
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Chapter 9, part 1
File Systems – Programmer Perspective



Story so far…

2

File System Operations

Operating System 
Kernel

User Space

Devices

Processes

File system 
Implementation

FAT32, EXT2/3
KV, Distributed FS, 

Graph System…



Outline

• File system introduction

• What are stored on a storage device?

– File

– Directory

– Interfaces/Operations

3



4

File system introduction



Introduction

5

FS Operations

Process A

Operating System Kernel

User space

Devices

⚫ To understand what a file system (FS) is, we follow 
two different, but related directions:

    - Layout & Operations.



Introduction

6

FS Operations

Process A

Operating System Kernel

User space

The layout.

Every FS has an unique layout on the 
storage device. The layout defines:
- What are the things stored in the device.
- Where the stored things are.

Devices



Introduction

7

FS Operations

Process A

Operating System Kernel

User space

The layout.

Devices

The set of FS operations defines how the OS 

should work with the FS layout.

In other words, OS knows the FS layout 

and works with that layout.



Introduction

8

FS Operations

Process A

Operating System Kernel

User space

The layout.

Devices

The process uses system calls, which 
then invoke the FS operations, to access 
the storage device.



9

Introduction

fopen()  fread()  fwrite()  fclose() Library Calls

NTFS-
specific 

functions

Ext4-
specific 

functions

FAT32-
specific 

functions

ISO9660-
specific 

functions

Kernel
Functions

open()   read()   write()   close() System Calls

Process

Kernel

Devices



Summary

10

• Ask yourself:

– OS = FS?

– Correct answer: OS  FS

– An OS supports a FS

• An OS can support more than one FS.

• A FS can be read by more than one OS.



Summary

11

• Ask yourself:

– Storage Device = FS?

– Correct answer: Storage Device  FS.

• A FS must be stored on a device.

– But, a device may or may not contain any FS.

– Some storage devices can host more than one FS.

• A storage device is only a dummy container.

– It doesn’t know and doesn’t need to know what 

FS-es are stored inside it.

– The OS instructs the storage device how the data 

should be stored.



Outline of topics

12

• There are two basic things that are  

stored inside a storage device, and are  

common to all existing file systems.

What are they?

– They are Files and Directories.

– We will learn what they are and some 

basic  operations of them.



Outline of topics

13

• There are two basic things that are  

stored inside a storage device, and are  

common to all existing file systems.

How does a FS store data into the disk?

– That is, the layout of file systems.

– The layout affects many things:
• The speed in operating on the file systems;

• The reliability in using the file systems;

• The allocation and de-allocation of disk spaces.



Outline of topics

14

• Other topics

– We will look into the details of FAT32 and  
Ext2/3 file systems.

– Case studies: key-value systems, distributed 
file systems, graph storage systems



15

Part1: FS – Programmer Perspective
  - File
  - Directory
  - Operations



File

16

• Why do we need files?

– Storing information in memory is good because 

memory is fast.

– However, memory vanishes after process termination.

– File provides a long-term information storage.

• It is persistent and survives after process termination.

– File is also a shared object for processes to access  

concurrently.



File

17

• What is a file?

– A uniform logical view of stored information 

provided by OS.

– OS perspective: A file is a logical storage unit (a 

sequence of logical records), it is an abstract data type

– User perspective: the smallest allotment of logical 

secondary storage

– File type (executable, object, source code, text, 

   multimedia, archive…)

– File attributes

– File operations



File – what are going to be stored?

18

• E.g., a text file.

h e l l o _ w o r l d ‘\n’

test.txt

Content? Content of the file

Filename? Content of its parent directory

What can we find out in this example?

File size? Attribute of the file

When a file is named, it becomes independent of the 
process, the user, and even the system



File Attributes

19

• Typical file attributes

Name 

Identifier

Type 

Location

Size 

Time, date

Protection 

Human-readable form

Unique tag (a number which identifies the file within the FS)

Text file, source file, executable file…

Pointer to a device and to the location of the file on the device

Number of bytes, words, or blocks

Creation, last modification, last use…

Access control information (read/write/execute)

You can try the command “ls -l” 



File Attributes

20

• Typical file attributes

Name 

Identifier

Type 

Location

Size 

Time, date

Protection 

Human-readable form

Unique tag (a number which identifies the file within the FS)

Text file, source file, executable file…

Pointer to a device and to the location of the file on the device

Number of bytes, words, or blocks

Creation, last modification, last use…

Access control information (read/write/execute)

Some new systems also support extended file 
attributes (e.g., checksum)



File Attributes

21

• File attributes are FS dependent.

– Not OSdependent.

Common Attributes FAT32 NTFS Ext2/3/4

Name ✓ ✓ ✓

Size ✓ ✓ ✓

Permission ✓ ✓

Owner ✓ ✓

Access, creation, 
modification time

✓ ✓ ✓

The design of FAT32 
does not include any 
security ingredients.



File Permissions

• E.g., in Unix system

22

First field: File/director

2nd /3rd /4th fields (3 bits each): controls read/write/execute 

for the file owner/file’s group/others (e.g., 111:7,110:6)

What is the meaning of the permission 775/664?



Common 
Attributes

Way to change them?

Command? Syscall?

Name

Size

Permission

Owner

Access, creation, 
modification time

Writing attributes?

• Can you change those attributes directly?

23

Common 
Attributes

Way to change them?

Command? Syscall?

Name mv rename()

Size Too many tools to 
update files’ contents

write(), truncate(), 
etc.

Permission chmod chmod()

Owner chown chown()

Access, creation, 
modification time

touch utime()



24

Part1: FS – Programmer Perspective
  - File
  - Directory
  - Operations



Directory

25

• A directory is a file.

– Then, does it imply that it has file attributes  and 

file content?

Answer: Sure
Answer: FS dependent

• How does a directory file look like?



Pathname vs Filename

26

The pathname is unique within the entire file system.

The filename is not unique within the entire file system.

The filename is only unique within the directory that it resides.

• A file can be referred to by its name, 

then how to achieve this?

/home/os/test.txt The pathname

The directory that 
“test.txt” resides in

The filename



Pathname vs Filename

27

• Why do we need to consider uniqueness?

open(“/some_directory/some_filename” , ......);

FS Operations

Data address

The OS kernel translates the pathname 

into a set of data addresses on the device.

That means the pathname is the key!

If the pathname is not unique, how come 

the OS can successfully find  the data 

needed?



Directory Traversal Process

28

FS Operations

Process

bin

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (1) Suppose that the  process 
wants to open the file  “/bin/ls”.

The process then supplies the OS the 
unique pathname  “/bin/ls”.

Step (2) The OS retrieves 

the  directory file of the 
root directory ‘/’.

Step (3) The disk returns 

the directory file.

file:/



Directory Traversal Process

29

FS Operations

Process

ls

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (4) The OS looks for the 

name “bin” in the directory file.

Step (5) If found, the in the OS 

retrieves the directory file of 
“/bin” using the information of 

the file attributes of “bin”.

file: /bin

bin

/



Directory Traversal Process

30

FS Operations

Process

ls

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (6) The OS looks for the name “ls” in 

the  directory file “bin”.

If found, then the OS knows that the file “/bin/ls”  

is found, and it starts the procedure to open the file 

“/bin/ls

bin



Short Summary

31

• A directory file records all the files including  

directories that are belonging to it.
– So, do you understand “/bin/ls” now?

– Locate the directory file of the target directory and to print 

contents out.

• Locating a file requires the directory traversal 

process



File Creation and Directory

32

• According to your experience, what is the  

file creation?

– E.g., creating a file named “test.txt”?

• “touch test.txt”?

• “vim test.txt”, then type “:wq”?

• “cp [some filename] test.txt”?

• The truth is:

File creation == Update of the directory file



File Creation and Directory

33

• If I type “touch text.txt” and “text.txt” does not exist, 
what will happen to the Directory file?

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

text.txt

Directory file: “/home/os”

A new directory entry is created.

Note: “touch text.txt” will only create the directory entry,  

and there is no allocation for the file content.



File Deletion and Directory

34

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

text.txt

• Removing a file is the reverse of the creation process.

– Note that we are not ready to talk about de-allocation of 

the file content yet.

Directory file: “/home/os”



Updating directory file

35

• When/how to update a directory file?

Creating a directory  file
syscall - mkdir();  

Example program - mkdir.

Add an entry to the  
directory file

syscall - open(), creat();  

Example program - cp, mv, etc.

Remove an entry to the  
directory file

syscall - unlink(); 

Example program - rm.

Remove a directory file
syscall – rmdir();  

Example program - rmdir.



36

Part1: FS – Programmer Perspective
  - File
  - Directory
  - Operations



37

Overview

fopen()  fread()  fwrite()  fclose() Library Calls

NTFS-
specific 

functions

Ext4-
specific 

functions

FAT32-
specific 

functions

ISO9660-
specific 

functions

Kernel
Functions

open()   read()   write()   close() System Calls



File operations

• The operating system should provide…

38

Create
Allocate space, add an entry in the directory

Write
Filename, file content (write pointer)

Read 
Filename, mem location (read pointer)

Reposition
File seek (not involve actual I/O), required for random accesses

Delete
Release space, and erase directory entry

Truncate
Keeps attributes only



File operations

• Many operations involve searching the directory for 
locating the file (read/write/reposition…)

– Can we avoid this content searching???

39

Open-file table

An open() system call is provided, and it is called before a file is 
first used

OS keeps a table containing information about all open files (per-
process and system-wide table)

The file will be closed when it is no longer being actively used, 
using close() system call



File Open – Example

• What is fopen()? 

– First thing first, fopen() calls open().

– FILE *fopen(const char
*filename, const char *mode)

• What is the type “FILE”?

– “FILE”: a structure defined in “stdio.h”.

– fopen() creates memory for the “FILE” 
structure.

• Fact: occupying space in the area of 
dynamically allocated memory, i.e., malloc()

40

open()

fopen()

Return  3

FS-specific 
functions



What is inside the “FILE” structure?

• There is a lot of helpful data in FILE:

– Two important things: the file descriptor and a buffer!

41

int main(void) {
    printf("fd of stdin  = %d\n", fileno(stdin)  );
    printf("fd of stdout = %d\n", fileno(stdout) );
    printf("fd of stderr = %d\n", fileno(stderr) );
}

fileno() returns the file descriptor of the FILE structure.

The type of stdin, stdout, and stderr is “FILE *”

$ ./fileno
fd of stdin  = 0
fd of stdout = 1
fd of stderr = 2
$ _



The Truth of Opening a File

42

unique
pathname

3

FS Operations

Process

Step (5) The OS returns  

the file descriptor to the  

process.

Step (4) The OS then  

associates the attributes to 

a number and the number is 

called the file descriptor.

Step (3) The disk returns 

the file  attributes.

Step (1) The process 

supplies a pathname  to 

the OS.

Step (2) The OS looks  

for the file attributes of 

the target file in the disk.

fd

Note: these steps are OS-independent as well as FS-independent.

Kernel
Open-file 
Table



The Truth of Opening a File

43

unique
pathname

3

FS Operations

Process

Step (5) The OS returns  

the file descriptor to the  

process.

Step (4) The OS then  

associates the attributes to 

a  number and the number 

is called the file descriptor. Step (3) The disk returns 

the file  attributes.

Step (1) The process 

supplies a pathname  to 

the OS.

Step (2) The OS looks  

for the file attributes of 

the target file in the disk.

fd

Note:

Opening a file only involves the 

pathname  and the attributes of 
the  file, instead of the file content!

Note: these steps are OS-independent as well as FS-independent.



44

What is a file descriptor?

0 1 2
file descriptor 

array

Although a file is opened by two different processes, 
the kernel uses one structure to maintain it! 

Process A

0 1 2 3
file descriptor 

array

Process B

4 5

See?  A file descriptor is 
just an array index for 
each process to locate 
its opened files.

Open-file 
Table

3



45

How about read and write (read() 
and write() system calls)?



read() & write()

• You know, I/O-related calls will invoke system calls.

46

Library calls that eventually invoke the 
read() system call

Library calls that eventually invoke the 
write() system call

scanf(), fscanf() printf(), fprintf()

getchar(), fgetc() putchar(), fputc()

gets(), fgets() puts(), fputs()

fread() fwrite()

int read ( int fd, void *buffer, int bytes_to_read )

int write ( int fd, void *buffer, int bytes_to_write )

From file to buffer.

From buffer to file.
Note: I modified the function prototypes.



How to read from open files

47

3 FS Operations

Process data
location

3

fd

Step (1) The process  

supplies a file  descriptor to 

the OS.

Step (2) The OS reads the file attributes and 

uses the stored attributes to locate the 

required data.

Step (3) The disk returns the 

required data.

- File data is stored in a fixed   
size cache in the kernel.

Step (4) The OS fills the buffer provided 

by the process with the data. Write data to 

the userspace buffer.

Open files

Kernel 
cache



48

read() system call

read()

FS-specific 
functions

Step 2. Reading data2

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes1

Step 1.
 - Check whether the end of the file is reached or not.
    [ Comparing size and file seek. ]



49

read() system call

read()

FS-specific 
functions

2

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes1

Step 3.
 - File data is stored in a fixed size cache in the kernel.

Kernel cache

3

4
Step 4.
Write data to the 
userspace buffer.



50

write() system call

write()

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes

Step 2.
According to the data length, 
(1) change in file size, if any, and
(2) change in the file seek.

Kernel cache

1
Step 1.
Write data to the 
kernel buffer.

2 2

3 Step 3.
The call returns.



51

write() system call

write()

FS-specific 
functions

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes

Kernel cache

4

1

2 2

4

Step 4.
The buffered data will be flushed to 
the disk from time to time.

3



The kernel buffer cache implies…

• Performance

– Increase reading performance?

– Increase writing performance?

• Problem

– Can you answer me why you cannot press the reset 
button?

– Can you answer me why you need to press the “eject” 
button before removing USB drives?

52



Short Summary

53

• Every file has its unique pathname.

– Its pathname leads you to its attributes and the file

content.

A file has two important components!  Plus, 

there are usually stored separately.



Short Summary

54

• We only introduce the read/write flow:

– File writing involves disk space allocation; but…

– The allocation of disk space is highly related to the  

design of the layout of the FS.

– Also, the same case for the de-allocation of the disk  

space…



Summary of part 1

• In this part, we have an introduction to FS

– File and directory

– The truth about the calls that we usually use,

– We learned: The content of a file is not the only entity, 
but also the file attributes.

• In the next part, we will go into the disk:

– How and where to store the file attributes?

– How and where to store the data?

– How to manage a disk?

55


	幻灯片 1: Chapter 9, part 1 File Systems – Programmer Perspective
	幻灯片 2: Story so far…
	幻灯片 3: Outline
	幻灯片 4
	幻灯片 5: Introduction
	幻灯片 6: Introduction
	幻灯片 7: Introduction
	幻灯片 8: Introduction
	幻灯片 9: Introduction
	幻灯片 10: Summary
	幻灯片 11: Summary
	幻灯片 12: Outline of topics
	幻灯片 13: Outline of topics
	幻灯片 14: Outline of topics
	幻灯片 15
	幻灯片 16: File
	幻灯片 17: File
	幻灯片 18: File – what are going to be stored?
	幻灯片 19: File Attributes
	幻灯片 20: File Attributes
	幻灯片 21: File Attributes
	幻灯片 22: File Permissions
	幻灯片 23: Writing attributes?
	幻灯片 24
	幻灯片 25: Directory
	幻灯片 26: Pathname vs Filename
	幻灯片 27: Pathname vs Filename
	幻灯片 28: Directory Traversal Process
	幻灯片 29: Directory Traversal Process
	幻灯片 30: Directory Traversal Process
	幻灯片 31: Short Summary
	幻灯片 32: File Creation and Directory
	幻灯片 33: File Creation and Directory
	幻灯片 34: File Deletion and Directory
	幻灯片 35: Updating directory file
	幻灯片 36
	幻灯片 37: Overview
	幻灯片 38: File operations
	幻灯片 39: File operations
	幻灯片 40: File Open – Example
	幻灯片 41: What is inside the “FILE” structure?
	幻灯片 42: The Truth of Opening a File
	幻灯片 43: The Truth of Opening a File
	幻灯片 44: What is a file descriptor?
	幻灯片 45
	幻灯片 46: read() & write()
	幻灯片 47: How to read from open files
	幻灯片 48: read() system call
	幻灯片 49: read() system call
	幻灯片 50: write() system call
	幻灯片 51: write() system call
	幻灯片 52: The kernel buffer cache implies…
	幻灯片 53: Short Summary
	幻灯片 54: Short Summary
	幻灯片 55: Summary of part 1

