
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Ch6
Process Scheduling

1

Outline

2

Process Communication &
Synchronization

Process Scheduling

Scheduler

Context-
switching

Process Process Process

Kernel Space

User Space

P

P

P

Scheduling
Alg

Process
lifecycle

Why scheduling is needed

• Process execution

– Consists of a cycle of CPU execution and I/O wait

– CPU burst + I/O burst

3

CPU burst duration

Why scheduling is needed

4

A system may contain many processes which are at different
states (ready for running, waiting for I/O)

Multiprogramming
Question. How to improve CPU
utilization (CPU is much faster than I/O)?

Question. How to improve system
responsiveness (interactive applications)?

Multitasking

Scheduling is required because the number of computing
resource – the CPU – is limited.

5

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

6

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Programmer’s point of view…

• This is how a fresh programmer looks at a process’
life cycle.

7

Running

Waiting
for results

Termination

Process
States

int main(void) {
int x = 1;
getchar();
return x;

} (1)

(2)

(3)

Kernel’s point of view…

8

New
(Just fork()-ed)

Waiting
(blocked)

Terminated
(Zombie)

Process
States

Ready Running

Big Picture

Kernel’s point of view…

9

Process
States

Ready Running

The birth of a process.

Except the first process “init”,
every process is created using
fork().

New

Waiting
(blocked)

Terminated

Kernel’s point of view…

10

Process
States

Ready Running

New

Waiting
(blocked)

Terminated

The process is ready.
It means it is ready to run but is not
running.

A process may become “ready” after...
- it is just created by fork();
- it has been running on the CPU

for some time and the OS chooses
another process to run;

- returning from blocked states.

All ready processes are kept on a list
called ready queue

Kernel’s point of view…

11

New

Waiting

Terminated

Process
States

Ready Running

Big PictureThe process is running.

The OS chooses this process to be
running on the CPU and changes
its state to “Running”.

Kernel’s point of view…

12

New

Waiting

Terminated

Process
States

Ready Running

Big PictureThe process is blocked.

While the process is running, it
may be waiting for something
and becomes blocked voluntarily.

Kernel’s point of view…

13

New

Waiting
(interruptible)

Terminated

Process
States

Ready Running

Big PictureExample. Reading a file.

Sometimes, the process has to wait for the response from the device and,
therefore, it is blocked.

Nevertheless, this blocking state is interruptible. E.g., “Ctrl + C” can get
the process out of the waiting state (but goes to termination state
instead).

Kernel’s point of view…

14

New

Waiting
(uninterruptible)

Terminated

Process
States

Ready Running

Big PictureSometimes, a process needs to wait for a resource but it doesn’t want to
be disturbed while it is waiting. In other words, the process wants that
resource very much. Then, the process status is set to the uninterruptible
status.

Kernel’s point of view…

15

New

Waiting

Terminated

Process
States

Ready Running

Big Picture
Return back to ready.

When response arrives, the status of the process changes back to Ready.
from any one of the blocked states.

Process data

Kernel’s point of view…

16

New

Waiting

Terminated

Process
States

Ready Running

Big Picture

The process is going to die.

The process may
- choose to terminate itself; or
- force to be terminated.

What is scheduling?

17

Running

So, what is process scheduling?

Mainly about how to make all the ready
processes become “Running”

This is the called short-term scheduling
or CPU scheduling.

Ready

Triggering Events

• When process scheduling happens:

18

A new process is
created.

When “fork()” is invoked and returns successfully.

Then, whether the parent or the child is scheduled is up to the
scheduler’s decision.

An existing process
is terminated.

The CPU is freed. The scheduler should choose another process to run.

A process waits for
I/O.

The CPU is freed. The scheduler should choose another process to run.

A process finishes
waiting for I/O.

The interrupt handling routine makes a scheduling request, if
necessary.

Key Issues

19

Running

Question #1: How to make a ready process
become running? (Note that the running
process may not terminate at that time)

Context switching

Ready

Question #2: How to decide which process should be running?

Scheduling criteria & scheduling algorithms

Question #3: How to design scheduling in a real/specific system?

Multiprocessor system, real-time system, algorithm evaluation

20

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

What is context switching?

• Before we can jump into the process scheduling
topic, we have to understand what “context
switching” is.

21

P1 P2 P3 P2

Scheduling is the procedure that decides which
process to run next.

Context switching is the actual switching procedure,
from one process to another.

Timer interrupt.

Hardware interrupt.

22

Switching from one process to another.

System Memory

Kernel-space

User-space
memory

Program counter

Other Register
values

Scheduler

Suppose this process gives up running on the CPU,
e.g., calling sleep(). Then:

Now, it is time for the scheduler to choose the next
process to run.

Running Waiting

sleep()

(1)

(2)

(3)

23

Switching from one process to another.

System Memory

Kernel-space

User-space
memory

Program counter

Other Register
values

Scheduler

sleep()

(1)

(2)

backup

(3)

But, before the scheduler can seize the control of the
CPU, a very important step has to be taken:

Backup all registers’ values.

The backup will be stored in the process structure

The context of a process

The union of the user-space
memory and the registers’

values of the process

24

Switching from one process to another.

System Memory

User-space
memory

Program counter

Other Register
values

load

Say, the scheduler decides to schedule another
process.

Then, the schedule has to load the context of the
new process into the main memory and into the
CPU.

(4)

We call the entire
operation:

context switching

Context switching has a price to pay…

• However, context switching may be expensive…
– Even worse, the target process may be currently stored

in the hard disk.

• So, minimizing the number of context switching
may help boost system performance.

25

CPU

Registers

Cache

Main Memory Hard DiskProcess A
(running)

Process B

Process C

Process D

Process E

Process F

Process G

Expensive I/O swap

My turn!

26

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Scheduling Criteria

• How to choose which algorithm to use in a
particular situation?

27

Algorithm Properties

CPU utilization

Response time

Throughput

Turnaround time Waiting time

Types

Preemptive

Nonpreemptive

Application

Multiprocessor
Real-time sys Application requirements and algorithm

properties may vary significantly

Classes of process scheduling

• Non-preemptive scheduling.

28

Cons
Bad for nowadays systems in which user experience and multi-tasking

are the primary goals.

Pros
Good for systems that emphasize the time in finishing tasks.

- Because the task is running without others’ interruption.

What is it?

When a process is chosen by the scheduler, the process would never
leave the scheduler until…

-the process voluntarily waits for I/O, or
-the process voluntarily releases the CPU, e.g., exit().

Where can I
find it?

Nowhere…but it could be found back in the mainframe computers in
1960s.

What is the
catch?

If the process is purely CPU-bound, it will seize the CPU from the time it is
chosen until it terminates.

Classes of process scheduling

• Preemptive scheduling.

29

Cons Bad for systems that emphasize the time in finishing tasks.

Where can I
find it?

Everywhere! This is the design of nowadays systems.

What is the
catch?

If that particular event is the periodic clock interrupt, then you can have
a time-sharing system.

What is it?

When a process is chosen by the scheduler, the process would never
leave the scheduler until…

-the process voluntarily waits for I/O, or
-the process voluntarily releases the CPU, e.g., exit().
-particular kinds of interrupts and events are detected.

Pros
Good for systems that emphasize interactiveness.

- Because every task will receive attentions from the CPU.

30

Performance measures

CPU
utilization

Throughput

Turnaround
time

In algorithm design:

What factors/performance measures
should be carefully considered?

Waiting
time

Response
time

31

Performance measures

CPU
utilization

Throughput

Turnaround
time

CPU utilization.

We want to keep CPU as busy as possible.

Theoretically, can range from 0-100%, but in
real system, range from 40%-90%

The higher the better

Waiting
time

Response
time

32

Performance measures

CPU
utilization

Throughput

Turnaround
time

Throughput.

Number of processes that are completed per
time unit

The higher the better

Waiting
time

Response
time

33

Performance measures

CPU
utilization

Throughput

Turnaround
time

Turnaround time.

Time to execute the process: interval from
the time of submission to the time of
completion (total running time + waiting
time+ doing I/O)

The lower the better

Waiting
time

Response
time

34

Performance measures

CPU
utilization

Throughput

Turnaround
time

Waiting time.

The time spent waiting in the ready queue

The lower the better

Waiting
time

Response
time

35

Performance measures

CPU
utilization

Throughput

Turnaround
time

Response time.

The time from the submission of a request
until the first response is produced (useful
measure for interactive systems)

The lower the better

Waiting
time

Response
time

36

Challenge

Question:

Can we optimize all the above
measures simultaneously?

Usually can not!

Fairness

Policy
enforcement

CPU-I/O
Balance

Little conflict

Big
conflict

Big
conflict

Design
Tradeoff

Common
goal

37

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

• Inputs to the algorithms.

Scheduling algorithms

38

P1 P2 P3 P4
A set of

processes

For each
process…

Arrival
Time

CPU
requirement

It is interesting to note that
this is a non-sense!

How can we know the
requirement of each task?

Online
VS

Offline

An offline scheduling algorithm assumes that you know all the
processes submitted to the system before hand. But, an online
scheduling algorithm does not have such an assumption.

Yet, every real scheduler has to work in an “online scenario”. So, we
have to think in an “online” way…

• Outputs of the algorithms.

Scheduling algorithms

39

Scheduling
order

Individual & average
turnaround time

Individual & average
waiting time

Number of context
switching

40

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

P1

First-come, first-served scheduling

• Example 1.

41

Task Arrival
Time

CPU
Req.

P1 0 24

P2 1 3

P3 2 3

Gantt Chart

P2 P3

Input

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
2

2
4

2
6

2
8

3
0

2
0

Output

Waiting time: P1 = 0; P2 = 23; P3 = 25;

Average waiting time = (0+23+25)/3 = 16;

Turnaround time: P1 = 24; P2 = 26; P3 = 28;

Average turnaround time = (24+26+28)/3 = 26;

No preemption

P3

First-come, first-served scheduling

• Example 2.

42

Task Arrival
Time

CPU
Req.

P3 0 3

P2 1 3

P1 2 24

Gantt Chart

P2 P1

Input order
changed

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
2

2
4

2
6

2
8

3
0

2
0

Output

Waiting time: P1 = 4; P2 = 2; P3 = 0;

Average waiting time = (4+2+0)/3 = 2;
(which is 16 in the previous case)

Turnaround time: P1 = 28; P2 = 5; P3 = 3;

Average turnaround time = (28+5+3)/3 = 12;
(which is 26 in the previous case)

First-come, first-served scheduling

• A short summary:

– FIFO scheduling is sensitive to the input.

– The average waiting time is often long. Think about the
scenario (convoy effect):

• Someone is standing before you in the queue in KFC, and

• you find that he/she is ordering the bucket chicken meal (P1 in
example 1)!!!!

• So, two people (P2 and P3) are unhappy while only P1 is happy.

– Can we do something about this?

43

44

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

Non-preemptive SJF

45

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1P1 P1P1

P1

Set of processes

P2 P3 P4

Time = 0Time = 2Time = 4Time = 5

0 2 4 6 8 1
0

1
2

1
4

1
6

Not allow preemption

Non-preemptive SJF

46

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 7

P1

Set of processes

0 2 4 6 8 1
0

1
2

1
4

1
6

Non-preemptive SJF

47

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 7

P1 P3

Set of processes

0 2 4 6 8 1
0

1
2

1
4

1
6

Non-preemptive SJF

48

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 8

P1 P2P3

Set of processes

In this example, we use FIFO to break the tie.

0 2 4 6 8 1
0

1
2

1
4

1
6

Non-preemptive SJF

49

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 12

P1 P4P3

Set of processes

P2

0 2 4 6 8 1
0

1
2

1
4

1
6

Time = 16

P4

Non-preemptive SJF

50

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P4P3 P2

0 2 4 6 8 1
0

1
2

1
4

1
6

P4

Waiting time:

Average = (0 + 6 + 3 + 7) / 4 = 4.

P1 = 0; P2 = 6; P3 = 3; P4 = 7;

Turnaround time:

Average = (7 + 10 + 4 + 11) / 4 = 8.

P1 = 7; P2 = 10; P3 = 4; P4 = 11;

Preemptive SJF

51

0 2 4 6 8 1
0

1
2

1
4

1
6

Rules for preemptive scheduling
(for this example only)

-Preemption happens when a new process arrives at
the system.

-Then, the scheduler steps in and selects the next
task based on their remaining CPU requirements.

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Shortest-remaining-time-first

Preemptive SJF

52

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

P1

Set of processes

Time = 0

P1

Preemptive SJF

53

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

P2

Time = 2

P2

Preempted!

P1

P2 is selected!

P1 P2

Preemptive SJF

54

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 1

P4 5 4 4

Set of processes

P2 P3

Time = 4

P3

Preempted!

P1

P3 is selected!

P1 P3

P2

Preemptive SJF

55

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 4

Set of processes

P2 P3

Time = 5

P2

Preempted!

P1

P2 is selected!

P1

P2 P3

P4P2

Preemptive SJF

56

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 4

Set of processes

P2 P3

Time = 7

P4P1

P1

P2 P3

P4P4

P2

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 0

Time = 11

P1P4

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1

Time = 16

P4P1P1

Preemptive SJF

57

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 4

P4P1 P2 P3 P2

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1P4

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1

Waiting time:

Average = (9 + 1 + 0 + 2) / 4 = 3.

P1 = 9; P2 = 1; P3 = 0; P4 = 2;

Turnaround time:

Average = (16 + 5 + 1 + 6) / 4 = 7.

P1 = 16; P2 = 5; P3 = 1; P4 = 6;

SJF: Short summary

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)

Average turnaround time 8 7 (smallest)

of context switching 3 (smallest) 5

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

The waiting time and the turnaround time decrease
at the expense of the increased number of context
switching.

SJF: Short summary

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)

Average turnaround time 8 7 (smallest)

of context switching 3 (smallest) 5

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

SJF is provably optimal in that it gives the minimum
average waiting time

Challenge: How to know the length of the next CPU
request?

SJF: Short summary

Challenge: How to know the length of the next CPU
request?

Solution: Prediction (by expecting that the next CPU
burst will be similar in length to the previous ones)

General approach
exponential average

Most recent information

Predicted
value

61

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

Round-robin

• Round-Robin (RR) scheduling is preemptive.

– Every process is given a quantum, or the amount of time
allowed to execute.

– When the quantum of a process is used up (i.e., 0), the
process releases the CPU and this is the preemption.

– Then, the scheduler steps in and it chooses the next
process which has a non-zero quantum to run.

• Processes are running one-by-one, like a circular
queue.

– Designed specially for time-sharing systems

62

Round-robin

63

Rules for Round-Robin
(for this example only)

-The quantum of every process is fixed and is 2 units.

-The process queue is sorted according the processes’
arrival time, in an ascending order.
(This rule allows us to break tie.)

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Round-robin

64

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

P1
Q:2

Time = 0

P1

Round-robin

65

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

Time = 2

P2P1

P1
Q:0

P2
Q:2

P1’s quantum is 0;
P2 is selected!

Round-robin

66

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 1

P4 5 4 4

Set of processes

Time = 4

P3P1

P1
Q:0

P2
Q:0

P1’s & P2’s quanta are 0;
P3 is selected!

P2

P3
Q:2

Round-robin

67

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 5

P4P1

P1
Q:0

P2
Q:0

P1’s & P2’s quanta are 0;
P4 is selected!

P2

P3
Q:2

P3

P4
Q:2

Round-robin

68

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 7

P1P1

P1
Q:0

P2
Q:0

Now, recharge is needed.

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:2

P2
Q:2

P4
Q:2

Now, recharge is needed.
P1 is selected.

Round-robin

69

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 9

P2P1

P1
Q:0

P2
Q:0

P1’s quantum is 0;
P2 is selected!

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1

Round-robin

70

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 0

P3 4 1 0

P4 5 4 2

Set of processes

Time = 11

P4P1

P1
Q:0

P2
Q:0

P1’s quantum is 0;
P4 is selected!

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2

Round-robin

71

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 0

P3 4 1 0

P4 5 4 0

Set of processes

Time = 13

P1P1

P1
Q:0

P2
Q:0

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2 P4

P1
Q:2

Now, recharge is needed.Now, recharge is needed.
P1 is selected.

Round-robin

72

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 1

P2 2 4 0

P3 4 1 0

P4 5 4 0

Set of processes

Time = 15

P1P1

P1
Q:0

P2
Q:0

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2 P4

P1
Q:2

Now, recharge is needed.Now, recharge is needed.
P1 is selected.

P1

Round-robin

73

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1 P2 P3 P4 P1 P2 P4 P1 P1

Waiting time:

Average = (9 + 5 + 0 + 4) / 4 = 4.5

P1 = 9; P2 = 5; P3 = 0; P4 = 4;

Turnaround time:

Average = (16 + 9 + 1 + 8) / 4 = 8.5

P1 = 16; P2 = 9; P3 = 1; P4 = 8;

RR VS SJF

74

Non-preemptive
SJF

Preemptive SJF RR

Average waiting time 4 3 4.5 (largest)

Average turnaround
time

8 7 8.5 (largest)

of context switching 3 5 8 (largest)

So, the RR algorithm gets all the bad! Why do we still need it?

The responsiveness of the processes is great under the RR algorithm. E.g., you
won’t feel a job is “frozen” because every job is on the CPU from time to time!

Round-robin

75

Issue for Round-Robin

-How to set the size of the time quantum?

-Too large: FCFS

-Too small: frequent context switch

-In practice: 10-100ms

-A rule of thumb: 80% CPU burst should be shorter than the
time quantum

Observations on RR

• Modified versions of round-robin are implemented
in (nearly) every modern OS.
– Users run a lot of interactive jobs on modern OS-es.

– Users’ priority list:
• Number one - Responsiveness;

• Number two - Efficiency;

• In other words, “ordinary users” expect a fast GUI response
than an efficient scheduler running behind.

• With the round-robin deployed, the scheduling
looks like random.
– It also looks like “fair to all processes”.

76

77

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

Priority Scheduling

• Some basics:
– A task is given a priority (and is usually an integer).

– A scheduler selects the next process based on the
priority.
• A typical practice: the highest priority is always chosen.

– Special case: SJF, FCFS (equal priority)

• How to define priority
– Internally: time limits, memory requirements, number of

open files, CPU burst and I/O burst…

– Externally: process importance, paid funds…

78

Priority Scheduling

79

0 2 4 6 8 1
0

1
2

1
4

1
6

Task CPU
Burst

Priority

P1 7 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2 P5

Assumption:

-All arrive at time 0
-Low numbers represent high priority

P1 P3 P4

Problem:

Solution: Aging (gradually increase the priority of
waiting processes)

Indefinite blocking or starvation

80

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

The processes are
permanently assigned to
one queue

Multilevel queue scheduling

• Definitions.

– It is still a priority scheduler.

– But, at each priority class, different schedulers may be
deployed.

– Eg: Foreground processes and background processes

81

Priority class 2

Priority class 3

Priority class 4

Priority class 5

RR with quantum = 20 units.

RR with quantum = 10 units.

Non-preemptive, SJF

Non-preemptive, FIFO

Priority class 1 RR with quantum = 40 units.

Just an example.

Fixed-priority preemptive
scheduling among queues

Multilevel queue scheduling– an example

• Properties: process is assigned a fix priority when
they are submitted to the system.

82

Priority 1

Priority 2

Priority 3

Priority 4

Increasing priority E.g., using round-robin in each queue.

Multilevel queue scheduling– an example

• The highest priority class will be selected.
– To prevent high-priority tasks from running indefinitely.
– The tasks with a higher priority should be short-lived, but

important;

83

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

Multilevel queue scheduling– an example

• Lower priority classes will be scheduled only when
the upper priority classes has no tasks.

84

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

Multilevel queue scheduling– an example

• Of course, it is a good design to have a high-priority
task preempting a low-priority task.

(conditioned that the high-priority task is short-lived.)

85

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

Multilevel queue scheduling– an example

86

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

• Any problem?
– Fixed priority

– Indefinite blocking or starvation

A process drops to a
lower priority class
after it has used up its
quantum and has the
quantum recharged.

Multilevel feedback queue scheduling

• How to improve the previous scheme?

– Allows a process to move between queues (dynamic
priority).

– Why needed?

• Eg.: Separate processes according to their CPU bursts.

87

Priority class 2

Priority class 3

Priority class 4

Priority class 5

RR with quantum = 20 units.

RR with quantum = 10 units.

Non-preemptive, SJF

Non-preemptive, FIFO

Priority class 1 RR with quantum = 40 units.

Just an example.

Multilevel feedback queue scheduling

• How to design (factors)?

– Number of queues

– Scheduling algorithm for each queue

– Method for determining when to upgrade/downgrade a
process

– Method for determining which queue a process will
enter

• Most general, but also most complex

– Can be configured to match a specific system

88

Summary

• Did we solve the conflict?

89

Fairness

Policy
enforcement

CPU-I/O
Balance

Little conflict

Big
conflict

Big
conflict

Priority scheduler
guarantees this.

“Not to schedule blocked
process” guarantee this.

Round-robin scheduler
guarantees this.

Multilevel feedback queue scheduling

90

- Applications/Scenarios
- Real-time systems
- Multiple processors
- Example: Linux scheduler
- Algorithm evaluation

91

- Applications/Scenarios
- Real-time systems
- Multiple processors
- Example: Linux scheduler
- Algorithm evaluation

Real-time CPU Scheduling

92

Antilock brake system: Latency requirement: 3-5 ms

Interrupt latency (minimize or bounded):
 Determining interrupt type and save the state of the

current process
 Minimize the time interrupts may be disabled

Dispatch latency:
 Time required by dispatcher (preemption running

process and release resources of low-priority proc).
 Most effective way is to use preemptive kernel

Responsiveness: Respond
immediately to a real-time
process as soon as it
requires the CPU

Support priority-based alg.
with preemption

Hard real-time systems: A task must be served by its
deadline (otherwise, expired as no service at all)

Soft real-time systems: Critical processes will be given
preference over noncritical processes (no guarantee)

Real-time CPU Scheduling Algorithms

93

Rate monotonic scheduling

Assumption: Processes require CPU at constant periods: processing time t and period
p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes
with a static priority policy with preemption (fixed priority)

Example

P1: p1=50, t1=20
P2: p2=100, t2=35

Real-time CPU Scheduling Algorithms

94

Rate monotonic scheduling

Processes require CPU at constant periods: processing time t and period p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes
with a static priority policy with preemption (fixed priority)

Example

P1: p1=50, t1=25
P2: p2=80, t2=35

Can not guarantee that a set of processes can be scheduled

Any problem?

Real-time CPU Scheduling Algorithms

95

Earliest-deadline-first scheduling (EDF)

Dynamically assigns priorities according to deadline (the earlier the deadline, the
higher the priority)

Example

P1: p1=50, t1=25
P2: p2=80, t2=35

EDF does not require the processes to be periodic, nor require a constant
CPU time per burst

EDF requires the announcement of deadlines

96

- Applications/Scenarios
- Real-time systems
- Multiple processors
- Example: Linux scheduler
- Algorithm evaluation

97

Scheduling Issues with SMP

Processor Affinity
Attempt to keep a

process running on
the same processor

Soft/hard affinity

Scheduling between processors

Process migration: Invalidating the cache
of the first processor and repopulating
the cache of the second processor)

Process migration is costly

NUMA
CPU scheduler and
memory-placement

algorithms work
together

SMP: Each processor may have its private
queue of ready processes

Load balancing
Push migration: a specific task
periodically check the status & rebalance

Pull migration: an idle processor pulls a
waiting task from busy processor

No absolute rule concerning what policy is best

98

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

99

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

Priorities 0 to 99 are
privileged classes.

The processes in those
queues are called “real-
time processes”.

Real-time processes are
either following RR or
FIFO scheduling
algorithm.

Completely Fair Scheduler

Logical view of the
Linux scheduler

Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

100

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

CFS

-Each process maintains virtual run
time (vruntime), recording how
long each has run

-CFS selects the process that has
the smallest vruntime value

-Decay factor: nice value (-20 to
+19): the smaller the value is, the
“higher priority” the process get

Completely Fair Scheduler

Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

101

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

CFS

-Use a red-black tree to maintain
runnable tasks
-The leftmost value is cached

Completely Fair Scheduler

102

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

How to select/evaluate a scheduling algorithm?

103

How to select a scheduling alg? (many algorithms with different parameters and properties)

Step 1: Define a criteria or the importance of various measures (application dependent)

Step 2: Design/Select an algorithm to satisfy the requirements. How to guarantee?

Evaluate Algorithms

Deterministic
modeling

Simple and fast

Demonstration
examples

Queueing modeling

Queueing network analysis

Distribution of CPU and I/O
burst (Poisson arrival)

Little’s law: 𝑛 = 𝜆 ×𝑊

Simulation & Implementation

Trace driven

High cost (coding/debugging…)

Hard to understand the full
design space

Summary on scheduling

• So, you may ask:
– “What is the best scheduling algorithm?”

– “What is the standard scheduling algorithm?”

• There is no best or standard algorithm because of,
at least, the following reasons:
– No one could predict how many clock ticks does a

process requires.

– On modern OS-es, processes are submitted online.

– Conflicting criterias

104

Summary on part 2

105

Process Communication &
Synchronization

Process Scheduling

Scheduler

Process Process Process

Kernel Space

User Space

P

P

P

Process Operations
(fork(),exec*(),wait()) Thread 1 Thread 2

Process

