
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Ch3 - Process Operations

-from kernel’s perspective

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
structure

(PCB)
Kernel code
with system

calls

2

Process in Memory

Kernel Space

User space

Process Invoking system
calls. E.g., fork(),
exec*(), wait().

Access
process’
internal

Kernel-space VS User-space

3

System Memory

Kernel-space
memory

User-space
memory

Kernel-space VS User-space

4

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing
what

Accessed
by whom

Kernel-space VS User-space

5

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing
what

Kernel data structure
Kernel code

Device drivers

Process’ memory
Program code of the

process

Accessed
by whom

Kernel-space VS User-space

6

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing
what

Kernel data structure
Kernel code

Device drivers

Process’ memory.
Program code of the

process

Accessed
by whom

Kernel code
User program code +

kernel code

The kernel is invincible!

Process is going back and forth...

• A process will switch its execution
from user space to kernel space

• How?

– through invoking system call

7

System Memory

Kernel-space
memory

User-space
memory

Process is going back and forth...

• Example

– Say, the CPU is running a program
code of a process

– Where is the code?

• User-space memory

• Recall the process structure in memory

– Where should the program counter
point to?

8

System Memory

Kernel-space
memory

User-space
memory

Program
counter

Process is going back and forth...

• What happens…

– When the process is calling the system call
“getpid()”

• Where to get the PID

– PCB (in kernel-space memory)

• The CPU switches from the user-space to
the kernel-space, and reads the PID

9

System Memory

Kernel-space
memory

User-space
memory

Program
counter

Process is going back and forth...

• After finished executing getpid()

– What happens?

– CPU switches back to the user-space
memory, and continues running that
program code

10

System Memory

Kernel-space
memory

User-space
memory

Program
counter

User Mode & Kernel Mode

• Remember this?

11

Another question: How much time was spent in each part?

User time VS System time

• So, not just the memory, but also the execution of a
process is also divided into two parts.
– User time and system time

12

User time VS System time

• So, not just the memory, but also the execution of a
process is also divided into two parts.
– User time and system time

13

calling system call.
e.g., getpid()

Read information and
the system call returns.

Some system calls may take a long time.
E.g., accessing a floppy drive.

Total running time = user time + system time.

User time –
Time spent on codes in
user-space memory.

System time –
Time spent on codes in
kernel-space memory.

• Let’s tell the difference…with the tool “time”.

$ time ./time_example

real 0m0.003s
user 0m0.003s
sys 0m0.000s
$ _

User time VS System time – example 1

14

int main(void) {
 int x = 0;
 for(i = 1; i <= 100000; i++) {
 x = x + i;
 // printf(“x = %d\n”, x);
 }
 return 0;
}

Commented on purpose.

Time elapsed when “./time_example”
terminates.

The user time of “./time_example” measured
when the process is on CPU.

The system time of “./time_example” measured
when the process is on CPU.

Why comment
this line???

• Let’s tell the difference…with the tool “time”.

$ time ./time_example

real 0m0.003s
user 0m0.003s
sys 0m0.000s
$ _

User time VS System time – example 1

15

int main(void) {
 int x = 0;
 for(i = 1; i <= 100000; i++) {
 x = x + i;
 printf(“x = %d\n”, x);
 }
 return 0;
}

Comment released.

$ time ./time_example

real 0m0.677s
user 0m0.032s
sys 0m0.227s
$ _

See? Accessing hardware costs the process more time.

int main(void) {
 int x = 0;
 for(i = 1; i <= 100000; i++) {
 x = x + i;
 // printf(“x = %d\n”, x);
 }
 return 0;
}

Commented on purpose.

User time VS System time – example 2

• What is the difference of the two programs?

16

#define MAX 1000000

int main(void) {
 int i;
 for(i = 0; i < MAX; i++)
 printf(“x\n”);
 return 0;
}

#define MAX 1000000

int main(void) {
 int i;
 for(i = 0; i < MAX / 5 ; i++)
 printf(“x\nx\nx\nx\nx\n”);
 return 0;
}

Lessons learned: When writing a program, you must
consider both the user time and the system time

User time VS System time – short summary

• The user time and the system time together define
the performance of an application

– System call plays a major role in performance.

– Blocking system call: some system calls even stop your
process until the data is available.

• Programmers should pay attention to system
performance

– Reading a file byte-by-byte

– Reading a file block-by-block, where the size of a block is
4,096 bytes

17

18

Story so far…

User space and Kernel space

Process
Process

User time and system time

19

Next…

Working of system calls
 - fork();
 - exec*();
 - wait() + exit();

Process
Process

20

Next…

Working of system calls
 - fork();
 - exec*();
 - wait() + exit();

Process
Process

fork()

• From a programmer’s view, fork() behaves like
the following:

21

fork()

• From a programmer’s view, fork() behaves like
the following:

22

Original execution flow
of a process

The process
invokes fork().

The process splits into two!

Flow of original process

Flow of newly-created process

fork() is called.

fork() returns.

new process

What is doing here?

kernel is fork()-ing

The kernel is doing something
secret. What are those things?

fork()

• From the Kernel’s view…

23

Guess: What will be modified?

Process creation – fork() system call

• fork() behaves like “cell division”.

– It creates the child process by cloning from the parent
process, including…

24

Cloned items Descriptions

Program counter
[CPU register]

That’s why they both execute from the same line of code after
fork() returns.

Program code
[File & Memory]

They are sharing the same piece of code.

Memory Including local variables, global variables, and dynamically
allocated memory.

Opened files
[Kernel’s internal]

If the parent has opened a file “A”, then the child will also have
file “A” opened automatically.

Recall

Process creation – fork() system call

• However…

– fork() does not clone the following...

– Note: they are all data inside the memory of kernel.

25

Distinct items Parent Child

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent
as that of the parent process.

Running time Cumulated. Just created, so should be 0.

Recall

fork() in action – the start…

26

OS Kernel

Process
1234

Process
345

Inside kernel, processes are arranged as a
doubly linked list, called the task list.
Q: What is each node?

fork() in action – the start…

27

OS Kernel

Process
1234

Process
345

PID = 1234

Running time

Array of opened files

PID = 1234

Running time

Array of opened files
copying

Inside kernel, processes are
arranged as a doubly linked
list, called the task list.
Q: What is each node?

This guy invoked
fork().

fork() in action – kernel-space update

28

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked
fork().

Process
345

reset to 0.

updated.

preserved.

fork() in action – kernel-space update

29

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked
fork().

Process
345

List of children Pointer to my parent

reset to 0.

updated.

preserved.

updated.
Add a new

child.

fork() in action – kernel-space update

30

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked
fork().

Process
345

List of children Pointer to my parent

A new node is
introduced.

reset to 0.

updated.

preserved.

updated.
Add a new

child.

fork() in action – user-space update

31

OS Kernel

Process
1234

This guy invoked
fork().

Process
1235

Process
345

What happened
to user space?

fork() in action – user-space update

32

OS Kernel

Process
1234

This guy invoked
fork().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
1235

Process
345

What happened
to user space?

fork() in action – user-space update

33

OS Kernel

Process
1234

This guy invoked
fork().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

copying

Process
1235

Process
345

fork() in action – finish

34

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

Ready to return
from fork()

List of children Pointer to my parent

Return value = 1235 Return value = 0

Process
1235

Process
345

Ready to return
from fork()

fork() in action – array of opened files?

• After fork()

– The child process share a set of opened files

• What are the array of opened files?

35

fork() in action – array of opened files?

• Array of opened files contains:

– That's why a parent process shares the same terminal
output stream as the child process!

36

Array Index Description

0 Standard Input Stream; FILE *stdin;

1 Standard Output Stream; FILE *stdout;

2 Standard Error Stream; FILE *stderr;

3 or beyond Storing the files you opened, e.g., fopen(), open(), etc.

37

Working of system calls
 - fork();
 - exec*();

Process

exec*()

• How about the exec*() call family?

38

exec*() is called.

The kernel is doing something
secret. What are those things?

The process returns to user-space
but is executing another program.

Process

Old
code New

code

e.g., execl("/bin/ls", "/bin/ls", NULL);

exec*() in action – the start…

39

OS Kernel

Process
1234

Process
345

PID = 1234

Running time

Array of opened files

The kernel searches the target
program file.

If it is not found, the process returns
from the system call.

Let’s assume that it can be found.

This guy invoked
exec*().

Searching

exec*() in action – the end

40

OS Kernel

Process
1234

Process
345

This guy invoked
exec*().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

What happens to the
user-space memory

exec*() in action – the end

41

OS Kernel

Process
1234

Process
345

This guy invoked
exec*().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Cleared!

Cleared!

Reset based
on the new
code!

Changed to
the new
program code!

exec*() in action – the end

42

OS Kernel

Process
1234

Process
345

This guy invoked
exec*().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

The kernel code updates the
content on the user-space memory.

Also, registers’ values, such as the
program counter, will also be reset.

Process

43

Working of system calls
 - fork();
 - exec*();
 - wait() + exit();

Process

Recall the example

44

1 int system_test(const char *cmd_str) {
 2 if(cmd_str == -1)
 3 return -1;
 4 if(fork() == 0) {
 5 execl("/bin/sh", "/bin/sh",
 "-c", cmd_str, NULL);
 6 fprintf(stderr,
 "%s: command not found\n", cmd_str);
 7 exit(-1);
 8 }
 9 wait(NULL);
10 return 0;
11 }
12
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

$./system_implement_2
before...

system_implement_2
System_implement_2.c

after...
$ _

The parent is
suspended until
the child
terminates

wait()

• wait() system call

– Suspend the parent process

–Wake up when one child process terminates

• How to terminate the child process

– Through the exit() system call

• wait() and exit() – they come together!

45

46

wait() and exit() – Time Analysis

Child
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the
parent.

Child is terminated through
the exit() system call.

wait()
returns.

Of course, the kernel
coordinates the
series of events. But,
what on earth is
going on?

Guess…

• What is going on inside kernel?

–Child: exit()
• Process data + PCB

–Parent: wait()
• Process data + PCB

47

48

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

ChildParent

49

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

This guy invoked
exit().

ChildParent

What changes will be made
for the PCB?

50

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The kernel frees all the
allocated memory.

E.g., the list of opened files
are all closed.

This guy invoked
exit().

ChildParent

That’s why not calling fclose()
before exit() may be safe…

51

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

This guy invoked
exit().

ChildParent

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Then, the kernel removes
everything on the user-
space memory about the
concerned process,
including program code
and allocated memory.

Remember that kernel is
invincible

52

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

This guy invoked
exit().

ChildParent

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

➢ What is next?
How about permanently removing the child?

53

wait() and exit() – child side

OS Kernel

Process
1234

Parent

Removed from the process table immediately?
Not really! Why?

54

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

This guy invoked
exit().

ChildParent

Remain the entry of the
child in the process table

(terminated state)

Resources?
Deallocate

55

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The child is now called zombie.

Its storage in the kernel-space
memory is kept to a minimum

The PID (1235 in this example)
and process structure are
owned by the child

This guy invoked
exit().

ChildParent

56

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The kernel notifies the parent of
the child process about the
termination of its child.

The notification is a signal called
SIGCHLD.

This guy invoked
exit().

ChildParent

SIGCHLD How to wake up parent?

Signal

• What is signal?

– A software interrupt

– It takes steps as in the hardware interrupt

• Two kinds of signals

– Generated from user space
• Ctrl+C, kill() system call, etc.

– Generated from kernel and CPU
• Segmentation fault (SIGSEGV), Floating point exception (SIGFPE), child

process termination (SIGCHLD), etc.

• Signal is very hard to master, will be skipped in this course

– Reference: Advanced Programming Environment in UNIX

– Linux manpage

57

A short summary for exit()

58

Step (1) Clean up most of the allocated kernel-space memory.

Step (2) Clean up all user-space memory.

Step (3) Notify the parent with SIGCHLD.

exit() is
called.

(1) (2) (3)

exit()
returns.

Although the child is still in the
system, it is no longer running.
There is no program code!!!

It turns into a mindless zombie…

You cannot kill a zombie process, as it is
already dead. Then how to eliminate it?

59

wait() and exit() – they come together!

Child
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the
parent.

Child is terminated through
the exit() system call.

wait()
returns. Now, it is trivial to

see that SIGCHLD
signal is the trick!

But, how to
handle SIGCHLD?

SIGCHLD

How to proceed
with wait()?

60

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

The kernel sets a signal handling routine
(and it is a function pointer) to the process.

That signal handling routine will be executed
when SIGCHLD comes.

This guy invoked
wait().

ChildParent

Signal handlers When SIGCHLD comes, please handle it.

How to handle SIGCHLD?

61

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

By default, every process does not respond
to the SIGCHLD signal (the signal handlers
are set only when wait() is called).

What if the parent is executing other tasks
(not call the wait() system call) when child
terminates (see the 2nd case of wait() later)?

This guy invoked
wait().

ChildParent

Signal handlers

62

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

The kernel set the process to be sleeping.

The formal way to say: the wait() system
call blocks the process until ...

This guy invoked
wait().

ChildParent

Signal handlers

Guess: when to wake up?

63

wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

This guy invoked
wait().

ChildParent

Signal handlers

Process
1235

SIGCHLD
from
1235

64

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

When SIGCHLD comes, the signal
handling routine is invoked!

Note: since the parent is still inside
the system call, instead of the
original program code, the parent
process is still blocked in some
sense…

This guy invoked
wait().

ChildParent

Signal handlers

SIGCHLD
from
1235

65

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

This guy invoked
wait().

ChildParent

Signal handlers

Default Handling of SIGCHLD

1. Accept and remove the
SIGCHLD;

2. Destroy the child process
that sends her the signal.

SIGCHLD
from
1235

Now, the child is truly
dead.

66

wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

Ready to return
from wait().

Parent

Signal handlers

The signal handler is then removed, i.e., the
process is ignoring SIGCHLD again.

It returns to the previously-executing code,
going back to the user space.

So, it looks like “wait() is returned from its
invocation”.

This is the reason why wait() system call waits
for any one of the child processes.

67

wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

Ready to return
from wait().

Parent

Return value = 1235
Lastly, the return value of wait() system call is
the PID of the terminated child.

68

wait() and exit() – parent side

Child
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the
parent.

Child is terminated through
the exit() system call.

wait()
returns.

So, the child will be
given a clean death
by the wait()
system call.

SIGCHLD

Is it done?

• How about wait()is called after the child already
terminated?

– Remember the case 2 (which is safe)

69

wait()

fork() Terminate

wake up

Case 1.

Parent is
suspended.

wait()

fork() Terminate
Case 2.

no suspension
is needed.

70

wait() and exit() – parent side

Child
Process

Parent
Process

wait()
is called.

Parent

Child

Child is terminated through
the exit() system call.

What is going on inside the kernel?

SIGCHLD

Case 2.

71

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

Child was already terminated (became a
zombie), SIGCHLD is also sent to parent before

ChildParent

SIGCHLD
from
1235

72

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

Similar to Case 1, the kernel sets the
signal handling routine...

Nevertheless, the wait() system call
finds that the SIGCHLD signal is
already there.

So, default actions are then taken
immediately.

This guy invoked
wait().

ChildParent

Signal handlers

SIGCHLD
from
1235

73

wait() and exit() – parent side

Child
Process

Parent
Process

Parent

Child

Child is terminated through
the exit() system call.

The parent will experience a
negligible amount of
blocking period.

SIGCHLD

Case 2.

wait() returns.

wait() is called.

The zombie can exist up
to the moment that the
parent process calls
wait().

Orphans (zombies)

• What would happen if a parent did not invoke
wait() and terminated?

– Remember the reparent operation in Linux?

• init is the new parent, and it periodically invokes
wait()

74

wait() and exit() – short summary

• A process is turned into a zombie when…

– The process calls exit().

– The process returns from main().

– The process terminates abnormally.

• You know, the kernel knows that the process is terminated
abnormally. Hence, the kernel invokes exit() by itself.

• Remember why exec*() does not return to its
calling process in previous example…

75

wait() and exit() – short summary

• wait() is to reap zombie child processes

– You should never leave any zombies in the system.

• Linux will label zombie processes as “<defunct>”.

– To look for them: ps aux | grep defunct

• Learn waitpid() by yourself…

76

wait() and exit() – Example

77

int main(void)
{

int pid;
if((pid = fork())) {

printf("Look at the status of the process %d\n", pid);
while(getchar() != '\n');
wait(NULL);
printf("Look again!\n");
while(getchar() != '\n');

}
return 0;

}

What is the purpose of this program?

1
2
3
4
5
6
7
8
9
10
11
12

wait() and exit() – Example

78

int main(void)
{

int pid;
if((pid = fork())) {

printf("Look at the status of the process %d\n", pid);
while(getchar() != '\n');
wait(NULL);
printf("Look again!\n");
while(getchar() != '\n');

}
return 0;

}
This program requires you to type “enter” twice
before the process terminates.

You are expected to see the status of the child
process changes between the 1st and the 2nd
“enter”.

1
2
3
4
5
6
7
8
9
10
11
12

79

Working of system calls
 - fork();
 - exec*();
 - wait() + exit();
 - importance/fun in knowing
 the above things?

The role of wait() in the OS…

• Why calling wait() is important

– It is not about process execution/suspension…

– It is about system resource management.

• Think about it:

– A zombie takes up a PID;

– The total number of PIDs are limited;

• Read the limit: “cat /proc/sys/kernel/pid_max”

– What will happen if we don’t clean up the zombies?

80

When wait() is absent…

• What is the result of this program?

– Do not try to know the result by running it

81

int main(void) {
 while(fork());
 return 0;
}

Think about what will be
happened to both parent
and child processes?

When wait() is absent…

• Don’t try this…

82

Parent: never reach here.

Child: reached immediately,
but no corresponding wait()
for the parent (ZOMBIE)

Parent

Child
Child

Child

An infinite, zombie factory!

fork()

Turn into zombie

immediately!

int main(void) {
 while(fork());
 return 0;
}

Summary

• Process concept

– Process vs program

– User-space memory + PCB

• Process operations

– Creation, program execution, termination

– The internal workings of

• fork()

• exec*()

• wait()+exit(): come together

• Calling wait() is important

83

	幻灯片 1: Ch3 - Process Operations
	幻灯片 2: Process in Memory
	幻灯片 3: Kernel-space VS User-space
	幻灯片 4: Kernel-space VS User-space
	幻灯片 5: Kernel-space VS User-space
	幻灯片 6: Kernel-space VS User-space
	幻灯片 7: Process is going back and forth...
	幻灯片 8: Process is going back and forth...
	幻灯片 9: Process is going back and forth...
	幻灯片 10: Process is going back and forth...
	幻灯片 11: User Mode & Kernel Mode
	幻灯片 12: User time VS System time
	幻灯片 13: User time VS System time
	幻灯片 14: User time VS System time – example 1
	幻灯片 15: User time VS System time – example 1
	幻灯片 16: User time VS System time – example 2
	幻灯片 17: User time VS System time – short summary
	幻灯片 18: Story so far…
	幻灯片 19: Next…
	幻灯片 20: Next…
	幻灯片 21: fork()
	幻灯片 22: fork()
	幻灯片 23: fork()
	幻灯片 24: Process creation – fork() system call
	幻灯片 25: Process creation – fork() system call
	幻灯片 26: fork() in action – the start…
	幻灯片 27: fork() in action – the start…
	幻灯片 28: fork() in action – kernel-space update
	幻灯片 29: fork() in action – kernel-space update
	幻灯片 30: fork() in action – kernel-space update
	幻灯片 31: fork() in action – user-space update
	幻灯片 32: fork() in action – user-space update
	幻灯片 33: fork() in action – user-space update
	幻灯片 34: fork() in action – finish
	幻灯片 35: fork() in action – array of opened files?
	幻灯片 36: fork() in action – array of opened files?
	幻灯片 37
	幻灯片 38: exec*()
	幻灯片 39: exec*() in action – the start…
	幻灯片 40: exec*() in action – the end
	幻灯片 41: exec*() in action – the end
	幻灯片 42: exec*() in action – the end
	幻灯片 43
	幻灯片 44: Recall the example
	幻灯片 45: wait()
	幻灯片 46: wait() and exit() – Time Analysis
	幻灯片 47: Guess…
	幻灯片 48: wait() and exit() – child side
	幻灯片 49: wait() and exit() – child side
	幻灯片 50: wait() and exit() – child side
	幻灯片 51: wait() and exit() – child side
	幻灯片 52: wait() and exit() – child side
	幻灯片 53: wait() and exit() – child side
	幻灯片 54: wait() and exit() – child side
	幻灯片 55: wait() and exit() – child side
	幻灯片 56: wait() and exit() – child side
	幻灯片 57: Signal
	幻灯片 58: A short summary for exit()
	幻灯片 59: wait() and exit() – they come together!
	幻灯片 60: wait() and exit() – parent side
	幻灯片 61: wait() and exit() – parent side
	幻灯片 62: wait() and exit() – parent side
	幻灯片 63: wait() and exit() – parent side
	幻灯片 64: wait() and exit() – parent side
	幻灯片 65: wait() and exit() – parent side
	幻灯片 66: wait() and exit() – parent side
	幻灯片 67: wait() and exit() – parent side
	幻灯片 68: wait() and exit() – parent side
	幻灯片 69: Is it done?
	幻灯片 70: wait() and exit() – parent side
	幻灯片 71: wait() and exit() – parent side
	幻灯片 72: wait() and exit() – parent side
	幻灯片 73: wait() and exit() – parent side
	幻灯片 74: Orphans (zombies)
	幻灯片 75: wait() and exit() – short summary
	幻灯片 76: wait() and exit() – short summary
	幻灯片 77: wait() and exit() – Example
	幻灯片 78: wait() and exit() – Example
	幻灯片 79
	幻灯片 80: The role of wait() in the OS…
	幻灯片 81: When wait() is absent…
	幻灯片 82: When wait() is absent…
	幻灯片 83: Summary

