
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization

1

Story so far…

• Process concept + operations

– Programmer’s perspective + kernel’s perspective

• Thread

– Lightweight process

• We mainly talked about the stuffs related to a single
process/thread, what if multiple processes exist…

2

3

Processes

• The processes within a system may be

– independent or

• Independent process cannot affect or be affected by other
processes

– cooperating

• Cooperating process can affect or be affected by other
processes

• Note: Any process that shares data with others is a
cooperating process

4

Cooperating Processes

• Why we need cooperating processes

– Information sharing

• e.g., shared file

– Computation speedup

• executing subtasks in parallel

– Modularity

• dividing system functions into separate processes

– Convenience

• single user can have multiple processes to execute many tasks

5

P

P

P

Inter-process communication (IPC)
 - What and how?

6

Interprocess Communication

• IPC: used for exchanging data between processes

– Cooperating processes need

• interprocess communication (IPC) for exchanging data

• How to illustrate?

– Paradigm for cooperating processes

– Producer-consumer problem, useful metaphor for many
applications (abstracted problem model)

• producer process produces information that is consumed by a
consumer process

• At least one producer and one consumer

7

Two models

• Two (abstracted) models of IPC

– Shared memory

• Establish a shared memory region, read/write to shared region

• Accesses are treated as routine memory accesses

• Faster

8

Two models

• Two (abstracted) models of IPC

– Message passing

• Exchange message

• Require kernel intervention

• Easier to implement in distributed system

Shared Memory

• Producer-consumer problem

– A buffer is needed to allow processes to run concurrently

9

A buffer
-It is a shared object;
-It is a queue (imagine that it is an array implementation of queue).

A producer
process

-It produces a unit of data, and
-writes that a piece of data to the tail of the buffer at one time.

A consumer
process

-It removes a unit of data from the head of the bounded buffer at
one time.

bounded/unbounded buffer

Producer Consumerenqueue dequeue

Shared Memory

10

Producer-
consumer

requirement #1

When the producer wants to
(a) put a new item in the buffer, but
(b) the buffer is already full…

Producer-
consumer

requirement #2

When the consumer wants to
(a) consumes an item from the buffer, but
(b) the buffer is empty…

Then,
(1) The producer should be suspended, and
(2) The consumer should wake the producer up after she has

dequeued an item.

Then,
(1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has

enqueued an item.

• Focus on bounded buffer: what are the requirements?

11

Shared Memory

item next_produced;

while (true) {

 /* produce an item in next produced */

 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

}

item next_consumed;

while (true) {
 while (in == out)

 ; /* do nothing */
 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item */

}

#define BUFFER_SIZE 10
typedef struct {
 . . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Shared memory by producer
& consumer processes

Producer

Consumer

in (producer)out (consumer)

…

Only allows BUFFER_SIZE-1
items at the same time. Why?

12

Message Passing

• Communicating processes may reside on different
computers connected by a network

• IPC facility provides two operations:
– send(message) + receive(message)

• If processes P and Q wish to communicate
– Establish a communication link between them

– Exchange messages via send/receive

P

Q

Message
passing

13

Message Passing (Cont.)

• Implementation issues (logical):

– Naming: Direct/indirect communication

– Synchronization: Synchronous/asynchronous

– Buffering

14

Naming

• How to refer to each other?

• Direct communication: explicitly name each other

– Operations (symmetry)
• send (Q, message) – send a message to process Q

• receive(P, message) – receive a message from process P

– Properties of communication link

• Links are established automatically (every pair can establish)

• A link is associated with exactly one pair of processes

• Between each pair, there exists exactly one link

– Disadvantage: limited modularity (hard-coding)

15

Naming

• How to refer to each other?

• Indirect communication: sent to and received from
mailboxes (ports)

– Operations
• send (A, message) – send a message to mailbox A

• receive(A, message) – receive a message from mailbox A

– Properties of communication link

• A link is established between a pair of processes only if both
members have a shared mailbox

• A link may be associated with more than two processes

• Between each pair, a number of different links may exist

16

Issues of Indirect Communication

• ISSUE1: Who receives the message when multiple
processes are associated with one link?

– Who gets the message?

– Policies
• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver (based on an algorithm).
Sender is notified who the receiver was.

• ISSUE2: Who owns the mailbox?

– The process (ownership may be passed)

– The OS (need a method to create, send/receive, delete)

P1 Mailbox
P2

P3

17

Synchronization

• How to implement send/receive?

– Blocking is considered synchronous
• Blocking send - the sender is blocked until the msg is received

• Blocking receive - the receiver is blocked until a msg is available

– Non-blocking is considered asynchronous
• Non-blocking send - the sender sends the message and resumes

• Non-blocking receive - the receiver receives a valid msg or null

• Different combinations are possible

– When both send and receive are blocking, we have a
rendezvous between the processes.

– Other combinations need buffering.

18

Buffering

• Different combinations are possible

– When both send and receive are blocking, we have a rendezvous
between the processes.

– Other combinations need buffering.

• Messages reside in a temporary queue, which can be
implemented in three ways

– Zero capacity – no messages are queued on a link,
sender must wait for receiver (no buffering)

– Bounded capacity – finite length of n messages,
sender must wait if link is full

– Unbounded capacity – infinite length, sender never waits

19

P

P

P

Inter-process communication (IPC)
 - What and how?
 - POSIX shared memory

POSIX Shared Memory

• POSIX shared memory is organized using memory-
mapped file

– Associate the region of shared memory with a file

• Illustrate with the producer-consumer problem

– Producer

– Consumer

20

POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

21

Name of the shared memory object

Create the object if it does not exist

Open for reading & writing

Directory permissions

POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

– Configure object size
• ftruncate(shm_fd, SIZE);

22

File descriptor for the shared mem. Obj.

Size of the shared-memory object

POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

– Configure object size
• ftruncate(shm_fd, SIZE);

– Establish a memory-mapped file containing the object
• ptr = mmap(0,SIZE, PROT_WRITE,MAP_SHARED,shm_fd,0);

23

Allows writing to the object
(only writing is necessary for producer)

Changes to the shared-memory object will
be visible to all processes sharing the object

POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

24

Open for read only

POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

– Memory map the object
• ptr = mmap(0,SIZE, PROT_READ,MAP_SHARED,shm_fd,0);

25

Allows reading to the object
(only reading is necessary for consumer)

POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

– Memory map the object
• ptr = mmap(0,SIZE, PROT_READ,MAP_SHARED,shm_fd,0);

– Remove the shared memory object
• shm_unlink(name);

26

POSIX Shared Memory – Complete Solution

27

Producer Consumer

Direct access to the shared memory region

28

P

P

P

Inter-process communication (IPC)
 - What and how?
 - POSIX shared memory
 - Sockets

29

Sockets

• A socket is defined as an endpoint for
communication (over a network)

– A pair of processes employ a pair of sockets

– A socket is identified by an IP address and a port
number

– All ports below 1024 are used for standard services

• telnet server listens to port 23

• FTP server listens to port 21

• HTTP server listens to port 80

30

Sockets

• Socket uses a client-server architecture

• All connections must be unique

– Establishing a new connection on the same host needs another
port (>1024)

• Special IP address 127.0.0.1 (loopback) refers to itself

– Allow a client and server on the same host to communicate using
the TCP/IP protocol

➢ Server waits for incoming client
requests by listening to a specific port

➢ Accepts a connection from the client
socket to complete the connection

31

Example in Java

• Three types of sockets

– Connection-oriented (TCP), Connectionless (UDP), Multicast –
data can be sent to multiple recipients

32

P

P

P

Inter-process communication (IPC)
 - What and how?
 - POSIX shared memory
 - Sockets
 - Pipes

What is pipe?

• Pipe is a shared object.

– Using pipe is a way to realize IPC.

– Acts as a conduit allowing two processes to
communicate.

33

ls lessdata

An IPC Example

ls | less

pipe

34

Pipes

• Four issues:

– Is the communication unidirectional or bidirectional?

– In the case of two-way communication, is it half or full-
duplex?

– Must there exist a relationship (i.e., parent-child)
between the communicating processes?

– Can the pipes be used over a network?

• Two common pipes

– Ordinary pipes and named pipes

Ordinary Pipes

• Ordinary pipes (no name in file system)
– Ordinary pipes are used only for related processes

(parent-child relationship)
• Processes must reside on the same machine

– Ordinary pipes are unidirectional (one-way
communication)

– Ceases to exist after communication has finished

• Ordinary pipes allow communication in standard
producer-consumer style
– Producer writes to one end (write-end)

– Consumer reads from the other end (read-end)

35

UNIX Pipe

• UNIX treats a pipe as a special file (child inherits it
from parent)

– Create: pipe(int fd[]);

• fd[0]: read end

• fd[1]: write end

– Access: Ordinary read() and write() system calls

36

ls lessByte stream
Unidirectional

ls | less

pipe
Write end

fd[1]

Read end
fd[0]

UNIX Pipe

• Pipes are anonymous (no name in file system), then
how to share?

– fork() duplicates parent’s file descriptors

– Parent and child use each end of the pipe

37

Sharing

UNIX Pipe

38

Create a child process

Parent process
Use the write end only

Child process
Use the read end only

unidirectional (one-
way communication

Pipe - Shell Example

39

Programmer’s point of view.

Shell

pipe

pipe();

ls

fork();

write(); less

fork();

read();

ls | less

Pipe – Shell Example

40

Kernel’s point of view.

Shell

ls less

pipe(); read();write();

enqueue dequeue

The pipe() system call
creates a piece of shared
storage in the kernel
space!

The pipe() system call
creates a piece of shared
storage in the kernel
space!

Yet, the pipe is more than
a storage: it is a FIFO
queue with finite space.

ls | less

Pipe – Shell Example

41

The producer-consumer model

ls less

read();write();

enqueue dequeue

Producer Consumer

More, this kind of application
demonstrates the producer-consumer
communication model.

Remember the two requirements of
the bounded buffer?

42

Named Pipes

• Named pipes (pipe with name in file system)
– No parent-child relationship is necessary (processes must reside

on the same machine)

– Several processes can use the named pipe for communication
(may have several writers)

– Continue to exist until it is explicitly deleted

– Communication is bidirectional (still half-duplex)

• Named pipes are referred to as FIFOs in UNIX

– Treated as typical files

– mkfifo(), open(), read(), write(), close()

Story so far…

• Interprocess communication (IPC)
– Necessary for cooperating processes
– Producer-consumer model

• IPC models
– Shared memory & message passing

• IPC schemes
– Shared memory
– Ordinary pipes (parent-child processes)
– FIFOs (processes on the same machine)
– Sockets (intermachine communication)

• More: Michael Kerrisk, “The Linux Programming Interface”
(http://www.man7.org/tlpi/)

43

IPC models – another point of view

44

Shared Objects Message Passing

Challenge. Coordination can only be
done by detecting the status of the

shared object.
E.g., is the pipe empty / full?

Challenge. Coordination relies on the
reliability and the efficiency of the

communication medium (and protocol).

E.g., pipes, shared memory, and regular
files.

E.g., socket programming, message
passing interface (MPI) library.

P1

P2

Shared
object

read &
write

P1

P2

Message
passing

	幻灯片 1: Ch5 Process Communication & Synchronization
	幻灯片 2: Story so far…
	幻灯片 3: Processes
	幻灯片 4: Cooperating Processes
	幻灯片 5
	幻灯片 6: Interprocess Communication
	幻灯片 7: Two models
	幻灯片 8: Two models
	幻灯片 9: Shared Memory
	幻灯片 10: Shared Memory
	幻灯片 11: Shared Memory
	幻灯片 12: Message Passing
	幻灯片 13: Message Passing (Cont.)
	幻灯片 14: Naming
	幻灯片 15: Naming
	幻灯片 16: Issues of Indirect Communication
	幻灯片 17: Synchronization
	幻灯片 18: Buffering
	幻灯片 19
	幻灯片 20: POSIX Shared Memory
	幻灯片 21: POSIX Shared Memory
	幻灯片 22: POSIX Shared Memory
	幻灯片 23: POSIX Shared Memory
	幻灯片 24: POSIX Shared Memory
	幻灯片 25: POSIX Shared Memory
	幻灯片 26: POSIX Shared Memory
	幻灯片 27: POSIX Shared Memory – Complete Solution
	幻灯片 28
	幻灯片 29: Sockets
	幻灯片 30: Sockets
	幻灯片 31: Example in Java
	幻灯片 32
	幻灯片 33: What is pipe?
	幻灯片 34: Pipes
	幻灯片 35: Ordinary Pipes
	幻灯片 36: UNIX Pipe
	幻灯片 37: UNIX Pipe
	幻灯片 38: UNIX Pipe
	幻灯片 39: Pipe - Shell Example
	幻灯片 40: Pipe – Shell Example
	幻灯片 41: Pipe – Shell Example
	幻灯片 42: Named Pipes
	幻灯片 43: Story so far…
	幻灯片 44: IPC models – another point of view

