Operating Systems

Prof. Yongkun Li
F B RLK-THE AL P #0R
http://staff.ustc.edu.cn/~ykli

Ch4 Threads

* Thread Concepts
— Why use threads
— Structure in Memory

— Benefits and Challenges
— Thread Models
* Programming
— Basic Programming: Pthreads Library
— Implicit Threading: Thread Pools & OpenMP

Multi-threading
- Motivation

)

Motivation - Application Side

* Most software applications are multithreaded, each
application is implemented as a process with
several threads of control
— Web browser

 displays images, retrieve data from network

— Word processor

 display graphics, respond to keystrokes, spelling & grammar
checking

Motivation - Application Side

* Most software applications are multithreaded
— Web browser
— Word processor

— Similar tasks in a single application (web server)
* Accept client requests, service the requests
» Usually serve thousands of clients

(2) create new
(1) request thread to service
the request

server » thread

U

(3) resume listening
for additional
client requests

Y

client

Motivation — Application Side

 Why not create a process for each task?

— Process creation is
* Heavy-weighted
* Resource intensive

e Still remember what kinds of data are included in a
process...

— Text, data, stack, heap in user-space memory
— PCB in kernel-space memory

 Many of the data can be shared between multiple
tasks within an application

Motivation — System Side

* Modern computers usually contain multicores

— But, each processor can run only one process at a time
— CPU is not fully utilized

* How to improve the efficiency?

— Assign one task to each core

— Real parallelism (not just concurrency with interleaving
on single-core system)

Concurrent execution on single-core system:

T4 To Ts Ty T4 To T3 Ty T4 . ‘

single core

time

Parallel execution on a multi-core system:

core 1 T4 T3 T4 T3 T4

core 2 To Ty To Ty To

Multi-threading
- Motivation
- Thread Concept

%,
4

code

data

files

registers

stack

thread —> 3

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
<

— thread

multithreaded process

e User-space memory of Process A

max
stack

Local Global

variable variable

- All threads share the same code.

- A thread starts with one specific
function.

- We name it the thread function
- Functions A & B in the diagram

- The thread function can invoke
other functions or system calls

- But, a thread could never return to
the caller of the thread function.

User-space memory of a
process

Dynamic

Global variables

Function A -
Function B -

User-space memory of a
process

Dynamically allocated memory

Global variables

- All threads share the same global
variable zone and the same -
dynamically allocated memory Dynamic

- All threads can read from and write
to both areas

Global variables

Function A -
Function B -

User-space memory of a
process

Local variables

- Each thread has its own memory -
range for the local variables Dynamic

- So, the stack is the private zone for
each stack

Global variables

Function A -
Function B -

Benefits of Multi-thread

* Responsiveness and multi-tasking
— Multi-threading design allows an application to do
parallel tasks simultaneously

— Example: Although a thread is blocked, the process can
still depend on another thread to do other things!

— Especially important for interactive applications (user

interface) p N
Status: BLOCKED N\ Status: RUNNING D\
It’d be nice to

assign one thread
for one blocking

system/library call.

Reading from Doing
keyboard calculation

\K U G //

* Ease in data sharing, can be done using:
— global variables, and
— dynamically allocated memory.

* Processes share resources via shared memory or message
passing, which must be explicitly arranged by the
programmer

Of course, this leads to
the mutual exclusion &
the synchronization
problems (will be talked
in later chapters)

Reading from Doing
keyboard calculation

Benefits of Multi-thread

* Economy

— Allocating memory and resources for process creation is
costly, dozens of times slower than creating threads

— Context-switch between processes is also costly, several
times of slower

* Scalability

— Threads may be running in parallel on different cores

17

Programming Challenges

* ldentifying tasks

— Divide separate and concurrent tasks

* Balance

— Tasks should perform equal work of equal value
* Data splitting

— Data must be divided to run on separate cores

 Data dependency

— Synchronization is needed

* Testing and debugging

18

Multi-threading
- Motivation
- Thread Concept
- Thread Models

%,
4

“\ User space

Gl?bgi ‘ Dynamically-
variable
\) allocated Code +
memory
NG
- L variable)

Process

constants

Process
structure

)

Kernel Space

e Thread should also include
— Data/resources in user-space memory
— Structure in kernel

 How to provide thread support?

— User thread
* Implement in user space

— Kernel thread
* Supported and managed by kernel

* Thread models (relationship between user/kernel thread)
— Many-to-one
— One-to-one
— Many-to-many

 Many-to-One Model

— All the threads are mapped to one
process structure in the kernel.

— Merit
-._ : f User
e Easy for the kernel to implement. i i f Space
— Drawback Process
. . Structure
* When a blocking system call is called, Kernel
all the threads will be blocked Space

Many-to-one model

— Example. Old UNIX & green thread
in some programming languages.

* One-to-One Model

— Each thread is mapped to a process or
a thread structure

— Merit:

* Calling blocking system calls only block _ : :
those calling threads i User
* A high degree of concurrency : : Space

— Drawback:
* Cannot create too many threads as it is
restricted by the size of the kernel Kernel
memory Space
— Example. Linux and Windows follow One-to-one model

this thread model

* |f a scheduler only interests in processes...

> > > >

thread 1lib thread 1lib thread 1ib thread 1lib
4

N
A thread library needs :
to implements its only N

scheduling policy.

)
|
)
|]
|]
.

N
n | only set which process to
: run, and | don’t know what

\é is a thread.

* |f a scheduler only interests in threads...

since kernel
version 2.6!

 Many-to-many Model
— Multiple threads are mapped to

multiple structures (group
mapping)

— Merit:

* Create as many threads as
necessary

Kernel
* Also have a high degree of Space

concurrency

Many-to-many model

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming

%,
4

Thread Libraries

* Athread library provides the programmer with an
API for creating and managing threads

— Two ways of implementation: User-level or kernel-level

* Three main thread libraries
— POSIX Pthreads (user-level or kernel-level)
— Windows (kernel-level)
— Java (implemented using Windows API| or Pthreads)

28

Creating Multiple Threads

* Asynchronous threading
— Parent resumes execution after creating a child
— Parent and child execute concurrently

— Each thread runs independently
e Little data sharing

* Synchronous threading

— Fork-join strategy: Parent waits for children to terminate

* Significant data sharing

29

 Pthreads: POSIX standard defining an API for
thread creation and synchronization.

— Specification, not implementation
* How to use Pthreads?

T

Creation fork() pthread_create()
I.D. Type PID, an integer “pthread_t”, a structure
Who am I? getpid() pthread_self()
Termination exit() pthread_exit()
V:’::H?\;:g Ld wait() or waitpid() pthread_join()
Kill? kill() pthread_kill()

ISSUE 1: Thread Creation

Thread Function

1 void * hello(void *input) {

2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);

4 }

5 int main(void) {

6 pthread_t tid;

7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);

9 return 0;
10 }

Thread Function

1 void * hello(void *input) {

2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);

4 }

pthread_t tid;
pthread_create(&tid, NULL, hello, “hello world”);
pthread_join(tid, NULL);

return 0;

10 } a)

At the beginning,

there is only one -
thread running: the
main thread. Main Thread

< J

O 00 N O

Thread Function

2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

Main Function

5 int main(void) {

6 pthread_t tid;

8 pthread_join(tid, NULL);
9 return 0;
10 }

The hello thread is ‘

created! pthread_ \
create()

It is running “together” _ j
N with the main thread. Main Thread

Hello Thread

>

~

Thread Function The pthread_create()
function allows one

1 void * hello(|void *input ¢
. ccor S—y . argument to be passed to
2 printf(“%s\n”, (char *) input); he thread f _
3 pthread_exit(NULL); the thread function.
4) /

5 int main(void) {

6 pthread_t tid;

7 pthread_create(&tid, NULL, [hello) [“hello world™);
8 pthread_join(tid, NULL);

9 return 0; T
10 } (

This sets the thread function of the to-
be-created thread as: hello().

Remember: A thread starts with one specific function (thread function)

Thread Function

2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

Main Function

5 int main(void) {
6 pthread_t tid;
7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9 return 0;
10 } Remember wait () \\

and waitpid()~

Blocked

pthread_join()

\ performs similarly. Main Thread Hello Thread

Thread Function

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);

5 int main(void) {

6 pthread_t tid;

7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);

9 return 0;

10 } a N

Termination of the
target thread causes

pthread_join() Blocked o)

to return. _ M\’)
Main Thread Hello Thread

ISSUE 2: Passing parameters

Thread creation — passing parameter

r g o(void * - Guess: What is
1 voi o_your_job(void *input
2 printf(“child = %d\n”, *((int *) input)); the OUtpUt?
3 *((int *) input) = 20;
4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL); $./pthread_evil 1
6 } main = 10
child = 10
child = 20
main =
7 int main(void) { $
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_ job, &input); Each thread has a
12 pthread_join(tid, NULL); separated stack.
13 printf(“main = %d\n”, input);
1: } return ©; Why do we have
such results?

39

Well, we all know that the local variable “input” is in the
stack for the main thread.

void * do_your_job(void *input) {
printf(“child = %d\n”, *((int *) input));
*((int *) input) = 20;
printf(“child = %d\n”, *((int *) input));
pthread_exit(NULL);

auvih WDNER

Local
(main thread)

}

int main(void) {
pthread_t tid;

10 printf(“main = %d\n”, input); l Global

L Dynamic
v

11 pthread_create(&tid, NULL, do_your_job, &input);

12 pthread_join(tid, NULL);

13 printf(“main = %d\n, input); Code
13 return O;

14 }

Yet...the stack for the new thread is not on another process, but is on the
same piece of user-space memory as the main thread.

printf(“child = %d\n”, *((int *) input)); Local

*((int *) input) = 20; (new thread)

printf(“child = %d\n”, *((int *) input)); <
pthread_exit(NULL); Local |

} (main thread)

int main(void) {
pthread_t tid;

10 printf(“main = %d\n”, input); | Global

11 pthread_create(&tid, NULL, do_your_job, &input);

aounphwWN

L Dynamic
v

12 pthread_join(tid, NULL);

13 printf(“main = %d\n, input); Code
13 return O;

14 }

The pthread_create() function only passes an to the new thread.
Worse, the address is pointing to a variable in the stack of the main thread!

2 printf(“child = %d\n”, *((int *) input)); R Local

3 *((int *) input) = 20; (new thread)

4 printf(“child = %d\n” i i <
5

6

» *((int *) input)); v

pthread_exit(NULL); ¥ Local |
} (main thread)
\ J.

7 int main(void) {

8 pthread_t tid; | Dynamic J
_
printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input); ———————————<
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input); Code
13 return O;

14}

Therefore, the new thread can change the value in the main
thread, and vice versa.

1 void * do_your_job(void *input) {

2 printf(“child = %d\n”, *((int *) input)); R Local

3 *((int *) input) =20; (new thread)

o 4 printf(“child = %d\n”, *((int *) input)); $ <
% 5 pthread_exit(NULL);) Local |

s } (main thread)

. \ J

R 7 int main(void) { :

S| 8 pthread_t tid; | Dynamic J
s 9 int input = 10;
10 printf(“main = %d\n”, input);
S 11 N——

pthread_create(&tid, NULL, do_your_job, &input);

% | 12 thread join(tid, NULL);

< p _join(tid,)s o
13 return O;
14 }

ISSUE 3: Multiple Threads

Thread Function

1 void * do_your_job(void *input) {
2 int id = *((int *) input);
3 printf("My ID number = %d\n", id);
4 pthread_exit(NULL);
5 }
T ———t A
Waltlng on several
int main(void) { threads: enclose
; 1:; 1,d ¢ tid[s] pthread join()
rea i ; -
P - g within a for loop
. _ J
10 for(i = @; i < 5; i++)
11 pthread_create(&tid[i], NULL, do_your_job, &i);

14 return 0;
15 }

ISSUE 4: Return Value

Thread termination — passing return value

1 void * do_your_job(void *input) {

2 int *output = (int *) malloc(sizeof(int));

3 srand(time(NULL));

4 *output = ((rand() % 10) + 1) * (*((int *) input));

5 pthread_exit (| output);wg____

6 } void pthread_exit(void *return_value);

Together with termination, a pointer to a global

7 int main(void) { variable or a piece of dynamically allocated

8 pthread_t tid; \memory is returned to the main thread. j
— 3

9 int input = 10, *output;

10 pthread_create(&tid, NULL, do your job, &input);

11 pthread_join(tid, |(void **) &output|);

12 return O;

13 } Using pass-by-reference, a pointer
to the result is received in the main
thread.

1\

47

* For Windows threads and Java threads, you can
refer to the textbook if you are interested in.

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming
- Implicit Threading

Implicit Threading

* Applications are containing hundreds or even thousands of
threads

— Program correctness is more difficult with explicit threads

* How to address the programming difficulties?

— Transfer the creation and management of threading from
programmers to compilers and run-time libraries

— Implicit threading

e We will introduce two methods

— Thread Pools
— OpenMP

50

Thread Pools

e Problems with multithreaded servers

— Time required to create threads, which will be discarded
once completed their work

— Unlimited threads could exhaust the system resources

* How to solve?
— Thread pool
— |ldea

* Create a number of threads in a pool where they wait for work

— Procedure
* Awakens a thread if necessary
* Returns to the pool after completion
* Waits until one becomes free if the pool contains no available thread

51

* Advantages

— Usually slightly faster to service a request with an
existing thread than create a new thread

— Allows the number of threads in the application(s) to be
bound to the size of the pool

* Provides support for parallel #include <omp.h>
programming in shared-memory #include <stdio.h>

environments , L
int main(int argc, char *argv[])

{

 Set of compiler directives and an API /* sequential code */

for C, C++, FORTRAN #pragma omp parallel

. . printf ("I am a parallel region.");
* Identifies parallel regions — blocks of !

code that can run in parallel
/* sequential code */

return 0;

Parallel for loop |
#pragma omp parallel for‘—‘\\\\\
for (i=0;i<N;i++) {

c[i] = a[i] + b[i]; When OpenMP encounters the

} directive, it creates as many threads
as there are processing cores

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming
- Implicit Threading
- Threading Issues

Semantics of fork() and exec()

* Two key system calls for processes: fork, exec

e fork ():Some UNIX systems have two versions
— The new process duplicates all threads, or
— Duplicates only the thread that invoked £ork ()

 exec (): usually works as normal

— Replace the running process - including all threads

55

Signal Handling

Signals are used in UNIX systems to notify a process that a
particular event has occurred

— Synchronous signal and asynchronous signal
— Default handler or user-defined handler

Where should a signal be delivered in multi-threaded program?
— Deliver the signal to the thread to which the signal applies
— Deliver the signal to every thread in the process
— Deliver the signal to certain threads in the process
— Assign a specific thread to receive all signals for the process

Deliver a signal to a specified thread with Pthread
— pthread _kill(pthread t tid, int signal)

56

Thread Cancellation

 Terminating a thread before it has finished
— Why needed?

— Example: Close a browser when multiple threads are loading
images

 Two general approaches

— Asynchronous cancellation terminates the target thread
immediately

* Problem: Troublesome when canceling a thread which is updating
data shared by other threads

— Deferred cancellation allows the target thread to periodically
check if it should be cancelled (can be canceled safely)

57

Thread Cancellation (Cont.) - Pthreads

* Pthreads code example pthiread.t cid;
/+ create the thread x/
—_ pthr‘ead_cancel() pthread create (&tid, 0, worker, NULL);

— Indicates only a request

/% cancel the thread x/
pthread-cancel (tid) ;

* Three cancelation modes

Mode State Type
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

e Default: deferred

— Cancelation occurs only when it reaches a cancelation point, can
be established by pthread_testcancel()

Thread-Local Storage

 Some applications, each thread may need its own copy of
certain data

— Transaction processing system: service each transaction (with a
unique identifier) in a thread

— How about local variables?
* Visible only during a single function invocation

* Thread-local storage (TLS) allows each thread to have its
own copy of data

— TLS is visible across function invocations
— Similar to static data

— TLS data are unique to each thread

59

Summary of Threads

e Virtually all modern OSes support multi-threading
— A thread is a basic unit of CPU utilization

— Each comprises a thread ID, a program counter, a register set,
and a stack

— All threads within a process share code section, data section,
other resources like open files and signals

* You should take great care when writing multi-
threaded programs

* You also have to take care of (will be talked later):
— Mutual exclusion and
— Synchronization

60

End of Chapter 4

	幻灯片 1
	幻灯片 2: Chapter 4: Threads
	幻灯片 3
	幻灯片 4: Motivation - Application Side
	幻灯片 5: Motivation - Application Side
	幻灯片 6: Motivation – Application Side
	幻灯片 7: Motivation – System Side
	幻灯片 8: Concurrency vs. Parallelism
	幻灯片 9
	幻灯片 10: High-level Idea
	幻灯片 11: Recall: Process in Memory
	幻灯片 12: Multi-thread – internals
	幻灯片 13: Multi-thread – internals
	幻灯片 14: Multi-thread – internals
	幻灯片 15: Benefits of Multi-thread
	幻灯片 16: Benefits of Multi-thread
	幻灯片 17: Benefits of Multi-thread
	幻灯片 18: Programming Challenges
	幻灯片 19
	幻灯片 20: Recall Process Structure
	幻灯片 21: Similarly…
	幻灯片 22: Thread models
	幻灯片 23: Thread models
	幻灯片 24: Scheduling – why & who cares?
	幻灯片 25: Scheduling – why & who cares?
	幻灯片 26: Thread models
	幻灯片 27
	幻灯片 28: Thread Libraries
	幻灯片 29: Creating Multiple Threads
	幻灯片 30: The Pthreads Library
	幻灯片 31
	幻灯片 32: Thread creation – pthread_create()
	幻灯片 33: Thread creation – pthread_create()
	幻灯片 34: Thread creation – pthread_create()
	幻灯片 35: Thread creation – pthread_create()
	幻灯片 36: Thread creation – pthread_create()
	幻灯片 37: Thread creation – pthread_create()
	幻灯片 38
	幻灯片 39: Thread creation – passing parameter
	幻灯片 40: Thread creation – passing parameter
	幻灯片 41: Thread creation – passing parameter
	幻灯片 42: Thread creation – passing parameter
	幻灯片 43: Thread creation – passing parameter
	幻灯片 44
	幻灯片 45: Thread creation – multiple threads
	幻灯片 46
	幻灯片 47: Thread termination – passing return value
	幻灯片 48: Other Libraries
	幻灯片 49
	幻灯片 50: Implicit Threading
	幻灯片 51: Thread Pools
	幻灯片 52: Thread Pools
	幻灯片 53: OpenMP
	幻灯片 54
	幻灯片 55: Semantics of fork() and exec()
	幻灯片 56: Signal Handling
	幻灯片 57: Thread Cancellation
	幻灯片 58: Thread Cancellation (Cont.) - Pthreads
	幻灯片 59: Thread-Local Storage
	幻灯片 60: Summary of Threads
	幻灯片 61

