
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Ch7, part 2
Memory Management from the Kernel’s Perspective:

Virtual Memory Support

1

2

Memory management

Global variable

Local variable

Dynamically-allocated
memory

Code +
constants

Process

How to use the addresses to access
the memory device?

How do multiple process share the
same physical memory device?

How to support large process?

How does the CPU read what it wants
from the memory device?

……

The kernel and the
hardware are doing
lots of managements…

3

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!

4

0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

This instruction says:
“Move the memory
value in 0x12345678 to
the register EAX”.

The integer value:
0x0000000A

CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!

5

0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

0x0000000A

1
3

2 CPU decodes

This instruction says:
“Move the memory
value in 0x12345678 to
the register EAX”.

The integer value:
0x0000000A

How to use the addresses?

“You’ve been living in a dream world, Neo”

• Can you guess the result?
– Two different processes, the same variable name,

carry different values
– Use the same address! (What? How COME?!)

• Well, what is the meaning of a memory address?!
– Logical address: virtual memory
– Address translation needed (logical/virtual->physical)
– Why we use virtual memory??

6

int main(void) {
int pid;
pid = fork();
printf("PID %d: %p.\n", getpid(), &pid);
if(pid)

wait(NULL);
return 0;

}

$./same_addr
PID 1234: 0xbfe85e0c.
PID 1235: 0xbfe85e0c.
$ _

CPU working … contiguous allocation?

• Each process is contained in a single section of mem

7

Process A

Process B

Process C

Hole

Hole

CPU working … contiguous allocation?

• Problem #1…

8

Process A

Process B

Process C

Hole

Hole

memory growth
e.g., because of brk() calls

We also know that a process’ memory
can grow.

So, does a process always have a
chance to grow to reach its need?

CPU working … contiguous allocation?

• Problem #2…

9

Process A

Process B

Process C

Hole

Hole

We are not talking about the
program’s size, but the process’ size!

What if we have a process
that is larger that the
physical memory?

What the CPU (or OS) can do is to
give up running …

(1) the address space is no longer
required to be contiguous.

So, we need to have the CPU design
that can understand processes so that:

(2) it allows a process to have a size
beyond the physical memory.

Virtual memory support in modern CPUs

• The new design of the CPU includes a new module:
the memory management unit (MMU).

– MMU is designed to perform address translation.

– The MMU is an on-CPU device.

10

Virtual memory – how does it work?

• Step 1. When CPU wants to fetch an instruction, the
virtual address is sent to MMU and is translated
into a physical address.

11

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 0xAAAAAA00

Virtual memory – how does it work?

• Step 2. The memory returns the instruction
addressed in physical address.

12

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 Physical
Address

0xAAAAAA00

Virtual memory – how does it work?

• Step 3. The CPU decodes the instruction.

– An instruction always stores virtual addresses, but not
physical addresses.

13

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

Physical
Address

0xAAAAAA00

Virtual memory – how does it work?

• Step 4. With the help of the MMU, the target
memory is retrieved.

14

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

0x0000000A

Physical
Address

0xAAAAAA00

0x13579A00

Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 1. Different processes use the same virtual addresses,
they may be translated to different physical addresses.
– Recall the “pid” variable in the example using fork().

– The address translation helps the CPU to retrieve data in a non-
contiguous layout (the process address space is contiguous).

15

Proc Y: 0x00000000B

0x13579A00

0x12345678
Proc X: 0x00000000A

0x12345678

0x2468CD00

Virtual Address

Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 2. Memory sharing can be implemented!

– This is how threads share memory!

– This is how different processes share codes! (HOW?)

16

mov 0x12345678 %EAX

Proc Y: 0x00000000B

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678
Proc X: 0x00000000A

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address
0xABCDEF00PC

Virtual memory – What is the good?

• Merit 3. Memory growth can be implemented!

– When the memory of a process grows, the newly-
allocated memory is not required to be contiguous

17

18

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

MMU implementation

• How to implement the MMU?
– How to efficiently translate from virtual address to physical

address?

– Translation is needed for every process

19

MMU

Process X

Process Y

Physical Address

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address

MMU implementation – a translation table

• So, can translation be done by a lookup table?

– Remember, every process needs its own lookup table.

(Do you remember the reason?)

20

MMU

Lookup
table

Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

translation

Lookup Table internals
What is the problem

with this method?

MMU implementation – a translation table

• Then, how large is the lookup table?

21

Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

Lookup Table internals

How many addresses are there? 232

Size of the lookup table =

Number of addresses
x Size of an address

How large is an address? 4 bytes

Only this column is stored.

232 x 4 bytes = 16 Gbytes

MMU implementation – a translation table

• Then, how large is the lookup table?

22

How many addresses are there? 232

Size of the lookup table =

Number of addresses
x Size of an address

How large is an address? 4 bytes

232 x 4 bytes = 16 Gbytes

Note. Every address in a CPU is
always of 4 bytes.

Can we reduce the table size?

The only choice is to reduce
the number of addresses

23

MMU implementation – a partial lookup table

MMU internals

12 bits

Lookup
table

20 bits 12 bits

unchanged

Size of the lookup table =

Number of addresses
x Size of an address

220 x 4 bytes = 4 Mbytes

Physical
address

Note. Every address in a CPU is
always of 4 bytes although you
only use 20 bits.

20 bits
Virtual

address

MMU implementation – paging

• This technique is called
paging.

– This partitions the memory
into fixed blocks called pages.

– The lookup table inside the
MMU is now called the page
table.

24

20 bits 12 bits

Page
table

20 bits 12 bits

unchanged

Virtual Page
Address

Page
offset

Physical Page
Address

Paging - properties

25

20 bits 12 bits

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)

Paging - properties

26

20 bits 12 bits

Page
table

20 bits 12 bits

unchanged

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)

Selected
page

Selected
address

Physical Page
address

Paging - properties

• Adjacent virtual pages are not guaranteed to be
mapped to adjacent physical pages.

27

0x12345

Virtual Address

000

0x12345 001

...... ...

0x12345 FFF

0x12346 000

0x12346 001

...... ...

0x12346 FFF

0x54321 000

0x54321 001

...... ...

0x54321 FFF

0x09394 000

0x09394 001

...... ...

0x09394 FFFContinuous addresses

Virtual addresses
within the same page
are always mapped
to the same physical
page.

Physical Pages

Contiguous virtual
addresses map to
non-contiguous
physical address.

Paging – memory allocation

• How to do memory allocation with paging

28

1 char *prev_ptr = NULL;
2 char *ptr = NULL;
3
4 void handler(int sig) {
5 printf("Page size = %d bytes\n",
6 (int) (ptr - prev_ptr));
7 exit(0);
8 }
9 int main(int argc, char **argv) {
10 char c;
11 signal(SIGSEGV, handler);
12 prev_ptr = ptr = sbrk(0); // find the heap’s start.
13 sbrk(1); // increase heap by 1 byte?
14 while(1)
15 c = *(++ptr);
16 }

Paging – memory allocation

• A page is the basic unit of memory allocation.

29

The allocation is in a
page-by-page manner.

The same case for the
growth of the stack.

Paging – memory allocation

• Problem???

– The minimum allocation unit is 4,096 bytes.

– But, the process cannot use that much.

– So, the rest of the page is unused.

30

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow

Used Heap

Unused

Internal fragmentation
means space is avoidably
wasted when allocation is
done in a page-by-page
manner.

Paging – internal fragmentation

31

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow

Used Heap

Unused

How about letting another process to use the “unused space”?

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow

The MMU has to memorize that none
of the processes could occupy the
whole page. The growth of the usage
has to be limited and monitored!

Internal fragmentation is here to stay…

Paging – putting it together

32

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

A

B

C

D

E

F

G

Allocated Pages

Allocated memory are
broken into pages.

Unallocated zone does
not occupy any pages.

Physical Devices

A B

C

D

E

F

G

Memory pages are
then distributed on the
physical memory or the
swap area, i.e., the
hard disk.

Memory Space

Unallocated
Zone

grow

grow

Paging – page table design

• So, next waves of questions are:

– Who can tell which virtual page is
allocated?

– Who can tell which page is on which
device?

• Those questions can be answered
by the design of the page table.

33

Physical Devices

A B

C

D

E

F

G

Memory pages are
then distributed on the
physical memory or the
swap area, i.e., the
hard disk.

Paging – page table design

• How to design the page table?

– First of all, which information need to be maintained?

• Mapping from virtual pages to physical pages (called frames)

• Permission information

• Where is the page (in memory or not)

– Second…

• Each process needs one page table

34

The physical memory is
just an array of frames.
The size of a frame is 4KB.

Paging – page table design

35

Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

...

This row means the
virtual page “A” is
mapped to the physical
frame “0”.

This row, with NIL, means
the virtual page “D” is not
allocated.

Remember, the entire 4G
memory zone is usually not
fully utilized.

For the sake of convenience, we don’t use
addresses here. Also, this column is not
stored in the page table.

Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

...

Paging – page table design

36

This bit is to tell the CPU
whether this row is valid or
not.

If the row is invalid, it
means that the virtual page
is not in the memory.

Note. This is not the same
as an unallocated page.

1 – valid, in memory.
0 – invalid, not in memory.

Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

...

Paging – page table design

37

s – means sharable.

How does the CPU check if you can
write to a memory zone?

When a virtual address is translated
to an unallocated frame…

When you write to read-only pages…

When you try to execute a non-
executable pages…

SEGMENATION FAULT!!

OR

OR

Paging – page table design

• Other design issues

38

How to store the page table if it is large (structure
of page table)?

How to improve memory access performance
(page table look incurs large overhead)?

Caching: Translation lookaside buffer (TLB)

Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table
contiguously in memory, how?

– Divide the page table into pieces

39

Two-level page table

Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table
contiguously in memory, how?

– Divide the page table into pieces

40

Hashed page tables

Inverted page tables

Besides hierarchical paging, we
can also use

Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (1) large pages

• Reduce the page table entries

• Cons?
– Internal fragmentation

– Deduplication

41

Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

42

The search in TLB is fast: Part
of the instruction pipeline

The size of TLB is small:
e.g., 32-1024 entries

Translation lookaside buffer (TLB)

Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

43

Effective memory-access time

Example：
• Hit ratio: 80%
• Mem access time: 100 ns
• One mem access for page table lookup

Effective mem-access time is
0.8*100+0.2*(100+100)=120ns

Paging – summary

• Virtual memory (VM) is just a table-lookup
implementation. The specials about VM are:

– The table-lookup is implemented inside the CPU, i.e., a
hardware solution.

– Each process should have its own page table.

44

Paging – summary

• How about the OS?

– The OS stores and manages the page tables of all
processes.

45

Paging – summary

• We talked about segmentation in part 1…

– Address mapping can also be done in segments

• Also permits physical address space of a process to be non-
contiguous

• But usually incurs severe fragmentation in both memory and
backing store

• Paging is used in most operating systems

– Hybrid scheme is also possible

46

47

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

Memory / page allocation?

48

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow
• The stack and the heap will grow:

– (1) calling brk(), i.e., the heap grows;

– (2) calling nested function calls, i.e., the
stack grows;

• The question is…

– When will the memory be allocated for
you when you call malloc()?

Remember the OOM generator?

49

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

This program runs very fast,
why?

Memory / allocation – demand paging

• The reality is: allocation is done in a lazy way!

– The system only says that the memory is allocated.

– Yet, it is not really allocated until you access it.

50

1 #define BUF_SIZE 512 * 1024
2 void re() {
3 char buf[BUF_SIZE];
4 while(getchar() != '\n');
5 memset(buf, 0, sizeof(buf));
6 while(getchar() != '\n');
7 re();
8 }
9
10 int main(void) {
11 re();
12 return 0;
13 }

This statement does not involve any
memory access.

So, the virtual address space is
allocated, but the page is not
allocated yet.

This statement really accesses the
“allocated” memory.

So, this statement really asks the
system to allocate memory.

Memory / allocation – demand paging

• How about the heap?

51

1 #define ONE_MEG (1024 * 1024)
2 #define COUNT 1024
3
4 int main(void) {
5 int i;
6 char *ptr[COUNT];
7 for(i = 0; i < COUNT; i++)
8 ptr[i] = malloc(ONE_MEG);
9
10 for(i = 0; i < COUNT; i++) {
11 while(getchar() != '\n');
12 memset(ptr[i], 0, ONE_MEG);
13 }
14 }

As a matter of fact, malloc() does
not involve any memory allocation,
only involving the allocation of the
virtual address page.

So, this loop is only for enlarging
the virtual page allocation.

This statement really accesses the
“allocated” memory.

So, this statement really asks the
system to allocate memory.

This lazy way is called demand paging, but how does it work?

grow_heap.c

Demand paging – illustration.

• Let’s consider the “grow_heap.c” example.

– Suppose that a process initially has 4 page frames.

– We are now in the memset() for-loop in Lines 10 - 13.

52

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 0 NIL

...

Demand paging – illustration.

• When memset() runs,

– the MMU finds that a virtual page involved is invalid,

– the CPU then generates an interrupt called page fault.

53

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault

Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 0 NIL

...

Demand paging – illustration.

• The page fault handling routine is running:

– The kernel knows the page allocation for all processes.

– It allocates a memory page for that request.

– Last, the page table entry for Page E is updated.

54

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault Handling
routine

allocation
Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 1 4

...

Demand paging – illustration.

• The routine finishes…and

• the memset() statement is restarted.

– Then, no page fault will be generated until the next
unallocated page is encountered.

55

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 1 4

...

OK

Demand paging – illustration.

• So, how about the case when the routine finds that
all frames are allocated?

– Then, we need the help of the swap area.

56

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 1 0

...

H 1 7

I 0 NIL

...

Page fault Handling
routine

Swap area

? ?
?

I’m full!

Demand paging – illustration.

• Using the swap area:

– Step (1) Select a victim virtual page and copy the victim
to the swap area.

• Now, Frame 0 is a free frame and the bit for Page A is 0.

57

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 0 0

...

H 1 7

I 0 NIL

...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234
Copy

The question is to select
which page to swap out?

Demand paging – illustration.

• Using the swap area:

– Step (2) Allocate the free frame to the new frame
allocation request.

• Now, Page I takes Frame 0.

58

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 0 0

...

H 1 7

I 1 0

...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234

Allocate

Demand paging – illustration.

• How about virtual page A is accessed again?

– Of course, a page fault is generated, and

– steps similar to the previous case takes place.

59

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 0 0

...

H 1 7

I 1 0

...

Page fault

Swap area

Virtual page: A

PID: 1234

Handling
routine

Swapping out which
page really matters

OOM generator

• Now, you should understand why this OOM
generator run very fast.

60

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

The memory page frames are not
really allocated (demand paging).

It is only for enlarging the virtual
page allocation.

Real OOM – code

61

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf(“Allocated %d MB\n”, counter);

}

return 0;
}

Warning #1. Don’t run this program on
any department’s machines.

Warning #2. Don’t run this program
when you have important tasks running
at the same time.

How does this program “eat”
your memory?

What is the consequence after
running this program?

Real OOM – illustration

• So, what will happen when the real OOM program
is running?

– Suppose the OOM program has just started with only
one page allocated. (For illustration only!)

62

0

1

2

3

4

5

6

7

OS kernel

Swap area

Different colors define
different processes in the
system.

Let the OOM process take
the green color.

Real oom: running

Real OOM – illustration

• OOM is running…1st stage.

– The free memory frames are the first zone that the
process has conquered.

– All other processes could hardly allocate pages.

63

0

1

2

3

4

5

OS kernel

Swap area

Real oom: running

7

66

7

Real OOM – illustration

• OOM is running…2nd stage.

– Occupied memory frames are the next zone that the
process conquers (no unused frames).

– Disk activity flies high!

64

0

1

2

3

4

5

6

7

OS kernel

Swap area

...OOM says: “All your
frames belong to us.”

...

...

...

...

Real oom: running

Page replacement operations
will be carried out by the OS.

Real OOM – illustration

• OOM is running…3rd stage.

– The previously-conquered frames are swapping to the
swap area.

– Disk activity flies high!

65

0

1

2

3

4

5

6

7

OS kernel

Swap area

...OOM says: “All your
frames belong to us.”

OOM says: “Resistance is
futile. All the swap space
will belong to us.”

......

...

...

...

...

...

...

...

...

...

...

...

...

Real oom: running

Page replacement operations
will be carried out by the OS.

Real OOM – illustration

• OOM is running…Final stage.

– The page fault handling routine finds that:

• No free space left in the swap area!

• Decided to kill the OOM process!

66

0

1

2

3

4

5

6

7

OS kernel

Swap area

...OOM says: “All your
frames belong to us.”

OOM says: “Resistance is
futile. All the swap space
will belong to us.”

......

...

...

...

...

...

...

...

...

...

Handling
routine

...

...
...

...

...

...

...
...

...

...

...

...

...

... ...

...

...

SIGKILL

Real oom: running

Real OOM – illustration

• OOM has died, but… Painful aftermath.

– Lots of page faults! Why?

• It is because other processes need to take back the frames!

• Disk activity flies high again, but will go down eventually.

67

0

1

2

3

4

5

6

7

OS kernel

Swap area

...

......

...

...

...

...

page
fault
page
fault
page
fault
page
fault
page
fault

Real oom: killed

Demand paging - Issues

• Swap area

– Where is it?

– How large is it?

• Can we run a really large process (e.g., bigger than
physical memory)?

– How large is it at most?

• How about fork() and exec*()?

– Can they be clever?

68

Swap area – location

• The swap area is usually a space reserved in a
permanent storage device.

69

Linux needs a separate
partition and it is called the
swap partition.

$ sudo fdisk /dev/sda
......
Command (m for help): p
......
/dev/sda1 Linux
/dev/sda2 Linux swap / Solaris
Command (m for help): _

Windows hides a file
“pagefile.sys”, which is
the swap area, in one of the
drives.

Swap area - size

• How large should the swap space be?

– It should be at least the same as the size of the physical
memory, so that …

• when a really large process wants to take all the memory…

• all the pages on the physical memory can find a place to hide.

– An old rule said that “swap should be twice the size of
the physical memory”.

• But, I can’t find the reasons anymore, and this rule does not
hold nowadays because we now have too much RAM!

70

How about running large programs

• When a process is larger than the physical memory,
is it able to run?

– No need to load all data in memory…Demand paging

• Generates page fault to allocate physical page frames

• Trigger page replacement if there is no unused frames

• How large is a process that a system can support

71

Max. process size = Physical memory size

Available space in the swap partition (file)

Kernel memory size

+

-

Unallocated

How about fork() & exec()

• What we have learned about the fork() system
call is…duplication!

– The parent process and the child process are identical
from the userspace memory point of view.

72

Code

Data

BSS

Heap

Stack

Parent

Unallocated

Code

Data

BSS

Heap

Stack

Child

fork()

Unallocated

How about fork() & exec()

• What does duplication mean? Allocate new pages for
the child process?
– If yes…then consider exec*() system call as well…

– Isn’t it stupid?

73

Code

Data

BSS

Heap

Stack

Parent

Unallocated

Code

Data

BSS

Heap

Stack

Child

fork()

Unallocated

Code

Data

BSS

Heap

Stack

Child

Exec*()

How about fork() & exec()

• Can we have a clever design with demand paging?

– A technique called copy-on-write is implemented

74

Copy-on-write technique allows the parent and the child
processes to share pages after the fork() system call is invoked.

A new, separated page will be copied and modified only when
one of the processes wants to write on a shared page.

Copy-on-Write (COW)

• Before fork() …

75

Copy-on-Write (COW)

• Right after fork() in invoked …

76

Copy-on-Write (COW)

• When both processes read the pages…

77

Copy-on-Write (COW)

• When one of the processes write to a shared page…

78

Demand paging - performance

• Demand paging can significantly affect performance

– Service the page fault interrupt

– Read in the page

– Restart the instruction/process

• How to characterize?

– Effective access time

– 1 − 𝑝 ×𝑚𝑎 + 𝑝 × 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒

• 𝑚𝑎: memory access time (10-200ns)

• 𝑝: prob. of a page fault

• 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: ms

79

Example

• 𝑚𝑎: 200ns, 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: 8ms

• 1/1000 page fault probability

– Effective access time: 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms = 8.2𝜇𝑠

• To allow 10% performance degradation only

– 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms < 220ns

– 𝑝 < 0.0000025

• Thus, page fault rate must be low
80

Summary of demand paging

• Demand paging enables over-commitment

– Large process can be supported

– Concurrent running of multiple processes is also
supported

• One key issue is…

– How to select victim pages to swap out?

– Page-replacement algorithm

81

82

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

Page replacement – introduction

• Remember the page replacement operation?

– It is the job of the kernel to find a victim page in the
physical memory, and…

– write the victim page to the swap space.

83

MMU

1

2

3

4

5

6

7

Page replacement

Page fault Handling
routine

Swap area

Virtual page: 0

PID: 1234
Copy

00

Page replacement – introduction

• Replacing a page involves disk accesses, therefore a
page fault is slow and expensive!
– Key issue: which page should be swapped out?

– Page replacement algorithms should minimize further
page faults.

• In the following, we introduce four algorithms:
– Optimal;

– First-in first-out (FIFO);

– Least recently used (LRU);

– Second-chance algorithm

84

Page replacement – algorithm

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.

85

Process

5

2

8

4

7

page reference string

2, 1, 9, 3, 5, 6, 4, …

These numbers are the order of the
virtual page numbers that the
process will access to.

These blocks are the page frames. The
numbers mean the virtual page numbers that
are on the memory frames.

Note: this is not the scenario that the process is just started.

Memory
frames

Page replacement – algorithm

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.

86

Process

5

2

8

4

7
Note: this is not the scenario that the process is just started.

Memory
frames

2, 1, 9, 3, 5, 6, 4, …

The memory pages that are
not in the memory.

1st 2nd 3rd …

Virtual page
access order.

Page replacement – when an algorithm starts

• Initial condition

– Let all the frames be empty.

87

-

-

Number of page faults 00

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-

Page replacement – optimal algorithm

• What is the best algorithm?

– Do not worry about the implementation at this moment.

88

-

-

Number of page faults 0

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-

Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– That means I can optimize the result if the page
reference string is given in advance.

– That’s why the algorithm is called “optimal”.

89

-

-

Number of page faults 0

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-

readahead

Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– The first page request will cause a page fault.

• Because there are free frames, no replacement is needed.

90

-

-

Number of page faults 3

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

readahead

Page replacement – optimal algorithm

• Replace strategy:

– To replace the page that will not be used for the longest
period of time.

91

-

-

Number of page faults 3

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

reuse = infinity

reuse = 2 access later

reuse = 11 access later

We should replace this frame.

Page replacement – optimal algorithm

• The story goes on…

– But, do you think that this is a non-sense?

– Of course, this is to give you a sense that how close an
algorithm is from the optimal.

92

-

-

Number of page faults 4

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

2

0

3

5

2

0

3

2

4

3

2

4

3

2

4

3

2

0

3

2

0

3

2

0

3

1

0

3

678

Page replacement – Problem of the optimal algorithm

• Unfortunately, you never know the future…

– It is not practical to implement such an algorithm

– Is there any easy-to-implement algorithm?

• You have already learnt process scheduling

• FIFO: the first page being swapped into the frames
will be the first page being swapped out.

– The victim page will always be the oldest page.

– The age of a page is counted by the time period that it is
stored in the memory.

93

Page replacement – FIFO algorithm

• When there is no free frames,

– The FIFO page replacement algorithm will choose the
oldest page to be the victim.

94

-

-

Number of page faults 3

oldest

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

Page replacement – FIFO algorithm

• When there is no free frames,

– The FIFO page replacement algorithm will choose the
oldest page to be the victim.

– Of course, the oldest page changes.

95

-

-

Number of page faults 4oldest

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

Page replacement – FIFO algorithm

• When a memory reference can be found in the
memory, will the age of that frame be changed?

– NO! The frame storing “page 0” is still the oldest frame.

96

-

-

Number of page faults 4oldest

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

Remember, no page fault in this time.

Page replacement – FIFO algorithm

• The story goes on…

– Seems that there is no intelligence in this method…

– Pages which will be accessed again are swapped out

97

-

-

Number of page faults 5

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

0

2

3

0

2

3

0

1

3

11

Number of page faults in the optimal algorithm 8

Page replacement – LRU algorithm

• Can we do better?

– Still remember the locality rule?

• Recently accessed pages may be accessed again in near future

– Why not swap out the pages which are not accessed
recently

• This is the least-recently-used (LRU) page replacement.

98

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

99

-

-

Number of page faults 3

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

age = 2

age = 1

age = 0

We should replace this frame.

look back

To replace the page that is least-recently used

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

100

-

-

Number of page faults 4

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

age = 0

age = 2

age = 1

2

0

1

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

101

-

-

Number of page faults 4

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

age = 1

age = 0

age = 2

2

0

1

2

0

1

The age of this frame becomes 0.

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

102

-

-

Number of page faults

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

2

0

3

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

0

3

2

0

3

2

1

3

2

10
Number of page faults in the FIFO algorithm 11

Number of page faults in the optimal algorithm 8

Page replacement – LRU algorithm

• The performance of LRU is considered to be good,
but how to implement the LRU algorithm efficiently

– Counters: requires to update counter and search the
table to find the page to evict

– Stack: implement with doubly linked list (pointer update)

• Common case in many systems

– A reference bit for each page (set by hardware)

– LRU approximation: Second-chance algorithm

103

Page replacement – LRU approximation

• Second-chance algorithm

– Basic: FIFO

– Give the page a second chance if its reference bit is on

104

A B C D

R:1 R:0 R:0 R:1

Oldest

NULL

AB C D

R:0R:0 R:0 R:1

Oldest

NULLOUT!

2nd

Chance!

If a page is heavily used, its
reference bit will be very
likely to be on.

Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).

OUT! A

B

C

R:1

R:0

R:0

E

DF R:1

R:0R:0

G

R:0

H

R:0

105

Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).

A

B

C

R:0

R:0

R:0

E

DF R:1

R:0R:0

G

R:0

H

R:0 out

106

What if all reference
bits are set?

Degenerates to FIFO

Page replacement – performance

• Number of page frames VS Performance.

– Increasing the number of page frames implies increasing
the amount of the physical memory.

• So, it is natural to think that:

– I have more memory…and more frames…

– Then, my system must be faster than before!

– Therefore, the number of page faults must be fewer
than before, given the same page reference string.

107

Page replacement – performance

• Your expectation:

108

Page replacement – performance

• The reality may be:

109

This is called Belady’s anomaly

Page replacement – performance

• Try the following:

– all page frames are initially empty;

– use FIFO page replacement algorithm;

– use the number of frames: 3, 4, and 5.

– The page reference string is:

110

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Page replacement – performance

• Belady’s anomaly exists for some algorithms

– Both optimal and LRU do not suffer from it

• Stack algorithms: never exhibit Belady’s anomaly

– Feature: The set of pages in memory for 𝑛 frames is
always a subset of the set of pages in memory for 𝑛 + 1
frames

– Example: LRU

• The 𝑛 most recently referenced pages will still be the most
recently referenced pages when the number of frames
increases

111

112

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

Allocation for user processes

• Free-frame list

– Demand paging and page replacement

• Constrains

– Limit on number of frames

• Upper bound: total available frames

• Lower bound: has a minimum number
– Performance consideration (limit page-fault rate)

– Defined by computer architecture (instructions)

– Process will be suspended if the number of allocated frames falls
below the minimum requirement

113

Allocation algorithm

• Global / local allocation (replacement)

• Equal allocation
–𝑚 frames among 𝑛 processes

•
𝑚

𝑛
frames for each process

– Memory waste

• Proportional allocation
– Size of process p𝑖 is 𝑠𝑖, then allocate

– 𝑎𝑖 =
𝑠𝑖

∑𝑠𝑖
×𝑚

• Priority-based scheme
– Ratio depends on both process size and priority

114

Issues - Thrashing

• If a process does not have enough frames – number
of frames required to support pages in active use

– Frequent page fault

• Replace a page that will be needed again right away

– This is called thrashing

• Spend more time paging than executing

115

Issues - Thrashing

• Example: Multiprogramming + global page replacement

– Increase CPU utilization (increase degree of multiprogramming)

– Frequent page fault (queue up for paging, reduce CPU utilization,
increase degree of multiprogramming)

116

Issues - Thrashing

• How to address?

– Local replacement/priority replacement

• Will not cause other processes to thrash

• Still not fully solve this problem
– Increase average time for a page fault

– longer queue for the paging device

– longer effective access time even for non-thrashing processes

117

• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

Issues - Thrashing

118

∑𝑊𝑆𝑆𝑖 > m: thrashing may occur

• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

• Use page-fault frequency

Issues - Thrashing

119

Allocation for kernel memory

• Kernel memory allocation requirement

– Features

• Varying (small) size requirement: different data structures

• Contiguous requirement (certain hardware devices interact
with physical memory)

– Paging: Internal fragmentation

• Buddy system + Slab allocation

120

Buddy system

• Allocate memory from a fixed-size segment

– Power-of-2 allocator (11 orders)

– Advantage: coalescing

121

Slab allocation

• Allocate memory for small objects (limit fragmentation)

– Slab: one/more contiguous pages

– Cache: one/more slabs
• A separate cache for each unique kernel data structure

122

Reduce fragmentation

Fast allocation
(caching benefit)

Further reading: SLOB/SLUB

Memory mapped file

• Ordinary file access

– open(), read(), write()

– System call + disk access

• Memory mapped file

– Memory mapping a file: associate a part of the virtual
address space with the file

– File access

• Initial access to file: demand paging

• Subsequent reads/writes: routine memory accesses

• Improves performance

– Refer to mmap(2) system call

123

Memory mapped file

• Also allow multiple processes to map the same file

124

Summary

• We have introduced…
– Segmentation

– Paging + page table

– Demand paging + COW + page replacement algorithms

– Allocation of frames
• User process

• Thrashing

• Kernel memory (buddy + slab)

– Memory-mapped file

• More…
– malloc() is not that simple: refer to “glibc malloc”

– Other page-replacement algorithms

125

126

Hope you enjoyed the OS course!

