
Operating Systems

Prof. Yongkun Li
中国科大-计算机学院教授
http://staff.ustc.edu.cn/~ykli

Chapter 9, part2
File System Layout

1

2

Outline

You’re given a disk of 1TB space. How to utilize it?

Allocated
Space

Free
Space

DirectoryFile content &
attributes

Things need to be stored.

operations
Questions.
• Can I read back what I’ve written?
• Can I get back free space when I remove a file?
• How much space is consumed when I create a 1GB file?

3

Outline

• We briefly introduce the evolution of the file system

layout:

– From a dummy way to advanced ways.

– The pros and cons are covered.

• We begin to look at some details of the FAT file

system and EXT file system

4

How to store data?

• Consider the following case:

– You are going to design the layout of a FS.

– You are given the freedom to choose the locations

to store files, including directory files.

– How will you organize the data?

100GB0

5

How to store data?

• Some (basic) rules are required:
– Every data written to the device must be able to be retrieved.

• Would you use the FS that will lose data randomly?

– Every FS operation should be done as efficient as possible.
• Would you use the FS if it takes a minute to retrieve several bytes of

data?

– When a file is removed, the FS should free the
corresponding space.

• Would you use the FS if it cannot free any occupied space?

100GB0

6

File System Layout

Trial 1.0
The Contiguous Allocation

7

Trial 1.0 – the basics

• Just like a book!

Table of content

Chapter 1 p.1
Chapter 2 p.2
Chapter 3 p.10

Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

8

Trial 1.0 – the basics

• Just like a book!
Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

Suppose we have 3 files to store

rock.mp3
sweet.jpg
same.exe

We do not consider the directory

structure at this moment

Like a book, we need to some space to
store the table of content, which records
the filename and the (starting and ending)
addresses of the file content.

9

Trial 1.0 – the basics

• Just like a book!

The table of content!

Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

10

Trial 1.0 – the basics

• Just like a book!

The table of content!

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

Contiguous allocation is very similar to the
way we write a book. It starts with the table of
content, which we call the root directory.

Root

Directory rock.mp3 sweet.jpg game.exe

11

Trial 1.0 – the basics

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678

You can locate files easily (with a directory structure).

But, can you locate the allocated space and the free
space in a short period of time?

Free space is here.

But, it needs an O(n) search, where n
is the total number of files.

Root

Directory rock.mp3 sweet.jpg game.exe

What if the disk is large and

the files are small?

12

Trial 1.0 – the basics

File deletion is easy! Space de-allocation is the same as
updating the root directory!

Yet, how about file creation?

rock.mp3 sweet.jpg game.exe

13

Trial 1.0 – the bad #1

• Suppose we need to write a new, but large file?

ubuntu.iso

Can’t be written!

Root

Directory
rock.mp3 game.exe

Really BAD! We have enough space, but there is no
holes that I can satisfy the request. The name of the
problem is called:

External Fragmentation
Any solution?

14

Trial 1.0 – the bad #1

• The defragmentation process may help.

Root

Directory
rock.mp3 game.exe

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

game.exe 5000 5678

game.exe

Filename Starting

Address

Ending

Address

rock.mp3

game.exe 2001 2679

ubuntu.iso 2680 6000

0 2000

move

ubuntu.iso

Very expensive (think

about the disk structure)

15

Trial 1.0 – the bad #2

• Comment:

– Also, the growth problem…there is no space

for files to grow.

Growth problem!
Can you suggest any method?

16

Trial 1.0 – the reality

• This kind of file systems has a name called the

 contiguous allocation.

• This kind of file system is not totally useless…

– The suitable storage device is something that is…

– read-only (just like a book)

17

Trial 1.0 – the reality

• Can you think of any real life example?

– Hint #1: better not grow any files.

– Hint #2: OK to delete files.

– Hint #3: better not add any files; or just add to the

tail.

– ISO9660.

18

File System Layout

Trial 2.0
The Linked List Allocation

19

From Trial 1.0 to Trial 2.0…

• Lessons learned from Trial 1.0:

– File Size Growth:

– Can we let every file to grow without paying an

experience overhead?

– External fragmentation:

– Can we reduce its damage?

• One goal

– To avoid allocating space in a contiguous manner!

20

Trial 2.0 – the basics

• How?

– The first undesirable case in trial 1.0 is to write a

large file (as it may fail or need defragmentation)

– So, can we write small files/units only?

• For large files, let us break them into small pieces…

ubuntu.iso

Root

Directory
rock.mp3 game.exe

21

Trial 2.0 – the basics

• How?

– The second undesirable case in trial 1.0 is when

file grows (as it needs reallocation)

– So, how can we support dynamic growth?

• Let’s borrow the idea from the linked list…

22

Trial 2.0 – the basics

• Linked list allocation…

– Step (1): Chop the storage device into equal-

sized blocks.

23

Trial 2.0 – the basics

• Linked list allocation…

– Step (2): Fill the new file into the empty space in a

block-by-block manner.

ubuntu.iso

Root

Directory

1 21

24

Trial 2.0 – the basics

• Linked list allocation…

– Step (3): The root directory…

• becomes strange/complicated.

Filename Sequence

of Block #

Sequence

of Block #

rock.mp3 1-6 NULL

game.exe 19-25 NULL

ubuntu.iso 7-18 26-27

Since a directory file is an

array, it is difficult to pretend

to be a linked list….

Root

Directory

1 21 30

Can we have a better
solution to optimize
the directory?

25

Trial 2.1 – the linked list

• Let’s borrow 4 bytes from each block.

– To write the block # of the next block into the first

4 bytes of each block.

– Real linked list

Root

Directory

......
NULL

(or 0)

......

27 0

Block

26

Block

27

1 21 3011

How does the root
directory look like?

26

Trial 2.1 – the linked list

• Let’s borrow 4 bytes from each block.

– To write the block # of the next block into the first

4 bytes of each block.

– Real linked list

Root

Directory

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7
NULL

(or 0)

......

27 0

Block

26

Block

27

1 21 3011

27

Trial 2.1 – the file size

• Note that we need the file size stored in the

root directory because…

 – The last block of a file may not be fully filled.

Root

Directory

Filename First

Block #

File Size

rock.mp3 1 600M

game.exe 19 2000M

ubuntu.iso 7 700M

1 21 3021

28

Trial 2.1 – the free space

• One more thing: free space management.

– Extra data is needed to maintain a free list.

We can also maintain

the free blocks as a

linked list, too.

Root

rectoryDi

F

R

E

E

28

0

1 21 30

29

Trial 2.1 – the good

• Pros:

External

fragmentation

problem is solved.

Files can grow

and shrink freely.

Free block

management is

easy to implement.

F

R

E

E

Root

Directory

1 21 30

30

Trial 2.1 – the bad #1

• Cons:

– Random access performance problem.

• The random access mode is to access a file at random locations.

– The OS needs to access a series of blocks before it can

access an arbitrary block.

• Worst case: O(n) number of I/O accesses, where n is the number of

blocks of the file.

F

R

E

E

Root

Directory

1 21 30

Target blockAccessed blocks

31

Trial 2.1 – the bad #2

• Cons (recall why we record file size?):
– Internal Fragmentation.

• A file is not always a multiple of the block size

• The last block of a file may not be fill

completely.

– This empty space will be wasted since

no other files can be allowed to fill such

space.

F

R Root

E Directory

E

0

U F

S R

E E

D E

Last block

of a file

1 21 30

32

From Trial 2.1 to Trial 2.2

• Can we further improve?

– We know that the internal fragmentation problem

is here to stay.

– How about the random access problem?

• We are very wrong at the very beginning…decentralized

next block location

The information about the next block should be centralized

33

Trial 2.2 – the FAT

• The only difference between 2.1 and 2.2…

File

Allocation

Table (FAT)

F

R

E

E

Root

Directory

Root

F

R

E Directory

E

Trial 2.1

Trial 2.2

All the information about the next

block #s are centralized, and it is

called FAT.

34

Trial 2.2 – the FAT implementation

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Step

(1)

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Task: read “ubuntu.iso” sequentially.

35

Trial 2.2 – the FAT

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Step (1). Look for the first block # of the file.

Step

(1)

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Step

(1)

Task: read “ubuntu.iso” sequentially.

36

Trial 2.2 – the FAT

Step

(1)

Step

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Filename First

Block #

rock.mp3 1

game.exe 19

The next block of 7 is 8.ubuntu.iso 7

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Step (2). Read the file allocation table to

determine the location of the next block.

Task: read “ubuntu.iso” sequentially.

37

Trial 2.2 – the FAT

Filename First

Block #

rock.mp3 1

19

7

game.exe

ubuntu.iso

Step (2). Read the file allocation table to

determine the location of the next block.

Root

Directory

F

R

E

E

File

Allocation

Table (FAT)

Step

(1)

Step

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Note that the next block is not

necessarily the adjacent one.

1 11 3021

Task: read “ubuntu.iso” sequentially.

38

Trial 2.2 – the FAT

Filename First

Block #

rock.mp3 1

19

7

game.exe

ubuntu.iso

Step (3). The process stops until the block
with the “next block # = 0”.

Step

(1)

Step

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Task: read “ubuntu.iso” sequentially.

39

Trial 2.2 – the FAT

The entire

layout…

40

Trial 2.2 – the lookup

• A point to look into:

– Centralizing the data does not mean that the random

access problem will be gone automatically, unless…

– the file allocation table is presented as an array.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

I know the

starting

position.

I know

the width.

So, going to an arbitrary location

is as simple as doing a pointer

addition operation.

File Allocation Table

The random access problem can be eased by keeping a cached
version of FAT inside the kernel.

Trial 2.2 – the lookup

41

File Allocation Table (FAT)

FAT12/16/32
specific

operations

Cached
(partial) FAT

If this table is partially kept on the cache,
then extra I/O requests will be generated
in locating the next block #.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

42

Trial 2.2 and the reality

• Every file system supported by MSDOS and

the Windows family is implementing the linked

list allocation.

• The file systems are:

– The FAT family: FAT12, FAT16, and FAT32;

– The New Technology File System: NTFS.

43

FATs Brief Introduction

• What is the meaning of the numbers (12/16/32)?

– A block is named a cluster.

– The main difference among all the versions of FAT

FS-es is the cluster address size.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Cluster

address size

Such a size defines the number of

clusters…
cluster address size

2

File Allocation Table

44

FATs Brief Introduction

• Cluster address sizes

– The larger the cluster address size is, the larger

the size of the file allocation table.

– The larger the cluster size is, the larger the size of

the disk partition is.

File System FAT12 FAT16 FAT32

Cluster address

length
12 bits 16 bits 32 bits (28?)

Number of

clusters
4K 64K 256M

We will look into more details of FAT32 in later lectures

45

Summary of Trial 2.2

• Is FAT a perfect solution…

– Tradeoff: trade space for performance

• The entire FAT has to be stored in memory so that…

• the performance of looking up of an arbitrary block is

satisfactory.

• Can we have a solution that stands in middle?

– Not store the entire set of block locations in mem…

– I don’t need an extremely high performance in

block lookups.

46

File System Layout

Trial 3.0
The Index-Node Allocation

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 1.0: Contiguous allocation (just like a book)

47

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

Root

Directory rock.mp3 sweet.jpg game.exe

Two key problems: External fragmentation + file growth

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.0: Linked-list allocation: blocking

48

Key problem: complicated root directory

Filename Sequence

of Block #

Sequence

of Block #

rock.mp3 1-6 NULL

game.exe 19-25 NULL

ubuntu.iso 7-18 26-27

Root

Directory

1 21 30

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.1: Linked-list allocation: blocking + linked list

49

Key problem: random access problem

Root

Directory

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7
NULL

(or 0)

......

27 0

Block

26

Block

27

1 21 3011

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.2: Linked-list allocation: centralized next-block # (FAT)

50

Requirement: FAT Caching

Trial 2.2 - FAT

• FAT provides a good performance in all aspects

– File creation, file growth/shrink, file deletion …

– Random access performance…but requires to

• cache the FAT

• Balance the tradeoff between Performance and
memory space

– Partial caching

– How?

51

52

Trial 2.2 - FAT

We are going to break the FAT into pieces…Trial 3.0

53

Trial 3.0 – the beginning

Filename Index

Node

rock.mp3

game.exe

ubuntu.iso

Root

Directory

F

R

E

Index

Nodes

Index node #1

Block # 1 … 6

Next Block # 2 … 0

Index node #3

Block # 7 … 18 26 27

Next Block # 8 … 26 27 0

Index node #2

Block # 19 … 25

Next Block # 20 … 0

Any problem with

this design?

E

11 21 301

54

Trial 3.0 – the beginning

Filename Index

Node

rock.mp3

game.exe

ubuntu.iso

Root

Directory

F

R

E

Index

Nodes

Index node #1

Block # 1 … 6

Next Block # 2 … 0

The index nodes are

variable-sized.

How to manage them?

E

11 21 301

Index node #3

Block # 7 … 18 26 27

Next Block # 8 … 26 27 0

Index node #2

Block # 19 … 25

Next Block # 20 … 0

Trial 3.0 – the beginning

• Problems with variable-sized index nodes

– How to locate an index node?

– How to support file growth…size of index nodes depends
on file size

55

Root

Directory

F

R

E

Index

Nodes
E

11 21 301

Index Node 1 Index Node 2 Index Node 3

Fix-sized index nodes are preferable, how to achieve?

56

Trial 3.0 – the heart

Index node structure

Direct Block #0

Direct Block #1

… ...

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block storing

block address.

Data Block

storing data.

...

...

1st layer of

indirect

blocks

2nd layer of

indirect

blocks

An innovative design

of the index node,

called extent.

...

Detailed structure of the index nodes will be talked later

57

Trial 3.0 – the two kinds of blocks

Indirect block

Stores an array of block addresses.

An address may point to either a data block or

another indirect block.

However, in a block, all the addresses are either

pointing to indirect blocks or data blocks.

Data block

Stores file data.

Keys

Indirect blocks that

point to indirect blocks

Indirect blocks that

point to data blocks

Data blocks

The consequence

3rd layer
indirect

2nd layer
indirect

1st layer
Indirect

Where are the (indirect)
blocks stored?

Root

Directory

F

R

E

Index

Nodes
E

58

Trial 3.0 – the file size

Number of direct

blocks
12

Number of indirect

blocks

Number of double

indirect blocks

Number of triple

indirect blocks

Block size 2x bytes

Address length 4 bytes

1

1

1

File size = number of data blocks * block size

The dominating factor.

Block size File size

1024 bytes = 210 approx. 16 Gbytes

4096 bytes = 212 approx. 4 Tbytes
“2x / 4=2x-2”

addresses

12 x 2x +

+

+

24x-6

How large files can be supported?

2x-2 *2x=22x-2

2x-2 * 2x-2 *2x=23x-4

59

Trial 3.0 – the final design

Filename Index

Node

rock.mp3

game.exe

ubuntu.iso

Root

Directory

F

R

E

E

Index

Nodes

1 11 3021

Index node #1

…

…
Now, every index

node is of a fixed

size.Index node #2

…

…

Index node #3

…

…

60

Trial 3.0 – the final design

Filename Index

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Root

Directory

F

R

E

E

Index Node

Table

1 11 3021

Inside the index node table …

It is arranged as an array. So,

looking up an index node will be fast.
Searching the index

nodes using the

index node #.

Now, this column stores

the index node #.

Index

node #1

Index

node #2

… Index

node #n-1

… … …

… … …

Layout & read
process

Trial 3.0

• How about the tradeoff between performance and
memory usage?

– Partial caching is easy

• Any overhead of Trial 3.0?

– The index-node allocation uses more storage:

• to trade for a larger file size (with fixed-size index

nodes).

– The indirect blocks are the extra things.

61

62

Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

~4M (x=12)

~4G (x=12)

1 block

~1K blocks

63

Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

~4T (x=12)

~1M blocks

64

Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

– Max. number of indirect blocks depends on

• Block size

• File size

Block size Max. # of indirect

blocks

Max. Extra Size

involved

1024 bytes = 210 approx. 216 approx. 256 Mbytes

4096 bytes = 212 approx. 220 approx. 4 Gbytes

Remember, they are not static and

they grow/shrink with the file size.

65

Trial 3.0 – the summary

• FSes in UNIX and Linux use the index-node

allocation method.
– The Ext2/3/4 file systems.

• The index node is called inode in those systems.

• Ext4 uses extent, not indirect blocks

– We will discuss the details of Ext file system later.

66

From Trial 1.0 to Trial 3.0…

• We studied what are the possible ways to store

data in the storage device.
– The things stored are usually:

Free space management

Actually, we didn’t cover that

much…

File attributes

Except the file size and the

locations of the data blocks,

where and what are the other

attributes?

Root directory

Hey, where are the sub-directories?

Still remember the directory traversal

Data block management

The FAT, the extents, the table of

content.

Root

Directory

F

R

E

E

Index Node

Table

or FAT

67

File System Layout

Root Directory and
Sub-directories

68

Root directory

• We know that the root directory is vital.

– However, we have sub-directories…

– Where are they?

Filename Index

Node #

rock.mp3 1

2

3

temp_dir ?

game.exe

ubuntu.iso

Filename First

Block #

rock.mp3 1

19

7

temp_dir ?

game.exe

ubuntu.iso

Index Node
Allocation

Linked list

Allocation
Are the sub-directories

stored here?

69

Sub-directories?

• Let’s take the index-node allocation as an example…

Directory File

Filename inode #

rock.mp3 1

game.exe 19

ubuntu.iso 7

temp_dir 100

File content … of

the directory file

Root directory is a directory file.

Index node

Direct Block #0

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Directory is also a file, so it has an inode too

70

Sub-directories?

• Let’s take the index-node allocation as an example…

Directory File

Filename inode #

rock.mp3 1

game.exe 19

ubuntu.iso 7

temp_dir 100

Root directory is a directory file.

Index node

Direct Block #0

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Directory File

filename inode #

file_a 123

dir_1 345

file_b 456

dir_2 567

Just another

directory file.

See, each directory entry keeps the address of the file attributes,
not the attributes themselves (how about FAT file systems?)

71

Traversing directory structure…

• Let’s take index-node allocation as an example…

Root Directory File

Filename inode #

File

Dir

Sub-Directory File

Filename inode #

The tree ends at the

non-directory files.

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect

Block

Triple Indirect

Block

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect

Block

Triple Indirect

Block

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect

Block

Triple Indirect

Block

File contents

File
contents

Content of a directory file is still
a directory file

72

Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/file”

Root

Directory

F

Index Node R

Table E

E

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Root Directory File

Filename inode #

file 123

… …

File contents

73

Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/os/file”

Root

Directory

F

Index Node R

Table E

E

Sub-directory File

Filename inode #

file 456

… …

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Root Directory File

Filename inode #

file 123

os/ 124

74

Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/os/file”

Root

Directory

F

Index Node R

Table E

E

Sub-directory File

Filename inode #

file 456

… …

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

File contents

75

File System Layout

File system information
and partitioning

Storage layout

• What are stored on disk?

– Root directory, index nodes/FAT, data blocks, free
space information…

– Others?

• E.g., How do we know where the root directory is?

• Where is the first inode?

– File system information

76

Root

Directory

F

R

E

Index

Nodes
E

77

File System Information

• It is a set of important, FS-specific data…

Examples of FS-Specific Data

How large is a block?

How many allocated blocks are there?

How many free blocks are there?

Where is the root directory?

Where is the allocation information, e.g., FAT & inode table?

How large is the allocation information?

78

File System Information

• It is a set of important, FS-specific data…

– Can we hardcode those information in the

kernel code…

– No!!! Because different storage devices have

different needs.

FAT

F

R

E

E

Root

Directory

FAT

F

R

E

E

Root

Directory

E.g., different disk

sizes result in

different FAT sizes.

79

File System Information

• It is a set of important, FS-specific data…

– Solution: The workaround is to save those information
on the device.

FS-Specific

Information
FAT

F

R

E

E

Root

Directory

FS-Specific

Information
FAT

F

R

E

E

Root

Directory

Each device should has its own

copy of information.

80

File System Information

• It is a set of important, FS-specific data…

– Solution: The workaround is to save those information
on the device.

Superblock
Index Node

F

R

E

E

Root

Directory

In FAT* & NTFS Boot Sector

In Ext* Superblock

Boot Sector FAT

F

R

E

E

Root

Directory

Story so far…

• We talked about the file system layout

– FAT and index node

81

Superblock
Index Node

F

R

E

E

Root

Directory

Boot Sector FAT

F

R

E

E

Root

Directory

Only one file system can be stored in a disk?

What is the problem with a very large file system? Large FAT

No!

82

Disk partitions

• Partitioning is needed to

– limit the file system size

– support multiple file systems on a single disk

partition 1 partition 2

83

Disk partitions

• What is a disk partition?

– A disk partition is a logical space…

• A file system must be stored in a partition.

• An operating system must be hosted in a partition.

C

O

D

E

partition 1 partition 2

A partition table stores the

- first sector,

- the length, and

- the type of a partition.

Boot Code:

the code specifies

which partition to boot.

Master boot record (MBR)…

84

BOOT CODE
Table

Entry #1
Table

Entry #2
Table

Entry #3
Table

Entry #4

512 bytes

0xAA55

446 bytes 16 bytes 2 bytes

Partition Table Entry

Bytes Description

0-0 Bootable flag; 0x80 means bootable.

1-3 Starting CHS address

4-4 Partition type
http://www.datarecovery.com/hexcodes.asp

5-7 Ending CHS address

8-11 Starting LBA address (measured in # of sectors)

12-15 Sizes in sectors

signature

The range of a partition is
described by the: (offset,
length) tuple.

http://www.datarecovery.com/hexcodes.asp

Disk partitions - summary

• Benefits of partitioning:

– Performance

• A smaller file system is more efficient!
– Think about FAT32.

– Multi-booting

• You can have a Windows XP + Linux + Mac installed on a single
hard disk (not using VMware).

– Data management

• You can have one logical drive to store movies, one logical
drive to store the OS-related files, etc.

85

86

Final view of a disk storage space

• Final view of disk layout

• Now, do you know what is meant by “formatting” a

disk?
– Create and initialize a file system!

– In Windows, we have “format.exe”.

– In Linux, we have “mkfs.ext2”, “mkfs.ext3”, etc.

C

O

D

E

Boot

Sector
FAT

Super

block
inode

Table

partition 1 partition 2

87

Summary of part2

• We have looked into many details about different

file system layouts:

– Contiguous allocation;

– Linked list allocation; and

– Index-node allocation.

• We also show the complete view of disk space

– File system specific information & disk partition

• Linked list allocation and index-node allocation are the

main streams but not the only way to implement

modern file systems.

So far, we have learnt:

88

What are stored on disk

File: content + attributes
Directory: Directory file

How to access them?

File operations: open(), read(), write()
Directory lookup: Directory traversal

How are the files stored on disk?

File system layout: Contiguous/linked-list (FAT)/index-node allocation

Topics not covered:
Only the attributes of file name and locations are covered, how about other
attributes? Free space management?

We’ll look into some real implementations (FAT32 + EXT2/3/4)

	幻灯片 1: Chapter 9, part2 File System Layout
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: How to store data?
	幻灯片 5: How to store data?
	幻灯片 6
	幻灯片 7: Trial 1.0 – the basics
	幻灯片 8: Trial 1.0 – the basics
	幻灯片 9: Trial 1.0 – the basics
	幻灯片 10: Trial 1.0 – the basics
	幻灯片 11: Trial 1.0 – the basics
	幻灯片 12: Trial 1.0 – the basics
	幻灯片 13: Trial 1.0 – the bad #1
	幻灯片 14: Trial 1.0 – the bad #1
	幻灯片 15: Trial 1.0 – the bad #2
	幻灯片 16: Trial 1.0 – the reality
	幻灯片 17: Trial 1.0 – the reality
	幻灯片 18
	幻灯片 19: From Trial 1.0 to Trial 2.0…
	幻灯片 20: Trial 2.0 – the basics
	幻灯片 21: Trial 2.0 – the basics
	幻灯片 22: Trial 2.0 – the basics
	幻灯片 23: Trial 2.0 – the basics
	幻灯片 24: Trial 2.0 – the basics
	幻灯片 25: Trial 2.1 – the linked list
	幻灯片 26: Trial 2.1 – the linked list
	幻灯片 27: Trial 2.1 – the file size
	幻灯片 28: Trial 2.1 – the free space
	幻灯片 29: Trial 2.1 – the good
	幻灯片 30: Trial 2.1 – the bad #1
	幻灯片 31: Trial 2.1 – the bad #2
	幻灯片 32: From Trial 2.1 to Trial 2.2
	幻灯片 33: Trial 2.2 – the FAT
	幻灯片 34: Trial 2.2 – the FAT implementation
	幻灯片 35: Trial 2.2 – the FAT
	幻灯片 36: Trial 2.2 – the FAT
	幻灯片 37: Trial 2.2 – the FAT
	幻灯片 38: Trial 2.2 – the FAT
	幻灯片 39: Trial 2.2 – the FAT
	幻灯片 40: Trial 2.2 – the lookup
	幻灯片 41: Trial 2.2 – the lookup
	幻灯片 42: Trial 2.2 and the reality
	幻灯片 43: FATs Brief Introduction
	幻灯片 44: FATs Brief Introduction
	幻灯片 45: Summary of Trial 2.2
	幻灯片 46
	幻灯片 47: Back to Trial 1.0-2.2
	幻灯片 48: Back to Trial 1.0-2.2
	幻灯片 49: Back to Trial 1.0-2.2
	幻灯片 50: Back to Trial 1.0-2.2
	幻灯片 51: Trial 2.2 - FAT
	幻灯片 52: Trial 2.2 - FAT
	幻灯片 53: Trial 3.0 – the beginning
	幻灯片 54: Trial 3.0 – the beginning
	幻灯片 55: Trial 3.0 – the beginning
	幻灯片 56: Trial 3.0 – the heart
	幻灯片 57: Trial 3.0 – the two kinds of blocks
	幻灯片 58: Trial 3.0 – the file size
	幻灯片 59: Trial 3.0 – the final design
	幻灯片 60: Trial 3.0 – the final design
	幻灯片 61: Trial 3.0
	幻灯片 62: Trial 3.0 – Storage Overhead
	幻灯片 63: Trial 3.0 – Storage Overhead
	幻灯片 64: Trial 3.0 – Storage Overhead
	幻灯片 65: Trial 3.0 – the summary
	幻灯片 66: From Trial 1.0 to Trial 3.0…
	幻灯片 67
	幻灯片 68: Root directory
	幻灯片 69: Sub-directories?
	幻灯片 70: Sub-directories?
	幻灯片 71: Traversing directory structure…
	幻灯片 72: Traversing directory structure…
	幻灯片 73: Traversing directory structure…
	幻灯片 74: Traversing directory structure…
	幻灯片 75
	幻灯片 76: Storage layout
	幻灯片 77: File System Information
	幻灯片 78: File System Information
	幻灯片 79: File System Information
	幻灯片 80: File System Information
	幻灯片 81: Story so far…
	幻灯片 82: Disk partitions
	幻灯片 83: Disk partitions
	幻灯片 84: Master boot record (MBR)…
	幻灯片 85: Disk partitions - summary
	幻灯片 86: Final view of a disk storage space
	幻灯片 87: Summary of part2
	幻灯片 88: So far, we have learnt:

