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Ch4 Threads



Chapter 4: Threads

• Thread Concepts

– Why use threads

– Structure in Memory

– Benefits and Challenges

– Thread Models

• Programming

– Basic Programming: Pthreads Library

– Implicit Threading: Thread Pools & OpenMP
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Multi-threading
    - Motivation



Motivation - Application Side

• Most software applications are multithreaded, each 
application is implemented as a process with 
several threads of control 

– Web browser

• displays images, retrieve data from network

– Word processor

• display graphics, respond to keystrokes, spelling & grammar 
checking
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Motivation - Application Side

• Most software applications are multithreaded

– Web browser

– Word processor

– Similar tasks in a single application (web server)

• Accept client requests, service the requests

• Usually serve thousands of clients
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Motivation – Application Side

• Why not create a process for each task?

– Process creation is 

• Heavy-weighted

• Resource intensive

• Still remember what kinds of data are included in a 
process…

– Text, data, stack, heap in user-space memory

– PCB in kernel-space memory

• Many of the data can be shared between multiple 
tasks within an application
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Motivation – System Side

• Modern computers usually contain multicores

– But, each processor can run only one process at a time

– CPU is not fully utilized

• How to improve the efficiency?

– Assign one task to each core

– Real parallelism (not just concurrency with interleaving 
on single-core system)
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Concurrency vs. Parallelism
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Concurrent execution on single-core system:

Parallel execution on a multi-core system:
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Multi-threading
    - Motivation
    - Thread Concept



High-level Idea
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Recall: Process in Memory

• User-space memory of Process A
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Multi-thread – internals
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Page 12

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same code.

- A thread starts with one specific 
function. 
- We name it the thread function
- Functions A & B in the diagram

- The thread function can invoke 
other functions or system calls

- But, a thread could never return to 
the caller of the thread function.

Code
User-space memory of a 

process



Multi-thread – internals
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Page 13

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same global 
variable zone and the same 
dynamically allocated memory

- All threads can read from and write 
to both areas

Global variables

User-space memory of a 
process

Dynamically allocated memory



Multi-thread – internals
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Page 14

Function A

Function B

Code

Local Local

Global variables

Dynamic

- Each thread has its own memory 
range for the local variables

- So, the stack is the private zone for 
each stack

User-space memory of a 
process

Local variables



Benefits of Multi-thread

• Responsiveness and multi-tasking

– Multi-threading design allows an application to do 
parallel tasks simultaneously

– Example: Although a thread is blocked, the process can 
still depend on another thread to do other things!

– Especially important for interactive applications (user 
interface)
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Reading from 
keyboard

Status: BLOCKED

Doing 
calculation

Status: RUNNING
It’d be nice to 
assign one thread 
for one blocking 
system/library call.



Benefits of Multi-thread

• Ease in data sharing, can be done using:

– global variables, and

– dynamically allocated memory.

• Processes share resources via shared memory or message 
passing, which must be explicitly arranged by the 
programmer
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Reading from 
keyboard

Doing 
calculation

Of course, this leads to 
the mutual exclusion & 
the synchronization 
problems (will be talked 
in later chapters)

keyboard input



Benefits of Multi-thread
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• Economy

– Allocating memory and resources for process creation is 
costly, dozens of times slower than creating threads

– Context-switch between processes is also costly, several 
times of slower

• Scalability

– Threads may be running in parallel on different cores



Programming Challenges
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• Identifying tasks

– Divide separate and concurrent tasks

• Balance

– Tasks should perform equal work of equal value

• Data splitting

– Data must be divided to run on separate cores

• Data dependency

– Synchronization is needed

• Testing and debugging
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Recall Process Structure

Kernel Space

User space

Process



Similarly…

• Thread should also include
– Data/resources in user-space memory
– Structure in kernel

• How to provide thread support?
– User thread

• Implement in user space

– Kernel thread
• Supported and managed by kernel

• Thread models (relationship between user/kernel thread)
– Many-to-one
– One-to-one
– Many-to-many
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Thread models

• Many-to-One Model
– All the threads are mapped to one 

process structure in the kernel.

– Merit
• Easy for the kernel to implement.

– Drawback
• When a blocking system call is called, 

all the threads will be blocked

– Example. Old UNIX & green thread 
in some programming languages.

22

Kernel
Space

User
Space

Process
Structure

Many-to-one model



Thread models

• One-to-One Model
– Each thread is mapped to a process or 

a thread structure

– Merit: 
• Calling blocking system calls only block 

those calling threads
• A high degree of concurrency

– Drawback:
• Cannot create too many threads as it is 

restricted by the size of the kernel 
memory

– Example. Linux and Windows follow 
this thread model
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Scheduling – why & who cares?

• If a scheduler only interests in processes…
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Process-based Scheduler

thread lib thread lib thread lib thread lib

A thread library needs 
to implements its only 
scheduling policy. I only set which process to 

run, and I don’t know what 
is a thread.



Scheduling – why & who cares?

• If a scheduler only interests in threads…
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Thread-based Scheduler

The scheduler doesn’t know what 
is a process; it only knows threads.

Then, a process, without multi-
threading, is actually one thread 
for the scheduler.since kernel 

version 2.6!



Thread models

• Many-to-many Model

– Multiple threads are mapped to 
multiple structures (group 
mapping)

– Merit: 

• Create as many threads as 
necessary

• Also have a high degree of 
concurrency
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Kernel
Space

User
Space

Many-to-many model
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Thread Libraries

• A thread library provides the programmer with an 
API for creating and managing threads

– Two ways of implementation: User-level or kernel-level

• Three main thread libraries

– POSIX Pthreads (user-level or kernel-level)

– Windows (kernel-level)

– Java (implemented using Windows API or Pthreads)
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Creating Multiple Threads

• Asynchronous threading

– Parent resumes execution after creating a child

– Parent and child execute concurrently

– Each thread runs independently 

• Little data sharing 

• Synchronous threading

– Fork-join strategy: Parent waits for children to terminate 

• Significant data sharing
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The Pthreads Library

• Pthreads: POSIX standard defining an API for 
thread creation and synchronization.
– Specification, not implementation

• How to use Pthreads?
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Process Thread

Creation fork() pthread_create()

I.D. Type PID, an integer “pthread_t”, a structure

Who am I? getpid() pthread_self()

Termination exit() pthread_exit()

Wait for child 
termination

wait() or waitpid() pthread_join()

Kill? kill() pthread_kill()



ISSUE 1: Thread Creation
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Thread creation – pthread_create()

32

Thread Function

Main Function

5  int main(void) {
 6      pthread_t tid;
 7      pthread_create(&tid, NULL, hello, “hello world”);
 8      pthread_join(tid, NULL);
 9      return 0;
10  }

1  void * hello( void *input ) {
 2      printf(“%s\n”, (char *) input);
 3      pthread_exit(NULL);
 4  }



Thread creation – pthread_create()
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Thread Function

Main Function

1  void * hello( void *input ) {
 2      printf(“%s\n”, (char *) input);
 3      pthread_exit(NULL);
 4  }

5  int main(void) {
 6      pthread_t tid;
 7      pthread_create(&tid, NULL, hello, “hello world”);
 8      pthread_join(tid, NULL);
 9      return 0;
10  }

Main Thread

At the beginning, 
there is only one 
thread running: the 
main thread.



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
 6      pthread_t tid;
 7      pthread_create(&tid, NULL, hello, “hello world”);
 8      pthread_join(tid, NULL);
 9      return 0;
10  }

Main Thread

1  void * hello( void *input ) {
 2      printf(“%s\n”, (char *) input);
 3      pthread_exit(NULL);
 4  }

pthread_
create()

Hello Thread

The hello thread is 
created!

It is running “together” 
with the main thread.



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
 6      pthread_t tid;
 7      pthread_create(&tid, NULL, hello, “hello world”);
 8      pthread_join(tid, NULL);
 9      return 0;
10  }

1  void * hello( void *input ) {
 2      printf(“%s\n”, (char *) input);
 3      pthread_exit(NULL);
 4  }

This sets the thread function of the to-
be-created thread as: hello().

The pthread_create() 
function allows one 
argument to be passed to 
the thread function.

Remember: A thread starts with one specific function (thread function)



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
 6      pthread_t tid;
 7      pthread_create(&tid, NULL, hello, “hello world”);
 8      pthread_join(tid, NULL);
 9      return 0;
10  }

Main Thread

1  void * hello( void *input ) {
 2      printf(“%s\n”, (char *) input);
 3      pthread_exit(NULL);
 4  }

Hello Thread

Remember wait() 
and waitpid()?

pthread_join() 
performs similarly.

Blocked



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
 6      pthread_t tid;
 7      pthread_create(&tid, NULL, hello, “hello world”);
 8      pthread_join(tid, NULL);
 9      return 0;
10  }

Main Thread

1  void * hello( void *input ) {
 2      printf(“%s\n”, (char *) input);
 3      pthread_exit(NULL);
 4  }

Hello Thread

Termination of the 
target thread causes 
pthread_join() 
to return.

Blocked



ISSUE 2: Passing parameters
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Thread creation – passing parameter

39

Thread Function

Main Function

7  int main(void) {
 8      pthread_t tid;
 9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n”, input);
14      return 0;
15  }

1  void * do_your_job( void *input ) {
 2      printf(“child = %d\n”, *( (int *) input) );
 3      *((int *) input) = 20;
 4      printf(“child = %d\n”, *( (int *) input) );
 5      pthread_exit(NULL);
 6  }

Guess: What is 
the output? 

$ ./pthread_evil_1
main = 10
child = 10
child = 20
main = 20
$

Each thread has a 
separated stack.

Why do we have 
such results?



Thread creation – passing parameter
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Global

Dynamic

Code

Local
(main thread)

7  int main(void) {
 8      pthread_t tid;
 9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Well, we all know that the local variable “input” is in the 
stack for the main thread.

1  void * do_your_job( void *input ) {
 2      printf(“child = %d\n”, *( (int *) input) );
 3      *((int *) input) = 20;
 4      printf(“child = %d\n”, *( (int *) input) );
 5      pthread_exit(NULL);
 6  }



7  int main(void) {
 8      pthread_t tid;
 9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Thread creation – passing parameter
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Global

Dynamic

Code

Local
(main thread)

Yet…the stack for the new thread is not on another process, but is on the 
same piece of user-space memory as the main thread.

Local
(new thread)

1  void * do_your_job( void *input ) {
 2      printf(“child = %d\n”, *( (int *) input) );
 3      *((int *) input) = 20;
 4      printf(“child = %d\n”, *( (int *) input) );
 5      pthread_exit(NULL);
 6  }



7  int main(void) {
 8      pthread_t tid;
 9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Thread creation – passing parameter
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Global

Dynamic

Code

Local
(main thread)

The pthread_create() function only passes an address to the new thread.
Worse, the address is pointing to a variable in the stack of the main thread!

Local
(new thread)

1  void * do_your_job( void *input ) {
 2      printf(“child = %d\n”, *( (int *) input) );
 3      *((int *) input) = 20;
 4      printf(“child = %d\n”, *( (int *) input) );
 5      pthread_exit(NULL);
 6  }



7  int main(void) {
 8      pthread_t tid;
 9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Thread creation – passing parameter

43

Global

Dynamic

Code

Local
(main thread)

Therefore, the new thread can change the value in the main 
thread, and vice versa.

Local
(new thread)

1  void * do_your_job( void *input ) {
 2      printf(“child = %d\n”, *( (int *) input) );
 3      *((int *) input) = 20;
 4      printf(“child = %d\n”, *( (int *) input) );
 5      pthread_exit(NULL);
 6  }



ISSUE 3: Multiple Threads

44



Thread creation – multiple threads
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Thread Function

Main Function

6  int main(void) {
 7      int i;
 8      pthread_t tid[5];
 9  
10      for(i = 0; i < 5; i++)
11          pthread_create(&tid[i], NULL, do_your_job, &i);
12      for(i = 0; i < 5; i++)
13          pthread_join(tid[i], NULL);
14      return 0;
15  }

1  void * do_your_job(void *input) {
 2      int id = *((int *) input);
 3      printf("My ID number = %d\n", id);
 4      pthread_exit(NULL);
 5  }

Waiting on several 
threads: enclose 
pthread_join() 
within a for loop



ISSUE 4: Return Value
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Thread termination – passing return value
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Thread Function

Main Function

7  int main(void) {
 8 pthread_t tid;
9 int input = 10, *output;
10 pthread_create(&tid, NULL, do_your_job, &input);
11 pthread_join(tid,  (void **) &output );
12 return 0;
13  }

1  void * do_your_job(void *input) {
 2 int *output = (int *) malloc(sizeof(int));
3 srand(time(NULL));
4 *output = ((rand() % 10) + 1) * (*((int *) input));
5 pthread_exit( output );

 6  } void pthread_exit(void *return_value);

Together with termination,  a pointer to a global 
variable or a piece of dynamically allocated 
memory is returned to the main thread.

Using pass-by-reference, a pointer 
to the result is received in the main 
thread.



Other Libraries

• For Windows threads and Java threads, you can 
refer to the textbook if you are interested in.
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Implicit Threading

50

• Applications are containing hundreds or even thousands of 
threads

– Program correctness is more difficult with explicit threads

• How to address the programming difficulties?

– Transfer the creation and management of threading from 
programmers to compilers and run-time libraries 

– Implicit threading

• We will introduce two methods

– Thread Pools

– OpenMP



Thread Pools

• Problems with multithreaded servers

– Time required to create threads, which will be discarded 
once completed their work

– Unlimited threads could exhaust the system resources

• How to solve?

– Thread pool

– Idea

• Create a number of threads in a pool where they wait for work

– Procedure

• Awakens a thread if necessary

• Returns to the pool after completion

• Waits until one becomes free if the pool contains no available thread
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Thread Pools
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• Advantages

– Usually slightly faster to service a request with an 
existing thread than create a new thread

– Allows the number of threads in the application(s) to be 
bound to the size of the pool



OpenMP

53

• Provides support for parallel 
programming in shared-memory 
environments

• Set of compiler directives and an API 
for C, C++, FORTRAN 

• Identifies parallel regions – blocks of 
code that can run in parallel

When OpenMP encounters the 
directive, it creates as many threads 
as there are processing cores

#pragma omp parallel for 

for(i=0;i<N;i++) { 

c[i] = a[i] + b[i]; 

} 

Parallel for loop
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Semantics of fork() and exec()
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• Two key system calls for processes: fork,exec

• fork(): Some UNIX systems have two versions 

– The new process duplicates all threads, or

– Duplicates only the thread that invoked fork()

• exec(): usually works as normal 

–  Replace the running process - including all threads



Signal Handling

• Signals are used in UNIX systems to notify a process that a 
particular event has occurred

– Synchronous signal and asynchronous signal

– Default handler or user-defined handler

• Where should a signal be delivered in multi-threaded program?

– Deliver the signal to the thread to which the signal applies

– Deliver the signal to every thread in the process

– Deliver the signal to certain threads in the process

– Assign a specific thread to receive all signals for the process

• Deliver a signal to a specified thread with Pthread

– pthread_kill(pthread_t tid, int signal)
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Thread Cancellation
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• Terminating a thread before it has finished

– Why needed? 

– Example: Close a browser when multiple threads are loading 
images

• Two general approaches

– Asynchronous cancellation terminates the target thread 
immediately

• Problem: Troublesome when canceling a thread which is updating 
data shared by other threads

– Deferred cancellation allows the target thread to periodically 
check if it should be cancelled (can be canceled safely)



Thread Cancellation (Cont.) - Pthreads

58

• Pthreads code example

– pthread_cancel()

– Indicates only a request

• Three cancelation modes

• Default: deferred

– Cancelation occurs only when it reaches a cancelation point, can 
be established by  pthread_testcancel()



Thread-Local Storage

59

• Some applications, each thread may need its own copy of 
certain data

– Transaction processing system: service each transaction (with a 
unique identifier) in a thread 

– How about local variables? 

• Visible only during a single function invocation

• Thread-local storage (TLS) allows each thread to have its 
own copy of data

– TLS is visible across function invocations

– Similar to static data

– TLS data are unique to each thread



Summary of Threads

• Virtually all modern OSes support multi-threading
– A thread is a basic unit of CPU utilization
– Each comprises a thread ID, a program counter, a register set, 

and a stack
– All threads within a process share code section, data section, 

other resources like open files and signals

• You should take great care when writing multi-
threaded programs

• You also have to take care of (will be talked later):
– Mutual exclusion and 
– Synchronization
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End of Chapter 4
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