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Ch7, part 2
Memory Management from the Kernel’s Perspective:

Virtual Memory Support
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Memory management

Global variable

Local variable

Dynamically-allocated 
memory

Code + 
constants

Process

How to use the addresses to access 
the memory device?

How do multiple process share the 
same physical memory device?

How to support large process?

How does the CPU read what it wants 
from the memory device?

……

The kernel and the 
hardware are doing 
lots of managements…
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!
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0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

This instruction says: 
“Move the memory 
value in 0x12345678 to 
the register EAX”.

The integer value:
0x0000000A



CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!
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0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

0x0000000A

1
3

2 CPU decodes

This instruction says: 
“Move the memory 
value in 0x12345678 to 
the register EAX”.

The integer value:
0x0000000A

How to use the addresses?



“You’ve been living in a dream world, Neo”

• Can you guess the result?
– Two different processes, the same variable name,

carry different values
– Use the same address! (What?  How COME?!)

• Well, what is the meaning of a memory address?!
– Logical address: virtual memory
– Address translation needed (logical/virtual->physical)
– Why we use virtual memory??
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int main(void) {
int pid;
pid = fork();
printf("PID %d: %p.\n", getpid(), &pid);
if(pid)

wait(NULL);
return 0;

}

$ ./same_addr
PID 1234: 0xbfe85e0c.
PID 1235: 0xbfe85e0c.
$ _



CPU working … contiguous allocation?

• Each process is contained in a single section of mem
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Process A

Process B

Process C

Hole

Hole



CPU working … contiguous allocation?

• Problem #1…
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Process A

Process B

Process C

Hole

Hole

memory growth
e.g., because of brk() calls

We also know that a process’ memory 
can grow.

So, does a process always have a 
chance to grow to reach its need?



CPU working … contiguous allocation?

• Problem #2…
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Process A

Process B

Process C

Hole

Hole

We are not talking about the 
program’s size, but the process’ size!

What if we have a process 
that is larger that the 
physical memory?

What the CPU (or OS) can do is to 
give up running …

(1) the address space is no longer 
required to be contiguous.

So, we need to have the CPU design 
that can understand processes so that:

(2) it allows a process to have a size 
beyond the physical memory.



Virtual memory support in modern CPUs

• The new design of the CPU includes a new module: 
the memory management unit (MMU).

– MMU is designed to perform address translation.

– The MMU is an on-CPU device.
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Virtual memory – how does it work?

• Step 1. When CPU wants to fetch an instruction, the 
virtual address is sent to MMU and is translated 
into a physical address.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 0xAAAAAA00



Virtual memory – how does it work?

• Step 2. The memory returns the instruction 
addressed in physical address.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 Physical 
Address

0xAAAAAA00



Virtual memory – how does it work?

• Step 3. The CPU decodes the instruction.

– An instruction always stores virtual addresses, but not 
physical addresses.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

Physical 
Address

0xAAAAAA00



Virtual memory – how does it work?

• Step 4. With the help of the MMU, the target 
memory is retrieved.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

0x0000000A

Physical 
Address

0xAAAAAA00

0x13579A00



Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 1. Different processes use the same virtual addresses, 
they may be translated to different physical addresses.
– Recall the “pid” variable in the example using fork().

– The address translation helps the CPU to retrieve data in a non-
contiguous layout (the process address space is contiguous ).
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Proc Y: 0x00000000B

0x13579A00

0x12345678
Proc X: 0x00000000A

0x12345678

0x2468CD00

Virtual Address



Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 2. Memory sharing can be implemented!

– This is how threads share memory!

– This is how different processes share codes! (HOW?)

16

mov 0x12345678 %EAX

Proc Y: 0x00000000B

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678
Proc X: 0x00000000A

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address
0xABCDEF00PC



Virtual memory – What is the good?

• Merit 3. Memory growth can be implemented!

– When the memory of a process grows, the newly-
allocated memory is not required to be contiguous
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



MMU implementation

• How to implement the MMU?
– How to efficiently translate from virtual address to physical 

address?

– Translation is needed for every process

19

MMU

Process X

Process Y

Physical Address

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address



MMU implementation – a translation table

• So, can translation be done by a lookup table?

– Remember, every process needs its own lookup table.

(Do you remember the reason?)
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MMU

Lookup 
table

Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

translation

Lookup Table internals
What is the problem 

with this method?



MMU implementation – a translation table

• Then, how large is the lookup table?
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Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

Lookup Table internals

How many addresses are there? 232

Size of the lookup table =

Number of addresses
x  Size of an address

How large is an address? 4 bytes

Only this column is stored.

232 x 4 bytes = 16 Gbytes



MMU implementation – a translation table

• Then, how large is the lookup table?
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How many addresses are there? 232

Size of the lookup table =

Number of addresses
x  Size of an address

How large is an address? 4 bytes

232 x 4 bytes = 16 Gbytes

Note. Every address in a CPU is 
always of 4 bytes.

Can we reduce the table size?

The only choice is to reduce 
the number of addresses
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MMU implementation – a partial lookup table

MMU internals

12 bits

Lookup 
table

20 bits 12 bits

unchanged

Size of the lookup table =

Number of addresses
x  Size of an address

220 x  4 bytes = 4 Mbytes

Physical 
address

Note. Every address in a CPU is 
always of 4 bytes although you 
only use 20 bits.

20 bits
Virtual

address



MMU implementation – paging

• This technique is called 
paging.

– This partitions the memory 
into fixed blocks called pages.

– The lookup table inside the 
MMU is now called the page 
table.
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20 bits 12 bits

Page 
table

20 bits 12 bits

unchanged

Virtual Page
Address

Page
offset

Physical Page
Address



Paging - properties
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20 bits 12 bits

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)



Paging - properties
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20 bits 12 bits

Page 
table

20 bits 12 bits

unchanged

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)

Selected 
page

Selected 
address

Physical Page
address



Paging - properties

• Adjacent virtual pages are not guaranteed to be 
mapped to adjacent physical pages.
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0x12345

Virtual Address

000

0x12345 001

...... ...

0x12345 FFF

0x12346 000

0x12346 001

...... ...

0x12346 FFF

0x54321 000

0x54321 001

...... ...

0x54321 FFF

0x09394 000

0x09394 001

...... ...

0x09394 FFFContinuous addresses

Virtual addresses 
within the same page 
are always mapped 
to the same physical 
page.

Physical Pages

Contiguous virtual 
addresses map to 
non-contiguous 
physical address.



Paging – memory allocation

• How to do memory allocation with paging
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1  char *prev_ptr = NULL;
2  char *ptr = NULL;
3
4  void handler(int sig) {
5      printf("Page size = %d bytes\n",
6              (int) (ptr - prev_ptr));
7      exit(0);
8  }
9  int main(int argc, char **argv) {
10      char c;
11      signal(SIGSEGV, handler);
12      prev_ptr = ptr = sbrk(0);  // find the heap’s start.
13      sbrk(1);                   // increase heap by 1 byte?
14      while(1)
15          c = *(++ptr);
16  }



Paging – memory allocation

• A page is the basic unit of memory allocation.
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The allocation is in a 
page-by-page manner.

The same case for the 
growth of the stack.



Paging – memory allocation

• Problem???

– The minimum allocation unit is 4,096 bytes.

– But, the process cannot use that much.

– So, the rest of the page is unused.
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Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow

Used Heap

Unused

Internal fragmentation
means space is avoidably 
wasted when allocation is 
done in a page-by-page 
manner.



Paging – internal fragmentation

31

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow

Used Heap

Unused

How about letting another process to use the “unused space”?

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow

The MMU has to memorize that none 
of the processes could occupy the 
whole page. The growth of the usage 
has to be limited and monitored!

Internal fragmentation is here to stay…



Paging – putting it together
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Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

A

B

C

D

E

F

G

Allocated Pages

Allocated memory are 
broken into pages.

Unallocated zone does 
not occupy any pages.

Physical Devices

A B

C

D

E

F

G

Memory pages are 
then distributed on the 
physical memory or the 
swap area, i.e., the 
hard disk.

Memory Space

Unallocated 
Zone

grow

grow



Paging – page table design

• So, next waves of questions are:

– Who can tell which virtual page is 
allocated?

– Who can tell which page is on which 
device?

• Those questions can be answered 
by the design of the page table.
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Physical Devices

A B

C

D

E

F

G

Memory pages are 
then distributed on the 
physical memory or the 
swap area, i.e., the 
hard disk.



Paging – page table design

• How to design the page table?

– First of all, which information need to be maintained?

• Mapping from virtual pages to physical pages (called frames)

• Permission information

• Where is the page (in memory or not)

– Second…

• Each process needs one page table

34



The physical memory is 
just an array of frames. 
The size of a frame is 4KB.

Paging – page table design
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Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

... ... ... ...

This row means the 
virtual page “A” is 
mapped to the physical 
frame “0”.

This row, with NIL, means 
the virtual page “D” is not 
allocated.

Remember, the entire 4G 
memory zone is usually not 
fully utilized.

For the sake of convenience, we don’t use 
addresses here. Also, this column is not 
stored in the page table.



Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

... ... ... ...

Paging – page table design

36

This bit is to tell the CPU 
whether this row is valid or 
not.

If the row is invalid, it 
means that the virtual page 
is not in the memory.

Note. This is not the same 
as an unallocated page. 

1 – valid, in memory.
0 – invalid, not in memory.



Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

... ... ... ...

Paging – page table design

37

s – means sharable.

How does the CPU check if you can 
write to a memory zone?

When a virtual address is translated 
to an unallocated frame…

When you write to read-only pages…

When you try to execute a non-
executable pages…

SEGMENATION FAULT!!

OR

OR



Paging – page table design

• Other design issues 
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How to store the page table if it is large (structure 
of page table)?

How to improve memory access performance 
(page table look incurs large overhead)?

Caching: Translation lookaside buffer (TLB)



Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table 
contiguously in memory, how?

– Divide the page table into pieces

39

Two-level page table



Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table 
contiguously in memory, how?

– Divide the page table into pieces

40

Hashed page tables

Inverted page tables

Besides hierarchical paging, we 
can also use



Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (1) large pages

• Reduce the page table entries

• Cons?
– Internal fragmentation

– Deduplication 

41



Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

42

The search in TLB is fast: Part 
of the instruction pipeline

The size of TLB is small: 
e.g., 32-1024 entries

Translation lookaside buffer (TLB)



Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

43

Effective memory-access time

Example：
• Hit ratio: 80%
• Mem access time: 100 ns
• One mem access for page table lookup

Effective mem-access time is
0.8*100+0.2*(100+100)=120ns



Paging – summary

• Virtual memory (VM) is just a table-lookup 
implementation. The specials about VM are:

– The table-lookup is implemented inside the CPU, i.e., a 
hardware solution.

– Each process should have its own page table.

44



Paging – summary

• How about the OS?

– The OS stores and manages the page tables of all 
processes.

45



Paging – summary

• We talked about segmentation in part 1…

– Address mapping can also be done in segments

• Also permits physical address space of a process to be non-
contiguous 

• But usually incurs severe fragmentation in both memory and 
backing store

• Paging is used in most operating systems

– Hybrid scheme is also possible

46
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



Memory / page allocation?
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Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow
• The stack and the heap will grow:

– (1) calling brk(), i.e., the heap grows;

– (2) calling nested function calls, i.e., the 
stack grows;

• The question is…

– When will the memory be allocated for 
you when you call malloc()?



Remember the OOM generator?
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

This program runs very fast, 
why?



Memory / allocation – demand paging

• The reality is: allocation is done in a lazy way!

– The system only says that the memory is allocated.

– Yet, it is not really allocated until you access it.
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1  #define BUF_SIZE  512 * 1024
2  void re() {
3      char buf[BUF_SIZE];
4      while( getchar() != '\n' );
5      memset(buf, 0, sizeof(buf));
6      while( getchar() != '\n' );
7      re();
8  }
9
10 int main(void) {
11      re();
12      return 0;
13  }

This statement does not involve any 
memory access. 

So, the virtual address space is 
allocated, but the page is not 
allocated yet. 

This statement really accesses the 
“allocated” memory.

So, this statement really asks the 
system to allocate memory.



Memory / allocation – demand paging

• How about the heap?
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1  #define ONE_MEG (1024 * 1024)
2  #define COUNT   1024
3  
4  int main(void) {
5      int i;
6      char *ptr[COUNT];
7      for(i = 0; i < COUNT; i++)
8          ptr[i] = malloc(ONE_MEG);
9
10      for(i = 0; i < COUNT; i++) {
11          while(getchar() != '\n');
12          memset(ptr[i], 0, ONE_MEG);
13      }
14  }

As a matter of fact, malloc() does 
not involve any memory allocation, 
only involving the allocation of the 
virtual address page.

So, this loop is only for enlarging 
the virtual page allocation.

This statement really accesses the 
“allocated” memory.

So, this statement really asks the 
system to allocate memory.

This lazy way is called demand paging, but how does it work?

grow_heap.c



Demand paging – illustration.

• Let’s consider the “grow_heap.c” example.

– Suppose that a process initially has 4 page frames.

– We are now in the memset() for-loop in Lines 10 - 13.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 0 NIL

... ... ...



Demand paging – illustration.

• When memset() runs,

– the MMU finds that a virtual page involved is invalid,

– the CPU then generates an interrupt called page fault.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 0 NIL

... ... ...



Demand paging – illustration.

• The page fault handling routine is running:

– The kernel knows the page allocation for all processes. 

– It allocates a memory page for that request.

– Last, the page table entry for Page E is updated.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault Handling
routine

allocation
Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 1 4

... ... ...



Demand paging – illustration.

• The routine finishes…and 

• the memset() statement is restarted.

– Then, no page fault will be generated until the next 
unallocated page is encountered.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 1 4

... ... ...

OK



Demand paging – illustration.

• So, how about the case when the routine finds that 
all frames are allocated?

– Then, we need the help of the swap area.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

H 1 7

I 0 NIL

... ... ...

Page fault Handling
routine

Swap area

? ?
?

I’m full!



Demand paging – illustration.

• Using the swap area:

– Step (1) Select a victim virtual page and copy the victim 
to the swap area.

• Now, Frame 0 is a free frame and the bit for Page A is 0.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 0 0

... ... ...

H 1 7

I 0 NIL

... ... ...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234
Copy

The question is to select 
which page to swap out?



Demand paging – illustration.

• Using the swap area:

– Step (2) Allocate the free frame to the new frame 
allocation request.

• Now, Page I takes Frame 0.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 0 0

... ... ...

H 1 7

I 1 0

... ... ...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234

Allocate



Demand paging – illustration.

• How about virtual page A is accessed again?

– Of course, a page fault is generated, and

– steps similar to the previous case takes place.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 0 0

... ... ...

H 1 7

I 1 0

... ... ...

Page fault

Swap area

Virtual page: A

PID: 1234

Handling
routine

Swapping out which 
page really matters



OOM generator

• Now, you should understand why this OOM 
generator run very fast.
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

The memory page frames are not 
really allocated (demand paging).

It is only for enlarging the virtual 
page allocation.



Real OOM – code 
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf(“Allocated %d MB\n”, counter);

}

return 0;
}

Warning #1. Don’t run this program on 
any department’s machines.

Warning #2. Don’t run this program 
when you have important tasks running 
at the same time.

How does this program “eat” 
your memory?

What is the consequence after 
running this program?



Real OOM – illustration

• So, what will happen when the real OOM program 
is running?

– Suppose the OOM program has just started with only 
one page allocated. (For illustration only!)
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0

1

2

3

4

5

6

7

OS kernel

Swap area

Different colors define 
different processes in the 
system.

Let the OOM process take 
the green color.

Real oom: running



Real OOM – illustration

• OOM is running…1st stage. 

– The free memory frames are the first zone that the 
process has conquered.

– All other processes could hardly allocate pages.

63

0

1

2

3

4

5

OS kernel

Swap area

Real oom: running

7

66

7



Real OOM – illustration

• OOM is running…2nd stage. 

– Occupied memory frames are the next zone that the 
process conquers (no unused frames).

– Disk activity flies high!
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0

1

2

3

4

5

6

7

OS kernel

Swap area

... ... ...OOM says: “All your 
frames belong to us.” ......

...

...

...

...

Real oom: running

Page replacement operations 
will be carried out by the OS.



Real OOM – illustration

• OOM is running…3rd stage. 

– The previously-conquered frames are swapping to the 
swap area.

– Disk activity flies high!
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0

1

2

3

4

5

6

7

OS kernel

Swap area

... ... ...OOM says: “All your 
frames belong to us.”

OOM says: “Resistance is 
futile. All the swap space 
will belong to us.”

......

...

...

...

...

...

...

...

...

...

...

...

...

Real oom: running

Page replacement operations 
will be carried out by the OS.



Real OOM – illustration

• OOM is running…Final stage. 

– The page fault handling routine finds that:

• No free space left in the swap area!

• Decided to kill the OOM process!
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0

1

2

3

4

5

6

7

OS kernel

Swap area

... ... ...OOM says: “All your 
frames belong to us.”

OOM says: “Resistance is 
futile. All the swap space 
will belong to us.”

......

...

...

...

...

...

...

...

...

...

Handling
routine

...

...
...

...

...

...

...
...

...

...

...

...

...

... ...

...

...

SIGKILL

Real oom: running



Real OOM – illustration

• OOM has died, but… Painful aftermath. 

– Lots of page faults! Why?

• It is because other processes need to take back the frames!

• Disk activity flies high again, but will go down eventually.
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Demand paging - Issues

• Swap area

– Where is it?

– How large is it?

• Can we run a really large process (e.g., bigger than 
physical memory)?

– How large is it at most?

• How about fork() and exec*()?

– Can they be clever?
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Swap area – location 

• The swap area is usually a space reserved in a 
permanent storage device.
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Linux needs a separate 
partition and it is called the 
swap partition.

$ sudo fdisk /dev/sda
......
Command (m for help): p
......
/dev/sda1 ...... Linux
/dev/sda2 ...... Linux swap / Solaris
Command (m for help): _

Windows hides a file
“pagefile.sys”, which is 
the swap area, in one of the 
drives.



Swap area - size

• How large should the swap space be?

– It should be at least the same as the size of the physical 
memory, so that …

• when a really large process wants to take all the memory…

• all the pages on the physical memory can find a place to hide.

– An old rule said that “swap should be twice the size of 
the physical memory”.

• But, I can’t find the reasons anymore, and this rule does not 
hold nowadays because we now have too much RAM!
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How about running large programs

• When a process is larger than the physical memory, 
is it able to run?

– No need to load all data in memory…Demand paging

• Generates page fault to allocate physical page frames

• Trigger page replacement if there is no unused frames

• How large is a process that a system can support
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Max. process size = Physical memory size 

Available space in the swap partition (file)

Kernel memory size 

+

-



Unallocated

How about fork() & exec()

• What we have learned about the fork() system 
call is…duplication!

– The parent process and the child process are identical
from the userspace memory point of view.
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Unallocated

How about fork() & exec()

• What does duplication mean?  Allocate new pages for 
the child process?
– If yes…then consider exec*() system call as well…

– Isn’t it stupid?
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How about fork() & exec()

• Can we have a clever design with demand paging?

– A technique called copy-on-write is implemented
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Copy-on-write technique allows the parent and the child 
processes to share pages after the fork() system call is invoked.

A new, separated page will be copied and modified only when 
one of the processes wants to write on a shared page.



Copy-on-Write (COW)

• Before fork() …
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Copy-on-Write (COW)

• Right after fork() in invoked …
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Copy-on-Write (COW)

• When both processes read the pages…
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Copy-on-Write (COW)

• When one of the processes write to a shared page…
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Demand paging - performance

• Demand paging can significantly affect performance

– Service the page fault interrupt

– Read in the page

– Restart the instruction/process

• How to characterize?

– Effective access time

– 1 − 𝑝 ×𝑚𝑎 + 𝑝 × 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒

• 𝑚𝑎: memory access time (10-200ns)

• 𝑝: prob. of a page fault

• 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: ms
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Example

• 𝑚𝑎: 200ns, 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: 8ms

• 1/1000 page fault probability

– Effective access time: 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms = 8.2𝜇𝑠

• To allow 10% performance degradation only

– 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms < 220ns

– 𝑝 < 0.0000025

• Thus, page fault rate must be low
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Summary of demand paging

• Demand paging enables over-commitment

– Large process can be supported

– Concurrent running of multiple processes is also 
supported

• One key issue is…

– How to select victim pages to swap out?

– Page-replacement algorithm

81



82

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



Page replacement – introduction 

• Remember the page replacement operation?

– It is the job of the kernel to find a victim page in the 
physical memory, and…

– write the victim page to the swap space.
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Page replacement – introduction 

• Replacing a page involves disk accesses, therefore a 
page fault is slow and expensive!
– Key issue: which page should be swapped out?

– Page replacement algorithms should minimize further 
page faults.

• In the following, we introduce four algorithms:
– Optimal; 

– First-in first-out (FIFO);

– Least recently used (LRU);

– Second-chance algorithm
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Page replacement – algorithm 

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.
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These numbers are the order of the 
virtual page numbers that the 
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These blocks are the page frames. The 
numbers mean the virtual page numbers that 
are on the memory frames.

Note: this is not the scenario that the process is just started.

Memory
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Page replacement – algorithm 

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.
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Page replacement – when an algorithm starts

• Initial condition

– Let all the frames be empty.
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Page replacement – optimal algorithm

• What is the best algorithm?

– Do not worry about the implementation at this moment.
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Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– That means I can optimize the result if the page 
reference string is given in advance.

– That’s why the algorithm is called “optimal”.
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Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– The first page request will cause a page fault.

• Because there are free frames, no replacement is needed.
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Page replacement – optimal algorithm

• Replace strategy:

– To replace the page that will not be used for the longest 
period of time.
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Page replacement – optimal algorithm

• The story goes on…

– But, do you think that this is a non-sense?

– Of course, this is to give you a sense that how close an 
algorithm is from the optimal.
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Page replacement – Problem of the optimal algorithm

• Unfortunately, you never know the future…

– It is not practical to implement such an algorithm

– Is there any easy-to-implement algorithm?

• You have already learnt process scheduling

• FIFO: the first page being swapped into the frames 
will be the first page being swapped out.

– The victim page will always be the oldest page.

– The age of a page is counted by the time period that it is 
stored in the memory.
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Page replacement – FIFO algorithm

• When there is no free frames, 

– The FIFO page replacement algorithm will choose the 
oldest page to be the victim.
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Page replacement – FIFO algorithm

• When there is no free frames, 

– The FIFO page replacement algorithm will choose the 
oldest page to be the victim.

– Of course, the oldest page changes.
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Page replacement – FIFO algorithm

• When a memory reference can be found in the 
memory, will the age of that frame be changed?

– NO! The frame storing “page 0” is still the oldest frame.
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Page replacement – FIFO algorithm

• The story goes on…

– Seems that there is no intelligence in this method…

– Pages which will be accessed again are swapped out
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Page replacement – LRU algorithm

• Can we do better?

– Still remember the locality rule?

• Recently accessed pages may be accessed again in near future

– Why not swap out the pages which are not accessed 
recently

• This is the least-recently-used (LRU) page replacement.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• The performance of LRU is considered to be good, 
but how to implement the LRU algorithm efficiently

– Counters: requires to update counter and search  the 
table to find the page to evict

– Stack: implement with doubly linked list (pointer update)

• Common case in many systems

– A reference bit for each page (set by hardware)

– LRU approximation: Second-chance algorithm
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Page replacement – LRU approximation

• Second-chance algorithm

– Basic: FIFO

– Give the page a second chance if its reference bit is on
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If a page is heavily used, its 
reference bit will be very 
likely to be on. 



Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).

OUT! A

B

C

R:1

R:0

R:0

E

DF R:1

R:0R:0

G

R:0

H

R:0
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Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).

A

B

C

R:0

R:0

R:0

E

DF R:1

R:0R:0

G

R:0

H

R:0 out
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What if all reference 
bits are set?

Degenerates to FIFO



Page replacement – performance 

• Number of page frames VS  Performance.

– Increasing the number of page frames implies increasing 
the amount of the physical memory.

• So, it is natural to think that:

– I have more memory…and more frames…

– Then, my system must be faster than before!

– Therefore, the number of page faults must be fewer
than before, given the same page reference string.
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Page replacement – performance

• Your expectation:
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Page replacement – performance 

• The reality may be:
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This is called Belady’s anomaly



Page replacement – performance 

• Try the following:

– all page frames are initially empty;

– use FIFO page replacement algorithm;

– use the number of frames: 3, 4, and 5.

– The page reference string is:
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1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5



Page replacement – performance 

• Belady’s anomaly exists for some algorithms

– Both optimal and LRU do not suffer from it

• Stack algorithms: never exhibit Belady’s anomaly

– Feature: The set of pages in memory for 𝑛 frames is 
always a subset of the set of pages in memory for 𝑛 + 1
frames

– Example: LRU

• The 𝑛 most recently referenced pages will still be the most 
recently referenced pages when the number of frames 
increases 
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



Allocation for user processes

• Free-frame list

– Demand paging and page replacement

• Constrains

– Limit on number of frames

• Upper bound: total available frames

• Lower bound: has a minimum number
– Performance consideration (limit page-fault rate)

– Defined by computer architecture (instructions)

– Process will be suspended if the number of allocated frames falls 
below the minimum requirement
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Allocation algorithm

• Global / local allocation (replacement)

• Equal allocation
–𝑚 frames among 𝑛 processes

•
𝑚

𝑛
frames for each process

– Memory waste

• Proportional allocation
– Size of process p𝑖 is 𝑠𝑖, then allocate

– 𝑎𝑖 =
𝑠𝑖

∑𝑠𝑖
×𝑚

• Priority-based scheme
– Ratio depends on both process size and priority
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Issues - Thrashing

• If a process does not have enough frames – number 
of frames required to support pages in active use

– Frequent page fault

• Replace a page that will be needed again right away

– This is called thrashing 

• Spend more time paging than executing

115



Issues - Thrashing

• Example: Multiprogramming + global page replacement

– Increase CPU utilization (increase degree of multiprogramming)

– Frequent page fault (queue up for paging, reduce CPU utilization, 
increase degree of multiprogramming)
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Issues - Thrashing

• How to address?

– Local replacement/priority replacement

• Will not cause other processes to thrash

• Still not fully solve this problem
– Increase average time for a page fault

– longer queue for the paging device 

– longer effective access time even for non-thrashing processes
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• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

Issues - Thrashing
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∑𝑊𝑆𝑆𝑖 > m: thrashing may occur



• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

• Use page-fault frequency

Issues - Thrashing
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Allocation for kernel memory

• Kernel memory allocation requirement

– Features

• Varying (small) size requirement: different data structures

• Contiguous requirement (certain hardware devices interact 
with physical memory)

– Paging: Internal fragmentation

• Buddy system + Slab allocation
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Buddy system

• Allocate memory from a fixed-size segment

– Power-of-2 allocator (11 orders)

– Advantage: coalescing 
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Slab allocation

• Allocate memory for small objects (limit fragmentation)

– Slab: one/more contiguous pages

– Cache: one/more slabs 
• A separate cache for each unique kernel data structure
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Reduce fragmentation

Fast allocation 
(caching benefit)

Further reading: SLOB/SLUB



Memory mapped file

• Ordinary file access

– open(), read(), write()

– System call + disk access

• Memory mapped file

– Memory mapping a file: associate a part of the virtual 
address space with the file

– File access

• Initial access to file: demand paging

• Subsequent reads/writes: routine memory accesses

• Improves performance

– Refer to mmap(2) system call
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Memory mapped file

• Also allow multiple processes to map the same file
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Summary

• We have introduced…
– Segmentation

– Paging + page table

– Demand paging + COW + page replacement algorithms

– Allocation of frames
• User process

• Thrashing

• Kernel memory (buddy + slab)

– Memory-mapped file

• More…
– malloc() is not that simple: refer to “glibc malloc” 

– Other page-replacement algorithms
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Hope you enjoyed the OS course!


