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Chapter 8
Mass Storage



Topics in Part 3 (Storage Management)
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File System Operations

Operating System 
Kernel

User Space

Devices

Processes

File system 
Implementation

FAT32, EXT2/3

KV, Distributed FS, 
Graph System…



Storage Hierarchy
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Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding



Hard Disk Structure – Physical view

Physical address (cylinder, track, sector)

Track: 
The surface of a platter is divided into tracks  
Sector: 
Track is divided into sectors (512B data + ECC)
Cylinder: 
Set of tracks that are at one arm position

Access: Seek + Rotate

Seek time: 
move disk arm to desired cylinder

Rotational latency: 
spin at 5400/7200/10K/15K RPM



Hard Disk Structure – Physical view

Constant liner velocity (CLV)
 Uniform density of bits per track, 

outer track hold more sectors
 Variable rotation speed to keep the 

same rate of data moving
 CD-ROM/DVD-ROM

Constant angular velocity (CAV)
 Constant rotation speed 
 Higher density of bits in inner tracks
 Hard disks



Hard Disk Structure – Logical view

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

Address mapping
Logical block number -> (cylinder #, track #, sector #)

Disk management is required

 Disk formatting

 Disks are prone to failures: defective sectors are 
common (bad blocks)
 Need to handle defective sectors: bad block 

management



Disk Management

Disk Formatting

Step 1: Low-level formatting/physical formatting

 Divide into sectors so disk controller can read/write

 Fills the disk with a special data structure for each sector (data area(512B), 
header and trailer (sector number & ECC))
• The controller automatically does the ECC processing whenever a sector 

is read/written

 Done at factory, used for testing and initializing (e.g., the mapping). It is also 
possible to set the sector size (256B, 512B, 1K, 4K)



Disk Management

Disk Formatting

Step 2: How to use disks to hold files after shipment?

 Choice 1: File system
 Partition into one or more groups of cylinders (each as a separate disk)
 Logical formatting: creating a FS by storing the initial FS data structures 
 I/O optimization: Disk I/O (via blocks) & file system I/O (via clusters), why?

• More sequential access, fewer random access

 Choice 2: Raw disk
 Use disk partition as a large sequential array of logical blocks, without FS 
 Raw I/O: bypass all FS services (buffer cache, prefetching…), be able to 

control exact disk location 



Disk Management

Bad Block Management

 Maintain a list of bad blocks (initialized during low-level formatting) and 
preserve an amount of  spare sectors

 Sector sparing/forwarding: replace a bad sector logically with one spare 
sector
• Problem: invalidate disk scheduling algorithm
• Solution: spare sectors in each cylinder + spare cylinder

 Sector slipping: remap to the next sector (data movement is needed)
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Why needed?

• Requests are placed in the queue of pending 
requests for that drive if the drive/controller is busy
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R1 R2 Rn…Pending 
queue

Read/write, disk address, memory address, 
number of sectors to be transferred



What is disk scheduling

• I/O access procedure

– Seek
• move the head to the desired cylinder

– Rotate
• spin to the target sector on the track
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Request ordering significantly affects 
the access performance (seek + rotate), 

so scheduling is needed

Disk scheduling：Choose the next 
request in the pending queue to service 
so as to minimize the seek time 
(scheduling algorithms)



FCFS Scheduling

• First-come, first-served (FCFS)

– Intrinsically fair, but does not provide the fastest service
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FCFS Scheduling

• First-come, first-served (FCFS)
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FCFS Scheduling

• Scheduling diagram
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Total head movement

(640 cylinders)

Wild swing is very common

E.g.: 122 to 14, then to 124

How to reduce the head 
movement?

Handle nearby requests first



SSTF Scheduling

• Shortest seek time first (SSTF)

– Choose the request with the least seek time

– Choose the request closest to the current head position

18



SSTF Scheduling

• Shortest seek time first (SSTF)
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SSTF Scheduling

• Scheduling diagram
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Total head movement: 236 
cylinders (it is 640 for FCFS)

Essentially a form of SJF 
scheduling

It is not optimal

The sequence of 53-37-14-65… 
could reduce the head 
movement to 208

It may cause starvation



SCAN Scheduling

• Scan back and forth
– Starts at one end, moves toward the other end
– Service the requests as it reaches each cylinder
– Reverse the direction 
– Elevator algorithm
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SCAN Scheduling

• Scan back and forth
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SCAN Scheduling

• Scheduling diagram
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Any problem?

Assume a uniform request 
distribution

The heaviest density of requests 
is at the other end of the disk

They need to wait for a long 
time

Can we do something about this?



C-SCAN Scheduling

• Circular Scan back and forth
– A variant of SCAN: immediately return when reaches the end
– Aim for providing a more uniform wait time
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C-SCAN Scheduling

• Circular scan
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C-SCAN Scheduling

• Scheduling diagram
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No need to move across the full width of the disk, but only need to reach the 
final request

Improved SCAN and C-SCAN: LOOK and C-LOOK

Unnecessary



C-LOOK Scheduling

• Goes only as far as the final request

– Look for a request before moving
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C-LOOK Scheduling

• Scheduling diagram

28

Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN



Summary of scheduling algorithms
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SSTF outperforms FCFS, but may suffer from starvation

SCAN and C-SCAN perform better for heavy load systems, 
and they are less likely to cause starvation

FCFS SSTF SCAN

C-SCAN C-LOOK



Selection of a scheduling algorithm
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File allocation method
Large sequential I/O or 
small random I/O

Number and 
types of requests

Location of directories and 
index blocks (metadata I/O)

Disk Performance

Implementing scheduling in OS is necessary to satisfy other constraints 
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).
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- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer



SSDs are widely used
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Advantages of flash-based SSDs: non-volatility, shock resistance, 
high speed and low energy consumption;



Flash Types
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• NAND flash and NOR flash

– NAND flash: denser capacity, only allow access in 
units of pages, faster erase operation

– Most SSD products are based on NAND flash

• NAND flash: SLC and MLC

– SLC: each cell stores one bit

• Longer life time, lower access latency, higher cost

– MLC: each cell stores two (or three) bits

• Higher capacity



Flash Cell
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• Program operation can only change the value from 1 to 0 (erase 
operation changes the value from 0 to 1)
– No overwritten

• The floating gate becomes thinner as the cell undergoes more 
program-erase cycles
– Decreasing reliability



Flash Package
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• Package > die/chip > plane > block > page 

Samsung K9XXG08UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)



SSD Architecture
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• SSD components

– Multiple flash packages, controller, RAM 
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- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer



Read
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• Read: in unit of pages (4KB)

page register
data read: 25 μs

controller
serial bus: 100 μs



Write
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• Write: in unit of pages (4KB)

page register
program: 200 μs

controller
serial bus: 100 μs



Erase
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• Erase

– In unit of blocks (64/128 pages) 

– Change all bits to 1

– Much slower than read/write: 1.5ms

• Each block can only tolerate limited number of P/E cycles

– SLC: 100K, MLC: 10K, TLC (several K to several hundred)

• The number of maximum P/E cycles decreases when

– More bits are stored in one cell

– The feature size of flash cell decreases (72nm, 34nm, 25nm)



Overwrite & Delete
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• Delete

– Simply mark the page as invalid

• Overwrite/update

– Does not support in-place overwrite

– Data can only be programmed to clean pages



Software layer in controller 
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• How to further improve write performance?

– Address mapping is needed

• Page states

– Garbage collection is also necessary
free/clean

validinvalid

write

update

erase
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- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer
-



Flash Translation Layer
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• Three functionalities

– Address mapping

– Garbage collection

– Wear-leveling



Address Mapping
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• Sector mapping

• Block mapping

• Hybrid mapping

• Log-structured mapping



Sector Mapping

Mapping table is large: requires a large amount of RAM
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Block Mapping
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• The  logical sector offset is the same with the physical 
sector offset

Smaller mapping table

If the FS issues writes with identical lsn, many erases



Hybrid Mapping
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• First use block mapping, then use sector mapping in 
each block

Small mapping table

Avoid a lot of erase operations

Longer time to identify the location of a page



Log-structured Mapping
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Log-structured Mapping
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Short summary
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• The performance of address mapping is 
workload dependent

– Block mapping is suitable for sequential workloads

– Sector mapping is suitable for random workloads

– Log-structured mapping is suitable for workloads 
with large sequential and small random requests

• Tradeoff exists



Garbage Collection
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• Due to the existence of invalid pages, GC must 
be called to reclaim storage

– Choose a candidate block

– Write valid pages to another free block

– Erase the original block
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Design Issues of GC Algorithms
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• Tradeoff in GC design

– Efficiency: minimize writes

– Wear-leveling: erase every block as even as possible

– Tradeoff

– GC is considered together with wear-leveling

• Algorithms

– Greedy, random, and their variants

– Hot/cold identification



Other Technologies

• 3D NAND flash

• Non-volatile memory (NVRAM)

– PCM, STTRAM, ReRAM, etc…

– Byte-addressable and non-volatile

– 3D XPoint
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Flash Technology Trend
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RAID Motivation

Reliability 

Performance

Cost

One disk failure 
incurs data loss

Disks are slow

Fast and 
reliable disks 
are expensive



RAID Introduction

 In the past
 Combine small and cheap disks as a cost-effective

alternative to large and expensive disks

Nowadays
Higher performance
Higher reliability via redundant data
 Larger storage capacity

Many different levels of RAID systems
Different levels of redundancy, capacity, cost…

RAID: Redundant Array of Inexpensive (independent) Disks
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RAID 0

• Block-level striping, no redundancy

• Provides higher data-transfer rate

• Does not improve reliability. Once a disk fails, data loss 
may happen (MTTF: mean time to failure)
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RAID 1

• How to improve reliability?

• Data mirroring (RAID1)
 Two copies of the data are held 

on two physical disks, and the 
data is always identical.

 Replication

• High storage cost
 Twice as many disks are required 

to store the same data when 
compared to RAID 0.

 Even worse storage efficiency 
with more copies

61
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Combinations

• RAID 0 provides reliability and 
RAID 1 provides reliability

• RAID 0+1 (RAID01)
 First data striping
 Then data mirroring

Same storage 
cost as RAID 1
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Combinations

• RAID 0 provides reliability and 
RAID 1 provides reliability

• RAID 0+1 (RAID01)
 First data striping
 Then data mirroring

• RAID 1+0 (RAID10)
 First data mirroring
 Then data striping Same storage cost
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RAID01 vs RAID10

Both suffer from high storage cost



RAID 4

• Balance the tradeoff between 
reliability and storage cost?
• Redundancy with parities

• Parity generation: Each parity 
block is the XOR value of the 
corresponding data disks

• Block-level data striping
• Data and parity blocks are 

distributed across disks
• Dedicated parity disk

• Any problem? 

𝐴𝑝 = 𝐴1⨂𝐴2⨂𝐴3

65
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How to update data

• Suppose A1 will be updated 
to A1’
• Both A1 and Ap need to 

be updated
• Read-modify-write (RMW)

RMW: 𝐴𝑝
′ = 𝐴𝑝⨂𝐴1⨂𝐴1′

𝐴𝑝′ = 𝐴1⨂𝐴2⨂𝐴3⨂𝐴1⨂𝐴1′

= 𝐴2⨂𝐴3⨂𝐴1′
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How to update data

• Suppose A1 will be updated to 
A1’
• Both A1 and Ap need to 

be updated
• Read-modify-write (RMW)

• How about updating both A1 
and A2 simultaneously?
• RMW? 
• Read-reconstruct-write 

(RRW)

• Selection of RMW/RRW

RRW: 𝐴𝑝
′ = 𝐴3⨂𝐴1′⨂𝐴2′

Both RMW and RRW incur 
extra reads and writes



Problems of RAID 4

• Problems of RAID 4

• Disk bandwidth are not fully 
utilized
• Parity disk will not be 

accessed under normal 
mode

• Parity disk may become the 
bottleneck
• E.g., updating A1, B2, C3

Read: A1, B2, C3, Ap, Bp, Cp
Write: A1’ B2’, C3’, Ap’, Bp’, Cp’
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RAID 5

• Similar to RAID 4
• One parity per stripe

• Key difference
• Uniform parity distribution

• RAID 5 is an ideal combination of 
• good performance
• good fault tolerance
• high capacity
• storage efficiency

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

...

𝐸𝑃 = 𝐸1⨁𝐸2⨁𝐸3⨁𝐸4

Parity update overhead still 
exist
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RAID 6

• How to tolerate more disk 
failures?

• RAID-6 protects against two disk 
failures by maintaining two 
parities

• Encoding/decoding operations:
 Based on Galois field

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

𝐴𝑞 = 𝑐0𝐴1⨁𝑐
1𝐴2⨁𝑐

2𝐴3⨁𝑐
3𝐴4

Parity update overhead 
becomes larger
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Parity Update Overhead

• RAID provides device-level fault tolerance

– Each stripe contains data and parity

• Limitation: Parity updates

– Update data -> update parity
• Update 𝐷1 to 𝐷1′

• RMW: 𝑃0
′ = 𝑃0⨁𝐷1⨁𝐷1′

• RRW: P0
′ = D0⨁𝐷1′⨁𝐷2

– Extra I/Os and GC

• SSD RAID

– Parity update influences both performance and endurance

Parity chunks: 
𝑃0 = 𝐷0⨁𝐷1⨁𝐷2
𝑃1 = 𝐷3⨁𝐷4⨁𝐷5
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Design tradeoff

• Design trade-off in SSD RAID arrays

– RAID improves reliability

– Parity updates incur extra I/Os and GC operations

• Degrade performance and endurance

How to address the parity update overhead?
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Parity Logging

• Original Parity logging

– Incoming reqs: {𝐴0, 𝐵0, 𝐶0 },{𝐴1, 𝐵1, 𝐶1 }, {𝐵0′, 𝐶0′, 𝐴1′}

• Drawbacks

– Pre-read: Extra reads

– Per-stripe basis: Extra log chunks; Partial parallelism
73



EPLOG
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No pre-read

Full parallelism

(Elastic)

Our solution: New RAID Design via Elastic Parity 
Logging (EPLOG)



Tolerate any number of failures?

Erasure codes

– General-fault tolerant: Cauchy Reed-Solomon (CRS)

Generate m code blocks from k data blocks, so as 

to tolerate any m disk failures

A B A+B A+2BA B
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XOR-based Codes

 2-fault tolerant: RDP, EVENODD, X-Code

An RDP code example with 6 disks

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,5

d1,5

d2,5

d3,5

⊕
⊕
⊕
⊕

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5

⊕
⊕
⊕

76



Summary on Erasure Codes

The motivation to introduce erasure codes in 

large-scale storage systems

 In practice, erasure codes have seen widely 

deployment in past decade
• Google File System [Ford, OSDI’10]

• Windows Azure Storage [Huang, ATC’12]

• Facebook [Borthakur, Hadoop User Group Meeting 2010]

• …

• Research topics：wide stripes, EC in disaggregated mem…

The need to reduce the tremendous cost of storage
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Summary of Ch8
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SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

 Cylinder, Track, Sector: CLV, CAV
 Access time
 FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

 Structure and features
 Operations (read/write/erase/GC)

 RAID structures (RAID0, 1, 4, 5, 6)
 Erasure coded storage


