

R

E

E

Index Node

Table

1 11 3021

It is arranged as an array. So,

looking up an index node will be fast.

Index

node #1

Index

node #2

… Index

node #n-1

… … …

… … …

• Ext2/3 file systems follow the index-node allocation

Specific Layout

• The file system is not that simple…
– it is divided into groups

Specific Layout

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.

• The file system is not that simple…
– it is divided into groups

– every group has the same structure.

Specific Layout

• Why doing so?

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.

Specific Layout

• Why doing so?

– For reliability…

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.
The superblock in Group 0 is called the primary superblock.

Other superblocks are called the backup superblock.

There are many copies of the superblock So, this

increases the reliability of the FS.

Specific Layout

• Why doing so?

–For performance…

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.

E.g.,

- Inode table in Group 0 stores inodes from #1 to #100;

- Inode table in Group 1 stores inodes from #101 to #200;

- etc…

The good about this is to keep the inodes and the file

contents close together!

Specific Layout

• Why doing so?

– For performance…

......

The inodes in a particular group will usually refer to the

data blocks in the same group.

So, this keeps them close together in a physical sense.

The storage device may be able to locate the data in a

faster manner. (Remember the principle of locality?)

Group 0 Group 1 Group n-1

Superblock Stores FS specific data.

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Layout in Each Group

Total number of inodes in the system.

Total number of blocks in the system.

Number of reserved blocks

Total number of free blocks.

Total number of free inodes.

Location of the first block.

The size of a block.

12

Superblock Stores FS specific data. E.g., the total number of blocks, etc.

GDT – Group Descriptor Table

It stores:

-The starting block numbers of the block bitmap, the inode

bitmap, and the inode table.

- Free block count, free inode count, etc…

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Layout in Each Group

Inode Table An array of inodes ordered by the inode #.

Data Blocks An array of blocks that stored files.

Block Bitmap A bit string that represents if a block is allocated or not.

Inode Bitmap A bit string that represents if an inode is allocated or not.

13

Layout in Each Group

• What is a block bitmap?

– A sequence of bits indicates the allocation of

the blocks.

It says “blocks 0-2 are allocated ”,

then “block 3 is unallocated ”...

1 1 1 0 1 0 1 1 1 0 1 1
0 Unallocated

1 Allocated

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Layout in Each Group

• Then, what is an inode bitmap?

– A sequence of bits indicates the allocation of

the inodes.

– This implies that…

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

1 1 1 0 1 0 1 1 1 0 1 1
0 Unallocated

1 Allocated

The number of files in the file system is fixed!

Details of Ext2/3

 - Layout
 - Inode and directory structure
 - Link file
 - Buffer cache
 - Journaling
 - VFS

16

Inode Structure

• We know that…

– The locations of the data blocks of a file are stored in

the inode.

Index node structure

Direct Block #0

Direct Block #1

… ...

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block storing

block address.

Data Block

storing data.

...

...

1st layer of

indirect

blocks

2nd layer of

indirect

blocks

...

Inode Structure

An inode is the structure that

stores every information about

a file.

The locations of the data

blocks

Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

What are stored in inode
besides block addresses?

More details: https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Inode_Table

Inode Structure

What is the maximum file

size supported?

264 – 1

= 16 x 230 Gbytes – 1 byte

Is this really the case?

Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

Remember the dominating
factor: 24x-6

Block size File size

1024B = 210 ~16 Gbytes

4096B = 212 ~4 Tbytes

Inode Structure

What is link count?
Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

We will talk about it later

Where is the file name?

Let us take a look at the

directory structure

Directory Structure

The directory entry stores the file

name and the inode #.

1 int main(void) {

2 DIR * dir;

3

4

struct dirent *entry;

5 dir = opendir(“/”);

6

7 while ((entry = readdir(dir)) != NULL) {

8 // print the directory name

9 printf(“%s\n”, entry->d_name);

10 }

11

12 closedir(dir);

13 return 0;

14 }

struct dirent {

ino_t d_ino; // inode number

// offset to the next

// record length

// file type

// file name

off_t

unsigned

unsigned

char *

d_off;

d_reclen;

d_type;

d_name;

dirent

short

char

}

Filename Index

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Directory Structure

10

inode number

Entry size

Type

File name length

F rock 18 F game4 4 F ubuntu550 unused

A Linux directory with
three files

struct dirent {

ino_t d_ino; // inode number

// offset to the next

// record length

// file type

// file name

off_t

unsigned

unsigned

char *

d_off;

d_reclen;

d_type;

d_name;

dirent

short

char

}

Directory Structure

10

inode number

Entry size

Type

File name length

F rock 18 F game4 4 F ubuntu550 unused

10 F rock unused4 F ubuntu550 unused

A Linux directory with
three files

After game has been removed

Accessing Directory File

• How to access directory file?

1 int main(void) {

2 DIR * dir;

3 struct dirent *entry;

4

5 dir = opendir(“/”);

6

7 while ((entry = readdir(dir)) != NULL) {

8

9

10

11

// print the directory name

printf(“%s\n”, entry->d_name);

}

12 closedir(dir);

13

14 }

return 0;

Open the directory file.

Read the directory

entries one by one until

there is not further

entries.

Close the directory file.

Note: opendir(), readdir(),

and closedir() are library

function calls.

Details of Ext2/3

 - Layout
 - Inode and directory structure
 - Link file
 - Buffer cache
 - Journaling
 - VFS

25

Example use in Linux

Link File

• Can we allow a file to have multiple names and
be accessed by several paths?

• How to create shortcuts?

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg

_

/my_link

ls /dir1/12.jpg

12.jpg

ln –s

_

/dir1/12.jpg /my_link

These are called hard link and symbolic link

Link File – what is a hard link?

• A hard link is a directory entry pointing

to an existing file.

– No new file content is created!

Directory: /dir1 Directory: /

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg

_

/my_link

A new directory entry

is created.

Inode # … FilenameInode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Link File – what is a hard link?

• Conceptually speaking, this creates a file

with two pathnames.

Inode #: 5086

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1 Directory: /

How to maintain this info.

Link File – what is a link count?

• There is a field called link count in an inode.

– It stores the number of directory entries pointing to

the inode.

Inode #: 5086

Link Count 2

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1 Directory: /

Link File – showing the link counts

• Special hard links

– The directory “.” is a hard link to itself.

– The directory “..” is a hard link to the parent directory.

08:07 bin

09:25 boot

17:58 dev

17:58 etc

14:23 home

What does this large

number imply?
ls -l /
total 124

drwxr-xr-x

drwxr-xr-x

drwxr-xr-x

drwxr-xr-x

drwxr-xr-x

......

root

root

root

root

root

root

root

root

root

root

4096

4096

14520

12288

4096

2015-11-15

2015-11-11

2015-11-23

2015-11-23

2015-06-21

2

4
17

165

6

This implies “/etc” has a lot of sub-directories.

Link File – showing the link counts

• Special hard links

– The directory “.” is a hard link to itself.

– The directory “..” is a hard link to the parent directory.

• What is the value of the link count, if

– A file is created

– A directory is created

Link File – showing the link counts

• When a regular file is created, the link count is always 1

• When a directory is created, the initial link count is
always 2

stat Makefile

File: `Makefile'

Size: 4552

Device: 801h/2049d

......

Blocks: 16

Inode: 30669

IO Block: 4096 regular file

Links: 1

mkdir temp

stat temp

File:

Size:

Device:

......

`temp'

4096

804h/2052d

Blocks: 8

Inode: 10994310

IO Block: 4096 directory

Links: 2

Why it is 2

Link File – showing the link counts

Parent of “temp”
The new directory “temp”

• When a directory is created, the initial link count is
always 2. Why?

mkdir temp

stat temp

File:

Size:

Device:

......

`temp'

4096

804h/2052d

Blocks: 8

Inode: 10994310

IO Block: 4096 directory

Links: 2

link #1

link #2

Inode # … Filename

10,994,310 … .

123 … ..

Inode # … Filename

123 … .

2 … ..

10,994,310 … temp

Inode #: 10,994,310

Link Count

Link File – showing the link counts

Parent of “temp” The new directory “temp”

• The hosting directory of the newly creating directory
will have its link count increased by 1.

Inode # ... Filename

10,994,310 … .

123 … ..

Inode # ... Filename

123

2

10,994,310 ... temp

Link File – decrementing the link count?

• How about removing a file?

Inode #: 5086

Link Count 1

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode #: 5086

Link Count 0

Directory: /dir1

Removing

the file…

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Link File – decrementing the link count?

• How about removing a file?

– The system call that removing a file is, therefore,
called unlink().

• The unlink() system call is to decrement the link count by

exactly one.

• When the link count == 0, the data blocks and the inode

will all be de-allocated by the kernel.

Inode #: 5086

Link Count 0

Directory: /dir1 De-allocated

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Link File – decrementing the link count?

• Back to the previous hard link example…

Inode #: 5086

Link Count 2

Inode #: 5086

Link Count 1

Inode #: 5086

Link Count 2

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Directory: /

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg /my_link

Link File – decrementing the link count?

• Back to the previous hard link example…

De-allocated

Inode #: 5086

Link Count 2

Inode #: 5086

Link Count 1

Inode #: 5086

Link Count 0

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Directory: /

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg /my_link

rm /dir/12.jpg

rm /my_link

Link File – what is a symbolic link?

• A symbolic link is a file.

– Unlike the hard link, a new inode is created

for each symbolic link.

– It stores the pathname (shortcut)

Inode # … Filename

2 … .

2 … ..

6,120 … my_link

Directory: /dir1 Directory: /

ls /dir1/12.jpg

12.jpg

ln –s

ls –l

/mylink

#

/dir1/12.jpg /my_link

/mylink

-> /dir1/12.jpg

A new directory

entry is created.

Another

inode

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Link File – what is a symbolic link?

• How to store the target path?
– If the pathname is less than 60 characters

– It is stored in the 12 direct block and the 3
indirect block pointers.

– Else, one extra data block is allocated

Directory: /
Inode #: 6120

Link Count 1

Direct #0

……

Single Indirect

Double Indirect

Triple indirect

Inode # … Filename

2 … .

2 … ..

6,120 … my_link

(12 + 3) x 4 = 60

Short summary

• Hard link

– A directory entry pointing to an existing file

– They point to the same inode (no new file content)

– A file with two pathname

– Remove file == unlink (link count - 1)

– Examples: dot/dot dot

• Symbolic link

– A file with a new inode

– Stores the target pathname

– Shortcuts

Details of Ext2/3

 - Layout
 - Inode and directory structure
 - Link file
 - Buffer cache
 - Journaling
 - VFS

42

File system performance

• Recall the read/write process

– Directory traversal

– Reading inode

– Data blocks

Root

Directory

F

R

E

E

Index Node

Table

How to improve file system performance?

Kernel Buffer Cache

• Kernel Buffer Cache

– The kernel will keep a set of copies of the read/written
data blocks.

– The space that stores those blocks are called the buffer
cache.

– It is used for reducing the time in accessing those blocks
in the near future

• Why effective?

– Principle of locality

44

Kernel Buffer Cache

• What need to be cached?

– Data blocks, directory file, inode?

– All of them can benefit from caching

45

Root

Directory

F

R

E

E

Index Node

Table

Kernel Buffer Cache

• Three types of buffer caches!

Page Cache It buffers the data blocks of an opened file.

Directory entry
(dcache) cache

Directory entry is stored in the kernel.

Inode cache The content of an inode is stored in the kernel temporary.

Remember, those cached data is stored in the kernel even
though the corresponding file is closed!

By the way, the cache is managed under the LRU algorithm.

46

Kernel Buffer Cache

Mode Description

Reading mode When a process reads a file, the data will be cached automatically.

E.g., Readahead system call

Read/write mode with kernel buffer cache

47

Ways Descriptions

System call ssize_t readahead(int fd, off64_t offset, size_t count);

A blocking system call that stores requested range of data into the kernel
page caches

Later read() calls over the range will not block.

Readahead

• How does it work?
– When a file reading operation is requesting for Block x, there is a

chance that Block x+1 will also be needed.

– Such a chance depends on:
• The file reading mode: sequential access or random access.

• The file reading history: whether the process prefers reading sequentially
or not.

– If such a chance is high, then reading a series of continuous
blocks will reduce the number of disk accesses. Why?

• Because the disk head is not always stopped at your desired locations.

• Because a mechanical disk is good at reading sequential data.

• How about SSD?

48

Kernel Buffer Cache

Mode Description

Write-through
mode

Both the on-disk and the cached copies update together.

E.g., The write() system call will not return until the on-disk copy is written.

Write-back
mode

When a piece of data is going to be written to a file, the cached copy is
updated first. The update of the on-disk copy is delayed.

On-demand writing dirty blocks back.

Command: sync
System calls: sync(), fsync()

Read/write mode with kernel buffer cache

49

How about write?

Details of Ext2/3

 - Layout
 - Inode and directory structure
 - Link file
 - Buffer cache
 - Journaling
 - VFS

50

File System Consistency

• Think about caching…tradeoff?

– System inconsistency exists

• Power failure, pressing reset button accidentally; etc.

• Disk only provides

– atomic write of one sector at a time

• A write may require modifying several sectors

– How to atomically update file system from one
consistent state to another?

The file system journal is the current, state-
of-the-art practice.

Your boss orders

you to do a set of tasks!

Task list:
1) Buy boss a DC.

2) Pick up boss’ friend.

3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

You write down all the tasks

assigned to you into a log book.

Example: Journaling File System

52

Task list:
1) Buy boss a DC.

2) Pick up boss’ friend.
3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

You cross out a

task when

it is completed.

Example: Journaling File System

53

Unfortunately, a car accident happens!

You lost all your memory!!

Your boss sends your

colleague to finish your job.

But, he doesn’t know about

your progress.

Worse, your boss has

forgotten what are the tasks

given to you!

The log book

comes in handy!

Example: Journaling File System

54

User Program FS operations invoked by the user program

Task list:

1) Buy boss a DC.

2) Pick up boss’ friend.
3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

System crash!

All memory lost!
OS

The journal!

File system

recovery tool

Example: Journaling File System

55

What is journal?

• A journal is the log book for the file system.

– It is kept inside the file system, i.e., inside the disk.

• In database: Write-ahead logging

• In file systems: Journaling

– Applications: Linux ext3 and ext4, Windows NTFS

Data blocksJournalFS Data

a new item

56

Basic idea: when updating the disk, before overwriting the structures in

place, first write down a little note describing what you are about to do

What is journal?

• In order to make use of the journal:

– A set of file system operations becomes an atomic
transaction.

• Either all operations are completed successfully, or

• no operation is completed.

– A transaction marks all the changes that will be done
to the FS.

– Every transaction is written to the journal.

57

• How does Linux ext3 incorporate the journaling?

– Most of on-disk structures are identical to Linux ext2

– The new key structure is the journal itself

– It occupies some small amount of space within the
partition or on another device

Journaling in Linux ext3

Ext2

Ext3

58

• How to do journaling?

• Task: update inode (I[v2]), bitmap (B[v2]), and
data block (Db) to disk
– Metadata + data

• Strategy: Data journaling
– Write all data (metadata+data) to journal

• Before writing them to their final disk locations, we first write
them to log (a.k.a. journal)

– An available mode with the Linux ext3 file system

Data Journaling

59

• Journal layout:

– TxB: Transaction begin block
• It contains some kind of transaction identifier (TID)

– TxE: Transaction end block
• Marker of the end of this transaction

• It also contain the TID

• Checkpoint
– Overwrite the old structures in the file system after the

transaction being safely on disk

Data Journaling

60

• Operation sequence:

– Journal write

• Write the transaction to log and wait for these
writes to complete

• TxB, all pending data, metadata updates, TxE

– Checkpoint

• Write the pending metadata and data updates to
their final locations

• Any problem with this flow?

– What if crash occurs during the writes to journal

Data Journaling

61

• We need to write the set of blocks (TxB, I[v2],
B[v2], Db, TxE)

– Issue one block at a time

• It is slow because of waiting for each to complete

– Issue all blocks at once

• Five writes -> a single sequential write: Faster way

• However, it is unsafe…
• The disk internally may perform scheduling and complete small

pieces of the big write in any order

Data Journaling

62

• Issue all blocks at once

– Suppose: disk internally

• (1) writes TxB, I[v2], B[v2], TxE and later

• (2) writes Db

– When crash occurs during the writes to journal

• If the disk loses power between (1) and (2)

Data Journaling

Problem: Transaction looks like a valid transaction, but
the file system can’t look at the fourth block and know it is wrong

63

• How to solve this problem?

– Issue transactional write in two steps

• First step: writes all blocks except the TxE block to journal

• Second step: file system issues the write of the TxE

Data Journaling

Make sure the write of TxE is atomic

Journal
write

Journal
commit

64

• Operation sequence:

– Journal write

• Write the contents of the transaction (including TxB,
metadata, and data)

– Journal commit

• metadata, and data (including TxE)

– Checkpoint

• Write the contents of the update to their on-disk
locations

Data Journaling

The write order must be guaranteed

65

• How to do recovery?

– Case 1: crash happens before journal commit

– Case 2: crash happens after journal commit, but
before checkpoint

Data Journaling

Easy! Skip the pending update

Replay transactions in order. Called redo logging

66

Data Journaling

• The log is of finite size

– What problems may arise if it is full?

• Long time to replay

• Unable to append new transactions

• Manage as a circular log

– Free space after checkpointing

67

Data Journaling

• Write sequence

• Data Journaling Timeline

68

Journal
write

Journal
commit

Checkpoint Free

• Any problem with data journaling?
– Write every Db to disk twice

• Commit to log (journal file)
• Checkpoint to on-disk location

• How to avoid writing twice?

– Metadata journaling: Logging metadata only

Metadata Journaling

This data is not written to journal

69

Metadata Journaling

• Write-back mode: no order restriction (data/journal)
– How about data is written to disk after journal commit?

• File system is consistent (from the perspective of metadata)

• Metadata points to garbage data

• Ordered mode
– Data is written to file system before journal commit

– Rule:
• Write the pointed-to object before the object that points to it

• Core of crash consistency

– Widely deployed by Ext3, NTFS, etc.

70

Metadata Journaling

• Write sequence

71

Journal
metadata

write

Journal
commit

Checkpoint
metadata

FreeData
write

The two writes can be
issued in parallel

Summary on journal

• Working principle:

– All the changes to the FS are written to the journal
first, including:

• the changes in the metadata, i.e., information other than the
file content. E.g., the inodes, the directory entries, etc.

• the file data (depends on data journaling/metadata
journaling)

– Then, the system call returns to the user process.

– Meanwhile, the entries in the journal are replayed and
the changes are reflected to the actual file system.

72

Details of Ext2/3

 - Layout
 - Inode and directory structure
 - Link file
 - Buffer cache
 - Journaling
 - VFS

73

Virtual File System (VFS)

VFS: an FS abstraction layer

– Transparently and uniformly supports multiple FSes

– A VFS specifies an interface

– A specific FS implements this interface

• Old days: “the” file system

• Nowadays: many fs types
and instances co-exist

VFS

• Let’s look into the implementation of open().

http://lxr.linux.no/linux-old+v2.4.31/fs/open.c

710 if (f->f_op && f->f_op->open) {
711 error = f->f_op->open(inode,f);
712 if (error)
713 goto cleanup_all;
714 }

struct file

struct file_operations {
 loff (*llseek)...
 ssize_t (*read)...

 int (*open) ...

}

75

http://lxr.linux.no/linux-old+v2.4.31/fs/open.c

VFS

• For each file system, they have their own set of file
operations.

Parent Methods
VFS layer

open read

write llseek

FAT32 Methods.

http://lxr.linux.no/linux-
old+v2.4.31/fs/fat/file.c#L26

fat_file_operations

Ext3 Methods.

http://lxr.linux.no/linux-
old+v2.4.31/fs/ext3/file.c#L113

ext3_file_operations

76

http://lxr.linux.no/linux-old+v2.4.31/fs/fat/file.c#L26
http://lxr.linux.no/linux-old+v2.4.31/fs/fat/file.c#L26
http://lxr.linux.no/linux-old+v2.4.31/fs/ext3/file.c#L113
http://lxr.linux.no/linux-old+v2.4.31/fs/ext3/file.c#L113

VFS

• So, the beauty in such design is that:

– The caller, i.e. the VFS layer, doesn’t need to care
about nor hard-coding which FS you are working on.

error = f->f_op->open(inode,f);

The only things that require hard-coding are:
 - The definition of the file operations.
 - The assignment of file operation structures for each FS.

77

VFS

• A follow-up question is:

– What if a FS does not support a particular subset of
operations?

– E.g., FAT32 does not need to implement chmod()!

– Solution?

• Simple! Using NULL pointers!

• When a NULL pointer to a file is detected, returning an error
or proceed without any changes.

78

Summary

• Ext* file systems are the primary FS for Linux

– They follow the index-node allocation

– We talked about…

• Detailed layout (grouping, bitmaps)

• Inode structure

• Directory structure

• Link file (hard link and symbolic link)

• Kernel buffer cache and readahead

• Journaling (data journaling, metadata journaling)

• VFS

79

	幻灯片 1: Ch10, part2 Details of Ext2/3 File System
	幻灯片 2: Trivia
	幻灯片 3
	幻灯片 4
	幻灯片 5: Index-node allocation
	幻灯片 6: Specific Layout
	幻灯片 7: Specific Layout
	幻灯片 8: Specific Layout
	幻灯片 9: Specific Layout
	幻灯片 10: Specific Layout
	幻灯片 11: Specific Layout
	幻灯片 12: Layout in Each Group
	幻灯片 13: Layout in Each Group
	幻灯片 14: Layout in Each Group
	幻灯片 15: Layout in Each Group
	幻灯片 16
	幻灯片 17: Inode Structure
	幻灯片 18: Inode Structure
	幻灯片 19: Inode Structure
	幻灯片 20: Inode Structure
	幻灯片 21: Directory Structure
	幻灯片 22: Directory Structure
	幻灯片 23: Directory Structure
	幻灯片 24: Accessing Directory File
	幻灯片 25
	幻灯片 26: Link File
	幻灯片 27: Link File – what is a hard link?
	幻灯片 28: Link File – what is a hard link?
	幻灯片 29: Link File – what is a link count?
	幻灯片 30: Link File – showing the link counts
	幻灯片 31: Link File – showing the link counts
	幻灯片 32: Link File – showing the link counts
	幻灯片 33: Link File – showing the link counts
	幻灯片 34: Link File – showing the link counts
	幻灯片 35: Link File – decrementing the link count?
	幻灯片 36: Link File – decrementing the link count?
	幻灯片 37: Link File – decrementing the link count?
	幻灯片 38: Link File – decrementing the link count?
	幻灯片 39: Link File – what is a symbolic link?
	幻灯片 40: Link File – what is a symbolic link?
	幻灯片 41: Short summary
	幻灯片 42
	幻灯片 43: File system performance
	幻灯片 44: Kernel Buffer Cache
	幻灯片 45: Kernel Buffer Cache
	幻灯片 46: Kernel Buffer Cache
	幻灯片 47: Kernel Buffer Cache
	幻灯片 48: Readahead
	幻灯片 49: Kernel Buffer Cache
	幻灯片 50
	幻灯片 51: File System Consistency
	幻灯片 52: Example: Journaling File System
	幻灯片 53: Example: Journaling File System
	幻灯片 54: Example: Journaling File System
	幻灯片 55: Example: Journaling File System
	幻灯片 56: What is journal?
	幻灯片 57: What is journal?
	幻灯片 58: Journaling in Linux ext3
	幻灯片 59: Data Journaling
	幻灯片 60: Data Journaling
	幻灯片 61: Data Journaling
	幻灯片 62: Data Journaling
	幻灯片 63: Data Journaling
	幻灯片 64: Data Journaling
	幻灯片 65: Data Journaling
	幻灯片 66: Data Journaling
	幻灯片 67: Data Journaling
	幻灯片 68: Data Journaling
	幻灯片 69: Metadata Journaling
	幻灯片 70: Metadata Journaling
	幻灯片 71: Metadata Journaling
	幻灯片 72: Summary on journal
	幻灯片 73
	幻灯片 74: Virtual File System (VFS)
	幻灯片 75: VFS
	幻灯片 76: VFS
	幻灯片 77: VFS
	幻灯片 78: VFS
	幻灯片 79: Summary

