
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization

-Part 2

1



2

P

P

P

IPC problem: Race condition



Evil source: the shared objects

• Pipe is implemented with the 
thought that there may be 
more than one process 
accessing it “at the same time”

• For shared memory and files, 
concurrent access may yield 
unpredictable outcomes

3

Process Process

read() write()

File structure 
in the kernel

data

Hard Disk



Understanding the problem…

4

Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1  attach to the shared memory X;
2  add 10 to X;
3  exit;

Guess what the final result should be?

High-level language for Program B

1  attach to the shared memory X;
2  minus 10 to X;
3  exit;

It may be 10, 0 or 20, can you believe it?



Understanding the problem…

5

Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1  attach to the shared memory X;
2  add 10 to X;
3  exit;

High-level language for Program B

1  attach to the shared memory X;
2  minus 10 to X;
3  exit;

Remember the flow of executing a program and the system hierarchy?



Understanding the problem…

6

Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1  attach to the shared memory X;
2  add 10 to X;
3  exit;

Partial low-level language for Program A

1    attach to the shared memory X;
......
2.1  load memory X to register A;
2.2  add 10 to register A;
2.3  write register A to memory X;
......
3    exit;

Guess what?  This code block is evil!

This operation 
is not atomic



Understanding the problem…

7

Process B

Shared memory - X

Value = 10

State:
Ready

Register A
Value = 0

Process A

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

The initial setting



8

Execution Flow #1



Problem not yet arise…

9

Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 10

Process A

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 1

1



Problem not yet arise…

10

Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 20

Process A

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 2

1

2



Problem not yet arise…

11

Process B

Shared memory - X

Value = 20

State:
Running

Register A
Value = 20

Process A

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 3

1

2

3



Problem not yet arise…

12

Process B

Shared memory - X

Value = 20

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 20

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Context Switching

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 4

2

1

3

4



Problem not yet arise…

13

Process B

Shared memory - X

Value = 20

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 5

1

2

3

4

5



Problem not yet arise…

14

Process B

Shared memory - X

Value = 10

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 6

1

2

3

4

5

6



15

Execution Flow #2



Problem arise…

16

Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 10

Process A

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 1

1



Problem arise…

17

Process B

Shared memory - X

Value = 10

Register A
Value = 10

Process A

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 2

Context Switching

State:
Ready

State:
Running

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

1 2



Problem arise…

18

Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 3

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Context Switching

State:
Running

State:
Ready

1 2

3



Problem arise…

19

Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 4

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Context Switching

State:
Ready

State:
Running

1 2

3 4



Problem arise…

20

Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

State:
Running

1 2

3 4

HELP!!  No matter which process runs next, the result is 
either 0 or 20, but not 10!

The final result depends on the execution sequence!



Race condition – the curse

• The above scenario is called the race condition.

• A race condition means
– the outcome of an execution depends on a particular 

order in which the shared resource is accessed.

• Remember: race condition is always a bad thing and 
debugging race condition has no fun at all!
– It may end up …

• 99% of the executions are fine.

• 1% of the executions are problematic.

21



Race condition – the curse

• For shared memory and files, 
concurrent access may yield 
unpredictable outcomes
– Race condition

• Common situation
– Resource sharing occurs frequently in OS

• EXP: Kernel DS maintaining a list of opened 
files, maintaining memory allocation, 
process lists…

– Multicore brings an increased emphasis 
on multithreading
• Multiple threads share global variables and 

dynamically allocated memory

• Process synchronization is needed

22

Process Process

read() write()

File structure 
in the kernel

data

Hard Disk



Topics in Process Synchronization

23

Process Sychronization

concurrent accesses suffer 
from race condition

Guarantee mutual exclusion

Idea: How to achieve

Define critical section

How to implement

 Four requirements
 Software-based proposals

 Disabling interrupts
 strict alternation
 peterson’s solution
 mutex lock
 Semaphore (best choice)

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem

Cooperating Processes

Semaphore Usage

Avoid deadlock

Solution

Application



24

P

P

P

Inter-process communication (IPC)
- Mutual exclusion

- what & how to achieve?

How to have 
peace?



Mutual Exclusion

25

Process BProcess A

Shared memory

add 10; minus 10;

Process BProcess A

Shared memory

add 10; minus 10;

Two processes playing with the same 
shared memory is dangerous.

We will face the curse - race condition.

The solution can be simple:

When I’m playing with the shared   
memory, no one could touch it.

This is called mutual exclusion.
A set of processes would not have the 
problem of race condition if mutual 
exclusion is guaranteed.



How to realize mutual exclusion?

• Kernel
– Preemptive kernels and nonpreemptive kernels

• Allows (not allow) a process to be preempted while it is 
running in kernel mode

– A nonpreemptive kernel is essentially free from race 
conditions on kernel data structures, and also easy to 
design (especially for SMP architecture)

– Why would anyone favor a preemptive kernel 
• More responsive

• More suitable for real-time programming

26



Mutual Exclusion

• More generally, how to realize?

27

Program code
of process 1

......

critical section

......

Program code
of process n

Shared Object (manipulated by n 
processes)
 Changing common variables
 Updating a table
 Writing a file
 …

Solution: To guarantee that when one process is executing in its critical 
section, no other process is allowed execute in its critical section.

Code for 
manipulating 
shared object

Code for 
manipulating 
shared object



Critical Section – General Structure

28

critical section

Section entry

Section exit

Program code

Critical sections is the code segment 
that is accessing the shared object.

Declaring the start of the critical section.

Declaring the end of the critical section.

As if telling other processes that:
“I start accessing the shared object.”

As if telling other processes that:
“I finish accessing the shared object.”

......

......

Reading

Writing

Shared Object

To guarantee that when one process is executing in its critical 
section, no other process is allowed execute in its critical section.

Reminder section



Critical Section – Example

29

Process BProcess A

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Need a section entry here

Need a section exit here

Need a section entry here

Need a section exit here

Important concept here.

Both regions are called critical sections, 
yet they can be different.

Critical Section



Summary…for the content so far…

• Race condition is a problem.
– It makes a concurrent program producing unpredictable

results if you are using shared objects as the 
communication medium.

– The outcome of the computation totally depends on the 
execution sequences of the processes involved.

• Mutual exclusion is a requirement.
– If it could be achieved, then the problem of the race 

condition would be gone.

– Mutual exclusion hinders the performance of parallel 
computations.

30



Summary…for the content so far…

• Defining critical sections is a solution.

– They are code segments that access shared objects.

– Critical section must be as tight as possible.

• Well, you can declare the entire code of a program to be a big 
critical section.

• But, the program will be a very high chance to block other 
processes or to be blocked by other processes.

– Note that one critical section can be designed for 
accessing more than one shared objects.

31



Summary…for the content so far…

• Implementing section entry and exit is a challenge.

– The entry and the exit are the core parts that guarantee 
mutual exclusion, but not the critical section.

– Unless they are correctly implemented, race condition 
would appear.

32



33

P

P

P

Inter-process communication (IPC)
- Mutual exclusion:

- how to achieve?
- how to implement?

(section entry and exit)

How to have 
peace?



Entry and exit implementation - requirements

• Requirement #1: Mutual Exclusion. No two processes 
could be simultaneously inside their critical sections.

• Requirement #2. Each process is executing at a nonzero 
speed, but no assumptions should be made about the 
relative speed of the processes and the number of CPUs.

34

Implication: when one process is inside its critical section, any attempts to go 
inside the critical sections by other processes are not allowed.

Implication: the solution cannot depend on the time spent inside the critical 
section, and the solution cannot assume the number of CPUs in the system.



Entry and exit implementation - requirements

• Requirement #3: progress. No process running outside its 
critical section should block other processes.

• Requirement #4: Bounded waiting. No process would have 
to wait forever in order to enter its critical section.

35

Implication: Only processes that are not executing in their reminder sections can 
participate in deciding which will enter its critical section.

Implication: There exists a bound or limit on the number of times that other 
processes are allowed to enter their critical sections after a process has made a 
request to enter its critical section (no processes should be starved to death).



A typical mutual exclusion scenario

36

Process A

Process B
BLOCKED

B tries to enter its critical 
section but A is in its 
critical section.

A leaves its critical section 
and B resumes execution 
accordingly.

Keys

Critical section 
entry

Inside Critical 
section

Critical section 
exit

We will be using this 
coloring scheme 
throughout this part.

Remember, it is always the entry blocks other 
processes, but not the critical section.

Shared object 
(if any)



Mutual Exclusion Implementation

• Challenges of Implementing section entry & exit

– Both operations must be atomic

– Also need to satisfy the above requirements

– Performance consideration

• Hardware solution

– Rely on atomic instructions

– test_and_set()

– compare_and_swap

37



Example: test_and_set()

• Definition

• Mutual exclusion 
implementation

38



Example: compare_and_swap()

• Definition

• Mutual exclusion 
implementation

39

How to satisfy 
bounded waiting?



Enhanced version

40

lock is initialized as false



Proposal #1 – disabling interrupt.
• Method

– Similar idea as nonpreemptive kernels
– To disable context switching when the process is 

inside the critical section.

• Effect
– When a process is in its critical section, no other 

processes could be able to run.

• Implementation
– A new system call should be provided.

• Correctness?
– Correct, but it is not an attractive solution.
– Not as feasible in a multiprocessor environment
– Performance issue (may sacrifice concurrency)

41

Critical Section

Interrupt disabled

Interrupt enabled

Program Code



Proposal #2: Mutex Locks

• Idea

– A process must acquire the lock before entering a 
critical section, and release the lock when it exits the 
critical section

– Using a new shared object to detect the status of other 
processes, and “lock” the shared object

42

1  acquire(){
2     while(!available)
3           ; /* busy waiting */
4     available = false;
5   }

1  release(){
2     available = true;
3   }

Shared object: “available” (lock)



Proposal #2: Mutex Locks

• Implementation
– Calls to acquire and release locks 

must be performed atomically

– Often use hardware instructions

• Issue
– Busy waiting: Waste CPU resource

• Spinlock

• Applications
– Multiprocessor system 

• When locks are expected to be held 
for short times

43

Critical Section

acquire();

release();

Program Code

Note that: all processes run the 
following same code.



Other software-based solutions

• Aim

– To decide which process could go into its critical section

44

Program code
of process 1

......

Critical section

• Key Issue

– Detect the status of processes (section entry)

• Need other shared variables

Section entry

Section exit

Program code
of process n

......

Critical section

Section entry

Section exit



Proposal #3: Strict alternation

• Method
– Using a new shared object to detect the status of other 

processes

45

Process 0 Process1

1  while (TRUE) {
2    while( turn != 0 )
3      ; 

4    critical_section();

5    turn = 1;

6    non_critical_section();
7  }

1  while (TRUE) {
2    while( turn != 1 )
3      ; 

4    critical_section();

5    turn = 0;

6    non_critical_section();
7  }

Shared object “turn” initial Value = 0

Allow to enter when 
turn == 0 

Allow to enter when 
turn == 1 

/* busy waiting */ /* busy waiting */
Entry

Exit



Proposal #3: Strict alternation

46

Process 0 Process1

1  while (TRUE) {
2    while( turn != 0 )
3      ; /* busy waiting */

4    critical_section();

5    turn = 1;

6    non_critical_section();
7  }

1  while (TRUE) {
2    while( turn != 1 )
3      ; /* busy waiting */

4    critical_section();

5    turn = 0;

6    non_critical_section();
7  }

Shared object “turn” initial Value = 0

Process 0

Process 1

turn = 0

turn = 1

turn = 0

The order of executing 
the critical section is 
alternating.



Proposal #3: Strict alternation - Cons

• Strict alternation seems good, yet, it is inefficient.

– Busy waiting wastes CPU resources.

• In addition, the alternating order is too strict.

– What if Process 0 wants to enter the critical section 
twice in a row?  NO WAY!

– Violate any requirement? 

47

Requirement #3. No process running outside its critical 
section should block other processes.



Proposal #4: Peterson’s solution

• How to improve the strict alternation proposal?

• The Peterson’s solution:

– Processes would act as a gentleman: if you want to 
enter, I’ll let you first

– No alternation is there

– Share two data items

• int turn; //whose turn to enter its critical section

• Boolean interested[2]; //if a process wants to enter

48



Proposal #4: Peterson’s solution

49

13  void leave_region( int process ) {    /* process: who is leaving */

14    interested[process] = FALSE;    /* I just left critical region */

15 }

Shared object: “turn” & 
“interested[2]”

1  int turn;                           /* who can enter critical section */

2  int interested[2] = {FALSE,FALSE};  /* wants to enter critical section*/

3

4  void enter_region( int process ) {  /* process is 0 or 1 */

5    int other;                        /* number of the other process */ 

6 other = 1-process;                /* other is 1 or 0 */

7    interested[process] = TRUE;       /* want to enter critical section */

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

Entry

Exit



Proposal #4: Peterson’s solution

50

Line 8 akes the other one the 
turn to run.

Of course, the process is 
willing to wait when she 
wants to enter the critical 
section.

“I’m a gentleman!”

The process always let 
another process to enter the 
critical region first although 
she wants to enter too.

1  int turn;

2  int interested[2] = {FALSE,FALSE};

3    

4  void enter_region( int process ) {

5    int other; 

6 other = 1-process;

7    interested[process] = TRUE;

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

13  void leave_region( int process ) {

14    interested[process] = FALSE;

15 }



Proposal #4: Peterson’s solution

51

1  int turn;

2  int interested[2] = {FALSE,FALSE};

3    

4  void enter_region( int process ) {

5    int other; 

6 other = 1-process;

7    interested[process] = TRUE;

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

13  void leave_region( int process ) {

14    interested[process] = FALSE;

15 }

Process 0 Process 1

enter_region(): 4-8

Context Switching

Context Switching

enter_region(): 9

Critical Section

Context Switching

Busy waiting

enter_region(): 4-8

Context Switching

leave_region()

Context Switching

Critical Section

turn = 1;

turn = 0;

turn = 0;
interested[1] = T;

interested[0] = F;

and the story goes on…

Can you show that the 
requirements are satisfied?



Proposal #4: Peterson’s solution

52

1  int turn;

2  int interested[2] = {FALSE,FALSE};

3    

4  void enter_region( int process ) {

5    int other; 

6 other = 1-process;

7    interested[process] = TRUE;

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

13  void leave_region( int process ) {

14    interested[process] = FALSE;

15 }

Process 0 Process 1

enter_region(): 4-7

Context Switching

Context Switching

enter_region(): 8-9

Context Switching

enter_region(): 4-7

Can you complete the flow?
(what is the difference?)

Can both processes progress?



Proposal #4: Peterson’s solution – issues

• Busy waiting has its own problem…

– An apparent problem: wasting CPU time.

– A hidden, serious problem: priority inversion problem.

• A low priority process is inside the critical region, but …

• A high priority process wants to enter the critical region.

• Then, the high priority process will perform busy waiting for a 
long time or even forever.

53

Low-priority
process

Not scheduled for a long time.

High-priority
process

High priority process 
created with preemption

Because it has a higher 
priority, it will sit on the CPU 
doing useless things.



Story so far…

54

Critical Section Problem

Disabling 
interrupts

Strict 
alternation

Peterson’s 
solution

Mutex
lock

Efficiency 
Concurrency

Violating 
requirement

Busy Waiting

Priority
inversion

Atomicity
implementation

Use other shared variables to detect process status



Final proposal: Semaphore

• In real life, semaphore is a flag signaling system.

– It tells a train driver (or a plane pilot) when to stop and 
when to proceed.

• When it comes to programming…

– A semaphore is a data type.

– You can imagine that it is an integer (but it is certainly 
not an integer when it comes to real implementation).

55

source: wikipedia.



Final proposal: Semaphore

• Semaphore is a data type (additional shared object)
– Denote the status or the number of resources

– Two types
• Binary semaphore: 0 or 1 (similar to mutex lock)

• Counting semaphore: control finite number of resources

• Accessed through two standard atomic operations
– down(): originally termed P (from Dutch proberen, “to 

test”), wait() in textbook
• Decrementing the count

– up(): originally termed V (from verhogen, “to increment”), 
signal() in textbook
• Incrementing the count

56



Final proposal: Semaphore

• Idea 

57

Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Semaphore  
S = 5

Initialize the semaphore to the number of resource instances



Final proposal: Semaphore

• Idea 

58

Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Acquire 
resource 
down()

Semaphore  
S = 4

Wish to use a resource, perform down() to decrement the count



Final proposal: Semaphore

• Idea 

59

Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Release
resource 
up()

Semaphore  
S = 5

Release a resource, perform up() to increment the count



Final proposal: Semaphore

• Idea 

60

Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Acquire 
resource 
down()

Acquire 
resource 
down()

Semaphore  
S = 0

When the count goes to 0, block the processes that wish to use 



typedef int semaphore;

Semaphore – Simple Implementation

61

1  void down(semaphore *s) {
2
3     while ( *s == 0 ) {
4          
5 ;//busy waiting
6
7      }
8     *s = *s – 1;
9
10  } 

1  void up(semaphore *s) {
2 
3
4
5    *s = *s + 1;
6
7  }

Section Entry: down()

Section Exit: up()

Data Type definition

Counting Semaphore: initialized to 
be the number of resources available



typedef int semaphore;

Semaphore – Address busy waiting

62

1  void down(semaphore *s) {
2    
3     while ( *s == 0 ) {
4        
5        special_sleep();
6        
7      }
8     *s = *s – 1;
9     
10  }

1  void up(semaphore *s) {
2   
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    
7  }

Section Entry: down()

Section Exit: up()

Data Type definition First issue: Busy waiting

Solution: block the process instead of 
busy waiting (place the process into a 
waiting queue)



typedef int semaphore;

Semaphore – Address busy waiting

63

Data Type definition First issue: Busy waiting

Solution: block the process instead of 
busy waiting (place the process into a 
waiting queue)

typedef struct{

int value;
struct process * list;

}semaphore;

Note 

Implementation: The waiting queue 
may be associated with the 
semaphore, so a semaphore is not 
just an integer



typedef int semaphore;

Semaphore – Atomicity

64

1  void down(semaphore *s) {
2    
3     while ( *s == 0 ) {
4        
5        special_sleep();
6        
7      }
8     *s = *s – 1;
9     
10  }

1  void up(semaphore *s) {
2   
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    
7  }

Section Entry: down()

Section Exit: up()

Data Type definition
Second issue:  Atomicity (both 
operations must be atomic)

Solution: Disabling interrupts



typedef int semaphore;

Semaphore – Atomicity

65

Section Entry: down()

Section Exit: up()

Data Type definition
Second issue:  Atomicity (both 
operations must be atomic)

Solution: Disabling interrupts

Also, only one process can invoke 
“disable_interrupt()”. Later 
processes would be blocked until 
“enable_interrupt()” is called.

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }

1  void up(semaphore *s) {
2    disable_interrupt();
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    enable_interrupt();
7  }



typedef int semaphore;

Semaphore – The code

66

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }

1  void up(semaphore *s) {
2    disable_interrupt();
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    enable_interrupt();
7  }

Section Entry: down()

Section Exit: up()

Data Type definition
Why need these two statements?

Disabling interrupts may sacrifice 
concurrency, so it is essential to keep the 
critical section as short as possible



Semaphore – details

67

Process 1234

Semaphore  X
Value = 0

1234

Waiting List

Suppose that process 1234 is willing to access 
the shared resource (enter its critical section), 
but no resource is available

Section Entry: down()

down(X)

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }



Semaphore – details 

68

1234

Waiting List

2468

Process 1234 Process 2468

Semaphore  X
Value = 0

wakeupwakeup

Process 1357

Section Exit: up()

up(X)

1  void up(semaphore *s) {
2    disable_interrupt();
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    enable_interrupt();
7  }

Semaphore  X
Value = 1



Semaphore – details

69

Process 1234 Process 2468

Section Entry: down()

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }

down(X)

Note that it is impossible for two 
blocked processes to get out of the 
down() simultaneously.

Why? 

Only one process can invoke 
disable_interrupt()

Only one process can manipulate 
this shared variable

here



Semaphore – in action

• Add them together…

70

semaphore *s; 
*s = 1;      /* initial value */

1  while(TRUE) {

2     down(s);

3     critical_section();

4     up(s);

5  }

entry

exit

s=0 s=0

s=1

s=1

s=0

s=1

Either one of the processes can 
enter the critical section when 
the first process calls “up(s)”.

s=1



Summary…on semaphore

• More on semaphore…it demonstrates an important 
kind of operations – atomic operations.

• In other words, the entire up() and down() are 
indivisible.

– If it returns, the change must have been made;

– If it is aborted, no change would be made.

71

Definition of atomic operation 

- Either none of the instructions of an atomic operation were completed, or
- All instructions of an atomic operation are completed.



Summary…on critical section problem

• What happened is just the implementation of mutual 
exclusion (section entry and section exit).

• What is next?
– How to use semaphore to solve classic IPC problems
– Deadlock

72

Comments

Disabling interrupts Time consuming for multiprocessor systems, sacrifices concurrency.

Strict alternation Not a good one, busy waiting & violating one requirement.

Peterson’s solution Busy waiting & has a potential “priority inversion problem”.

Mutex lock Busy waiting, often relies on hardware instructions.

Semaphore BEST CHOICE.



Story so far…

• For shared memory and files, 
concurrent access may yield 
unpredictable outcomes
– Race condition

• To avoid race condition, mutual 
exclusion must be guaranteed
– Critical section

– Implementations (entry/exit)
• Hardware instructions 

• Disabling interrupts

• Strict alternation

• Peterson’s solution

• Mutex lock

• Semaphore

73

Process Process

read() write()

data

Shared objects



Semaphore Usage

• Semaphore can be used for

– Mutual exclusion (binary semaphore)

– Process synchronization (counting semaphore may be 
needed)

• How to do process synchronization w/ semaphore?

– Mutual exclusion + coordination (multiple semaphores)

– Careless design may lead to other issues

• Deadlock 

74



75

P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them 
not to fight.



76

Deadlock Example

• Problems when using semaphore
Process P0

......

Critical 
Section

down(X)
down(Y)

up(X)
up(Y)

Process P1

......

Critical 
Section

down(Y)
down(X)

up(Y)
up(X)

Scenario: P0 must wait until P1 executes up(Y), P1 
must wait until P0 executes up(X)

Deadlock



Deadlock Requirements

• Requirement #1: Mutual Exclusion. 

– Only one process at a time can use a resource

• Requirement #2. Hold and wait.

– A process must be holding at least one resource and 
waiting to acquire additional resources held by other 
processes

77



Deadlock Requirements

• Requirement #3: No preemption.

– A resource can be released only voluntarily by the 
process holding it after that process has completed its 
task

• Requirement #4. Circular wait.

– There exists a set {P0, P1, …, Pn} of waiting processes such 
that P0 waits for P1, P1 waits for P2, …, Pn–1 waits for Pn , 
Pn waits for P0

78



How to Handle Deadlocks

• Deadlock characterization: Deadlocks can be 
described using resource-allocation graph

– Set V is partitioned into two types:

• P = {P1, P2, …, Pn}:  processes 

• R = {R1, R2, …, Rm}: all resource types (each type may have 
multiple instances)

– Set E

• request edge – directed edge Pi  Rj

• assignment edge – directed edge Rj Pi

79

Pi

Rj

Pi

Rj



80

Examples



How to Handle Deadlocks

• Detect deadlock and recover

– Resource-allocation graph: detect the existence of a cycle

81

No deadlock

No cycles

Case 1: only one 
instance per resource 

type: deadlock

Contains a cycle



82

Examples

Deadlock No deadlock

• Detect deadlock and recover

– What if each resource has multiple instances



How to Handle Deadlocks

• Detect deadlock and recover

– What if each resource has multiple instances

• Matrix method: four data structures
– Existing (total) resources (𝑚 types): (𝐸1, 𝐸2, … , 𝐸𝑚)

– Available resources: (𝐴1, 𝐴2, … , 𝐴𝑚)

– Allocation matrix：
𝐶11 ⋯ 𝐶1𝑚
⋮ ⋱ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑚

– Request matrix: 
𝑅11 ⋯ 𝑅1𝑚
⋮ ⋱ ⋮

𝑅𝑛1 ⋯ 𝑅𝑛𝑚

83

(𝐶𝑖𝑗: # of type-j resources 

held by process i )

(𝑅𝑖𝑗: # of type-j resources 

requested by process i )

 Repeatedly check 𝑃𝑖 s.t. 𝑹𝑖 ≤ 𝑨? (𝑃𝑖 can be satisfied?)
 Yes: 𝑨 = 𝑨 + 𝑪𝑖 (release resources)
 No: End (remaining processes are deadlocked)



How to Handle Deadlocks

• Prevent/avoid deadlocks: Banker’s algorithm

• Idea: check system state defined by (E, 𝐴, 𝐶, 𝑅)

• Safe state: exist one running sequence to guarantee that all 
processes’ demand can be satisfied

• Unsafe state: Not exist any sequence to guarantee the demand
– It is not deadlock (it can still run for some time/processes may release 

some resources)

84

A 3 9

B 2 4

C 2 7

Existing resources

Maximum  demand

P
ro

cesse
s

A 3 9

B 4 4

C 2 7

A 3 9

B 0 -

C 2 7

A 3 9

B 2 4

C 7 7

A 3 9

B 2 4

C 0 -

Available: 3 Available: 1 Available: 5 Available: 0 Available: 7



How to Handle Deadlocks

• Prevent/avoid deadlocks: Banker’s algorithm

– For each request: safe (accept), unsafe (reject)

85

A 1 6

B 0 5

C 2 4

D 4 7

Existing resources

Maximum  demand

P
ro

cesse
s

Available: 3
Available: 2 Available: 1

A 1 6

B 1 5

C 2 4

D 4 7

A 1 6

B 2 5

C 2 4

D 4 7

Safe state Unsafe state

B requests 
one resource

reject

Running order: C D B A

The algorithm can also be extended to the case of multiple 
resources, but it needs to know the demand

B requests one 
resource

Accept

Initial state



86

How to Handle Deadlocks

• Ignore the problem and pretend that deadlocks 
never occur (stop functioning and restart manually)

– 鸵鸟算法（假装没发生）

– Used by most operating systems, including UNIX and 
windows

– Deadlocks occur infrequently, avoiding/detecting it is 
expensive

• A deadlock-free solution does not eliminate starvation



87

P

P

P

The Deadlock Problem

Classic IPC problems
- Dining philosopher problem
- Producer-consumer problem
- Reader-writer problem

Let’s teach them 
not to fight.



What are the problems?

• All the IPC classical problems use semaphores to 
fulfill the synchronization requirements.

88

Properties Examples

Producer-
Consumer 
Problem

Two classes of processes: producer and consumer;
At least one producer and one consumer.

FIFO buffer, 
such as pipe.

Dining 
Philosophy

Problem

They are all running the same program;
At least two processes.

Cross-road
traffic control.

Reader-Writer
Problem

Two classes of processes: reader and writer.
No limit on the number of the processes of each 

class.
Database.



89

P

P

P

The Deadlock Problem

Classic IPC problems
- Dining philosopher problem
- Producer-consumer problem
- Reader-writer problem

Let’s teach them 
not to fight.



Dining philosopher – introduction

• 5 philosophers, 5 plates of spaghetti, and 
5 chopsticks.

• The jobs of each philosopher are 
– to think and 
– to eat: They need exactly two chopsticks in 

order to eat the spaghetti.

• Question: how to construct a 
synchronization protocol such that
– they will not result in any deadlocking 

scenarios, and
– they will not be starved to death

90



91

Dining philosopher – introduction

Philosophers

Chopsticks

Spaghetti

Consider to have
infinite supply.

Process
Process

Process
Process

Process

Shared 
Object

Shared 
Object

Shared 
Object

Shared 
Object

Shared 
Object



92

Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

Chopstick 4 Chopstick 2

Chopstick 3

The chopsticks are arranged in 
the following manner.

Philosopher i needs 
Chopsticks i and ((i+1) % N);



93

Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

Chopstick 4 Chopstick 2

Chopstick 3

Thinking or
waiting.

Eating.



94

Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

CHopstick 4 Chopstick 2

Chopstick 3

Thinking or
waiting.

Eating.

Two guys cannot share 
the same chopstick.



Dining philosopher – requirement #1

• Mutual exclusion

– What if there is no mutual exclusion?

• Then: while you’re eating, the two men besides you will and 
must steal all your chopsticks!

• Let’s proposal the following solution:

– When you are hungry, you have to check if anyone is 
using the chopstick that you need.

– If yes, you have to wait.

– If no, seize both chopsticks.

– After eating, put down all your chopsticks.

95



96

Dining philosopher – meeting requirement #1?

void take(int i) {
down(&chop[i]);

}

void put(int i) { 
up(&chop[i]);

}

#define N 5
semaphore chop[N];

1 void philosopher(int i) {
2     while (TRUE) {
3         think();

4         take(i);
5         take((i+1) % N);

6         eat();

7         put(i);
8         put((i+1) % N);
9     }
10 }

A quick question: what should be 
initial values?

Section 
Entry

Section 
Exit

Critical 
Section 

Shared object

Main Function

Helper Functions



97

Dining philosopher – meeting requirement #1?

1 void philosopher(int i) {
2     while (TRUE) {
3         think();

4         take(i);
5         take((i+1) % N);

6         eat();

7         put(i);
8         put((i+1) % N);
9     }
10 }

Main Function

Phil 1

Phil 2

Phil 3

Phil 4

Phil 5

Line 
1-4

Line 
1-4

Line 
1-4

Line 
1-4

Line 
1-4

Final Destination: Deadlock!



Dining philosopher – requirement #2

• Synchronization

– Should avoid any potential deadlocking execution 
order.

• How about the following suggestions:

– First, a philosopher takes a chopstick.

– If a philosopher finds that he cannot take the second 
one, then he should put down the first chopstick.

– Then, the philosopher goes to sleep for a while.

– Again, the philosopher tries to get both chopsticks until 
both ones are seized.

98



99

Dining philosopher – meeting requirement #2?

1 void take(int i) {
2   while(TRUE) {
3 down(&chop[i]);
4     if (isUsed((i+1)%N)) {
5 up(&chop[i]);
6       sleep(1);
7     }
8 else {
9       down(&chop[(i+1)%N]);
10       break;
11     }
12   }
13 }

1 void philosopher(int i) {
2     while (TRUE) {
3       think();
4       take(i);
5       eat();
6       up(&chop[i]);
7       up(&chop[(i+1)%N)]);
8     }
9 }

The code: meeting requirement #2? 



1-3

1-4

100

Dining philosopher – meeting requirement #2?

1 void take(int i) {
2   while(TRUE) {
3 down(&chop[i]);
4     if (isUsed((i+1)%N)) {
5 up(&chop[i]);
6       sleep(1);
7     }
8 else {
9       down(&chop[(i+1)%N]);
10       break;
11     }
12   }
13 }

1 void philosopher(int i) {
2     while (TRUE) {
3       think();
4       take(i);
5       eat();
6       up(&chop[i]);
7       up(&chop[(i+1)%N)]);
8     }
9 }

1

2

3
1-4

1-4

1-3

1-4

Zzz

4-6

Zzz

4-6

Zzz

5-6

2-3

2-3

2-3

Potential Problem: Philosophers are all busy 
but no progress were made!

Assume N = 3 (because the 
space is limited)



Dining philosopher – before the final solution.

• Before we present the final solution, let’s see what 
are the problems that we have.

101

Problems

Model a chopstick as a semaphore is intuitive, but is not working.

The problem is that we are afraid to “down()”, as that may lead to a deadlock.

Using sleep() to avoid deadlock is effective, yet bringing another problem.

We can always create an execution order that keeps all the philosophers busy, but 
without useful output.



Idea:

- The chopsticks are useless in the model!

- Need to guarantee: when “Philosopher x” is 
eating, the left and the right of “Philosoper x” 
cannot eat!

102

Dining philosopher – before the final solution.

Philosopher 1
CAN’T EATPhilosopher 4

CAN’T EAT

Philosopher 2
CAN EAT

Philosopher 3
CAN EAT

Philosopher 0
EATING



Dining philosopher – the final solution.

103

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

1  void philosopher(int i) {
2      think();
3      take(i);
4      eat();
5      put(i);
6  }

#define N 5
#define LEFT  ((i+N-1) % N)
#define RIGHT  ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object Main function

Section entry Section exit

Extremely important helper function

I will explain the 
code later.



Dining philosopher – the final solution.

104

#define N 5
#define LEFT  ((i+N-1) % N)
#define RIGHT  ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object

Going “left” and “right” in a 
circular manner.

The states of the philosophers, including 
“EATING”, “THINKING”, and “HUNGRY”.

Remember, this is shared array.

To guarantee mutual exclusive access to 
the “state[N]” array.

To fulfill the synchronization requirement.

Question. What are the initial values of the 
“s[N]” array?

Guess:

What is the meaning 
of the semaphore 
s[N]?



105

Dining philosopher – the final solution.

Section entry

Extremely important helper function

If both chopsticks are available, 
I eat. Else, I sleep.

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Question. What are they doing?

If they are eating, I can’t be eating.

#define N 5
#define LEFT  ((i+N-1) % N)
#define RIGHT  ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object



106

Dining philosopher – the final solution.

Section exit

Extremely important helper function

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

Wake up the one who can eat!

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Try to let the one on the left of 
the caller to eat.

Try to let the one on the right 
of the caller to eat.



107

Dining philosopher – the final solution.

Philosopher 1
THINKINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
THINKING

Note: no chopsticks objects 
will be shown in this 

illustration because we 
don’t need them now.

An illustration: How can 
Philosopher 1 start eating?



108

Dining philosopher – the final solution.

Philosopher 4
THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
HUNGRY

Call take();

To LEFT:
are you “EATING”?

To RIGHT:
are you “EATING”?

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry

Philosopher 1
THINKING



109

Dining philosopher – the final solution.

Philosopher 1
THINKINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
HUNGRY

Call take();

To LEFT:
are you “EATING”?

To RIGHT:
are you “EATING”?

Calling take().
but, it is blocked.

Why?

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry



110

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
EATING To LEFT:

are you “EATING”?

To RIGHT:
are you 
“EATING”?

Now, it is 
freed from 
blocking.

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry



111

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
HUNGRY

Philosopher 0
EATING

Blocked;
because of 

down(&s[1]);

To LEFT:
are you 
“EATING”?

To RIGHT:
are you 
“EATING”?

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry



112

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
EATING

Blocked;
because of 

down(&s[1]);

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry



113

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Call put();

To LEFT:
are you “HUNGRY”?

To RIGHT:
are you “HUNGRY”?

Blocked;
because of 

down(&s[1]);

An illustration: How can 
Philosopher 1 start eating?

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section exit



114

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

To RIGHT:
are you “EATING”?

To LEFT:
are you “EATING”?

Blocked;
because of 

down(&s[1]);

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section exit
1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

Call put();



115

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Call put();

Remove your 
blocked state by 
calling up(&s[1]);

Blocked;
because of 

down(&s[1]);

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section exit
1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }



116

Dining philosopher – the final solution.

Philosopher 1
EATINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Eventually...

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry



Dining philosopher - summary

• What is the shared object in the final solution?

– How to guarantee the mutual exclusion

117

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section entry Section exit



Dining philosopher - summary

• Think:

– Why the semaphore s[N] is needed

– How to set its initial value

118

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

Section entry

Extremely important helper function



Dining philosopher - summary

• Solution to IPC problem can be difficult to 
comprehend.

– Usually, intuitive methods failed.

– Depending on time, e.g., sleep(1), does not guarantee a 
useful solution.

• As a matter of fact, dining philosopher is not 
restricted to 5 philosophers.

119



120

P

P

P

The Deadlock Problem

Classic IPC problems
- Dining philosopher problem
- Producer-consumer problem
- Reader-writer problem

Let’s teach them 
not to fight.



Producer-consumer problem – recall

• Also known as the bounded-buffer problem.

121

A bounded 
buffer

-It is a shared object;
-Its size is bounded, say N slots.
-It is a queue (imagine that it is an array implementation of queue).

A producer 
process

-It produces a unit of data, and
-writes that a piece of data to the tail of the buffer at one time.

A consumer
process

-It removes a unit of data from the head of the bounded buffer at 
one time.

pipe – bounded

ls lessenqueue dequeue

Producer Consumer

ls  |  less



Producer-consumer problem – recall

122

Producer-
consumer

requirement #1

When the producer wants to 
(a) put a new item in the buffer, but
(b) the buffer is already full…

Producer-
consumer

requirement #2

When the consumer wants to
(a) consumes an item from the buffer, but
(b) the buffer is empty…

Then,
(1) The producer should be suspended, and
(2) The consumer should wake the producer up after she has 

dequeued an item.

Then,
(1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has 

enqueued an item.



Producer-consumer problem

• Pipe is working fine. Is it enough?

– What if we cannot use pipes?  

• Say, there are 2 producers and 2 consumers without any 
parent-child relationships?

– Then, the kernel can’t protect you with a pipe.

• In the following, we revisit the producer-consumer 
problem with the use of shared objects and 
semaphores, instead of pipe.

123



Design – Semaphores

• ISSUE #1: Mutual Exclusion. 

• ISSUE #2: Synchronization (coordination). 

– Remember the two requirements: 

• Insert an item  when it is not FULL

• Consume an item when it is not EMPTY

– Can we use a binary semaphore?

124

Solution: one binary semaphore (mutex)

Solution: two counting semaphores (full & empty)



125

Producer-consumer problem – solution

Note

The functions “insert_item()” and 
“remove_item()” are accessing the bounded 
buffer (codes in critical section).

The size of the bounded buffer is “N”.

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          
8          insert_item(item);
9          
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          
7          item = remove_item();
8          
9          
10          consume_item(item);
11      }
12  }



126

Producer-consumer problem – solution

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Note

Mutual exclusion requirement

Synchronization requirement

Shared object

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          
8          insert_item(item);
9          
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          
7          item = remove_item();
8          
9          
10          consume_item(item);
11      }
12  }



127

Producer-consumer problem – Understanding

Why we need three semaphores, “empty”, 
“full”, “mutex”?

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Shared object

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          
8          insert_item(item);
9          
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          
7          item = remove_item();
8          
9          
10          consume_item(item);
11      }
12  }



128

Producer-consumer problem – Understanding

Why we need three semaphores, “empty”, 
“full”, “mutex”?

mutex: 
What is its purpose?
Why is the initial value of mutex 1?

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          
10          consume_item(item);
11      }
12  }



129

Producer-consumer problem – Understanding

The “mutex” stands for mutual exclusion.

- down() and up() statements are the 
entry and the exit of the critical section, 
respectively.

What is the meaning of the initial value 1?

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Producer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          
11      }
12  }

Why we need three semaphores, “empty”, 
“full”, “mutex”?

mutex: 
what is its purpose?
Why is the initial value of mutex 1?



130

Producer-consumer problem – Understanding

Why we need three semaphores, “empty”, 
“full”, “mutex”?

How about “full” and “empty”?

Shared object

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;



Producer-consumer problem – Understanding

• The two variables are not for mutual exclusion, but 
for process synchronization.

– “Process synchronization” means to coordinate the set 
of processes so as to produce meaningful output.

131

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }



Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

Producer-consumer problem – Understanding

132

For “empty”,
- Its initial value is N;
- It decrements by 1 in each iteration.
- When it reaches 0, the producers sleeps.

So, does it sound like one of the requirements? The consumer wakes the producer 
up when it finds “empty” is 0.

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;



Producer-consumer problem – Understanding

• Semaphore can be more than mutual exclusion!

133

empty It represents the number of empty slots.

full It represents the number of occupied slots.

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }



Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

134

Producer-consumer problem – question

Question.
Can we swap Lines 6 & 7 of the producer?

Let us simulate what will happen with the 
modified code!

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }



Producer

Consumer

135

Producer-consumer problem – question

mutex = 1 empty = 0 full = N

running until Line 
10

We are showing the value of the 
semaphores before the producer is 
suspended.

Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }



Producer

Consumer

136

Producer-consumer problem – question

mutex = 0 empty = 0 full = N

because of
down(&mutex);
down(&empty);

Line 4–7* sleep

Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

running until Line 
10



Producer

Consumer

137

Producer-consumer problem – question

mutex = 0 empty = 0 full = N-1

context 
switching

Line 4–7* sleep

Line 4–6 sleep

Endless
Sleep

Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

running until Line 
10



Producer-consumer problem

• Deadlock happens when a circular wait appears

– The producer is waiting for the consumer to “up()” the 
“empty” semaphore, and

– the consumer is waiting for the producer to “up()” the 
“mutex” semaphore.

138

Producer Consumer

mutex

empty

I’m holding it. I’m waiting for it.

I’m holding it (because I’ve 
a chance to “up” it)I’m waiting for it.



Producer-consumer problem

• Deadlock happens when a circular wait appears

– The producer is waiting for the consumer to “up()” the 
“empty” semaphore, and

– the consumer is waiting for the producer to “up()” the 
“mutex” semaphore.

• No progress could be made by all processes + All 
processes are blocked.

– Implication: careless implementation of the producer-
consumer solution can be disastrous.

139



Summary on producer-consumer problem

• The problem can be divided into two sub-problems.

– Mutual exclusion.

• The buffer is a shared object. Mutual exclusion is needed. 

– Synchronization.

• Because the buffer’s size is bounded, coordination is needed.

140

Producer Consumer

Synchronization

Mutual Exclusion



Summary on producer-consumer problem

• How to guarantee mutual exclusion?

– A binary semaphore is used as the entry and the exit of 
the critical sections.

• How to achieve synchronization?

– Two semaphores are used as counters to monitor the 
status of the buffer.

– Two semaphores are needed because the two 
suspension conditions are different.

141



142

P

P

P

The Deadlock Problem

Classic IPC problems
- Dining philosopher problem
- Producer-consumer problem
- Reader-writer problem

Let’s teach them 
not to fight.



Reader-writer problem – introduction 

• It is a concurrent database problem.

143

Reader

Reader

Reader

Readers are
allowed to read
the content of the
database concurrently.



Reader-writer problem – introduction 

• It is a concurrent database problem.

144

A writer needs to lock
the database exclusively
so that the readers would
not retrieve inconsistent
data.

Writer

Reader

Reader

Reader



Reader-writer problem – introduction 

• It is a concurrent database problem.

145

In other words, a writer
is forbidden to write any
data before the readers
have finished reading.

Writer

Reader
Reader

Reader



Writer

Reader-writer problem – introduction 

• It is a concurrent database problem.

146

Reader

Writer

Reader

Of course, a writer will
also block the access from
other writers.



Reader-writer problem – subproblems

• A mutual exclusion problem.
– The database is a shared object.

• A synchronization problem.
– Rule 1. While a reader is reading, other readers is allowed to 

read the database.
– Rule 2. While a reader is reading, no writers is allowed to 

write to the database.
– Rule 3. While a writer is writing, no writers and readers are 

allowed to access the database.

• A concurrency problem.
– Simultaneous access for multiple readers is allowed and 

must be guaranteed.

147



Reader-writer problem – solution outline

• Mutual exclusion: relate the readers and the 
writers to one semaphore.

– This guarantees no readers and writers could proceed to 
their critical sections at the same time.

– This also guarantees no two writers could proceed to 
their critical sections at the same time.

148

Semaphore
database

Reader Writer



Reader-writer problem – solution outline

• Readers’ concurrency

– The first reader coming to the system “down()” the 
“database” semaphore.

– The last reader leaving the system “up()” the 
“database” semaphore.

149

Reader
Reader

Reader
Reader

Reader

Shared object
reader counter



Reader-writer problem – final solution

150

semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Reader FunctionShared object

Writer function

1  void writer(void) {
2      while(TRUE) {
3          prepare_write();
4          down(&db);

5          write_database();

6          up(&db);
7      }
8  }

Section Entry

Section Exit

Critical Section 

1  void reader(void) {
2      while(TRUE) {
3          down(&mutex);
4          read_count++;
5          if(read_count == 1)
6              down(&db);
7          up(&mutex);

8          read_database();

9          down(&mutex);
10          read_count--;
11          if(read_count == 0)
12              up(&db);
13          up(&mutex);
14          process_data();
15      }
16  }

Section Entry

Section Exit

Critical Section 



Reader-writer problem – final solution

151

semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Shared object
Guarantee the mutual exclusion 
between the readers and the writers.

Protect the “read_count” variable.

Keep track of the number of readers in 
the system.



Reader-writer problem – final solution

152

semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Shared object

Writer function

1  void writer(void) {
2      while(TRUE) {
3          prepare_write();
4          down(&db);

5          write_database();

6          up(&db);
7      }
8  }

Section Entry

Section Exit

Critical Section 

The writer is allowed to enter its 
critical section when no other 
process is in its critical section 
(protected by the “db” semaphore)



Reader-writer problem – final solution

153

semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Reader FunctionShared object

1  void reader(void) {
2      while(TRUE) {
3          down(&mutex);
4          read_count++;
5          if(read_count == 1)
6              down(&db);
7          up(&mutex);

8          read_database();

9          down(&mutex);
10          read_count--;
11          if(read_count == 0)
12              up(&db);
13          up(&mutex);
14          process_data();
15      }
16  }

The first reader “down()” the “db” 
semaphore so that no writers would be 
allowed to enter their critical sections.

The last reader “up()” the “db” semaphore 
so as to let the writers to enter their critical 
section.



Reader-writer problem – summary

• This solution does not limit the number of readers 
and the writers admitted to the system.

– A realistic database needs this property.

• This solution gives readers a higher priority over the 
writers.

– Whenever there are readers, writers must be blocked,  
not the other way round.

• What if a writer should be given a higher priority?

154



Summary on IPC problems

• The problems have the following properties in 
common:
– Multiple processes;

– Shared and limited resources;

– Processes have to be synchronized in order to generate 
useful output;

• The synchronization algorithms have the following 
requirements in common:
– Guarantee mutual exclusion;

– Uphold the correct synchronization among processes; 

– Deadlock-free.

155



Summary on Ch5

156

Race Condition

Processes Communication

Mutual Exclusion

How to realize

Define critical section

How to implement

 4 requirements & 5 schemes
 Semaphore

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem

Cooperating Processes

Process Synchronization

Deadlock

IPC methods

Shared memory, Pipes, Sockets


