
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

1

Chapter 8
Mass Storage

Topics in Part 3 (Storage Management)

2

File System Operations

Operating System
Kernel

User Space

Devices

Processes

File system
Implementation

FAT32, EXT2/3

KV, Distributed FS,
Graph System…

Storage Hierarchy

3

Topics (Mass Storage)

4

SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

5

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

Hard Disk Structure – Physical view

Physical address (cylinder, track, sector)

Track:
The surface of a platter is divided into tracks
Sector:
Track is divided into sectors (512B data + ECC)
Cylinder:
Set of tracks that are at one arm position

Access: Seek + Rotate

Seek time:
move disk arm to desired cylinder

Rotational latency:
spin at 5400/7200/10K/15K RPM

Hard Disk Structure – Physical view

Constant liner velocity (CLV)
 Uniform density of bits per track,

outer track hold more sectors
 Variable rotation speed to keep the

same rate of data moving
 CD-ROM/DVD-ROM

Constant angular velocity (CAV)
 Constant rotation speed
 Higher density of bits in inner tracks
 Hard disks

Hard Disk Structure – Logical view

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

Address mapping
Logical block number -> (cylinder #, track #, sector #)

Disk management is required

 Disk formatting

 Disks are prone to failures: defective sectors are
common (bad blocks)
 Need to handle defective sectors: bad block

management

Disk Management

Disk Formatting

Step 1: Low-level formatting/physical formatting

 Divide into sectors so disk controller can read/write

 Fills the disk with a special data structure for each sector (data area(512B),
header and trailer (sector number & ECC))
• The controller automatically does the ECC processing whenever a sector

is read/written

 Done at factory, used for testing and initializing (e.g., the mapping). It is also
possible to set the sector size (256B, 512B, 1K, 4K)

Disk Management

Disk Formatting

Step 2: How to use disks to hold files after shipment?

 Choice 1: File system
 Partition into one or more groups of cylinders (each as a separate disk)
 Logical formatting: creating a FS by storing the initial FS data structures
 I/O optimization: Disk I/O (via blocks) & file system I/O (via clusters), why?

• More sequential access, fewer random access

 Choice 2: Raw disk
 Use disk partition as a large sequential array of logical blocks, without FS
 Raw I/O: bypass all FS services (buffer cache, prefetching…), be able to

control exact disk location

Disk Management

Bad Block Management

 Maintain a list of bad blocks (initialized during low-level formatting) and
preserve an amount of spare sectors

 Sector sparing/forwarding: replace a bad sector logically with one spare
sector
• Problem: invalidate disk scheduling algorithm
• Solution: spare sectors in each cylinder + spare cylinder

 Sector slipping: remap to the next sector (data movement is needed)

12

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

Why needed?

• Requests are placed in the queue of pending
requests for that drive if the drive/controller is busy

13

R1 R2 Rn…Pending
queue

Read/write, disk address, memory address,
number of sectors to be transferred

What is disk scheduling

• I/O access procedure

– Seek
• move the head to the desired cylinder

– Rotate
• spin to the target sector on the track

14

Request ordering significantly affects
the access performance (seek + rotate),

so scheduling is needed

Disk scheduling：Choose the next
request in the pending queue to service
so as to minimize the seek time
(scheduling algorithms)

FCFS Scheduling

• First-come, first-served (FCFS)

– Intrinsically fair, but does not provide the fastest service

15

FCFS Scheduling

• First-come, first-served (FCFS)

16

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

FCFS Scheduling

• Scheduling diagram

17

Total head movement

(640 cylinders)

Wild swing is very common

E.g.: 122 to 14, then to 124

How to reduce the head
movement?

Handle nearby requests first

SSTF Scheduling

• Shortest seek time first (SSTF)

– Choose the request with the least seek time

– Choose the request closest to the current head position

18

SSTF Scheduling

• Shortest seek time first (SSTF)

19

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

SSTF Scheduling

• Scheduling diagram

20

Total head movement: 236
cylinders (it is 640 for FCFS)

Essentially a form of SJF
scheduling

It is not optimal

The sequence of 53-37-14-65…
could reduce the head
movement to 208

It may cause starvation

SCAN Scheduling

• Scan back and forth
– Starts at one end, moves toward the other end
– Service the requests as it reaches each cylinder
– Reverse the direction
– Elevator algorithm

21

SCAN Scheduling

• Scan back and forth

22

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

Suppose the head is moving from 53 to 0

SCAN Scheduling

• Scheduling diagram

23

Any problem?

Assume a uniform request
distribution

The heaviest density of requests
is at the other end of the disk

They need to wait for a long
time

Can we do something about this?

C-SCAN Scheduling

• Circular Scan back and forth
– A variant of SCAN: immediately return when reaches the end
– Aim for providing a more uniform wait time

24

C-SCAN Scheduling

• Circular scan

25

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

C-SCAN Scheduling

• Scheduling diagram

26

No need to move across the full width of the disk, but only need to reach the
final request

Improved SCAN and C-SCAN: LOOK and C-LOOK

Unnecessary

C-LOOK Scheduling

• Goes only as far as the final request

– Look for a request before moving

27

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

C-LOOK Scheduling

• Scheduling diagram

28

Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN

Summary of scheduling algorithms

29

SSTF outperforms FCFS, but may suffer from starvation

SCAN and C-SCAN perform better for heavy load systems,
and they are less likely to cause starvation

FCFS SSTF SCAN

C-SCAN C-LOOK

Selection of a scheduling algorithm

30

File allocation method
Large sequential I/O or
small random I/O

Number and
types of requests

Location of directories and
index blocks (metadata I/O)

Disk Performance

Implementing scheduling in OS is necessary to satisfy other constraints
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).

31

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

32

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

SSDs are widely used

33

Advantages of flash-based SSDs: non-volatility, shock resistance,
high speed and low energy consumption;

Flash Types

34

• NAND flash and NOR flash

– NAND flash: denser capacity, only allow access in
units of pages, faster erase operation

– Most SSD products are based on NAND flash

• NAND flash: SLC and MLC

– SLC: each cell stores one bit

• Longer life time, lower access latency, higher cost

– MLC: each cell stores two (or three) bits

• Higher capacity

Flash Cell

35

• Program operation can only change the value from 1 to 0 (erase
operation changes the value from 0 to 1)
– No overwritten

• The floating gate becomes thinner as the cell undergoes more
program-erase cycles
– Decreasing reliability

Flash Package

36

• Package > die/chip > plane > block > page

Samsung K9XXG08UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)

SSD Architecture

37

• SSD components

– Multiple flash packages, controller, RAM

38

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

Read

39

• Read: in unit of pages (4KB)

page register
data read: 25 μs

controller
serial bus: 100 μs

Write

40

• Write: in unit of pages (4KB)

page register
program: 200 μs

controller
serial bus: 100 μs

Erase

41

• Erase

– In unit of blocks (64/128 pages)

– Change all bits to 1

– Much slower than read/write: 1.5ms

• Each block can only tolerate limited number of P/E cycles

– SLC: 100K, MLC: 10K, TLC (several K to several hundred)

• The number of maximum P/E cycles decreases when

– More bits are stored in one cell

– The feature size of flash cell decreases (72nm, 34nm, 25nm)

Overwrite & Delete

42

• Delete

– Simply mark the page as invalid

• Overwrite/update

– Does not support in-place overwrite

– Data can only be programmed to clean pages

Software layer in controller

43

• How to further improve write performance?

– Address mapping is needed

• Page states

– Garbage collection is also necessary
free/clean

validinvalid

write

update

erase

44

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer
-

Flash Translation Layer

45

• Three functionalities

– Address mapping

– Garbage collection

– Wear-leveling

Address Mapping

46

• Sector mapping

• Block mapping

• Hybrid mapping

• Log-structured mapping

Sector Mapping

Mapping table is large: requires a large amount of RAM

47

Block Mapping

48

• The logical sector offset is the same with the physical
sector offset

Smaller mapping table

If the FS issues writes with identical lsn, many erases

Hybrid Mapping

49

• First use block mapping, then use sector mapping in
each block

Small mapping table

Avoid a lot of erase operations

Longer time to identify the location of a page

Log-structured Mapping

50

2

1

0

3

6

5

4

7

10

9

8

11

14

13

12

15

0 1 2 3

0 2 1 5

lbn

pbn

D
ata b

lo
cks

5

0

0

3

10

9

5

4 3pbn

Lo
g b

lo
cks

(lbn, pbn)

(0,0)
(1,2)
(2,1)
(3,5)

In Flash In RAM

BMT

(lsn, (pbn, off))

SMT

Data blocks: block mapping
Log blocks: sector mapping

Log-structured Mapping

51

2

1

0

3

6

5

4

7

10

9

8

11

14

13

12

15

0 1 2 3

0 2 1 5

lbn

pbn

D
ata b

lo
cks

5

0

0

3

10

9

5

4 3pbn

Lo
g b

lo
cks

(lbn, pbn)

(0,0)
(1,2)
(2,1)
(3,5)

In Flash In RAM

BMT

(lsn, (pbn, off))

(0, (4,0))

SMT

Data blocks: block mapping
Log blocks: sector mapping

0’
Multiple
variants

Short summary

52

• The performance of address mapping is
workload dependent

– Block mapping is suitable for sequential workloads

– Sector mapping is suitable for random workloads

– Log-structured mapping is suitable for workloads
with large sequential and small random requests

• Tradeoff exists

Garbage Collection

53

• Due to the existence of invalid pages, GC must
be called to reclaim storage

– Choose a candidate block

– Write valid pages to another free block

– Erase the original block

2

1

0

3

2

0

Design Issues of GC Algorithms

54

• Tradeoff in GC design

– Efficiency: minimize writes

– Wear-leveling: erase every block as even as possible

– Tradeoff

– GC is considered together with wear-leveling

• Algorithms

– Greedy, random, and their variants

– Hot/cold identification

Other Technologies

• 3D NAND flash

• Non-volatile memory (NVRAM)

– PCM, STTRAM, ReRAM, etc…

– Byte-addressable and non-volatile

– 3D XPoint

55

Flash Technology Trend

56

57

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure coding

58

RAID Motivation

Reliability

Performance

Cost

One disk failure
incurs data loss

Disks are slow

Fast and
reliable disks
are expensive

RAID Introduction

 In the past
 Combine small and cheap disks as a cost-effective

alternative to large and expensive disks

Nowadays
Higher performance
Higher reliability via redundant data
 Larger storage capacity

Many different levels of RAID systems
Different levels of redundancy, capacity, cost…

RAID: Redundant Array of Inexpensive (independent) Disks

59

RAID 0

• Block-level striping, no redundancy

• Provides higher data-transfer rate

• Does not improve reliability. Once a disk fails, data loss
may happen (MTTF: mean time to failure)

60

RAID 1

• How to improve reliability?

• Data mirroring (RAID1)
 Two copies of the data are held

on two physical disks, and the
data is always identical.

 Replication

• High storage cost
 Twice as many disks are required

to store the same data when
compared to RAID 0.

 Even worse storage efficiency
with more copies

61

62

Combinations

• RAID 0 provides reliability and
RAID 1 provides reliability

• RAID 0+1 (RAID01)
 First data striping
 Then data mirroring

Same storage
cost as RAID 1

63

Combinations

• RAID 0 provides reliability and
RAID 1 provides reliability

• RAID 0+1 (RAID01)
 First data striping
 Then data mirroring

• RAID 1+0 (RAID10)
 First data mirroring
 Then data striping Same storage cost

64

RAID01 vs RAID10

Both suffer from high storage cost

RAID 4

• Balance the tradeoff between
reliability and storage cost?
• Redundancy with parities

• Parity generation: Each parity
block is the XOR value of the
corresponding data disks

• Block-level data striping
• Data and parity blocks are

distributed across disks
• Dedicated parity disk

• Any problem?

𝐴𝑝 = 𝐴1⨂𝐴2⨂𝐴3

65

66

How to update data

• Suppose A1 will be updated
to A1’
• Both A1 and Ap need to

be updated
• Read-modify-write (RMW)

RMW: 𝐴𝑝
′ = 𝐴𝑝⨂𝐴1⨂𝐴1′

𝐴𝑝′ = 𝐴1⨂𝐴2⨂𝐴3⨂𝐴1⨂𝐴1′

= 𝐴2⨂𝐴3⨂𝐴1′

67

How to update data

• Suppose A1 will be updated to
A1’
• Both A1 and Ap need to

be updated
• Read-modify-write (RMW)

• How about updating both A1
and A2 simultaneously?
• RMW?
• Read-reconstruct-write

(RRW)

• Selection of RMW/RRW

RRW: 𝐴𝑝
′ = 𝐴3⨂𝐴1′⨂𝐴2′

Both RMW and RRW incur
extra reads and writes

Problems of RAID 4

• Problems of RAID 4

• Disk bandwidth are not fully
utilized
• Parity disk will not be

accessed under normal
mode

• Parity disk may become the
bottleneck
• E.g., updating A1, B2, C3

Read: A1, B2, C3, Ap, Bp, Cp
Write: A1’ B2’, C3’, Ap’, Bp’, Cp’

68

RAID 5

• Similar to RAID 4
• One parity per stripe

• Key difference
• Uniform parity distribution

• RAID 5 is an ideal combination of
• good performance
• good fault tolerance
• high capacity
• storage efficiency

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

...

𝐸𝑃 = 𝐸1⨁𝐸2⨁𝐸3⨁𝐸4

Parity update overhead still
exist

69

RAID 6

• How to tolerate more disk
failures?

• RAID-6 protects against two disk
failures by maintaining two
parities

• Encoding/decoding operations:
 Based on Galois field

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

𝐴𝑞 = 𝑐0𝐴1⨁𝑐
1𝐴2⨁𝑐

2𝐴3⨁𝑐
3𝐴4

Parity update overhead
becomes larger

70

Parity Update Overhead

• RAID provides device-level fault tolerance

– Each stripe contains data and parity

• Limitation: Parity updates

– Update data -> update parity
• Update 𝐷1 to 𝐷1′

• RMW: 𝑃0
′ = 𝑃0⨁𝐷1⨁𝐷1′

• RRW: P0
′ = D0⨁𝐷1′⨁𝐷2

– Extra I/Os and GC

• SSD RAID

– Parity update influences both performance and endurance

Parity chunks:
𝑃0 = 𝐷0⨁𝐷1⨁𝐷2
𝑃1 = 𝐷3⨁𝐷4⨁𝐷5

71

Design tradeoff

• Design trade-off in SSD RAID arrays

– RAID improves reliability

– Parity updates incur extra I/Os and GC operations

• Degrade performance and endurance

How to address the parity update overhead?

72

Parity Logging

• Original Parity logging

– Incoming reqs: {𝐴0, 𝐵0, 𝐶0 },{𝐴1, 𝐵1, 𝐶1 }, {𝐵0′, 𝐶0′, 𝐴1′}

• Drawbacks

– Pre-read: Extra reads

– Per-stripe basis: Extra log chunks; Partial parallelism
73

EPLOG

74

No pre-read

Full parallelism

(Elastic)

Our solution: New RAID Design via Elastic Parity
Logging (EPLOG)

Tolerate any number of failures?

Erasure codes

– General-fault tolerant: Cauchy Reed-Solomon (CRS)

Generate m code blocks from k data blocks, so as

to tolerate any m disk failures

A B A+B A+2BA B

75

XOR-based Codes

 2-fault tolerant: RDP, EVENODD, X-Code

An RDP code example with 6 disks

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,5

d1,5

d2,5

d3,5

⊕
⊕
⊕
⊕

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5

⊕
⊕
⊕

76

Summary on Erasure Codes

The motivation to introduce erasure codes in

large-scale storage systems

 In practice, erasure codes have seen widely

deployment in past decade
• Google File System [Ford, OSDI’10]

• Windows Azure Storage [Huang, ATC’12]

• Facebook [Borthakur, Hadoop User Group Meeting 2010]

• …

• Research topics：wide stripes, EC in disaggregated mem…

The need to reduce the tremendous cost of storage

77

Summary of Ch8

78

SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

 Cylinder, Track, Sector: CLV, CAV
 Access time
 FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

 Structure and features
 Operations (read/write/erase/GC)

 RAID structures (RAID0, 1, 4, 5, 6)
 Erasure coded storage

