
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

1

Ch4 Threads

Chapter 4: Threads

• Thread Concepts

– Why use threads

– Structure in Memory

– Benefits and Challenges

– Thread Models

• Programming

– Basic Programming: Pthreads Library

– Implicit Threading: Thread Pools & OpenMP

2

3

Multi-threading
 - Motivation

Motivation - Application Side

• Most software applications are multithreaded, each
application is implemented as a process with
several threads of control

– Web browser

• displays images, retrieve data from network

– Word processor

• display graphics, respond to keystrokes, spelling & grammar
checking

4

Motivation - Application Side

• Most software applications are multithreaded

– Web browser

– Word processor

– Similar tasks in a single application (web server)

• Accept client requests, service the requests

• Usually serve thousands of clients

5

Motivation – Application Side

• Why not create a process for each task?

– Process creation is

• Heavy-weighted

• Resource intensive

• Still remember what kinds of data are included in a
process…

– Text, data, stack, heap in user-space memory

– PCB in kernel-space memory

• Many of the data can be shared between multiple
tasks within an application

6

Motivation – System Side

• Modern computers usually contain multicores

– But, each processor can run only one process at a time

– CPU is not fully utilized

• How to improve the efficiency?

– Assign one task to each core

– Real parallelism (not just concurrency with interleaving
on single-core system)

7

Concurrency vs. Parallelism

8

Concurrent execution on single-core system:

Parallel execution on a multi-core system:

9

Multi-threading
 - Motivation
 - Thread Concept

High-level Idea

10

Recall: Process in Memory

• User-space memory of Process A

11

Global
variable

Local
variable

Dynamically-
allocated
memory

Code

Multi-thread – internals

12

Page 12

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same code.

- A thread starts with one specific
function.
- We name it the thread function
- Functions A & B in the diagram

- The thread function can invoke
other functions or system calls

- But, a thread could never return to
the caller of the thread function.

Code
User-space memory of a

process

Multi-thread – internals

13

Page 13

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same global
variable zone and the same
dynamically allocated memory

- All threads can read from and write
to both areas

Global variables

User-space memory of a
process

Dynamically allocated memory

Multi-thread – internals

14

Page 14

Function A

Function B

Code

Local Local

Global variables

Dynamic

- Each thread has its own memory
range for the local variables

- So, the stack is the private zone for
each stack

User-space memory of a
process

Local variables

Benefits of Multi-thread

• Responsiveness and multi-tasking

– Multi-threading design allows an application to do
parallel tasks simultaneously

– Example: Although a thread is blocked, the process can
still depend on another thread to do other things!

– Especially important for interactive applications (user
interface)

15

Reading from
keyboard

Status: BLOCKED

Doing
calculation

Status: RUNNING
It’d be nice to
assign one thread
for one blocking
system/library call.

Benefits of Multi-thread

• Ease in data sharing, can be done using:

– global variables, and

– dynamically allocated memory.

• Processes share resources via shared memory or message
passing, which must be explicitly arranged by the
programmer

16

Reading from
keyboard

Doing
calculation

Of course, this leads to
the mutual exclusion &
the synchronization
problems (will be talked
in later chapters)

keyboard input

Benefits of Multi-thread

17

• Economy

– Allocating memory and resources for process creation is
costly, dozens of times slower than creating threads

– Context-switch between processes is also costly, several
times of slower

• Scalability

– Threads may be running in parallel on different cores

Programming Challenges

18

• Identifying tasks

– Divide separate and concurrent tasks

• Balance

– Tasks should perform equal work of equal value

• Data splitting

– Data must be divided to run on separate cores

• Data dependency

– Synchronization is needed

• Testing and debugging

19

Multi-threading
 - Motivation
 - Thread Concept
 - Thread Models

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
structure

(PCB)

20

Recall Process Structure

Kernel Space

User space

Process

Similarly…

• Thread should also include
– Data/resources in user-space memory
– Structure in kernel

• How to provide thread support?
– User thread

• Implement in user space

– Kernel thread
• Supported and managed by kernel

• Thread models (relationship between user/kernel thread)
– Many-to-one
– One-to-one
– Many-to-many

21

Thread models

• Many-to-One Model
– All the threads are mapped to one

process structure in the kernel.

– Merit
• Easy for the kernel to implement.

– Drawback
• When a blocking system call is called,

all the threads will be blocked

– Example. Old UNIX & green thread
in some programming languages.

22

Kernel
Space

User
Space

Process
Structure

Many-to-one model

Thread models

• One-to-One Model
– Each thread is mapped to a process or

a thread structure

– Merit:
• Calling blocking system calls only block

those calling threads
• A high degree of concurrency

– Drawback:
• Cannot create too many threads as it is

restricted by the size of the kernel
memory

– Example. Linux and Windows follow
this thread model

23

Kernel
Space

User
Space

One-to-one model

Scheduling – why & who cares?

• If a scheduler only interests in processes…

24

Process-based Scheduler

thread lib thread lib thread lib thread lib

A thread library needs
to implements its only
scheduling policy. I only set which process to

run, and I don’t know what
is a thread.

Scheduling – why & who cares?

• If a scheduler only interests in threads…

25

Thread-based Scheduler

The scheduler doesn’t know what
is a process; it only knows threads.

Then, a process, without multi-
threading, is actually one thread
for the scheduler.since kernel

version 2.6!

Thread models

• Many-to-many Model

– Multiple threads are mapped to
multiple structures (group
mapping)

– Merit:

• Create as many threads as
necessary

• Also have a high degree of
concurrency

26

Kernel
Space

User
Space

Many-to-many model

27

Multi-threading
 - Motivation
 - Thread Concept
 - Thread Models
 - Basic Programming

Thread Libraries

• A thread library provides the programmer with an
API for creating and managing threads

– Two ways of implementation: User-level or kernel-level

• Three main thread libraries

– POSIX Pthreads (user-level or kernel-level)

– Windows (kernel-level)

– Java (implemented using Windows API or Pthreads)

28

Creating Multiple Threads

• Asynchronous threading

– Parent resumes execution after creating a child

– Parent and child execute concurrently

– Each thread runs independently

• Little data sharing

• Synchronous threading

– Fork-join strategy: Parent waits for children to terminate

• Significant data sharing

29

The Pthreads Library

• Pthreads: POSIX standard defining an API for
thread creation and synchronization.
– Specification, not implementation

• How to use Pthreads?

30

Process Thread

Creation fork() pthread_create()

I.D. Type PID, an integer “pthread_t”, a structure

Who am I? getpid() pthread_self()

Termination exit() pthread_exit()

Wait for child
termination

wait() or waitpid() pthread_join()

Kill? kill() pthread_kill()

ISSUE 1: Thread Creation

31

Thread creation – pthread_create()

32

Thread Function

Main Function

5 int main(void) {
 6 pthread_t tid;
 7 pthread_create(&tid, NULL, hello, “hello world”);
 8 pthread_join(tid, NULL);
 9 return 0;
10 }

1 void * hello(void *input) {
 2 printf(“%s\n”, (char *) input);
 3 pthread_exit(NULL);
 4 }

Thread creation – pthread_create()

33

Thread Function

Main Function

1 void * hello(void *input) {
 2 printf(“%s\n”, (char *) input);
 3 pthread_exit(NULL);
 4 }

5 int main(void) {
 6 pthread_t tid;
 7 pthread_create(&tid, NULL, hello, “hello world”);
 8 pthread_join(tid, NULL);
 9 return 0;
10 }

Main Thread

At the beginning,
there is only one
thread running: the
main thread.

Thread creation – pthread_create()

34

Thread Function

Main Function

5 int main(void) {
 6 pthread_t tid;
 7 pthread_create(&tid, NULL, hello, “hello world”);
 8 pthread_join(tid, NULL);
 9 return 0;
10 }

Main Thread

1 void * hello(void *input) {
 2 printf(“%s\n”, (char *) input);
 3 pthread_exit(NULL);
 4 }

pthread_
create()

Hello Thread

The hello thread is
created!

It is running “together”
with the main thread.

Thread creation – pthread_create()

35

Thread Function

Main Function

5 int main(void) {
 6 pthread_t tid;
 7 pthread_create(&tid, NULL, hello, “hello world”);
 8 pthread_join(tid, NULL);
 9 return 0;
10 }

1 void * hello(void *input) {
 2 printf(“%s\n”, (char *) input);
 3 pthread_exit(NULL);
 4 }

This sets the thread function of the to-
be-created thread as: hello().

The pthread_create()
function allows one
argument to be passed to
the thread function.

Remember: A thread starts with one specific function (thread function)

Thread creation – pthread_create()

36

Thread Function

Main Function

5 int main(void) {
 6 pthread_t tid;
 7 pthread_create(&tid, NULL, hello, “hello world”);
 8 pthread_join(tid, NULL);
 9 return 0;
10 }

Main Thread

1 void * hello(void *input) {
 2 printf(“%s\n”, (char *) input);
 3 pthread_exit(NULL);
 4 }

Hello Thread

Remember wait()
and waitpid()?

pthread_join()
performs similarly.

Blocked

Thread creation – pthread_create()

37

Thread Function

Main Function

5 int main(void) {
 6 pthread_t tid;
 7 pthread_create(&tid, NULL, hello, “hello world”);
 8 pthread_join(tid, NULL);
 9 return 0;
10 }

Main Thread

1 void * hello(void *input) {
 2 printf(“%s\n”, (char *) input);
 3 pthread_exit(NULL);
 4 }

Hello Thread

Termination of the
target thread causes
pthread_join()
to return.

Blocked

ISSUE 2: Passing parameters

38

Thread creation – passing parameter

39

Thread Function

Main Function

7 int main(void) {
 8 pthread_t tid;
 9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n”, input);
14 return 0;
15 }

1 void * do_your_job(void *input) {
 2 printf(“child = %d\n”, *((int *) input));
 3 *((int *) input) = 20;
 4 printf(“child = %d\n”, *((int *) input));
 5 pthread_exit(NULL);
 6 }

Guess: What is
the output?

$./pthread_evil_1
main = 10
child = 10
child = 20
main = 20
$

Each thread has a
separated stack.

Why do we have
such results?

Thread creation – passing parameter

40

Global

Dynamic

Code

Local
(main thread)

7 int main(void) {
 8 pthread_t tid;
 9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Well, we all know that the local variable “input” is in the
stack for the main thread.

1 void * do_your_job(void *input) {
 2 printf(“child = %d\n”, *((int *) input));
 3 *((int *) input) = 20;
 4 printf(“child = %d\n”, *((int *) input));
 5 pthread_exit(NULL);
 6 }

7 int main(void) {
 8 pthread_t tid;
 9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Thread creation – passing parameter

41

Global

Dynamic

Code

Local
(main thread)

Yet…the stack for the new thread is not on another process, but is on the
same piece of user-space memory as the main thread.

Local
(new thread)

1 void * do_your_job(void *input) {
 2 printf(“child = %d\n”, *((int *) input));
 3 *((int *) input) = 20;
 4 printf(“child = %d\n”, *((int *) input));
 5 pthread_exit(NULL);
 6 }

7 int main(void) {
 8 pthread_t tid;
 9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Thread creation – passing parameter

42

Global

Dynamic

Code

Local
(main thread)

The pthread_create() function only passes an address to the new thread.
Worse, the address is pointing to a variable in the stack of the main thread!

Local
(new thread)

1 void * do_your_job(void *input) {
 2 printf(“child = %d\n”, *((int *) input));
 3 *((int *) input) = 20;
 4 printf(“child = %d\n”, *((int *) input));
 5 pthread_exit(NULL);
 6 }

7 int main(void) {
 8 pthread_t tid;
 9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Thread creation – passing parameter

43

Global

Dynamic

Code

Local
(main thread)

Therefore, the new thread can change the value in the main
thread, and vice versa.

Local
(new thread)

1 void * do_your_job(void *input) {
 2 printf(“child = %d\n”, *((int *) input));
 3 *((int *) input) = 20;
 4 printf(“child = %d\n”, *((int *) input));
 5 pthread_exit(NULL);
 6 }

ISSUE 3: Multiple Threads

44

Thread creation – multiple threads

45

Thread Function

Main Function

6 int main(void) {
 7 int i;
 8 pthread_t tid[5];
 9
10 for(i = 0; i < 5; i++)
11 pthread_create(&tid[i], NULL, do_your_job, &i);
12 for(i = 0; i < 5; i++)
13 pthread_join(tid[i], NULL);
14 return 0;
15 }

1 void * do_your_job(void *input) {
 2 int id = *((int *) input);
 3 printf("My ID number = %d\n", id);
 4 pthread_exit(NULL);
 5 }

Waiting on several
threads: enclose
pthread_join()
within a for loop

ISSUE 4: Return Value

46

Thread termination – passing return value

47

Thread Function

Main Function

7 int main(void) {
 8 pthread_t tid;
9 int input = 10, *output;
10 pthread_create(&tid, NULL, do_your_job, &input);
11 pthread_join(tid, (void **) &output);
12 return 0;
13 }

1 void * do_your_job(void *input) {
 2 int *output = (int *) malloc(sizeof(int));
3 srand(time(NULL));
4 *output = ((rand() % 10) + 1) * (*((int *) input));
5 pthread_exit(output);

 6 } void pthread_exit(void *return_value);

Together with termination, a pointer to a global
variable or a piece of dynamically allocated
memory is returned to the main thread.

Using pass-by-reference, a pointer
to the result is received in the main
thread.

Other Libraries

• For Windows threads and Java threads, you can
refer to the textbook if you are interested in.

48

49

Multi-threading
 - Motivation
 - Thread Concept
 - Thread Models
 - Basic Programming
 - Implicit Threading

Implicit Threading

50

• Applications are containing hundreds or even thousands of
threads

– Program correctness is more difficult with explicit threads

• How to address the programming difficulties?

– Transfer the creation and management of threading from
programmers to compilers and run-time libraries

– Implicit threading

• We will introduce two methods

– Thread Pools

– OpenMP

Thread Pools

• Problems with multithreaded servers

– Time required to create threads, which will be discarded
once completed their work

– Unlimited threads could exhaust the system resources

• How to solve?

– Thread pool

– Idea

• Create a number of threads in a pool where they wait for work

– Procedure

• Awakens a thread if necessary

• Returns to the pool after completion

• Waits until one becomes free if the pool contains no available thread

51

Thread Pools

52

• Advantages

– Usually slightly faster to service a request with an
existing thread than create a new thread

– Allows the number of threads in the application(s) to be
bound to the size of the pool

OpenMP

53

• Provides support for parallel
programming in shared-memory
environments

• Set of compiler directives and an API
for C, C++, FORTRAN

• Identifies parallel regions – blocks of
code that can run in parallel

When OpenMP encounters the
directive, it creates as many threads
as there are processing cores

#pragma omp parallel for

for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Parallel for loop

54

Multi-threading
 - Motivation
 - Thread Concept
 - Thread Models
 - Basic Programming
 - Implicit Threading
 - Threading Issues

Semantics of fork() and exec()

55

• Two key system calls for processes: fork,exec

• fork(): Some UNIX systems have two versions

– The new process duplicates all threads, or

– Duplicates only the thread that invoked fork()

• exec(): usually works as normal

– Replace the running process - including all threads

Signal Handling

• Signals are used in UNIX systems to notify a process that a
particular event has occurred

– Synchronous signal and asynchronous signal

– Default handler or user-defined handler

• Where should a signal be delivered in multi-threaded program?

– Deliver the signal to the thread to which the signal applies

– Deliver the signal to every thread in the process

– Deliver the signal to certain threads in the process

– Assign a specific thread to receive all signals for the process

• Deliver a signal to a specified thread with Pthread

– pthread_kill(pthread_t tid, int signal)

56

Thread Cancellation

57

• Terminating a thread before it has finished

– Why needed?

– Example: Close a browser when multiple threads are loading
images

• Two general approaches

– Asynchronous cancellation terminates the target thread
immediately

• Problem: Troublesome when canceling a thread which is updating
data shared by other threads

– Deferred cancellation allows the target thread to periodically
check if it should be cancelled (can be canceled safely)

Thread Cancellation (Cont.) - Pthreads

58

• Pthreads code example

– pthread_cancel()

– Indicates only a request

• Three cancelation modes

• Default: deferred

– Cancelation occurs only when it reaches a cancelation point, can
be established by pthread_testcancel()

Thread-Local Storage

59

• Some applications, each thread may need its own copy of
certain data

– Transaction processing system: service each transaction (with a
unique identifier) in a thread

– How about local variables?

• Visible only during a single function invocation

• Thread-local storage (TLS) allows each thread to have its
own copy of data

– TLS is visible across function invocations

– Similar to static data

– TLS data are unique to each thread

Summary of Threads

• Virtually all modern OSes support multi-threading
– A thread is a basic unit of CPU utilization
– Each comprises a thread ID, a program counter, a register set,

and a stack
– All threads within a process share code section, data section,

other resources like open files and signals

• You should take great care when writing multi-
threaded programs

• You also have to take care of (will be talked later):
– Mutual exclusion and
– Synchronization

60

61

End of Chapter 4

	幻灯片 1
	幻灯片 2: Chapter 4: Threads
	幻灯片 3
	幻灯片 4: Motivation - Application Side
	幻灯片 5: Motivation - Application Side
	幻灯片 6: Motivation – Application Side
	幻灯片 7: Motivation – System Side
	幻灯片 8: Concurrency vs. Parallelism
	幻灯片 9
	幻灯片 10: High-level Idea
	幻灯片 11: Recall: Process in Memory
	幻灯片 12: Multi-thread – internals
	幻灯片 13: Multi-thread – internals
	幻灯片 14: Multi-thread – internals
	幻灯片 15: Benefits of Multi-thread
	幻灯片 16: Benefits of Multi-thread
	幻灯片 17: Benefits of Multi-thread
	幻灯片 18: Programming Challenges
	幻灯片 19
	幻灯片 20: Recall Process Structure
	幻灯片 21: Similarly…
	幻灯片 22: Thread models
	幻灯片 23: Thread models
	幻灯片 24: Scheduling – why & who cares?
	幻灯片 25: Scheduling – why & who cares?
	幻灯片 26: Thread models
	幻灯片 27
	幻灯片 28: Thread Libraries
	幻灯片 29: Creating Multiple Threads
	幻灯片 30: The Pthreads Library
	幻灯片 31
	幻灯片 32: Thread creation – pthread_create()
	幻灯片 33: Thread creation – pthread_create()
	幻灯片 34: Thread creation – pthread_create()
	幻灯片 35: Thread creation – pthread_create()
	幻灯片 36: Thread creation – pthread_create()
	幻灯片 37: Thread creation – pthread_create()
	幻灯片 38
	幻灯片 39: Thread creation – passing parameter
	幻灯片 40: Thread creation – passing parameter
	幻灯片 41: Thread creation – passing parameter
	幻灯片 42: Thread creation – passing parameter
	幻灯片 43: Thread creation – passing parameter
	幻灯片 44
	幻灯片 45: Thread creation – multiple threads
	幻灯片 46
	幻灯片 47: Thread termination – passing return value
	幻灯片 48: Other Libraries
	幻灯片 49
	幻灯片 50: Implicit Threading
	幻灯片 51: Thread Pools
	幻灯片 52: Thread Pools
	幻灯片 53: OpenMP
	幻灯片 54
	幻灯片 55: Semantics of fork() and exec()
	幻灯片 56: Signal Handling
	幻灯片 57: Thread Cancellation
	幻灯片 58: Thread Cancellation (Cont.) - Pthreads
	幻灯片 59: Thread-Local Storage
	幻灯片 60: Summary of Threads
	幻灯片 61

