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Preface

The first seven chapters of this book were developed over a period of about 20
years for the course Linear Statistical Models at Michigan State University.
They were first distributed in longhand (those former students may still be
suffering the consequences), then typed using a word processor some ¢ight or
nine years ago. The last chapter, on frequency data, is the result of a summer
course, offered every three or four years since 1980.

Linear statistical models are mathematical models which are linear in the
unknown parameters, and which include a random error term. It is this error
term which makes the models statistical. These models lead to the methodology
usually called multiple regression or analysis of variance, and have wide
applicability to the physical, biological, and social sciences, to agriculture and
business, and to engineering.

The linearity makes it possible to study these models from a vector space
point of view. The vectors Y of observations are represented as arrays written
in a form convenient for intuition, rather than necessarily as column or row
vectors. The geometry of these vector spaces has been emphasized because the
author has found that the intuition it provides is vital to the understanding of
the theory. Pictures of the vectors spaces have been added for their intuitive
value. In the author’s opinion this geometric viewpoint has not been sufficiently
exploited in current textbooks, though it is well understood by those doing
research in the field. For a brief discussion of the history of these ideas see Herr
(1980).

Bold print is used to denote vectors, as well as linear transformations. The
author has found it useful for classroom boardwork to use an arrow notation
above the symbol to distinguish vectors, and to encourage students to do the
same, at least in the earlier part of the course.

Students studying these notes should have had a one-year course in
probability and statistics at the post-calculus level, plus one course on linear
algebra. The author has found that most such students can handle the matrix
algebra used here, but need the material on inner products and orthogonal
projections introduced in Chapter 1.

xi
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Chapter | provides examples and introduces the linear algebra necessary for
later chapters. One section is devoted to a brief history of the early development
of least squares theory, much of it written by Stephen Stigler (1986).

Chapter 2 is devoted to methods of study of random vectors. The multi-
variate normal, chi-square, t and F distributions, central and noncentral, are
introduced.

Chapter 3 then discusses the linear model, and presents the basic theory
necessary to regression analysis and the analysis of variance, including con-
fidence intervals, the Gauss—Markov Theorem, power, and multiple and partial
correlation coefficients. It concludes with a study of a SAS multiple regression
printout.

Chapter 4 is devoted to a more detailed study of multiple regression methods,
including sections on transformations, analysis of residuals, and on asymptotic
theory. The last two sections are devoted to robust methods and to the
bootstrap. Much of this methodology has been developed over the last 15 years
and is a very active topic of research.

Chapter 5 discusses simultaneous confidence intervals: Bonferroni, Scheffé,
Tukey, and Bechhofer.

Chapter 6 turns to the analysis of variance, with two- and three-way analyses
of variance. The geometric point of view is emphasized.

Chapter 7 considers some miscellaneous topics, including random component
models, nested designs, and partially balanced incomplete block designs.

Chapter 8, the longest, discusses the analysis of frequency, or categorical
data. Though these methods differ significantly in the distributional assumptions
of the models, it depends strongly on the lincar representations, common to
the theory of the first seven chapters.

Computations illustrating the theory were done using APL*Plus (Magnugis-
tics, Inc.), S-Plus (Statistical Sciences, Inc.), and SAS (SAS Institute, Inc.).
Graphics were done using S-Plus.). To perform simulations, and to produce
graphical displays, the author recommends that the reader use a mathematical
language which makes 1t easy to manipulate vectors and matrices.

For the linear models course the author teaches at Michigan State University
only Section 2.3, Projections of Random Variables, and Section 3.9, Further
Decomposition of Subspaces, are omitted from Chapters 1, 2, and 3. From
Chapter 4 only Section 4.1, Linearizing Transformations, and one or two other
sections are usually discussed. From Chapter 5 the Bonferroni, Tukey, and
Scheffé simultaneous confidence interval methods are covered. From Chapter
6 only the material on the analysis of covariance (Section 6.6) is omitted, though
relatively little time is devoted to three-way analysis of variance (Section 6.5).
One or two sections of Chapter 7, Miscellaneous Other Models, are usually
chosen for discussion. Students are introduced to S-Plus early in the semester,
then use it for the remainder of the semester for numerical work.

A course on the analysis of frequency data could be built on Sections 1.1,
1.2, 1.3, 2.1, 2.2, 2.3, 2.4 (if students have not already studied these topics), and,
of course, Chapter 8.
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CHAPTER 1

Linear Algebra, Projections

1.1 INTRODUCTION

Suppose that each element of a population possesses a numerical characteristic
x, and another numerical characteristic y. It is often desirable to study the
relationship between two such variables x and y in order to better understand
how values of x affect y, or to predict y, given the value of x. For example, we
may wish to know the effect of amount x of fertilizer per square meter on the
yield y of a crop in pounds per square meter. Or we might like to know the
relationship between a man’s height y and that of his father x.

For each value of the independent variable x, the dependent variable ¥ may
be supposed to have a probability distribution with mean g(x). Thus, for
example, ¢(0.9) is the expected yield of a crop using fertilizer level x = 0.9
(kgms/m?).

Definition 1.1.1: For each xe D suppose Y is a random variable with
distribution depending on x. Then

g(x) = E(Y|x) for xeD
is the regression function for Y on x.

Often the domain D will be a subset of the real line, or even the whole real
line. However, D could also be a finite set, say {1, 2, 3}, or a countably infinite
set {1,2,...}. The experimenter or statistician would like to determine the
function g, using sample data consisting of pairs (x;, y;) for i=1,...,n
Unfortunately, the number of possible functions g(x) is so large that in order
to make headway certain simplifying models for the form of g(x) must be
adopted. If it is supposed that g(x) is of the form g(x) = 4 + Bx + Cx? or
g(x) = A2 + Bor g(x) = Alog x + B, etc,, then the problem is reduced to one
of identifying a few parameters, here labeled as 4, B, C. In each of the three
forms for g(x) given above, g is linear in these parameters.

In one of the simplest cases we might consider a model for which g(x) =
C + Dx, where C and D are unknown parameters. The problem of estimating

1
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FIGURE L1 Regression of yield on fertilizer level.

g(x) then becomes the simpler one of estimating the two parameters C and D.
This model may not be a good approximation of the true regression function,
and, if possible, should be checked for validity. The crop yield as a function of
fertilizer level may well have the form in Figure 1.1.

The regression function g would be better approximated by a second degree
polynomial g(x) = 4 + Bx + Cx2. However, if attention is confined to the 0.7
to 1.3 range, the regression function is approximately linear, and the simplifying
model g(x) = C + Dx, called the simple linear regression model, may be used.

In attempting to understand the relationship between a person’s height ¥
and the heights of his/her father (x,) and mother (x,) and the person’s scx (x;),
we might suppose

E(Yix,, x5, x3) = g(x), X3, X3) = Bo + Byxy + fax; + fizx;,  (LL1)

where x; is 1 for males, 0 for females, and B,, f,. B, B are unknown
parameters. Thus a brother would be expected to be f§; taller than his sister.
Again, this model, called a multiple regression model, can only be an approxi-
mation of the true regression function, valid over a limited range of values of
X1, X2. A more complex model might suppose

glxy, X, X3) = Bo + ByX, + BaXy + Byxy + Baxi + Bsx3 + Bexy X,
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Table 1.1.1 Height Data

Indiv. Y Xy Xy X3
1 68.5 70 62 1
2 725 73 66 1
3 70.0 68 67 1
4 71.0 72 64 1
5 65.0 66 60 1
6 64.5 71 63 0
7 67.5 74 68 0
8 61.5 65 65 0
9 63.5 70 64 0

10 63.5 69 65 0

This model is nonlinear in (x,, x,, x;), but linear in the f’s. It is the linearity
in the f’s which makes this model a linear statistical model.

Consider the model (1.1.1), and suppose we have data of Table 1.1.1 on
(Y, x,, x5, x3) for 10 individuals. These data were collected in a class taught
by the author. Perhaps the student can collect similar data in his or her class
and compare results.

The statistical problem is to determine estimates 8, 8,, B, B; so that the
resulting function §(x,, x5, x3) = fo + B1x, + B2x, + Bsx; is in some sense a
good approximation of g(x,, x,, x3). For this purpose it is convenient to write
the model in vector form:

E(Y) = Boxo + Bix, + B,%; + B3x,,

where x, is the vector of all ones, and y and x,, x,, x; are the column vectors
in Table 1.1.1.

This formulation of the model suggests that linear algebra may be an
important tool in the analysis of linear statistical models. We will therefore
review such material in the next section, emphasizing geometric aspects.

1.2 VECTORS, INNER PRODUCTS, LENGTHS

Let Q be the collection of all n-tuples of real numbers for a positive integer n.
In applications € will be the sample space of all possible values of the
observation vector y. Though & will be in one-to-one correspondence to
Euclidean n-space, it will be convenient to consider elements of Q as arrays all
of the same configuration, not necessarily column or row vectors. For example,
in application to what is usually called one-way analysis of variance, we might
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have 3, 4 and 2 observations on three different levels of some treatment effect.
Then we might take

Yir Y12 Via
Y21 Y22 Va3
y=
Y31 Va2
Ya2

and Q the collection of all such y. While we could easily reform y into a column
vector, it is often convenient to preserve the form of y. The term “n-tuple”
means that the elements of a vector y € Q are ordered. A vector y may be
considered to be a real-valued function on {1,..., n}.

Q becomes a linear space if we define ay for any y € Q and any real number
a to be the element of © given by multiplying each component of Q by a, and
if for any two elements y,, y, € Q we define y, + y, to be the vector in Q whose
ith component is the sum of the ith components of y, andy,,fori=1,...,n.

Q becomes an inner product space if for each x, y € Q we define the function

h(x,y) = Z X Vi
1

where x = (x;,...,x,) and y =(y;,...,y,). If Q is the collection of n-
dimensional column vectors then A(x, y) = X'y, in matrix notation. The inner
product h(x, y) is usually written simply as (x, y), and we will use this notation.
The inner product is often called the dot product, written in the form x-y. Since
there is a small danger of confusion with the pair (x, y), we will use bold
parentheses to emphasize that we mean the inner product. Since bold symbols
are not easily indicated on a chalkboard or in student notes, it is important
that the meaning will almost always be clear from the context. The inner
product has the properties:

x.y)=(.%
(ax, y) = a(x,y)
(xl + X2, Y) = (xlv Y) + (x27 Y)

for all vectors, and real numbers a.

We define {x}i2 = (x, x) and call §x| the (Euclidean) length of x. Thus
x = (3, 4, 12) has length 13.

The distance between vectors x and y is the length of x — y. Vectors x and
y are said to be orthogonal if (x,y) = 0. We write x L y.
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For example, if the sample space is the collection of arrays mentioned above,
then

1 00 0 1 0
200 0 3 0
X = and y=
3 0 0 5
0 —1

are orthogonal, with squared lengths 14 and 36. For Q the collection of 3-tuples,
2.3 DL(-11 -1

The following theorem is perhaps the most important of the entire book.
We credit it to Pythagorus (sixth century B.C.), though he would not, of course,
have recognized it in this form.

Pythagorean Theorem: Letv,,...,v, be mutually orthogonal vectors in Q.
Then

Proof:

Definition 1.2.1: The projection of a vector y on a vector x is the vector §
such that

1. ¥ = bx for some constant b
2. (y — 9 L x (equivalently, (¥, x) = (y, x))

Equivalently, ¥ is the projection of y on the subspace of all vectors of the form
ax, the subspace spanned by x (Figure 1.2). To be more precise, these properties
define othogonal projection. We will use the word projection to mean ortho-
gonal projection. We write p(y|x) to denote this projection. Students should
not confuse this will conditional probability.

Let us try to find the constant b. We need (¥, x) = (bx, x) = b(x, X) = (y, x).
Hence, if x = 0, any b will do. Otherwise, b = (y, x)/||x]}2. Thus,

. {0 for x=0
[(y, x)/Ix|I*]x,  otherwise

Here 0 is the vector of all zeros. Note that if x is replaced by a multiple ax of
X, for a # O then § remains the same though the coefficient b is replaced by b/a.
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y
y-y
; i <
FIGURE 1.2
1 1
Example 1.2.1: Let x=| —2|, y=| —6]. Then (x,y) =18, |x||> =6,
1 h)
3 -2
b=18/6=3§=3x=| -6|.y—9=| ofLx
3 2

Theorem 1.2.1: Among all multiples ax of x, the projection § of y on x is
the closest vector to y.

Proof: Since (y—§)L{(y—ax) and (y-ax)=(y — §) + (¥ — ax), it
follows that
ly —axi? = lly — §lI* + {§ — ax|i®.

This is obviously minimum for ax = §. ]

Since § L(y — §) and y = § + (y — §), the Pythagorean Theorem implies
that [y{% = |I§1% + Jly — §I% Since ¥ = b*|x|I* = (y, x)*/lix||%, this implies
that y{? > (y, x)%/x}i, with equality if and only if jly — §}| =0, ie, y is a
multiple of x. This is the famous Cauchy-Schwarz Inequality, usually written
as (y, x)? < [lyl?Ix[i>. The inequality is best understood as the result of the
equality implied by the Pythagorean Theorem.

Definition 1.2.2: Let A be a subset of the indices of the components of a
vector space Q. The indicator of A is the vector I, € Q, with components which
are 1 for indices in A, and 0 otherwise.

The projection § , of y on the vector I, is therefore bl , for b = (y, L)/ |1 ,/}2 =
(Z y,)/N(A), where N(A) is the number of indices in A. Thus, b = j,, the

ieAd
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mean of the y-values with components in 4. For example, if Q is the space of
4-component row vectors, y = (3, 7, 8, 13), and A4 is the indicator of the second
and fourth components, p(yi1,) = (0, 10, 0, 10).

Problem 1.2.1: Let Q be the coliection of all S-tupies of the form

! 1
Y=<y“ Yau ).Letx:(l 0 )J:(S )
Yiz Y22 Yaus 213 9 4 11

() Find (x, y), Ix|I% Ilyll%, ¥ = p(yIx), and y — §. Show that x L (y — §), and
Iyl = 19012 + fly — $11>

(b) Let w = ( 0 ; 0) and z = 3x + 2w. Show that (w, x) = 0 and that

Izl = 9lIx]|* + 4]lw||%. (Why must this be true?)
(c) Let x,, X,, x5 be the indicators of the first, second and third columns.
Find p(y|x,) fori= 1,2, 3.

Problem 1.2.2: Is projection a linear transformation in the sense that
p(cy(X) = cp(y|x) for any real number ¢? Prove or disprove. What is the
relationship between p(y|x) and p(y|cx) for ¢ # 0?

Problem 1.2.3: Let |x{®>> 0. Use calculus to prove that |y — bx|}® is
minimum for b = (y, x)/|Ix| 2.

Problem 1.2.4: Prove the converse of the Pythagorean Theorem. That is,
Ix + yil2 = x| + {ly||* implies that x Ly,

Problem 1.2.5: Sketch a picture and prove the parallelogram law:

[x + yil2 + lIx — ylI2 = 2(IIx|12 + fiyl?)

1.3 SUBSPACES, PROJECTIONS

We begin the discussion of subspaces and projections with a number of
definitions of great importance to our subsequent discussion of linear models.
Almost all of the definitions and the theorems which follow are usually included
in a first course in matrix or linear algebra. Such courses do not always include
discussion of orthogonal projection, so this material may be new to the student.

Definition 1.3.1: A subspace of Q is a subset of Q which is closed under
addition and scalar multiplication.

That is, ¥ < Q is a subspace if for every x € ¥ and every scalar g, axe V
and if for every v, v, e V, v, + v, e V.



8 LINEAR ALGEBRA, PROJECTIONS

Definition 1.3.2: Let x,,...,x, be k vectors in an n-dimensional vector
space. The subspace spanned by x,, ..., X, is the collection of all vectors

y=b1x1+"'+bkx,‘

for all real numbers b, ..., b,. We denote this subspace by £(x,, ..., x;).

k
Definition 1.3.3: Vectors x,, ..., X, are linearly independent if Y b;x, =0
implies b, =0fori=1,...,k !

Definition 1.3.4: A basis for a subspace V of Q is a set of linearly
independent vectors which span V.

The proofs of Theorems 1.3.1 and 1.3.2 are omitted. Readers are referred to
any introductory book on linear algebra.

Theorem 1.3.1: Every basis for a subspace V on {2 has the same number
of elements.

Definition 1.3.5: The dimension of a subspace V of Q is the number of
elements in each basis.

Theorem 1.3.2: Letyv,,...,v, belinearly independent vectors in a subspace
V of dimension d. Then d > k.

Comment: Theorem 1.3.2 implies that if dim(V) = d then any collection of
d + 1 or more vectors in ¥ must be linearly dependent. In particular, any
collection of n + 1 vectors in the n-component space Q are linearly dependent.

Definition 1.3.6: A vector y is orthogonal to a subspace V of Q if y is
orthogonal to all vectors in V. We write y L V.

Problem 1.3.1: Let Q be the space of all 4-component row vectors.
Letx, =(1,1,1,1),x,=(1,1,0,0), x3 =(1,0,1,0), x, =(7,4,9,6). Let V, =
L(Xy5 %3), V3 = Z(xy,X,, X3) and ¥, = L(x,, X;, X3, X4)-

(a) Find the dimensions of V, and V;.

(b) Find bases for ¥, and ¥, which contain vectors with as many zeros as
possible.

(c) Give a vector z # 0 which is orthogonal to all vectors in V;.

(d) Since x,, X,, X,, z are linearly independent, x, is expressible in the form

3
Z b;x; + cz. Show that ¢ = 0 and hence that x, € V3, by determining (x,, z).
1

What is dim(V;)?
(e) Give a simple verbal description of V.
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Yir Y Ym
Problem 1.3.2: Consider the space Q of arrays| y,;, ¥, and define
Vi3

C,. C,. C; to be the indicators of the columns. Let ¥V = £(C,, C,, C,).
(a) What properties must y satisfy in order that y € ¥? In order that y 1. 1?
{(b) Find a vector y which is orthogonal to V.

The following definition is perhaps the most important in the entire book.
It serves as the foundation of all the least squares theory to be discussed in
Chapters 1, 2, and 3.

Definition 1.3.7: The projection of a vector y on a subspace V of € is the
vector € V such that (y — ¥) L V. The vector y — § = e will be called the
residual vector for y relative to V.

Comment: The condition (y — §) L V is equivalent to (y ~ ¥, x) = 0 for all
x € V. Therefore, in seeking the projection § of y on a subspace V we seek a
vector ¥ in ¥ which has the same inner products as y with all vectors in V
(Figure 1.3).
If vectors x,, ..., x, span a subspace V then a vector z € V is the projection
k
of y on V if (z, x;) = (y, x;) for all i, since for any vector x = b;x;e V, this
=1

implies that J

(z,x) =Y bfz.x;) =(y,Y b;x;) = (¥, x).

It is tempting to attempt to compute the projection § of y on V by simply
summing the projections §; = p(y|x;). As we shall see, this is only possible in
some very special cases.

<>

FIGURE 1.3
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At this point we have not established the legitimacy of Definition 1.3.7. Does
such a vector § always exist and, if so, is it unique? We do know that the
projection onto a one-dimensional subspace, say onto V = #(x), for x # 0,
does exist and is unique. In fact

§ =L x)/IxI2)x if x#0.

Example 1.3.1: Consider the 6-component space Q of the problem above,
6 4 7

and let V=%(C,,C,,C;). Lety=| 10 8 . It is easy to show that the

5
vector § =Y p(y|C;) = 7C, + 6C, + 7C; satisfies the conditions for a pro-
jection onto V. As will soon be shown the representation of ¥ as the sum of
projections on linearly independent vectors spanning the space is possible
because C,, C,, and C; are mutually othogonal.

We will first show uniqueness of the projection. Existence is more difficult.
Suppose ¥, and ¥, are two such projections of y onto V. Then §, — ¥, € V and
(. —¥2)=(y—¥,) — (y — ¥,) is orthogonal to all vectors in V, in particular
tAO ils?lf. Thus |I§, — §,I> = (§, — §2. 91 = §2) = 0, implying §, — §, =0, ie,
Y1 =Y.

We have yet to show that y always exists. In the case that it does exist (we
will show that it always exists) we will write ¥ = p(y| V).

If we are fortunate enough to have an orthogonal basis (a basis of mutually
orthogonal vectors) for a given subspace V, it is easy to find the projection.
Students are warned that that method applies only for an orthogonal basis. We
will later show that all subspaces possess such orthogonal bases, so that the
projection ¥ = p(y| V) always exists.

Theorem 1.3.3: Letv,,...,v, be an orthogonal basis for V, subspace of Q2.
Then

k
pyIV) =Y plylv)
i=1

Proof: Let §,=p(y|v,) = b;v; for b, = (y,v;)/Iv;|%. Since §; is a scalar
multiple of v;, it is orthogonal to v; for j # i. From the comment on the previous
page, we need only show that Z §; and y, have the same inner product with
each v;, since this implies that they have the same inner product with all x e V.
But

(Z yi, Vj) = Y bdvi, vi) = bjllvi? = (y, v)). t
i i
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Example 1.3.2: Let

7 1 2
y=|0]}, vi=1|1], v,={ —1], V=%2(v,v,).
2 1 -1

Then v, Lv, and

7
9 12
p(ylV)=9=p(y!vx)+p(ylvz)=<3)vl+(~é->vz= 3|+ =21 ={1].
3 -2 1

Then (y, v,) = 9,(y, ¥;) = 12, (¥, v,) = 9, and (¥, v,) = 12. The residual vector is
0

y — ¥ =| —1}, which is orthogonal to V.
1

Would this same procedure have worked if we replaced this orthogonal basis
v,, ¥, for ¥ by a nonorthogonal basis? To experiment, let us leave v, in the
new basis, but replace v, by v; = 2v;, — v,. Note that Z(v,,v,) = L(v,,v,) =V,

0
and that (v, v,) # 0. §, remains the same. v; =2v, —v, =| 3], ;= i6S vy =
0 3 3

1},and §, + §, =| 4|, which has inner products 11 and 24 with v, and v,.
1/ (3 4 4
y—| 4} =| —4], which is not orthogonal to V. Therefore, §, -+ ¥, is not the

4 -2
projection of y on V = £(v,, v,).
Since (y — §) L §. we have, by the Pythagorean Theorem,

IyI? =y — 9 + 9% = lly — 91° + I94°
0
|-
1

Warning: We have shown that when v,..., v, are mutually orthogonal

2

2 3
9¢ 12 DY

Iyli* = 53, |!9!I2=? _6_=5]’ y — 31 =
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k
the projection § of y on the subspace spanned by v,,...,v, is Y p(y|v;). This
i=
is true for all y only if v, ..., v, are mutually orthogonal. Students are asked
to prove the “only” part in Problem 1.3.5.

Every subspace V of Q of dimension r > 0 has an orthogonal basis (actually
an infinity of such bases). We will show that such a basis exists by using
Gram—Schmidt orthogonalization.

Let x,, ..., x, be a basis for a subspace V, a k-dimensional subspace of Q.
Forl1<i<klet V= %(xs,...,x;) so that ¥V, c V; ¢ -+ < ¥, are properly
nested subspaces. Let

vV, =Xy, V2 = X; — p(X,]vy).

Then v, and v, span V; and are othogonal. Thus p(x3|V;) = p(x3]v,) + p(x5lv,)
and we can define v3 = X3 — p(x3|¥;). Continuing in this way, suppose we have
defined v,,...,v; to be mutually orthogonal vectors spanning V. Define
Viry =X;4q — P(X;411V;). Then v;,, L ¥; and hence v,,...,v;,, are mutually
orthogonal and span ¥, ,. Since we can do this for each i < k — | we get the
orthogonal basis vy, ..., v, for V.

If {v,,..., v} is an orthogonal basis for a subspace V then, since § =

k

p(ylV) =Y p(ylv,) and p(ylv;) = b;v;, with b, = [(y, v,)/lIv;I*], it follows by
i=1

the Pythagorean Theorem that
k k k
1902 = Y lovil2 = X bivil® = ) (v, v)¥/iiv;i>.
i=1 =1 Jj=1

Of course, the basis {v,,...,v,} can be made into an orthonormal basis (all
vectors of length one) by dividing each by its own length. If {v}, ..., v}} is such
k k

an orthonormal basis then § = p(y| V) = ) p(y|v¥) = Y (v, v})¥* and [[§]* =
k 1 1

(AL

i=1

Example 1.3.3: Consider R,, the space of 4-component column vectors.
Let us apply Gram-Schmidt orthogonalization to the columns of X =
1 1 4 8

1 1 0 10
1 5 12
1 5§ 8 10

, a matrix chosen carefully by the author to keep the
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arithmetic simple. Let the four columns be x,,..., x,. Define v, = x;. Let

12 -2 24 32 -2
v2—"2—j4"“'l= 2 s V3 = X3 — "4"1 l~6<V2 = 2 ’
2 -2
and
2
28 (—16) (—24) :l -2
Vo= X4 [4 v, T v, T v, _,
2

We can multiply these v, by arbitrary constants to simplify them without losing
their orthogonality. For example, we can define w; = v;/|}v;[|2, so that u,, u,,
uy, u, are unit length orthogonal vectors spanning Q. Then U = (u,, u,, u;, u,)
is an orthogonal matrix. U is expressible in the form U = XR, where R has
zeros below the diagonal. Since I = U'U = UXR,R™ ! = U'X,and X = UR"},
where R~ has zeros below the diagonal (see Section 1.7).

As we consider linear models we will often begin with a model which
supposes that Y has expectation 8 which lies in a subspace V,, and will wish
to decide whether this vector lies in a smaller subspace ¥,. The orthogonal
bases provided by the following theorem will be useful in the development of
convenient formulas and in the investigation of the distributional properties of
estimators.

Theorem 1.34: Let V, <V, cQ be subspaces of Q of dimensions
I € ny < n, < n. Then there exist mutually orthogonal vectors vy, ..., v, such
thatv,,...,v, span V,i=12

Proof: Let {x,,...,x,} be a basis for ¥;. Then by Gram-Schmidt
orthogonalization there exists an orthogonal basis {v,...,v,} for ¥. Let
Xp, + 1> - - - » Xp, D€ ChoOsen consecutively from V, sothat vy, ..., v, X, 45,0 .5 X,,
are linearly independent. (If this could not be done, ¥, would have dimension
less than n,.) Then applying Gram—-Schmidt orthogonalization to x,, . ), ..., X,,
we have an orthogonal basis for V,. Repeating this for V, replaced by Q and
Vi.....¥, byv,...,v, we get the theorem. 0

For a nested sequence of subspaces we can repeat this theorem consecutively
to get Theorem 1.3.5.
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Theorem 1.35: Let Vi c V< - c K, < Q =}, be subspaces of Q of

dimensions 1 < n; < n, < *-+ <n <n=n,,, Then there exists an orthogonal
basis vy, ..., Vv, forQsuch thatv,,...,v, isabasisfor V;fori=1,...,k + 1.

We can therefore write for any y € ,

ny ,V- )
piyiV) = ,Z:, (—P_—_]yv-lljz) v, for i=1,...,k+1,
=L U7
and
(]} N 2
eyl I = 3 (iylv% for i=1,...,k+1.
j=1 jt

The v; can be chosen to have length one, so these last formulas simplify still
further.

Thus, the definition of the projection p(y}| V) has been justified. Fortunately,
it is not necessary to find an orthogonal basis in order to find the projection
in the general case that the basis vectors (x,, ..., x,) are not orthogonal. The
Gram-Schmidt method is useful in the development of nonmatrix formulas for
regression coefficients.

In order for § =b,x, + - - + byx, to be the projection of y on V =
L(x,, ..., X)) we need (y, x;) = (¥, x;) for all i. This leads to the so-called normal
equations:

k
@ x) =Y bfx;, x;) = (¥, x;) for i=1,...,k
1

Itis convenient to write these k simultaneous linear equations in matrix form:

Mb =L,

kxk kxt

where M is the matrix of inner products among the x; vectors, b is the column
vector of b;’s, and U is the k x 1 column vector of inner products of y with the
x;. If Q is taken to be the space of n-component column vectors, then we can
write X = (X, ..., X;), and we get M = X'X, U = X'y, so the normal equations
are:

Mb=XXp=Xy=U

Of course, if M = ((x;, x;)) has an inverse we will have an explicit solution
b=M"'U
of the normal equations. It will be shown in Section 1.6 that M has rank k if

and only if x,, ..., X, are linearly independent. Thus b= M~'U if and only if
X,, ..., X, are lincarly independent.
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In the case that the elements of Q are not column vectors, we can always
rewrite its elements as column vectors, and the matrix M will remain unchanged.
Thus, in the general case M possesses an inverse if and only if the vectors
X;, ..., X, are linearly independent. Of course, even in this case with Q@ =R,
the space of n-component column vectors, X = (x,, ..., X,), being n x k, does
not have an inverse unless # = k. In applications we always have n > k.

In the computation of M = X'X it makes little sense to write X on its side
as X', then X, and then to carry out the computation as the multiplication of
two matrices, unless the computer software being used requires this. M is the
matrix of inner products, and U is a vector of inner products, and this viewpoint
should be emphasized.

Example 1.3.4: Lety, v, and v, be as in Example 1.3.2. Let xl =v, and
X, = 2v; + v,. Then

1 4
y=|0jy, x,=|1}], x,=| 11},
1 1

and V = Z(v,, v,) = Z(x;, X,;). We compute
_|6 6 (x;,y)
M“[ﬁ 18]’ [(xz,y)] [ ]
M_,:}[ 18 —-6] 1[ 6 —2]
18 — 3 2 17J
s
6 12 2

5
and §=p(y|¥)= —x, +2x, =| 1|, as before.

1
It is easy to compute lengths of y and of y — §. First,

k

By the Pythagorean Theorem,

Iy — 0% = ltyll® — 1§42

For Example 1.3.2, {|§)|* = b,(y, x,) + by(y, X;) = (— 1)(9) + 2(30) = 51, as
shown in Example 1.3.2.
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FIGURE 14

The projection § = p(y| V) is the closest vector in V to y, since for any other
vector we V,

ly —wi2= Iy =+ F—wI*=lly - 3I* + Iy — w||?

by the Pythagorean Theorem and the facts that (§ —w)e V,and (y - §) L V.
Thus ||y — wj|? is minimized for w € V' by taking w = § (Figure 1.4).

For this reason the vectors b and ¥ are said to have been obtained by the
principle of least squares.

Problem 1.3.3; Let Q, C;, C,, C; be defined as in problem 1.3.2. Let
V=2(C,.C,Cy)

6 11 8
(@ Fory=|4 7 find § = p(y|V), y — §, Iyl%, 1912 Iy — §11%
2

(b) Give a general nonmatrix formula for § = p(y| V') for any y.

Problem 1.34: Let x, =(1,1,1,1), x,=(4,1,3,4), y=(1,9,5,5) (so
these are column vectors). Let V = #(x,, x,).

(@) Findy=p(y|V)ande=y —§.

(b) Find ¥, = p(y|x,) and ¥, = p(y!x,) and show that § # §, + §,.

(c) Verify thate L V.

(d) Find |yl 1I§§% |ly — §lI% and verify that the Pythagorean Theorem
holds. Compute ||§1}? directly from § and also by using the formula ||§#}2 = U’b.

(e) Use Gram-Schmidt orthogonalization to find four mutually orthogonal
vectors vy, v,, ¥4, ¥, such that ¥V = #(v,,v,). Hint: You can choose x, and x,
arbitrarily, as long as x;, X,, X5, X, are linearly independent.

(f) Express y and § in terms of the v,.

(g) Let w=(2,8,4,2). Show that we V and verify that |ly — w|>=
ly — §I% + ¥ — w|>. (Why must this equality hold?)
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(h) Does p(§ix,) = §,? Is this true for any y? That is, do we obtain the same
vector by (1) first projecting y on V, then projecting this vector on x, as by (2)
projecting y directly on x,? More generally, if V is a subspace, and V) a subspace
of V, does p(p(y| V)| 1)) = p(y| 1)?

Problem 1.3.5: Lety=(y,...,0), Xx=(x;,....,x),d=(1,..., 1), and
V= 2(J,x).

(a) Use Gram--Schmidt orthogonalization on the vectors J, x (in this order)
to find orthogonal vectors J, x* spanning V. Express x* in terms of J and x,
then find by, b, such that § = byJ + b,x. To simplify the notation, let

y*=y-piyl)=y-
Sy =5y =%y =Y (= Dy — §) =Y (x; — Dy = Y x;y; — Xjn,
See= (5% = L (x = 0 =T (x; — 92 = ¥ x} —
Sy=0%y) =X~

(b) Suppose § = p(y|V) = aoJ + a,x*. Find formulas for @, and q, in terms
of 3, §,,, and §,,.

(c) Express x* in terms of J and x, and use this to determine formulas for
b, and b, so that § = byJ + b;x.

(d) Express ||§]1* and |ly — §|| in terms of S,,, S,,, and S,,.

(e) Use the formula b= M~'U for b = (b,, b,)’ and verify that they are the
same as those found in (c).

2 0

6 1
(f) Fory = N Bl find a, ay, §, bo, by, Iyl%, IFI2, lly — §11°. Verify

8 3
that [|§li2 = bo(y, J) + b,(y,x) and that (y — §) L V.

Problem 1.3.6: Let Q be the collection of 2 x 3 arrays of the form

y = [Y11 Y12 Y13]
Y21 Y22 Va3
LetR,, R,, C,, C,, C, be indicators of the 2 rows and 3 columns. For example,

010 7 5 0
CZ =[0 1 O:I' For V=g(Rh R29C19C29C3)9 y=[9 9 6] ﬁnd ?, €=
y — ¥, [I§i2, llell%. Verify thate 1 V. Hint: Find four mutually orthogonal vectors

which span V. It is easier to begin with the column indicators.
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Problem 1.3.7: Let x,,....x, be a basis of a subspace V. Suppose that
k

p(ylV) = ¥ p(ylx;) for every vector y € Q. Prove that x, . .., X, are mutually
i=1
orthogonal. Hint: Consider the vector y = x; for each i.

Problem 1.3.8: Consider the collection . of all real-valued functions on

1

the unit interval U = [0, 1] having the property J‘ f*(x)dx < 0. Define the
1 L]

inner product (f, g) =J‘ f{x)g(x) dx. Such an inner product space, with the

0

correct definition of the integral, and a more subtle property called completeness,
is called a Hilbert space after the great German mathematician, David Hilbert,
of the late nineteenth and early twenticth centuries. J# is not finite dimensional,
but our projection theory still applies because we will be interested in

projections on finite dimensional subspaces. Consider the function h(x) = \/ x
for x € U. For each nonnegative integer k define p,(x) = x* The functions h,
Po. P1» p, determine corresponding points h, po, py, P, in #. Define ¥, =
Z(Po> P1-- - - - ), and b, = p(h| ¥}). The point h; corresponds to a polynomial
h, of degree k on [0, 1]. Though there is a subtle difference between the point
functions A, p,, h, and the corresponding points h, p,, b, in ), we will ignore
this difference. Let E, = ||h — h,}j? be the measure of error when the function
h, is used to approximate h.

(a) Find the functions A, for k = 0, 1, 2. Plot h and these three functions on
the same axes. Hint: The inner products (p;, p;) and (p;, h) are easy to determine
as functions of i and j, so that the matrices M and U are easy to determine. If
possible use exact arithmetic.

(b) Evaluate E, for k=0, 1, 2.

(c) Find the Taylor approximation h* of h, using constant, linear, and
quadratic terms, and expanding about x = 1/2. Show that the error h — ﬁzuz
is smaller than the error fih — h*||%.

(d) Repeat (a) and (b) for h(x)=1/(1 + x). Hint: Let ¢, =(h,p) =

1 1

J h(x)p,(x) dx. Then ¢, = f XY = h(x)]) dx = (1/k) — cx- 1.

4] 0

1.4 EXAMPLES
In this section we discuss four real data examples, formulate them in terms of
vector spaces, and carry out some of the computations. At this point we

consider only ways of describing observed vectors y in terms of a few other
vectors X, ..., X;-

Example 1.4.1: In their classic book Statistical Methods for Research
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Table 1.4.1 Regression of Percentage of Wormy Fruit on Size of Apple Crop

Size of Crop on Percentage of Deviation from
Tree Tree, X (Hund- Wormy Fruits Extimate of ¥ Regression
Number  reds of Fruits) Y E(Y|X) Y-¥=d,
1 8 59 56.14 2.86
2 6 58 58.17 —0.17
3 1t 56 53.10 290
4 22 53 41.96 11.04
5 14 50 50.06 —0.06
6 17 45 47.03 —-203
7 18 43 46.01 -3.01
8 24 42 39.94 206
9 19 39 45.00 —6.00
10 23 38 40.95 —295
1 26 30 3791 —791
12 40 27 23.73 3.27
Y x =228 Y Y =540
X=19 Y =45
Y X?=5256 Y ¥?=25522 Y XY=9324

S XPn=4332 (I V4n=24300 (¥ X)T Y)n=10,260

Workers, Snedecor and Cochran (1980, p. 162) present the data of Table 1.4.1
accompanied by this commentary:

6.6 —Regression of injured fruit on crop size. It is rather generally thought that the
intensity of the injury by codling moth larvae is greater on apple trces bearing a
small crop. Apparently the density of the flying moths is unrelated to the size of the
crop on a tree so that the chance of attack for any particular fruit is augmented if
there are few fruits in the tree. The data in table 6.5 are adapted from the results of
an experiment (9) containing evidence about this phenomenon. The 12 trees were all
given a calyx spray of lead arsenate followed by fine cover sprays made up of 3
pounds of managanese arsenate and | quart of fish oil per 100 gallons. There is a
decided tendency for the percentage of wormy fruits to decrease as the number of
apples in the tree increases.

xi=Xi_A7 y=r-Y
Y x* =924 Syi=1222 Y xy=-926
b=Y xy/y x* = —936/924 = —1.013 percent per wormy apple
Y=Y +bX—X)=45-1013(X — 19) = 64.247 — 1.103X
Y d2, = 1222 — (~936)/924 = 273.88
s2, =Y d2,/(n — 2) = 273.88/10 = 27.388
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FIGURE 1.5 Regression of percentage of wormy apples on size of apple crop. From Statistical
Methods for Research Workers, by G. W. Snedecor (1976), lowa State Press.

The line on the scatter diagram of Figure 1.5 was obtained as follows.
Suppose we try to approximate y by a linear function g(x) = b, + b;x. One
possible criterion for the choice of the pair (bg, b,) is to choose that pair for
which

Q = Q(by, by) = ‘Z":l Lyi — (bo + byx)]?

is minimum. If we define y and x, as 12-component column vectors of y and
x values, and x,, as the 12-component vector of all ones, then

Q = {ly — (boXo + byx)Ii%,

so that Q is minimized for byX, + b, X, = ¥, the projection of y onto .Z(x,, X,).
Thus, for X = (x4, X;)y M = X'X, U =Xy,

b= (b") =M"'U
by

X is the 12 x 2 matrix whose first column elements are all ones, and whose
second column is the column labeled X in Table 1.4.1. The column vector y
was labeled Y by Snedecor. § and e =y — § were labeled Y and d,, ,.

M_[lz 228] M_,_[ 0.474030 —0.020563] U_[ 540]
1228 5256 1 -0020563  0.001082 9,324
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64.247

b=M"U=[
—1.013

] Iyi? = 25522 9l = 25248 |y — §)% = 274

Notice that fy||2 = ||§#]|%> + |ly — §1i%, as should be the case, by the Pythagorean
Theorem. Simple computations verify that e = y — ¢ is orthogonal to x, and
X;, thatis, Y ¢, =0and ¥ ¢x, = 0.

We have chosen here to use the more general matrix formulas in order to
determine b, and b, even though nonmatrix formulas were developed in
Problem 1.2.3. A complete discussion of the simple linear regression model will
be included later.

Example 1.4.2: Consider now the height data of Table 1.1.1. Let us
try to approximate the 10-component vector y with a vector § contained in
FL(xg, Xy, X5, X3), where X, is the 10-component column vector of ones and x,,
X,, X3 are as given in Table 1.1.1. The approximation vectors are given in
Table 1.4.2.

Table 1.4.2
X y ¥ e

170 62 1 68.5 68.66 -0.16
1 7366 1 72.5 72.32 018
1 68 67 1 70.0 69.87 0.13
172641 710 70.78 022
1 66 60 1 65.0 65.37 —-0.37
171 630 64.5 63.85 0.65
1 74 68 0 67.5 67.99 —-0.49
1 65650 61.5 61.29 0.29
1 70 64 0 63.5 63.74 -0.25
I 69 650 63.5 63.63 —-0.13

10 698 644 5

698 48,796 44977 349

644 44,977 41,524 319

5 349 319 5
10,927,530 55,341 —108,380 —150,056
~ 55,341 1,629 —898 - 1,077
— 108,380 —898 2,631 3,158
150,056 1,077 3,158 43,789
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667.5 —17.702
46,648.0 0.585
U =X’y b= Y e} = |le)? = 008575
43,008.5 0477
347.0 5.872

The height y seems to be predicted very nicely by x, (father’s height), x,
{mother’s height) and x, (sex). We must be cautious, however, in interpreting
such an analysis based on 10 observations with 4 independent variables.
Predictions of heights for other people, based on the coefficients determined
for these data, should not be expected to be as good.

Example 1.4.3 (Snedecor, 1967, p. 278):

EXAMPLE 10.12.1--The numbers of days survived by mice inoculated with
three strains of typhoid organisms are summanzed in the following frequency
distributions. Thus, with strains 9D, 6 mice survived for 2 days, etc. We have
n, = 31, n, = 60, ny = 133, N = 224. The purpose of the analysis is to estimate and
compare the mean numbers of days to death for the three strains.

Since the variance for strain 9D looks much smaller than for the other strains,
it seems wise to calculate s? separately fro each strain, rather than use a pooled s*
from the analysis of variance.

The calculations are given under Table 1.4.3. Again from Snedecor (1967)
consider the variable days to death for three strains of typhoid organism. Let
y be the table with three columns, having the days to death for 31 mice on 9D
in column 1, for 60 mice on 11C in column 2, and 133 mice on DSC1 in column
3. Thus y has 224 components. Let y;; be the jth component in the ith column
of y. Let x4, x;, X5 be the indicators of columns 1, 2, 3. The best approximation
to y by vectors in £(x,, X,, X3) = V in the least squares sense is

3 3
§=pyIV)= iZ piylx) = Y yix
=1 i=1

The second equality follows by the orthogonality of x,, x,, X,. ¥; is the mean
of the values of y in the ith column. Thus ¥ is the array with 31 y,’s in column 1,
60 y,’s in column 2, 1337,'s in column 3. Easy computation (remembering, for
example, that 4 occurs nine times in column 1) shows that

YY;=125 Y Y,;=442, and Y Y;;=1037
We find 7, = 4.032, j, = 7.367, j, = 7.797, and the error sum of squares |ie}|*> =

Y (i — 5i)? = 127842, 1§11 = Y. n,37 = 11,845.58, and |ly|I* = ¥, y3 = 13,124,
ij i i

i
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Table 1.4.3
Numbers of Mice Inoculated
with Indicated Strain

Days to Death 9D 11C DSCl Total
2 6 1 3 10
3 4 3 5 12
4 9 3 5 17
5 8 6 8 22
6 3 6 19 28
7 1 14 23 38
8 1 22 33
9 4 14 18
10 6 14 20
1 2 7 9
12 3 8 11
13 1 4 5
14 1 1
Total 31 60 133 224
X 125 442 1,037 1,604
Z X? 561 3,602 8,961 13,124

Example 1.4.4: The following data were given in a problem in Dixon and
Massey (1957, p. 185).

The drained weight in ounces of frozen apricots was measured for various types of
syrups and various concentrations of syrup. The original weights of the apricots were
the same. Differences in drained weights would be attributable to differences in
concentrations Or type of syrups.

Syrup Composition

2/3 Sucrose 1/3 Sucrose All
All 1/3 Corn 2/3 Corn Corn
Sucrose Syrup Syrup Syrup Vi
C 30 | 28.80 28.21 29.28 29.12 28.853
onc.

of 40| 29.12 28.64 29.12 30.24 29.280
Syrup 5o | 2976 30.40 29.12 28.32 29.400
Vi 29.227 29.083 29.173 29.227  §..=29.178

Let y be the 3 x 4 matrix of drained weights. Let us approximate y by a
linear combination of indicator vectors for rows and columns. Define R;
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to be the indicator of row i and C; to be the indicator of column j. Thus, for
example,

0000 0010
Ry=|1 111 and C;=[0 01 0
0000 001 0

Take V= #(R,,R;,R;,C,,...,C,). Define x, to be the 3 x4 vector of all
ones. Then xo =) R, =) C,. Let 7., 7 ; and §.. be the mean of the ith row,
i j

the jth column, and the overall mean, respectively. It is not difficult to show
that V has dimension 4 + 3 — 1 = 6, and that § = §, + ¥ + ¥, where

29.178 29.178 29.178 29.178
§o=pP(YlXo) = J..Xo =| 29.178 29.178 29.178 29.178 |,

29.178 29.178 29.178 29.178
¥r =§(}7.~ - 7. R,

[ —0325 —-0325 -—0325 —0.325
=| 0102 0102 0102 0.102],
0222 0222 022 0222
9c=§(y.,~—yi.)C,

(0049 —0.095 —0.005 0.049
=|0049 -0095 —0005 0.049|.
0049 —0.095 —0.005 0.049

Notice that §,, ¥z, and §. are orthogonal and that the ij element of § is
FJii=y. +(Ji. —¥.)+(y;—F..) Therefore

[28.902 28.758 28.848 28.902

§=129329 29.186 29.276 29.329 |,

1.29.449 29306 29.396 29.449

[ -0.102 -0.548 0432 0218

e=| —0209 —-0.546 —0.156 0911

0311 1.094 -0.276 —1.129
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Further computation gives

Iyl? =Y y3 = 10221
ij
&2

iyl

]

190l + N9l + 19l
72.(12) + 42()7,-. -7+ 32(?.,-—?..)2
i }

i

= 10,215.92 + 0.66 + 0.04 = 10,216.62
lef? = lly — §lI* = 4.38

showing again that the Pythagorean Theorem holds.

Later, after we formulate probability models, and discuss their properties,
we will be able to draw further conclusions about the contributions of
concentration and composition to variation in drainage weight.

1.5 SOME HISTORY

In his scholarly and fascinating history of the development of statistics before
1900, Stephen Stigler (1986) begins his first chapter, entitled “Least Squares
and the Combination of Observations,” with the following:

The method of least squares was the dominant theme—the leitmotif—of nineteenth-
century statistics. In several respects it was to statistics what the calculus had been
to mathematics a century earlier. “Proofs™ of the method gave direction to the
development of statistical theory, handbooks explaining its use guided the application
of the higher methods, and disputes on the priority of its discovery signaled the
intellectual community’s recognition of the method’s value. Like the calculus of
mathematics, this “calculus of observations™ did not spring into existence without
antecedents, and the exploration of its subtleties and potential took over a century.
Throughout much of this time statistical methods were referred to as “the combina-
tion of observations.” This phrase captures a key ingredient of the method of
least squares and describes a concept whose evolution paced the method’s develop-
ment. The method itself first appeared in print in 1805.

Stigler refers to Adrien-Marie Legendre (1752-1833), who in 1805 wrote an
eight-page book Nouvelles méthodes pour le determination des orbites des cometes
(New methods for the determination of the orbit of the planets), with a
nine-page appendix, “Sur la méthode des maindres quarres™ (On the method
of least squares). Legendre began the appendix with a statement of his objective;
here is Stigler’s translation:
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In most investigations where the object is to deduce the most accurate possible results
from observational measurements, we are led to a system of equations of the form

E=a+bx+cy+ fz+- -,

in which a, b, ¢, f,... are known coefficients, varying from one equation to
the other, and x, y, z,... are known quantities, to be determined by the condition
that each value of E is reduced either to zero, or to a very simple quantity.

In today’s notation we might make the substitutions E = —¢;, —a =Y,
b=x,, x=p,, ¢=xy3, y=48,, etc, and write the model as —a = bx +
cy+ - —Eor ,=8x;+  +Fx,+eorevenas Y=0,x,+ - +

Bix, +e=Xp + ¢
Again in Stigler’s translation, Legendre wrote

Of all the principles that can be proposed for this purpose, 1 think there is none
more general, more exact, or more easy to apply, than that which we have used in
this work; it consists of making the sum of squares of the errors a minimum. By this
method, a kind of equilibrium is established among the errors which, since it prevents
the extremes from dominating, is appropriate for revealing the state of the system
which most nearly approaches the truth.

Legendre gave an example using data from the 1795 survey of the French
meridian arc, in which there were n = 5 observations and k = 3 unknown
parameters.

Though Carl Friedrich Gauss claimed in 1809 that he had used the method
of least squarcs as early as 1795, it seems clear from published writings that
Legendre shouid be given credit for the first development of least squarcs.

The statistical problem solved by Legendre had been faced carlier by
astronomer Johann Tobias Mayer (1723-62), mathematician Leonhard Euler
(1707-83) and scientist and mathematician Pierre-Simon Laplace (1749 - 1827)
in considering astronomic data. We will illustrate their earlier solutions on some
data concerning the motion of Saturn studied by Laplace in 1787. Table 1.5.1
is taken from Stigler’s book.

Using Legendre’s notation, these eighteenth century scientists considered the
problem of solving the “equations”

E,-=a,-+w+b,-x+€iy+d,-z (i=l,...,24) (1.5.1)

given by setting the E’s all equal to zero. Obscrvations were made on 24
occasions when Saturn, the moon, and carth were aligned over 200 years. The
dependent variable a; was the difference between the observed longitude of
Saturn and that predicted by Laplace’s theory. The measurements b,, ¢;, d;
were simple functions of observations made on the orbit of Saturn at those
times.
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They knew (or would have known) that those 24 equations in four unknowns
(w, x, y, 2) had no single solutions and that therefore all the E;s could not be
made zcro. Mayer’s idea was to reduce his collection of equations to a number
equal to the number of unknowns by adding across equations. In Mayer’s case
he had 27 equations with three unknowns, so he grouped the 27 equations into
three groups of 9 each, and simply added coefficients to get 3 equations in three
unknowns. As applied to the data of the Table 1.5.1 we could add the first 6,
next 6, etc. to get 4 equations in four unknowns. Mayer chose the subset of
equations to add according to the sizes of the coefficients, grouping large a;'s
together, etc.

Euler had available observations on Saturn and Jupiter for the years
1582-1745 (n = 75) and had k = 6 unknowns. He did not combine observations
as did Mayer but instead tried to solve for his unknowns by using some
periodicity of the coefficients to reduce the number of unknowns and by
considering small sets of observations, trying to verify solutions on other small
sets. He was largely unsuccessful, and wrote (Stigler’s translation)

Now, from these equations we can conclude nothing; and the reason, perhaps, is that
I have tried to satisfy several observations exactly, whereas I should have only
satisfied then approximately; and this error has then multiplied itself.

Thus, the most prolific of mathematicians, perhaps the greatest of analysts,
failed even to proceed as far as Mayer.

In 1787 Laplace, eulogized by Poisson in 1827 as “the Newton of France”
(Stigler 1986, p. 31), and perhaps the greatest contributor to probability and
statistics before 1900, considered the Saturn data of Table 1.5.1. Laplace reduced
the 24 equations in four unknowns to 4 equations. The first new equation was
the sum of all equations. The second was the difference between the sum of the
first 12 and the sum of the second 12. The third was the sum of equations 3,
4, 10, 11, 17, 18, 23, 24 minus the sum of equations 1, 7, 14, 20, the fourth was
the sum of equations 2, 8, 9, 15, 16, 21, 22 minus the sum of equations 5, 6, 13,
19. Stigler describes some of Laplace's motivation, which now seems quite valid:
Laplace obtained his jth equation by multiplying the original ith equation by
a constant k;; and then adding over i. His jth equation was therefore

0=>3 kya, +xY kyb, +yY ke, +z) kd,; (1.5.2)

Laplace’s k;; were all 1, —1 or 0. Mayer’s had ali been O or I. Legendre showed
that the method of least squares leads to taking k;, =1, k;; =b;, kiz =¢;,
ki, =d,.

The column in Table 1.5.1 “Halley Residual” had been derived by Edmund
Halley in 1676 using a different theory. Details are omitted.

In 1809 Gauss showed the connections among normally distributed errors,
most probable parameter values (maximum likelihood estimates) and least
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squares. In 1810 Laplace published his central limit theorem and argued that
this could justify the assumption of normally distributed errors, hence least
squares. Laplace showed in 1811 that, at least, asymptotically, least squares
estimators are normally distributed, and they are less variable than other linear
estimators, i.e., solutions of {1.5.1). Normality of the errors was not needed.

In 1823 Gauss showed that the asymptotic argument was unnecessary, that
the variability of the solutions to (1.5.1) could be studied algebraically, and that
least squares estimators had least variability. We will make this precise in
Sections 3.3 and 3.4 with a discussion of the famous Gauss—Markov Theorem.
The least squares theory and applications developed by Legendre, Gauss and
Laplace were widely published. Stigler cites a compilation by Mansfield
Merriman in 1877 of “ writings related to the method of least squares,” including
70 titles between 1805 and 1834, and 179 between 1835 and 1864.

1.6 PROJECTION OPERATORS

The purpose of this section is to study the transformation P,:y — § which
transforms a vector y € Q into its projection § on a subspace V.

In applications a vector y will be observed. The model under consideration
will specify that y = @ + ¢, for 8 € V, a known subspace of Q, with € a random
vector, both 8 and € unknown. We will usually estimate @ by the projection of
y onto V. We should therefore understand the properties of this projection as
well as possible.

The transformation P: y — p(y| V) for a subspace V is linear, since p(ay| V) =
ap(y|V) and p(y, + y,| V) = p(y,|V) + p(y2| V). (The student should check
this.)

Since ¥ = p(y| V) implies that p(§|V) = ¥, the projection operator P is
idempotent, i.e., P2 = P. In addition, P is self-adjoint, since for each x, y € Q,

(Px, y) = (Px, Py) = (x, Py).
If Q is the space of n-component column vectors, this means P may be
represented as a symmetric matrix, a projection matrix. Thus, for this case the
projection operator onto ¥ is an n x n matrix P, such that

P,=P, and P;=P,.

For V = #(x,,...,%;) with x,,..., x, linearly independent column vectors,
we have
p(yl V) = Xb = X(X'X)™'X'y,

where X = (x,,..., X,), so that

P, = X(X'X)"'X".
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It is easy to check that P, is symmetric and idempotent.

Example 1.6.1: For simplicity we will refer to a projection operator as
projection.

1 00 N
LLP=|0 1 0] = projection onto the linear subspace of vectors | y,
000 0

1 0
spanned by | 0]and | |
0 0
2.P= ;J,,J:, = projection onto J,, the column vector fo n I's. Then
Px = &, where £ = (x,J,)/ 13,1 = (L x)/n.
33 P=1,~- ;tJ,,J,’, = projection onto the subspace of column vectors whose

components add to zero, ie., are orthogonal to J,. P adjusts y by
subtracting y from all components. Py is the vector of deviations y; — j.

4. P = w'/|jv||? = projection onto the one-dimensional subspace Z(v).

(12 12 0 1
5. P=|1/2 1/2 0| = projection onto the subspace spanned by | 1
LO 0 I 0
0 N (yy + y2)/2
and | O |. Thus, P| y; { = (¥, + y2)/2
1 Va )

Problem 1.6.1: Show that for W = X B with B nonsingular, X(X'X)™'X’

nxk nxk kxk
remains unchanged if X is replaced by W. Thus, P is a function of the subspace
spanned by the columns of X, not of the particular basis chosen for this
subspace.

Theorem 1.6.1: Let 4 be a linear operator on Q which i1s idempotent and
self-adjoint. Then A is the projection operator onto the range of A.

Proof: We must show that for all yeQ, and xe R = Range of 4,
(Ay, x) = (y, X). If x € R then x = Az for some z € Q. But (Ay, x) = (y, Ax) by
self-adjointness (symmetry) and Ax = AAz = Az = x because 4 is idempotent.

O
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Problem 1.6.2: Prove that the projection operator onto ¥+, the collection
of vectors in Q orthogonal to V, is I - P,. (I is the identity transformation.)

Subspace V, = V: Let V be a subspace of Q and let ¥, be a subspace of V.
Let P and P, be the corresponding projection operators. Then

(1) PRo=PF and (2) RP=F,

Equivalently, if y = P(y|V) and §, = P(y|};) then (1) p(§o(V) = ¥, and (2)
P(¥1 Vo) = ¥o- It is easy to check these equalities by merely noting in (1) that
Vo€ Vand(v, ¥,) = (v,y)forallve V,,and in (2) that §, € V,and (v, §,) = (v, §)
forallve V.

Direct Sums: In regression analysis and, in particular, in the analysis of
variance, it will often be possible to decompose the space  or a subspace V'
into smaller subspaces, and therefore to increase understanding of the variation
in the observed variable. If these smaller subspaces are mutually orthogonal,
simple computational formulas and useful intepretations often result.

For any linear model it will be convenient to decompose € into the subspace
V, and the error space V1, so that every observation vector y is the sum of a
vector in ¥ and a vector in ¥+,

In Example 1.44 V may be decomposed into the spaces V, = £(x,).

3 3 4
Ve = {z aR(Y a, = 0}, Ve = {Z b,C)IY b, = 0}, so that every vector in V is
1 1 1

the sum of its projections onto thesc three orthogonal subspaces. It follows that
every vector y in Q is the sum of four orthogonal vectors, each being the
projection of y onto one of the four orthogonal subspaces V,, Vg, V¢, V-. These
subspaces were chosen for their simplicity. As will be seen in later chapters,
Chapter 6 in particular, the decomposition of V into orthogonal subspaces,
each of a relatively simple structure, provides increased understanding of the
variation in the components of y.

Definition 1.6.1: Subspaces V, ..., V, of Q are linearly independent if x, € V]
k

fori=1,....kand ) x;,=0implies thatx,=0fori=1,...,k
j=1

Let .#;; denote the property: ¥, n V; = {0}. For i # j lincar independence of
V; and Vj is equivalent to .4, so that linear independence of V,, ..., V| implies
M. [ A for all i#j]. However, .# does not imply linear independence of
Fi...., k. Students are asked to prove these statements in Problem 1.6.12.
Thus, linear independence of subspaces is analogous to independence of
events. Pairwise independence does not imply independence of more than two
events.
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Definition 1.6.2: Let V,,..., V, be subspaces of Q. Then

k
V={X|X=in,x,6 l/i,i=l,...,k}
1

is called the direct sum of V,, ..., V,, and is denoted by
VeW+Vo+ -+ K.

If these subspaces are linearly independent we will write
V=hoehoe

The use of the @ symbol rather than the + symbol implies that the
corresponding subspaces are linearly independent.

k
Theorem 1.6.2: The representation x = Y_ x, for x; € V; of elements x e V =
1

Vi + Vo + - -+ + V, is unique if and only if the subspaces V, .. ., V, are linearly
independent.
Proof: Suppose that these subspaces are linearly independent. Let
k k k
x=Yx;=ywforx,wel,i=I1,... .k Then Y (x;—w,) =0 implying,
1 1 i=1

by the linear independence of the V, that x; — w, = 0 for each i.
Suppose that the representation is unique, let v,e V;fori = I,..., k, and let
k
Y v, =0.Since 0€ V for each i, and 0 =0+ --- + 0, it follows that v, =0
J=1

for each i, implying the independence of V,..., V. O

Theorem 1.6.3: If {v;lj=1,...,m} is a basis for ¥, for i=1,...,k and
4. .-, V; arc lincarly independent, then {v;lj=1,...,n,i=1,... k} is a
basisfor V=V, ® - ® V.

Proof: For any x =i-’61 for x;€ V,, suppose x; =ib,~jv,~j. Thus, x =
Z bi;vij, so the v;; span V. 1lt is enough then to show thatl the v,; are linearly
mdependent Suppose Zc ;=0 for some ¢;s. By the independence of
Vieo ooy Vis Z Cvi; =0 for each i. The independence of vy, . . ., v, then implies
¢;; =0 for allj and i. O
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Corollary: If V=V, ®V,® - @V, then
dim(V) = dim(¥}) + - - - + dim(¥}).

Definition 1.6.3: For any subspace V of Q, the collection of all vectors in
Q which are orthogonal to V is called the orthogonal complement of V. This
orthogonal complement will be denoted by V+, read “vee-perp”.

It is easy to verify that V' is a subspace, and that P,. =1 — P,. Since
Vin ¥V ={0}, V' and V are linearly independent.

Theorem 1.6.4: Let V| and V, be subspaces of Q. Then
i+ W) =VinVy and (VW) =Vi+Vi

Proof: We prove only the first equality. The second is proved similarly.
Suppose v € (V; + V,)*. Then for each element x € V; + V,, it follows that v L x.
In particular, v L x,, for each x, € ¥, and v.l x, for each x, e V,. Thus
veVinVrand (V, + V)t c Vin Vi,

fveV{inVs thenv lx, vLlx, forall x, e ¥, x, € V,. It follows that
vl (bx, + byx,) for all scalars b, b,, and all x, e ¥}, x, € V;, hence that
ve(Vy + V)t Thus, (V, + V) o Vi n Vy. C

Theorem 1.6.4 is the linear space version of De Morgan’s Laws for sets:
(AU B) = A°n B* and (AN B = A°u B

Theorem 1.6.5: For any subspace V and any x €£, there exist unique
elements x,, X, such that x = x; + x,, x; = p(x| V) and x, = p(x|V*).

Proof: For existence take x, = p(x| V), x, = x — x,. Uniqueness follows
from the linear independence of ¥+ and V. O

Example 1.6.2: Let Q be the space of 4-component row vectors. Let
x; =(LLLL, x,=(,1,00), x3=(,010), V =%L(X,%;), Vo=
#(x,). Then ¥, and V, are linearly independent, so that V=V, @V, =
{a+b+c¢,a+b,a+ca)la, b, c real numbers} has dimension 3.

Vi = {(a, —a, b, —b)|a, breal}

Vi = {(a, b, —a,c)la,b,c real}

V+ = {(a, —a, —a,a)|areal}
so that
Vi=viavi
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In general, P, = P,, + P, only if ¥, and V; are orthogonal. They are not
orthogonal in this example. Verify this by projecting y = (11, 4, 3, 8) onto each
of ¥}, V5, and V.

Theorem 1.6.6: Let V be a subspace of Q and let V;, be a proper subspace
of V. Let ¥, = V§ n V. Then (1) ¥, and V] are mutually orthogonal subspaces,
(2) V= V()@ Vl' and (3) PV] = PV b PVO'

Proof: Part (1) is obvious. To prove (2) let ye V, and let §, = p(y| Vo).
Then y = $o + (Y — o), Vo€ Vo, Y—Fo€ Vn Vg. Thus V< V,@ V. Since
VoVyand Vo W, Vo V@V, implying that V' =V, @ V.

To prove (3) note that, since ¥, L Vg, p(yl V) = p(yi Vo) + p(y| V}) for all y.
Thus P, =P, + P, and B, = P, — B,. L

In fact, this theorem shows that Q may be decomposed into three mutually
orthogonal subspaces ¥, ¥'¢ n V, and V*, whose direct sum is Q.

Problem 1.6.3: Let Q be Euclidean 4-space (column vectors). Let

1 1 1

1 I I
x=,x='x=

o I 1o T

1 0 0

and let ¥, = £(x,) for x4 = 3x; — 2x,, V = #(x,, X,,X3). Find P, P, and
0

2
y, for V, = Vg nV.Fory = 14 find p(y| Vo)., p(yl V1), p(YIV).

t
Theorem 1.6.7: Let V,, ..., ¥ be mutually orthogonal subspaces of Q. Let
k

V=V, @ - ® V. Then ply|V) =} plyl¥) forall ye Q.
1

Proof: Let ¥, = p(yl| V). We must show that for each xe V, (y,x) =
k
(Z ) Since xe V, x = Z x; for some x;€ V;for j = 1,..., k Thus

1 ji=1

) = (ys X).

i
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The third equality follows from the orthogonality of the subspaces. The fourth
follows from the definition of ;. O

k
Comment: In the case that V = Q we see that y = p(y| V) = Z p(y!¥;), and
k 1
by the Pythagorean Theorem, |iyl? =Y. lip(y|¥)II>. In applying this to the
1

analysis of variance we will frequently make such a decomposition of the
squared length of the observation vector y. In fact, the analysis of variance may
be viewed as the decomposition of the squared length of a vector into the sum
of the squared lengths of several vectors, using the Pythagorean Theorem.

Example 1.6.3: Let Q be the space of 2 x 3 matrices. Let R,, R, be the row
indicators and let C,, C,, C;, be the column indicators. Let x, = Z R, = Z C;

be the matrix of all ones. Define V, = #(x,), VR =2R,R)N Vg VC =

#(C,,C;,C3) N V. ltis easy to show that ¥z = {v[v =Y a,R,, a, + az = 0}
2 -3 1

and Ve ={v=Y b,C,|3 b, =0}. For example, [2 3 I]e Ve. The sub-

spaces V,, Vg, V. are linearly independent and mutually orthogonal. Let

V="Vo® V@ V. Then p(y|¥) = ¥o + & + §¢, where §o = p(y| Vo) = 7.. X,

Yr = p(y[Vr) = Z_(}"a- — ¥R, and §c=p(yl¥e) = Z(j"j —¥..)C;. Then,

since Q= Vo, @ Vg ® V. @ V* is the decomposition of Q into four mutually
orthogonal subspaces, y = ¥, + ¥z + ¥ + €, wheree =y — § = p(y|V'*), and

Iyh? = IFoll> + ¥al® + UFcH® + el RFoll® = 7%

"5’1(“2:32()-'(-_.\7--)2, |!5'c|!2=22(}7-j—f-»)2

Definition 1.6.4: The null space of an m x n matrix A is the collection of
vectors x € R, such that Ax = 0. We denote this null space by N(A). The column
{or range) space of A is C(A) = {x|x = Ab for some b}.

Theorem 1.6.8: Let A be an m x n matrix. Then
N(A) = C(A)* and N(A)* = C(A") (1.6.1)

Proof: we N(A)<>w L (row space of A) <> w L (column space of A’') <
w e C(A')*. The second statement of (1.6.1) follows by taking complements on
both sides. a

Theorem 1.69: Let X be an n x k matrix. The C(X'X) = C(X").
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Proof: we C(X'X) implies the existence of b such that (X'X)b=w =
X'(Xb), which implies w e C(X'). Thus C(X'X) < C(X’).

we C(X’) implies that w = X'b for some be R,. Let b= p(b{ C(X)). Then
X’b = X'b and, since b e C(X), there exists v such that Xv = b. Then X'Xv =
X'b = X'b = w, so we C(X’X). Thus C(X’X) > C(X'). O

It is shown in most introductory courses in linear algebra that the dimensions
of the row and column spaces of any matrix X are equal, and this common
dimension is called the rank of X. We therefore conclude that X, X’, X’X, and
XX’ all have the same rank. In particular, X'X = M has full rank (is nonsingular)
if and only if X has full column rank, i.e., has linearly independent columns.

Problem 1.6.4: Let Q = R,. For each subspace give the corresponding
projection matrix P. For each verify that P is idempotent and symmetric.

(a) L(x) for x = (1,0, —1).

(b) L(x,,x,) for x; = (1, L, 1), x, =(1,0, 1).

Problem 1.6.5: For the subspace V = £(J, x) of Problem 1.3.5, what is P,.?
(Note that #(J, x*) = V). What is P,.? Let Vo= £J) and V, =V Vg.
What is B ?

Problem 1.6.6: Let ¥, and ¥V, be subspaces of Q and let ¥, =V, nV,.
Under what conditions does P,, = P, Py,? Always? Never?

Problem 1.6.7: Let ¥, V,, V3 be subspaces. Does Vin(V, + ¥3) =
(Vy n V3) + (V; N V,) in general? If not, does this hold if ¥, and ¥; are linearly
independent?

Problem 1.6.8: (a) For Example 1.6.3 find six mutually orthogonal vectors
vifori=1,...,6 such that

VO = y(vl)a VR = g("z)s VC = g(v:h V4), Ve= —(f("sa v6)
12 7 11

b) Fory =
(o) For'y [10 17
verify that the Pythagorean Theorem holds.

] find ¥o, ¥x, V¢, ¥, €, compute their lengths, and

Problem 1.6.9: LetA=[2 3 7:|.
1 5 7

(a) Find a basis for the null space of A (see Theorem 1.6.8).
(b) Verify Theorem 1.6.9 for X = A".
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Problem 1.6.10: Let v,,...,v, be an orthogonal basis for .
(a) Prove Parseval’s Identity: For every X, y e Q

9= T n), Wi

(b) Verify (a) for Q@ =R3, v, = (L, 1, 1), v, =(1, = 1,00, vy = (1, 1, =2),
x=(358),y=(,1,4).

Problem 1.6.11: Let ¥, and V, be subspaces of Q. Let V=V, @ V;. Let
P,,, P,, and P, be the corresponding projection operators. Suppose that
P, = P,, + P,,. (This means that P,y = P,y + P,y for every y e Q) Prove
that ¥, L V,. Hint: Consider P, v, for v, € V; and recall that (v, — P, v,) 1 V;.

Problem 1.6.12: Prove the statements made in the paragraph following
Definition 1.6.1. To prove the last statement construct an example.

Problem 1.6.13: Let V,, V5, ..., V; be mutually orthogonal subspaces, none
equal to #(0). Prove that they are linearly independent.

1.7 EIGENVALUES AND EIGENVECTORS

In this section we summarize results concerning eigentheory. Though this
material will not be heavily used in this course, it will be useful. Most proofs
will be omitted.

(1) Let A be an n x n matrix. A real number A and column vectors v satisfying
the equation Av = Av will be called an eigenpair, with 1 an eigenvalue, and v
the corresponding eigenvector. The words characteristic and latent are often
used instead of eigen. Thus, an eigenvector v is transformed into a vector whose
direction remains the same, but whose length is multiplied by the corresponding
eigenvalue 4.

(2) A symmetric matrix A has n real eigenvalues, though these may not all

nxn
be distinct. Eigenvectors corresponding to different eigenvalues are orthogonal.
If there exist k, but not more than &, independent vectors v, .. ., v, correspond-
ing to the same eigenvalue 4, then 4 is said to have multiplicity k, and the
equation det(AI — A) = 0 has root 4 of multiplicity k. In this case all vectors in
Z(vy,..., V) are eigenvectors corresponding to A, and k such vectors, say
w,, ..., W, which are mutually orthogonal, may be chosen.

If such mutually orthogonal eigenvectors are chosen for each different
eigenvalue, then the entire collection u, .. ., #, of mutually orthogonal eigen-
vectors corresponding to eigenvalues 4, . . ., 4,, where an eigenvalue is repeated
k times if its multiplicity is k, span n-space.
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Let A = diag(4,, ..., 4,), the matrix with (ii) element A, ofl-diagonal terms
0,and U = (u,,...,u,). Then AU = UA, and if the u, are chosen to have length
one,

UU=1, UAU=UUA=A, A=UAU.

The representation A = UAU'’ is called the spectral representation of A.
Recall that the trace of a square matrix A is the sum of its diagonal elements.
It is easy to show that trace(BC) = trace(CB) whenever the matrix pro-
duct makes sense. It follows therefore that whenever A has spectral representa-
tion A = UAU', trace(A) = trace(AU’U) = trace(A) = Y_ ;. Similarly, det(A) =
det(U) det(A) det(U’) = (1) det(A) (1) =[] 4.
Since, for any r x s matrix C = (¢, ...,¢,) and s x t matrix

d,
D= ] CD= Z c,-d,',
i=1
d

S

we may express A in the form

uj

A =UAU = (4uy,.... 4,u)| | =Y Luu;.
1

t

'
n

u
The matrices u;u; = P, are projections onto the one-dimensional subspaces
Z(u,). If there are r different cigenvalues with multiplicities k,, .. ., k, then the
P; corresponding to the same eigenvalue may be summed to get the represent-
ation of A,

where P¥ is the projection onto the k;-dimensional subspace spanned by the
eigenvectors corresponding to 4;.

(3) By definition a square matrix A is positive definite if the quadratic
function Q(x) = x'Ax > 0 for all x 0. It is nonnegative definite if Q(x) > 0
for all x.

Example 1L7.1: Let v, =(L, L1, 1), v, =(}, —=1,0,0), vy = (1,1, —=2,0),
v, = (1, 1,1, —3)". These v; are mutually orthogonal. Let P; be projection onto
ZL(v;). Thus,

P; = v,v/ il
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Let
8§ 0 —2 2
8 -2 2
A =8P, + 8P, + 12P, = .
-2 -2 10 2
2 2 2 2

Working backwards from A, the roots of the fourth degree polynomial
det(Al, — A) =0 are A =8, 8, 12, 0 with corresponding eigenvectors w,, w,,
w,, w,. The vectors w,, w, may be arbitrarily chosen vectors in #(v,, v,), the
subspace onto which P, + P, projects. They may be chosen to be orthogonal,
and could be chosen to be v, and v,; w, and w, are nonzero vectors in .£(v;)
and Z(v,), respectively. The lengths of eigenvectors are arbitrary. Since one
eigenvalue is 0, A has rank 3. The determinant of A is the product of its
cigenvalues, 0 in this case. The trace of A is the sum of its eigenvalues, 28 in
this example.

Let w;, =v,/|lvll, so these u; have length one. Let U =(u,,u,,u;,u,)
and A = diag(8, 8,12,0). Then AU = UA, U is an orthogonal matrix, and
A = UAU'". Here

(0.5 0707107 0400248  0.288675
y 05 —0.707107 0400248  0.288675
“los o —0816497  0.288675
05 0O 0 —0.866 025
"8 0 0 0
08 00
A=
00 12 0
oo 00
4 565685 489898 O
4 —565695 489898 0
AU =UA =
4 0 —~9.79796 0
4 0 0 0
8§ 0 -2 2
0 8 -2 2
UAU = =A
-2 -2 10 2
2 2 2 2
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Consider the quadratic form

0(x) = x'Ax = 8x2 — 4x,;x; + 4x,x, + 8x% — 4x,x; + 4x,x,

+ 10x3 + 4x3x, + 2x3.

Since

4 4
A= Z APy, g(x) = Zl A(x', P;x) = Z AR,
i=1 i=

where %; = P;x = [(v], x)/|Iv;||*]v;, and therefore {%,}i% = (v;, x)*/}iv;}|>. Since
one eigenvalue is zero, the others positive, A is nonnegative definite and
Q(x) > 0 for all x. A is not positive definite since Q(v,) = 0.

Using the representation A = ) A,u;u; above it is easy to show that a square
1

symmetric matrix A is positive definite if and only if its eigenvalues are all
positive, nonnegative definite if and only if its eigenvalues are all nonnegative.

If A is nonnegative definite we can write A'2 = diag(il’?,..., 432, so
A = UAU' = UAY2AN2Y = (UAY2)(UA'2Y = BB’ for B = UA'2 The de-
composition A = BB’ is quite useful. It is not unique, since if C is any
orthonormal matrix (satisfying CC’ = I, then (BC)(BC) = BCC'B' = BB’ = A,

Letting C = UAY2U’ = ¥ 4}/?P,, we get C’' = C, with A = C'C = C% The
matrix C is the unique symmetric square root of A.

Letting y = U'x for U as defined above, we get

k
Q(x) = x'Ax = (UyYA(Uy) = y'U'AUy = y'Ay =}, 1}
1

(4) Let P, be the projection operator onto a subspace V of Q. Then for
x € ¥, P, x = x so that all vectors in V are eigenvectors of P, with eigenvalues
1. For xe V*, Pyx = 0, so that all vectors in V! are eigenvectors of P, with
eigenvalue 0. The eigenvalue 1 has multiplicity equal to the dimension of V,
while the eigenvalue 0 has multiplicity equal to dim(V'+) = n — dim(V’). Since
from (2) trace(A) = Z A;, the trace of a projection matrix is the dimension of
the subspace onto which it projects.

Partitioned Matrices (Seber, 1977):

A B]“_ A"'+FE'F —FE"] where E=D—BAT'B
B Dl | -E'F E' I F=A"'B
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Singular Value Decomposition (Seber, 1977, p. 392): For X an n x k matrix
of rank r, n > k > r, let the r positive eigenvalues of XX’ be 62 > 0> -~ >
o2 > 0. Let D be the diagonal matrix with diagonal (¢,,...,0,). Let th
length-one eigenvector of XX’ corresponding to ¢? be p, for each i, 1 <i<r,
and let q; = X'D " 'p,. Then q; is an eigenvector of X'X corresponding to
eigenvalue o7. These vectors p; may be chosen to be mutually orthonormal. It
follows that the q; are also orthogonal. Define

P=(ph'--1pr)’ Q=(Qh---~.q,)'=PD-lx.

Then X = PDQ = Y 0;p;q;. Thus, the linear transformation Xx =y, taking
vectors x € R, into C = column space of X, proceeds as follows. Q takes a vector
x € R, with (x,q) =¢; into (c;,....,¢,). Y, then muitiplies each ¢; by o;.
P(DQ)x = Xx is then z c;0;p;, a vector in the column space of X.

1

Moore-Penrose or Pseudo-Inverse

The Moore-Penrose inverse or pseudo-inverse of the n x k matrix X is the
k x n unique matrix X* having the four properties: (1) X*XX* =X",
(2) XX*X = X, (3) X*X is symmetric, (4) XX* is symmetric. For any vector
ye R,, b= X"y is the unique vector in the row space of X such that Xb is the
projection of y on the column space of X. If X is nonsingular then X* = X1
The matrix X *X is the projection onto the row space of X. The matrix XX*
is the projection onto the column space of X. If X has full column rank
then X* = (X'X)"'X". If ¥ is the column space of X, and p(y|V) = Xfi, then
B=X"y.

The Moore—Penrose inverse may be used to find solutions to the linear
equation Xb = ¢. If this equation has a solution then ¢ is in the column space
of X. That is, there exists some w such that Xw =¢. Let b= X"*¢c. Then
Xb = XX "Xw = Xw = ¢. The general solution to the equation Xb = ¢ is given
by b=X"c + (I, — X*X)d, for d any vector in R,. Taking d to be any vector
orthogonal to the row space of X, we get the unique solution X *¢ in the row
space of X.

The pseudo-inverse is related to the singular value decomposition of X in
that X* = Q'D " 'P".

For a full discussion seec Regression and the Moore - Penrose Pseudoinverse
by Arthur Albert (1972).

Triangular Decompasition

Let A be a symmetric nonnegative definite matrix. There exist an infinite
number of n x n matrices B such that BB’ = A. Perhaps the easiest such matrix
to find is one of the form (lower triangular)
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b, O - 0
by, ba, 0
B : 0
0

0

| by b b |

T .
Then b2, = a,,, s0 by, = /a,,. Then, since b, b,, = a;, we have
b, =a; /b, for i=2....n

Suppose b;; has already been found for j=1,...,k—land i=1,...,n for

k > 1. Then we can find b; , inductively.
k k-

Since, Y by;b,; = ay, it follows that b}, = a,, —
i=1 i=

1
bs;. Then
1

k~1 1/2
b = (“u - Z bfj) .
j=1

k
Since ) by;b,; = ay for i > k, it follows that
=1

{

k-1
by = (a‘.k - Z b,.jb,‘j)/ b for i>k
j=1

J {

Repeating for each k produces B.
To summarizc:
(1) Compute b,, = (a,,)"% let b,y = a;,/b,,, and let k = 2,
k=1 2

(2) Let by, = { ap — Z b,fj)h . {A is nonnegative definite if and only if the
term in parentheses is nI;rinegative for each k.)

(3) Let by, = (a,,‘ - kz' b,,b,,,.) /bk,‘ for i > k.

(4) Replacc k by k -lf=l,and repeat (2) and (3) until k > n.

(5) Let b;; = 0 for i < ji.
If any b, = 0 in step (3) then set b, = 0 for i > k.

Problem 1.7.1: Let A =< l: _l?>

(a) Find the eigenvalues 4,, 4, and corresponding length-one eigenvectors
u,, u, for A.
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(b) Define U and A as in Section 1.7 and show that A = UAU and UU' = L,.

(c) Give the projections P¥ and P% of Section 1.7 and show that A =
4P+ 4,P3%.

(d) Is A positive definite? Why?

Problem 1.7.2: What are the eigenvalues and eigenvectors of the projection
matrices P of examples 1, 2, 3, 4, 5 of Example 1.6.1?

Problem 1.7.3: For n x k matrix X of rank k, what are the eigenvalues and
vectors for P = X(X'X) ™ !X'? What is trace(P)? What is det(P)if n > k?If n = k?

Problem 1.7.4: Let n x n matrix A have nonzero eigenvalue 4 and cor-
responding eigenvector v. Show that

(a) A~} has an eigenvalue 4!, eigenvector v.

(b) I — A has an cigenvalue 1 — 4, eigenvector v.

{¢) For A = BC, CB has eigenvalue 4, eigenvector Cv.

Problem 1.7.5: Give 2 x 2 matrices which satisfy the following:
(a) Positive definite.

(b) Nonnegative definite, but not positive definite.

(c) Not nonnegative definite.

Problem 1.7.6: Let A be positive definite and let ve R,. Prove that
A+w) ' =AY —cwA VDforc=1/(1+vAly).

Problem 1.7.7: Determine whether the quadratic form Q(x,, x;,x;) =
2x? 4 2x% + 11x3 + 16x,x, — 2x,x; — 2x,x; is nonnegative definite. Hint:
What is the matrix corresponding to Q7 One of its eigenvalues is 12.

Problem 1.7.8: For A = [ f _1(1)] find a matrix B such that A = BB
2 1 -1
Problem 1.7.9: LetG = 1 3  0|.Find G by using the formula
-1 0 4

for partitioned matrices with A the 1 x 1 matrix (2).

5 —1
Problem 1.7.10: Let X=| —1 5]. Find the singular value decom-
2 2

position of X. Also find the Moore-Penrose inverse X* and verify its four
defining properties.
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Problem 1.7.11: Let A = UDV be the singular value decomposition of A.
Express the following matrices in terms of U, D, and V.

(a) A'A

(b) AA’

(c) A~ ! (assuming A is nonsingular)

(d) A" = AA- ‘A (n products), assuming A is square. In the case that
the singular values are ¢, > g, > 05> - = g, > 0, show that lim A"/} =

PiP:

(e) Projection onto the column space of A.

(f) Projection onto the row space of A.

(g) What are U, D, and V for the case that A = a is an n x 1 matrix? What
is A*?

Problem 1.7.12: Let A be a symmetric n x n matrix of rank one.

(a) Show that A can be expressed in the form A = cvv/, for a real number ¢,
vector v.

(b) Prove that either A or - A is nonnegative definite.

(c) Give the spectral decomposition for A in terms of ¢ and v.



CHAPTER 2

Random Vectors

In this chapter we discuss random vectors, n-tuples of random variables, all
defined on the sample space. A random vector will usuaily be denoted as a
capital letter from the end of the alphabet, taking values in a linear space Q
of arrays defined as in Chapter 1, e.g.,

Yh oy Yy
Y=Y, Y Y
Y3 Y33

We will suppose that the components of a random vector Y have been
ordered. The particular order chosen is not important, so long as the same
order is used consistently.

2.1 COVARIANCE MATRICES

Definition 2.1.1: Let Y be a random vector taking values in a linear space
Q. Then E(Y) is the element in Q whose ith component is E(Y)), where Y is
the ith component of Y for each i. E(Y) is also called the mean vector.

Example 2.1.1: Suppose E(Y;) =3, E(Y;) = 7, E(Y;) = S. Then

SN ER

Of course, the definition requires that each E(Y;) exists.

Definition 2.1.2: Let Y be a random vector taking values in , with mean
vector u € L. Then the covariance matrix for Y, denoted by D[Y] or Ly, is

(cov(Y, Y))),
the n x n matrix whose (ij) component is cov(},, Y;).
45
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¥
) ) Y2
ordered as the subscripts are. Then the covariance matrix of a random vector
Y taking values in  is

Example 2.1.2: Let Q be the space of arrays ( y;) with elements

Var(Y)) cov(Y,, Y3) cov(Y,, 1s)
DIY]=| covW(Y,, Y;) Var(}) cov(Y,, 13)
cov(Y, Y3) cov(l,, V3)  Var(Y,)

Of course, D[Y] is symmetric for any random vector Y. The configuration
in which Y is written does not affect D{Y], but the order in which the
elements are written does. Thus, if the vector Y of Example 2.1.2 is written
instead as a column, the covariance matrix remains the same.

We will often wish to consider random vectors W = AY + b, where Y is
a random vector taking values in an n-component space €2,, A is a linear
transformation from £, into an m-component space (,,, and b a fixed element
in Q.. Thus W takes values in ,. It will be convenient to consider €2, and
Q,, to be the spaces of column vectors R, and R,,, so that we can use matrix
algebra. A may then be written as an m x n matrix. The results will generalize
to the case that the clements of Q are not written as columns simply by
setting up a one-to-one correspondence between Q, and R, Q,, and R,,.

Therefore, let

Y be a random vector taking values in R,
A be an m x n matrix of constants, and
b be a constant vector in R,,. Then,

Theorem 2.1.1: Let W = AY + b. Then E(W) = AE(Y) + b.

Proof: Llet (a;,...,a,) be the ith row of A and let b, be the ith
component of b. Then

Wi=3 a;Y, +b
J
and E(W)) =Y a;E(Y;) + b,. This proves the thcorem. 0
J

This theorem generalizes to random matrices as follows:

Theorem 2.1.2: Let Y be a random n, x n; matrix (an n, x n, matrix of
random variables). Let A and B be n, x n, and n; x n, matrices of constants. .
Then

E[AYB] = AE(Y)B
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Proof: Let A = (a;;), Y =(Y,), B=(By), uy = E(Y;). Then the (i, I)th

na 2 n3 n;
clement of AYBis Y Y a;Y,b,, whose expectation is ). Y a;;p;by. But
k=1 j=1 1=k k=1
this is the (i11)th element of AE(Y)B. (]

In particular, for any linear space €, random vector Y, constant vector a € Q,
the linear product (a, Y) is a linear combination of the components of Y, so that

E@,Y) = (a, E(Y))

For a random vector U taking values in R,, let E(U) = py. Then U — py,
is the vector of deviations.

Definition 2.1.3: Let U and W be random vectors taking values in R,, and
R, respectively. Then the covariance matrix of U and W is the m x n matrix

ClU, W] = (cov(U;, W})) = E[(U — py}W — pw)’]
The covariance matrix for a single random vector U is D[U] = C[U, U].

Thus, we speak of the covariance matrix of a pair of random vectors, and
also the covariance matrix of a single random vector.
For example, for m = 2, n = 3, 0;; = cov(U,, W,) we have

C[U,W]=[a“ 012 ‘713]
021 032 023
The correlation coefficient of the ith component of U and the jth of W is

cov(U, W))

Pij =
/Var(U yVar(W, W)

Letting
oy = dlag(\/ Var(U, x/Var(U ) ow = dlag(v Var(W,), \/Var(W ))

we define the correlation matrix for U and W to be
R[U, W] = (p;)) = o' C[U, Wloy/
In particular, the correlation matrix for a random vector Y is
R[Y]=R[Y.Y] =0y 'D[Y]oy/,

where oy = diag(\,z’/Var(—Yl), coeadd Var(Y,)).
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4 3 6 200
Example 2.1.3: Suppose D[Y]=|3 9 3|.Thenoy=|0 3 0 |and
6 3 16 00 4
1 0.5 075
RLY,Y] =0oy'D[Y]loy'=[05 1 0.25 1.
075 025 1

Theorem 2.1.3: Let X and Y be random vectors taking values in R, and
R,, respectively. Then for any matrices of constants A and B of dimensions
rxmands xn,

C[AX, BY] = AC[X, Y]B..

Proof:
C[AX, BY] = E[(AX — AE(X)X(BY — BE(Y))']
= AE[(X — E(X)XY — E(Y))']B
= AC[X, Y]B" ]

Taking Y = X, we get C[AX, BX] = AD[X]B’, and for B = A,
D[AX] = C[AX, AX] = AD[X]A".

Of course, the covariance matrix is unaffected by addition of constant vectors
(translations):

C[X +4a,Y+b]l=E[X+a— EX)—a)(Y +b— EY)—b)]
= E[(X — EC)XY — E(Y))'] = C[X, Y].

The covariance “operator” on pairs of random vectors is linear in both
arguments, in that Theorem 2.1.3 holds, C[X, + X,, Y] = C[X,, Y] + C[X,, Y),
and C[X, Y, + Y,] =C[X, Y,] + C[X, Y,]

Summary

(1) C[X, Y] is linear in both arguments (‘bilinear’).

2) C[X, Y] =CLY, X'

(3) C[X + a, Y + b] = C[X, Y] for constant vectors a, b.
(4) C[AX, BY] = AC[X, Y]B’

(5) D[X + a] = D[X]
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(6) D[X, + X,] = C{X, + X;, X, + X;]
= D[X,] + C[X,, X;] + C[X;, X,] + D[X,].
Note that the second and third terms need not be equal.
(7) D[AX] = AD[X]A’
If X, and X, are independent then C[X,, X,] =0, so that D[X, + X,] =
D[X,] + D[X,]. More generally, if X,, . . ., X, are independent, then D[Z X‘-] =

Y. D[X;]. If these X, have thc same covariance matrix I, then D[Z X,] = nL,

| . . <
and the sample mean vector X =-) X; has covariance matrix D[X] =

2 n
(1> nk = - L, a familiar formula in the univariate case.
n n
X, Y
Problem 2.1.1: Let X=| X, | and Y =] ¥, | be independent random
X3l Y,
2 2 423
vectors with EX)=| 3 [, E(Y)=|4 |,D[X]=XZy=]|29 1 |,and D[Y] =
4 |6 315
4 -2 3 ~ 1 0 -1
1 0 2 .
Zy=| -2 6 2. LetA= 0 3 1,andB= 0 ] 1{. Find
3 2 8 B 0 -1 1
(a) C[X, Y] (b) D[X + Y] (c¢) C[AX, BX]
(d) E[AX + AY] (e) D[AX] () R[AX, X] (8) R[AX, BX]

Problem 2.1.2: Let X,, X;,..., X, be independent random variables, all
with variance 62. Define ¥, = X, +--- + X, for k= 1,...,n Find D[Y] for
Y' =Y, ..., Y). Also find R[Y], the correlation matrix.

Problem 2.1.3: Give an example of a joint discrete distribution of two r.v.’s
X and Y such that X and Y have covariance 0, but are not independent.

Problem 2.1.4: Let X and Y be two random variables, each taking only
two possible values. Show that cov(X, Y) = 0 implies X and Y are independent.
Hint: Show that this is true if both X and Y take only the values 0 and 1. Then
show that the general case follows from this.

Problem 2.1.5: Let Y = (Y, Y,, Y3)’ be the vector of weights of three pigs



50 RANDOM VECTORS

of the same litter at 3 months of age. A reasonable model states that ¥, = G + ¢,
for i=1, 2, 3, where G, ¢, ¢,, &3 are independent random variables, with
E(G) = pu, Var(G) = 6%, E(g;) = 0, Var(s;) = 62. G is the genetic effect, while
&, €3, €3 are random deviations from G. Find D{Y], R[Y],and Var(Y, + 1; + Y3)
= D[J'Y]), where J' = (1, 1, ).

22 EXPECTED VALUES OF QUADRATIC FORMS

In the study of regression analysis and analysis of variance we will often be
interested in statistics which are quadratic functions of the observations. That
is, the statistic is the sum of terms of the form a;;X;X;. For example, for
X =(X,, X,, X3) we may be interested in the statistic Q(X,, X;, X;) =
2X31 - X3+ 3X} - 6X,X, +2X,X, - 4X, X,.

Definition 2.2.1: A quadratic form is a function Q(x) defined on R, for some
n of the form
0(x) = x'Ax,
where A is an n x n symmetric matrix.
Comment: The requirement that A be symmetric is not a restriction on @,
since otherwise we could rcplace A by B = (A + A‘)/2, so that B is symmetric,

and, since x'Ax = (x'Ax)’ = x'A'x,

x'Bx = x'(A + A")x/2 = X'Ax = Q(x)

2 -6 2
For the example above we could take A={ 0 —1 —4 |. However, it is
0 0 3
2 -3 1
more convenient to work withB=| —3 —1 -2 |, because it is symmetric
and x'Ax = x'Bx for all x. 1 =2 3

Let A =Y Auwu, where 4,..., 4, are eigenvalues and u,,...,u, a cor-
i

responding system of mutually orthogonal length-one eigenvectors for A. Then
Q(x) = x'Ax = Y Axuux = Y Aux)(ux)= Y 4w} for w; =ux. Thus,
i=1 i=1 i=1
cach quadratic form may be considered to be a weighted sum of squares. It
follows that if all 4; are positive (nonnegative) A is positive definite (nonnegative
definite).
We will be concerned with the random variable Q(X) = X'AX for X a
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random vector. First we consider a more general random variable (X, Y) =
X'AY for X m x 1, Yn x 1, and A an m x n constant matrix. Let C[X, Y] =
(0,5) = C, E(X) = py, E(Y) = py. QX.Y) is a bilinear form, since it is linear in
both arguments.

Theorem 2.2.1: Lct E(X) = p, E(Y) = v, C = C[X, Y] = (g;;). Then

E(X'AY) =) a,0;; + W Av = trace(AC’) + p'Av.
i

Comment: ) ;0 is the sum of the products of corresponding components
ij
of A and C (not the sum of elements of AC, which is not even defined unless
m = n). The second term is p'Av = Q(p, v), where Q(X, Y) = X'AY.

Proof: Let the ith component of p be y;. Let the jth component of v

m

be v;. Then X'AY = } Zl a; XY, and E(X;Y)) = cov(X,, Y}) + p;v;. Thus

i=1 j

EX'AY)= Y Y a0+ Y Y ajmu;. The first terms may be written in
i=1 j=1 i=1 j=1
the form trace(AC’), since the ii term of AC' is )_a;;0,;. 0l
J

Letting Y = X, we get
Theorem 2.2.2: Let (X)) = X'AX, D[X] =Z, and E(X) = p. Then

E[Q(X)] = ¥, a; cov(X,, X)) + Q() = trace(AL) + Q(p).
ij
Comment: trace(AX) is the sum of the products of corresponding com-
ponents of A and X. Some special cases are of interest:

(1) £ =1,06% Then E[Q(X)] = o trace(A) + Q(p)
(2) p =0. Then E[Q(X)] = trace(AX).

Example 2.2.1: Let X,,..., X, be independent r.v.s, each with mean ,
variance ¢*. Then E(X) = uJ,, D[X] = 671,. Consider (X) = ¥ (X; - X)* =

i=1
IP,. X4* = X'(I, — )X, where V= 2£(J,), and P, = (1/n)J,J,. Then we
may apply Theorem 2.2.2 with A=1,— P, and £ =1,0% We get AL =
a’(1, — P,) and trace(AZ) = o*(n — 1), since the trace of P, may be determined
to be one, either directly or from the general theory which states that the trace
of a projection matrix is the dimension of the subspace onto which it projects.
Since Q(pd,) = Y (u; —pw)* =0, we find that E[Q(X)] = ¢’(n — 1). For

i=]1
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= g%, so that S° is an unbiased

2
52_—-z(x Xy, By =10

n-— n—1
estimator of a’.

Ifwe let ¥, = X; — X, then, from (7) of the summary to section 2.1 Y = P, . X
has covariance matrix Py.(¢’I,)P}. = ¢?Py., and ) (X X2 =|Y)2=
Y’1,Y. Applying Theorem 2.2.2, we have E(Y) = 0, AL = ¢*P,. = o’(1, — P})
as before

Problem 2.2.1: Let X = (X, X,, X,), E(XX) =0 =(2, 3, 4), E = D[X] =
2 0 -1

3
0 1 1|andQ@X)=Y (X, - X)2 Find E[Q(X)].
1

~1 1 3
Problem 22.2: Let D[X]=0?l, and E(X)=uJ, Define Q,X)=
i<j

(a) Find E[Q,(X)). _
(b) How is Q,(X) related to Q,(X) =) (X; — X)?? (Compare the matrices

corresponding to these quadratic forms.)
(¢) Find a constant ¢, such that ¢,0,(X) is an unbiased estimator of a2.

Problem 2.2.3: Let X,,..., X, be uncorrelated random variable with equal
means u and Var(X) = g2

(a) For X = Z , what is Var(X)? Use Theorem 2.1.3.
(b) Find a constant K, such that Q =K, Z(X X)? is an unbiased

estimator of Var(X). Thus, even though the X; havc unequal variances, Q is
still an unbiased estimator of Var(X). X is not the linear unbiased estimator
with the smallest variance, however. To sec this, take n = 2 and find the
unbiased linear estimator with the smallest variance. This is really not an
estimator unless the o7 (or their ratios) are known.

Problem 2.2.4: Let X,,..., X,, be random variables with equal means g,
variances o2, and covariances pa? (correlation p). Assume p known.

(a) Find a constant K = K(n, p) such that K Z(X, X)? is an unbiased
estimator of ¢°

(b) Construct an unbiased estimator of Var(X).

(c) What is the smallest possible value for p for each n? Hint: Express Var(X)
in terms of n and p. To show that p can take this smallest possible value,
suppose that W,,..., W, have equal variances and covariances. Let X; =

— W, so that X is the vector of deviations for W. Determine D[X].



PROJECTIONS OF RANDOM VARIABLES 53

Problem 2.2.5: Consider a finite population of N elements with measure-
ments x,, ..., Xy. A simple random sample of n of these elements is a selection
of n elements taken without replacement in such a way that all permutations
have the same probability. Let X,,..., X, be the corresponding measure-

1 i :

N, Z x; and 0% = [ (x; — u)*J/N. Then
E(X;) = p, Var(X;) = 62, and, for j # k, cov(X X,) = —0%/(N — 1). To show
this consider y, = x; — p. Then o? = (Z y? }/ N, and, for j # k, cov(X, X,) =

_41__, Y yayi But0= (;y,) Zy. + ) Y SO Y Mayi= —2 Vi

N(N - 1) h#i h#i LT X1
(a) Show that D[X] = [¢?/(N — l)][Nl,, JJ )ford, =(1,...,1).

= = 6> \(N —n
(b) For X = (}_ X;)/n = (J,X)/n, show that Var(X) = (:;)(AT——I)

ments for the units selected. Let y =

(c) For 8 =Y (X, — X)*/(n — 1), show that E(S*) = ¢ (—N—Ij—l—)

In Sampling Techniques, a classic by William Cochran (1977), 62 is replaced
by §? = [Z ¥ ]/(N — 1), and §?, as defined above is replaced by the symbol

s2. Then, for Cochran’s notation, used for much of the sampling literature, s?
is an unbiased estimator of “the population variance” S2.

23 PROJECTIONS OF RANDOM VARIABLES

This section is not required for understanding the remainder of the book,
though it should be useful for those interested in multivariate analysis, the study
of the joint behavior of two or more random variables.

The linear space projcction theory discussed in Chapter 1 may be extended
to spaces of random variables. Let Q be the collection of all random variables
defined on some probability space with mean 0, finite variance. We will refer
to elements of Q as random variables and also as vectors. For X, Y € Q define
the inner product (X, Y) = E(XY), | X||*> = E(X?) = Var(X). Q is infinite dimen-
sional if the probability space is infinite. However, many of the ideas developed
in Chapter 1 stll hold. Q is a Hilbert Space, usually called L,.

A (finite dimensional) subspace #(X,,...,X,) is again the collection of
linear combinations Y b,X,. The projection of an element Y on a subspace V
is the vector Y (random variable) in ¥ such that (Y — Y, X)=0forall XeV.
That is, E[X(Y — ¥)) = cov(X, Y — Y) =0 for all X e V.

Taking X = (X,,...,X,) and using the same arguments as were used in
Chapter 1, this projection is Y = Xb, where b = Zx U,Zy = D[X], U = C[X, Y],
whenever I is nonsingular. Since var(Y) = | 73, Var( Y) b'}.‘.xb =U'Zg'U
The residual vectorise =Y — Y. SinceY =Y -Y+ Y =e+ Y, cov(u,e) =0
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for all ue V, and YeV, it follows that cov(Y,e) = 0. Thus, Var(Y)=
Var(e) + Var(Y) = (63 — U'Ex'U) + U' Ex'U.

Y is the best linear predictor of Y in the sense that, among all linear
combinations ) b;X;, Y — Y =e has the smallest possible variance. This
follows from the fact that for any WeV, |Y — W||?> = Var(Y — W) >
Var(Y — Y)=|Y - ?IF. See the proof in Chapter 1.

Now suppose E(Y) = uy, E(X) = px. Then the best linear predictor of
Y — uy as a function of X — uy is (X — ux)b, where b = Ex ! U. It follows that
the best (affine) linear predictor of Y is

-~

Y = py + (X - px)b.
The error is e =Y — ¥ = (Y — puy) — (X — pux)b, which has variance o3 —
U’Zx 'U. The muitiple correlation coefficient of Y and the set {X,, ..., X,} is

a measure of the precision of the approximation of Y by Y, relative to that
provided by uy.

Definition 2.3.1: The multiple correlation coefficient of Y with the random
vector X is

R = [Var(Y)/Var(Y)]"? = [1 — Var(Y — Y)/Var(Y)]*??

All of our discussion so far has concerned the approximation of Y by linear
combinations W =’ b;X, with the closeness of the approximation measured
by E(Y — W)2. It is possible to do better if approximations are not limited to
linear combinations of X,,..., X,. Let g(X) = E(Y|X = %) for X€ R,. g is the
regression function. Then for any real-valued function h on R,,

EL(Y — g(X)h(X)] = E[E(Y — g(X))h(X)|X)]
= ELAX)E(Y — g(X)IX)] = E[A(X)-0] =0

so that cov(Y — g(X), h(X)) = 0. Thus, for any predictor #(X) of Y,
E(Y — i(X))* = E[Y — g(X))* + E[g(X) — H(X)}*

It follows that g(X) is the best predictor for Y in this least squares sense. If h
must be chosen to be linear then, as already shown, we take

h(X) = py + (X — px)b = ¥

which is the linear least squares predictor of Y.
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In the case that k = 1, the linear least squares predictor of Y is

Y = uy + poy(X — uy)/ox

Equivalently, writing Z, and Z, for the standardized versions of X and Y, the
linear predictor of Zy is pZy. Since —! < p < +1,and E(Z,|X = x) =pZ, it
follows that |E(Z,!X = x)| < |Z,| with equality only if | p| = 1. This inequality
is often described as regression toward the mean. Note that the linear predictor
Y is the least squares estimator among linear predictors of Y, but is not the
least squares estimator in general unless g(X) = E(Y|X) is linear in X. The
tendency to use Zy as the predictor of Z,, rather than pZy, is called the
regression fallacy.

Consider a population of father-son pairs with heights (x, y). Suppose the
fathers have mean height 69 inches, standard deviation 2.5 inches, and sons
have mean height 70 inches, standard deviation 2.8 inches. Under the regression
fallacy a father with height 74 inches (2 s.d.’s above average) would be predicted
to produce a son with height 2 s.d.’s above average, or 75.6 inches. The best
linear predictor should be just 2p s.d.'s above average, so that for p = 1/2, for
example, the prediction is 72.8 inches. Similarly, for p = 1/2, a father below
average in height should be expected to produce a son only one-half as far
below average in standard units.

In this paper “Kinship and Correlation,” which appeared in the North
American Review in 1890, Francis Galton first defined the correlation coefficient
as the slope of the standardized regression line for the case of “quasi-normal”
data (approximate bivariate normal, so that the regression function is approxi-
mately linear). Stigler (1989) describes this paper and the circumstances under
which it was written. In one of Galton’s examples two clerks leave an office at
the same time, and (X, Y) is the pair of times they take until they arrive at their
homes. Since they ride the same omnibus together each day, but walk further,
each at his own pace, X and Y are correlated so that the regression line
(assuming linear regression) is described by the line

Y =y + poy(X — uy)/ox.

In another example Galton considers a population of people with X = length
at thigh bone, Y = height.

In baseball the batting averages for players in their first and second years
of major league play have distributions roughly approximated by the bivariate
normal distribution (so that regression is linear) with mean 0.265, standard
deviations 0.30, correlation 0.40. A player who hits well the first year, say 0.310,
should be expected to hit about 0.283 the second year. Instead players whose
average drops this much are said to have had a sophomore slump, with all
sorts of psychological reasons given. Similar deep meaning is found in the
tendency for students with G.P.A.’s above 3.8 as freshmen to have lower average
G.P.A’’s as sophomores.
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Galton’s clerk example and the baseball example may be modeled as follows.
Let W be an r.v. denoting the common part of X and Y, the bus ride time or
the ability of a player, and let €y, £y be independent r.v.’s, the error parts of X
and Y, having equal variances o?. Suppose also that W and the pair (ey, €y)
are independent. Suppose X = W + gy, Y = W + &y.

2

Ow

Then p = The best linear predictor of Y is Y = uy + p(X — py),

oy + a2’
which is closer to uy than X is to uy.

Problem 2.3.1: Let X = (X,, X, X;) have zero mean vector, covariance

4 1 2
matrix L= 1 3 -1
2 -1 2

(a) Find the best linear prediction X, of X, as a function of X, and X,.
(b) Find Var(X,), Var(X, — X,) and the multiple correlation coefficient of
X, with X,, X,.

Problem 2.3.2: Show that the multiple correlation coefficient, R, of Y with
(X,,-..,X,) is the ordinary correlation coefficient of Y with the best linear
predictor Y.

Problem 2.33: Let (X,,...,X,)’ have the equicovariance matrix X =
a[(1 = p),.o1 + pJi 14+, ], and mean vector 0.

{(a) Show that the best linear predictor of X as a function of X = (X, ..., X;)
is X, = Xb for b = dJ, and d = p/[1 + (k — 1)p]. Hint: See Problem 1.6.6.

(b) Show that the multiple correlation coefficient of X, with X is g(p, k) =
[dpk]''2. Also show that 0 < g(p, k) <1, g is monotone in p and k, and
lim g(p, k) = p'".

k-«

Problem 2.3.4: Let k=1 and let (X, Y) have the joint discrete distribu-
tion with probability mass function f(x,y) given by the following table:

X
o 1 2
10 . .
¥y (1) [gz g; 0 2]. Find the least squares predictor g(X) = E(Y|X), and the

linear least squares predictor h(X) = Y. Show that g(X) and h(X) are unbiased
estimators of E(Y). Also find Var(g(X)), E[Y — ¢(X)]%, Var(Y) and E[Y ~ Y]

Problem 2.3.5: In his book Natural Inheritance, Galton (1889) published
the data of Table 2.3.1 and Figure 2.1 on the midheights of parents (x) and
that of an adult child (y). For u; = midpoint of ith midparent interval
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Height of Midparent
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FIGURE 2.t Galton’s height data. From Natural Inheritance (1889), Macmillan, London.

i=1,...,11, v; = midpoint of jth adult child interval, j=1,...,14, f;=
frequency in ij cell, we find Y f,u, = 63,385 Y f,v;=63,1906, Y fui =

ij iy Y
4,332,418 ¥ f,;v} = 4,308,850, ¥ f;u;0; = 4,318,061, n = 928. Let (X, Y) take
i n

i 17
each of the values (x;, v;) with probability 1/928. That is, PX = x, Y = y;) =
Ji;/928.

(a) Determine the parameters pix. iy, 0x, Gy, p = r, and the equation of the
simple lincar regression line Y = uy + poy(X — ux)/ox.

{b) For tall parents (say = 72) what proportion have shorter children, in the
sense that Z, < Z4? For short parents (say < 64) what proportion have taller
children, in the sense that Zy > Zy?

24 THE MULTIVARIATE NORMAL DISTRIBUTION

Definition 2.4.1: A random vector Y (taking values in R,) is said to have
a multivariate normal distribution if Y has the same distribution as

where, for some p, Z is a vector of independent N(0, 1) rv's, Aisan n x p
matrix of constants, and p is an n-vector of constants. More generally, a random
vector X, taking values in an n-component linear space Q, has a multivanate
normal distribution if its column vector “version™ in R, does.

We will suppose in this section that Q = R,, so that we can use matrix
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notation. Any property of the multivariate normal distribution which holds for
this special case will have an obvious translation to the general case.

Since Y and X have the same distribution, we can exploit the representation
of X to determine the density of the multivariate normal distribution. X does
not have a density function on R, unless A has rank n. In general AZ takes
values in the subspace C[A]. In the special case that A is n x n and has rank
n, and therefore AA’ has rank », we can find the density as follows:

Let X = AZ + p = g(Z). Then for A n x n of rank ng(z) is a 1-1 function
from R, onto R, so that

Jx(x) = fz(g7 (x))

Since
fo(@ = [1 [QI™ Y exp(—z/2)] = ()™ exp(—22/2),
i=1
we get
f(x) = (2M1)"2|det A]™* exp[ — (x — pY(AA")" '(x — p)/2]

Let D[X] be denoted by Z. Since E(X) = p and £ = D[X] = ALLA’' = AA’, we
have det(Z) = det(AA") = [det A3, so

fx(x) = RQIT) "2 (det £) ™ 2 exp[—(x — p)’ T~ (x — p)/2] forall xeR,.
X and its inverse are positive definite so that

OX)=(x—p)Z YYx-—w>0 unless x = p.
The contours of Q(x) (points x of equal value for Q) are cllipsoids in R,,.

The representation X = AZ + p makes it easy to compute the moment-
generating function (or the characteristic function). We have

my(t) = E[e*X] = E[e" A2 W] = o' BE(e*%) = ¢ Fm,(A't)
Recall that the moment-generating function of a standard normal r.v. is '’/

so that

n
2 .
mz(u) = n eu;/Z = Y w2
i=1

It follows that my(t) = e'# eA'VAT2Z = VB o(242) Here Aisn x p of any rank,
so we have shown that the distribution of X depends on its mean vector p and
covariance matrix Z only.
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Thus, if

xl = Alll + [ 3] and x2 = A2Z2 + ",

X1  axpipix1l  ax} ax1  Aaxpapax1 nx1

x

where Z,, Z, are independent, and each is a vector of independent standard
normal r.v.’s, then X, and X, have the same distribution iff their mean vectors
and covariance matrices are the same, i.e., p; = 1, and A A} = A, A},

Theorem 2.4.1: Let p be an element of R, and £ an n x n nonnegative
definite matrix. Then there exists a multivariate normal distribution with mean
vector g, covariance matrix .

Comment: We will denote this distribution by N,(p, X).

Proof: Since X is symmetric, there exists a matrix B such that BB’ = X
(see triangular decomposition, towards the end of section 1.7). Let Z be an
n-vector of standard normal independent r.v.’s. Let

X=BZ +p.

Then E(X) = p and D[X] = BL,B’ = I, and by definition X has a multivariate
normal distribution. J

The proof of this theorem suggests a method for generating multivariate
normal vectors on a computer, given p and X. Find B such that BB’ = X.
Suppose a method is available for generating independent standard normal
r.v.’s, so that values of Z may be generated. Then X = BZ + p has the desired
distribution.

Theorem 2.4.2: Let X ~N(u,X). Let Y =C X + d for C and d

nx1 rxi rxanxl rxi

constant matrices. Then Y ~ N,(Cp + &, CEC’).

Proof: By definition X = AZ + p for some A such that AA’ = X, with
Z ~ N,(0,1,) for some p. Then Y = CAZ + Cu + d = (CA)Z + (Cp + d), and
by definition Y has a multivariate normal distribution with mean Cp + d,
covariance matrix (CA)Y(CA) = CEC'. 0

Theorem 2.43: Let Y have a multivariate normal distribution. Let Y =
Y nx1 .

[Yl] with Y, p x 1for 1 < p<n.Then Y, and Y, are independent if and only
2

fCiY,, Y, 1= ©

px{(n-p)
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Proof: Suppose Y,, Y, independent with mean vectors 0,, 0,. Then

CLY;, Y1 = E[(Yl - 01)(Y2 - 02)'] = E[(Y, - 91)]5[(Y2 - 02)']
=0 O = 0

px1l{n-pyx1 px{nxp)

Now suppose C[Y,,Y,J= 0 . We will use the fact that two random
px(n—p)
vectors are independent if their joint moment-generating function is the product

of their marginal m.gf’s. Let t = [(1] for ¢, p x 1. Then Y has m.g.f.

mx1 2

my(t) = exp[t,0, + 1,0, + }t'Z(]

But
, SN 0 YD >
t'Lt = ('19'2)( H l2)( ) =)Lt + 12X, ¥,,
;X
since X,, = 0O . Thus,
pxn-p
my(t) = exp[t)0, + 1\, t; + 6,0, + 2 E;,6,] = my (t,)my,(t,) O

Theorem 2.44: Let X have a multivariate normal distribution. Let X =
",

. > ) I B
matrnx X =( 1 5 ) for u; p x 1, X, p x p. Suppose L,, is nonsingular.
22

Then i

12

1 X, ~ N,(ny, )

(2) The conditional distribution of X, given X, = x, is N,(n, + A(x, — ),
Z,)forA=ZL,,E;;, L, ,=L,, —L;,E,' L

X nx1
( ‘) with X, p x 1 for 1 < p < n, with mean vector p =( ), covariance
2

Proof: (1) follows directly from the representation X = AZ + p.
_ Toprove (2) let Y, = X, —p,;, ¥, =X, — p,. Then, from Section 2.3, Y, =
Y, +(Y, - Y)), where y, = AY, for A= L,,Z5), with (Y, Y, - Yl) =
0 . Since the pair Y,, Y, - Yl has a joint multivariate normal dlstnbutlon
p=(n—p)
this implies independence of these two random vectors. Therefore, the distribu-
tion of the residual vector Y, — Y, does not depend upon Y, =X, —p, =
— . It follows that conditionally upon X, = x,,

Y, ~ Ny(A(x; —m,), 4y — L, 'Z, =L, ,)

Since X, =Y, + p,, this implies (2). ]
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Problem 2.4.1: Let X = (X,. X,) have a bivariate normal distribution with
parameters (u,, i;, 61, 63, p)for —1 < p < +1.
(a) Show that the density of X is

Jx(x) = [@m)aiad(l — pH)] "2 exp[ — 5Q(X)V/(1 — p?)]

for Q(x) = z2 + z3 — 2pz,2,, 2, = (X, — py)/0,, 2; = (x; — K2)/0,. (This is the
bivariate normal density.)
(b) Show that the conditional distribution of X,, given X, = x,, is

N(uz + poz(ft—'j—l) o¥(1 - pz)). Thus, for example, if the heights in inches
g,
of fathers (X,) and sons (X,) have a bivariate normal distribution with means

U, =69, u, =70,0, =2, 06, =3, p=04, then the conditional distribution of
a son’s height for a father 73 inches tall (2 s.d.’s above average) is N(72.4, 7.56)
(0.8 s.d.’s above average, variance 0.8443).

Problem 2.4.2: Let X = (X;, X,, X;) be as in problem 2.3.1. What is the
conditional distribution of X;, given X, =1, X3 = —1?

Problem 2.4.3: Let X =(X,, X,, X;) have covariance matrix X =

3 1 1 1 10
1 3 -7 |. NotethatZ| —2 | = 0so that L has rank two. Ifpy =| 20
1 -7 15 —1 30

and X has a multivariate normal distribution, describe the range of X. That is,
what is the subset of R; in which X takes its values?

Problem 24.4: Let Z,, Z, and B be independent r.v.’s, with Z,, Z, standard
normal and B taking the values — 1, +1 with probabilities 1/2, 1/2. Let ¥, =
BiZ,|and Y, = B|Z,|. (a) Argue that Y, and Y, each have the standard normal
distribution, but the pair (Y], ¥;) does not have a bivariate normal distribution.
{b) Show that p(Y;, Y,) = 2/xn.

Problem 2.4.5: Suppose that a population of married couples have heights
in inches, X for the wife, and Y for the husband. Suppose that (X, ¥) has a
bivariate normal distribution with parameters py = 65, py = 70, oy = 2.5,
gy = 2.7, and p = 0.4. What is the probability that the husband is taller than
his wife? Does the probability increase or decrease with p?

25 The ¥ F, AND t DISTRIBUTIONS

In this section we study the distributions of certain functions of random
variables which are normally distributed. Students will probably be somewhat
familiar with the central x?, F, and t distributions, but may not have studied
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their noncentral counterparts. In each case these distributions are defined in
terms of normally distributed random variables or, in the case of F and t, in
terms of y>-random variables. Tests of hypotheses and confidence intervals will
depend upon these central distributions. Determination of power for these tests
(t and F tests) will depend upon these noncentral distributions.

Definition 2.5.1: Let X, ..., X, be independent N(y;, 1) random variables
for i=1,...,n, then Y=Y X? is said to have a noncentral chi-square

1 n
distribution with n degrees of freedom and noncentrality parameter 6 = }: ul.

Comment: We will denote this distribution by x2(6). This is a legal
definition only if we show that Y has a distribution which depends only on n

and 6 =) pl.
1

X, i
DefineX =| : Jlandp=| ' |=E(X),a, =p/lipll,and leta,,...,a,be

X, Ha
orthogonal vectors of length one, all orthogonal to a,. Thus a,,...,a, form an

orthonormal basis for R,. Since these a; form a basis for R,, X = Z W;a; for

random variables W, and (X, a,) = W, ila,l|> = W,. Thus, X = Z(X a;)a;. (See
immediately after Theorem 1.3.5)
Let A = (a,,...,a,). Then

W
W=| : =A'X, A'A =1
W,
and
ap (T
X =AW. EW)=Ap= = ,D[W]=ATLA=AA=]1,.
0 0

Thus, since W has a multivariate normal distribution, W,, ..., W, are inde-
pendent with

Wy ~ N(linf, 1), W,~N@O, 1) for i=2,...,n

and Z X? = |X|? = |[AW[2 = WAAW = W'W = |W|? = Z W?. The distri-
1
buuon of Z W7 depends only on n and é = Z u? = lnl
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Comment: Using the notatlon above and letting Z, = W, — o012 and

Z,=Wfori=2,.. nweget}:X2 Z Wi =(Z, + §'%)? +222forll,...,
1

Z, standard normal independent r.v.s. Thus a noncentral x? r.v. is the sum of

a noncentral y? r.v. with one degree of freedom (d.f.) and an independent central
x* r.v. with (n — 1) df.

The central x? density for n degrees of freedom is

ni2-1,-y/2

y e

f(}".”)-‘-w

for y>0.

This is a gamma density for power parameter n/2, scale parameter 1/2. The
noncentral x* density is a Poisson mixture of central y* densities:

f(y;n d) = i pk;8)f(y;n+2k)  for y>0,
k=0

where p(k; 3) = [e ¥2(8/2)*]/k!. Thus, the noncentral y? distribution is a
weighted average of central y? distributions, with Poisson weights. We will write
2 to denote the central y? distribution with n d.f.

n
For any &, the representation Y = ) W} above gives
1

EY)=YEWH =[P+ 10+1+ -+ 1=|pl*+n=08+n
1

In addition,

Var(Y) =iVar(Wf) =Q4+4)+2n—1)=2n+46
1

As n — o for fixed & with ¥, ~ x2(5), (Y, —{m + 6»

by the Central Limit Theorem. \/:7'" + 40
For the central x? distribution a better approximation is given by the
cube-root transformation. If U, has a y? distribution then, as n - o,

is asymptotically N(0, 1)

Zn = [(Un/")‘/3 - an]/bm

for a, = 1 — 2/(9n), b, = (2/(9n))*/? converges in distribution to N(0, 1) (Fabian
and Hannan, 1985, p. 125). Thus, the 100yth percentile is given approximately by

u, = n[a, + z,b,1%
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where z, is the 100yth percentile of the standard normal distribution. For
example, for n = 10, from Table 3 in the back of the book we find x2, g5 =
18.3070, while ug 45 = 10[0.977 78 + (1.645)(0.14907)] = 18.2928. The approxi-
mation is even better for larger n.

Definition of a Quadratic Form: Let ¥ be a nonsingular, positive definite
n x n matrix. Suppose Y ~ N(0,Z) and let A be a nonnegative definite matrix.

nxn
Consider the random variable Q = Y’AY. We will be primarily concerned with
the special cases that A is a projection matrix, or that X is a multiple of the
identity matrix, and for simplicity will consider these later in this section. Those
looking for a respite from the heavy emphasis on matrix manipulation necessary
for the general case may therefore wish to skip to the definition of the noncentral
F distribution, promising, of course, not to lcave forever.

Let £'2 be the unique symmetric square root of X, and let £ %2 be its
inverse. We can write Q = (Y'E™2)(ZV2AXY2)(E12Y) = Z'BZ, where B and
Z are the second and third terms in parentheses. Then D[Z] = L'~ '2EL" "2 =
I, so that Z ~ N,(0,1,).

Let B = TAT' be the spectral decomposition of B. That is, A is the diagonal
matrix of eigenvalues of B, T is the n x n matrix whose columns are the
corresponding eigenvectors of B, and T is an orthogonal matrix, ic, TT =
TT=1,.

Thus, ¢ = ZTAT'Z = (T'ZYA(T'Z) = WAW for W =T'Z. Since D[W] =
TLT =1, W~ N,0,L,). Denoting the eigenvalues of B by 4,,...,4,, so
A = diag(4,,. .., 4,), we find that

Q=i Wi+ \,W2+4. -+ 1, W5

where W' = (W,, ..., W,). Thus, Q is a linear combination with coefficients
A4 ..., A, of independent yi random variables. The coefficients 4,,. .., 4, are
the eigenvalues of £'¥2AX'"?, and therefore also the eigenvalues of AL and of
IA.

Often, in applications, £ = 621, for some ¢? > 0, so the 4; are ¢ multiples
of the ecigenvalues of A. If, in addition, A is a projection matrix, so that the
eigenvalues are all 0's and 1I’s, with (number of 1's) = rank(A), then Q/s? has
a central ¥? distribution with d.f. = rank A. In more generality, Q has a central
x? distribution if AX is a projection matrix.

We can extend these results a bit by instead supposing only that Y ~ N,(0, ).
Define matrices B, T, A as before and

W=TEL 'Y =T'Z "9+ T'Z Y¥(Y - 0)

Then W ~ N,(T'E"%20,1,) and Q = Y'AY = WAW = 4, WZ. In this case
1
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the W, are independent, normally distribution, with standard deviations 1. Thus,
each W? ~ x3(8,), where §; is the square of the ith component of T'E " '/20 and
we have expressed Q as a linear combination with coefficients 4,,..., 4, of
independent y2(d;) random variables.

In the special case that £ = ¢2I,, and Q = Y'PY/s?, for P a projection
matrix onto a d-dimensional subspace V of R,, we have A = P/g% B =
(oL,)(Pjo?)(ol,) = P. The eigenvalues of P are 1, with multiplicity d, and 0,
with multiplicity (n — d). Without loss of generality suppose A, =---= i, =1
and 44,, =---=4,=0. Then the columns t,, ..., ¢, of T are orthogonal, of

4
length one, and the first d span V. Thus, W ~ N,(T"'6/0,1,), Q = ¥ W7, with
1

the W? independent x3(d;) and &, the square of the ith component of T~ '0/02.
Since T™! = T, the ith component of T~ !0/s is (t;, 0)/s. Since the sum of
independent noncentral chi-square r.v.’s is noncentral 2, we conclude that

2

Q~ x40  with = = [|p(8| V)l|*/a,.

d
Z (tl [y 0) ti 1/0
H

Note that Q@ = Y'PY/a? = | p(Y|V)II*/6® ~ xi(Ip@)|V)I*/a?).

The result that Q has a noncentral x2 distribution when A = Z71! is very
useful in statistics, important enough to dignify with the name Theorem, for
later reference.

Theorem 2.5.1: Let Y ~ N,(0,E). Let @ = (Y — CYE (Y — C), where C
is a vector of constants. Then Q ~ x2(é), for & = (@ — C))Z}(8 — C).

Biometrika Tables for Statisticians by Pearson and Hartley (1966) gives
percentile values of the x2(6) and x? distributions.

Definition 2.5.2.: (Noncentral F). Let U, ~ 42 (9) and U, ~ 2, (central) be

U/, . . . .
independent. Then V = —'—'«7'1—' is said to have a noncentral F distribution with
2/N2
noncentrality parameter &, and n, and n, degrees of freedom. For 6 =0, V is
said to have a central F distribution (or simply, an F distribution) with n, and
n, degrees of freedom.

We will denote the noncentral F by F, ,.(6) and the central F by F, ,, or
F(n,, n;). The 100yth percentile of the central F distribution will be denoted
by F,, u,., OF by F.(n,, ny).

For completeness we give the central and noncentral F-densities. The
noncentral F distribution with noncentrality parameter 3, and n,, n, degrees
of freedom has density

h(v; d,ny, ny) = Z p(k; 8)h(v; ny, ny),
k=0



THE %2, F. AND t DISTRIBUTIONS 67

where p(k; 8) = [e~¥*(/2)*]/k!, the Poisson probability function with mean

()./'2. and
( l )
2

(3)r(3)
2 2
h(v; ny, n;) = h(v; 0, ny, n,) is the central F-density.

(Students are warned not to memorize this; the effort required has been
known to debilitate them for weeks.) The mean and variance for the noncentral

F are
om (l N 6> and 2n2 [ (n, + 8)? pt 25]
n, —2 n "%("1 -2 L(n; — 2)n, - 4) n,—2 '

h(v,n;, ny) =

1 4+0v—
n;

(m)2 n/2

n "~ 1

-J) rRE— for v>0.
n, ( n,) LAl

for n, > 2 and n, > 4 respectively, undefined otherwise.

The Noncentral t Distribution

Definition 2.5.3: Let W~ N(6,1) and Y ~ y2 be independent random
variables. Then

T=W./Ym

is said to have (Student’s) t distribution with noncentrality parameter 8 and m
degrees of freedom.

We will denote this distribution by t,(#). The t,(0) distribution is called
Student’s t distribution or simply the t distribution. The 100yth percentile of
the central t distribution will be denoted by t,, ,. Notice that 72 ~ F, ,(6%).
Student’s t distribution was first found by William Gosset (1907) while he was
on leave from his position as a brewer from the Guinness Brewery of Dublin
to study with Karl Pearson at University College in London. Upon request of
Guinness, Gosset published “On the probable error of the mean,” in Biometrika
in 1908 under the name *Student.” A discussion is given by Ronald A. Fisher’s
daughter, Joan Fisher Box (1987).

Example 2.5.1: Let X,,...,X, be a random sample from a N(y, ¢?)

o . = o’ (n-1nS*
distribution. We will prove soon that X ~ N{ u, - |, that ~ - g for
Y (X, — X)? o " v
§?=&11 R and that X and S? are independent. Taking, m =n — I,
n —
constant a,



68 RANDOM VECTORS

we find that
X-a
—— o
T=wiTm= D2 X2
N YN

has a ¢t,_ ,(0) distribution, central ¢t if a = u.
The ¢,(0) density is

fimay - SR (1 )T S T2 1000 0
1) ’ - ‘m K

12 k/2
0 ksmm(l + —)
m
for all .

This simplifies for the case 8 = 0 to the central t-density

s

m

oy (mm)” 12 ; 2703 (m+1)2
fa;m= F(m/2T T(m/2 + 172)(1 + t*/m) for all ¢.

Problem 2.5.1: Use Stirling’s F_oymula: T(n+ V)/[e”"n" \/Zz;] ~1 as
n — oo to show that f(t; m) - (1//2n)e™ "2
m — oc.

, the standard normal density, as

Problem 2.5.2: Let X,, X, be independent, each N(y,c?). Prove that
X, +X oo
= I_XLXZI has a noncentral t distribution. What are the parameters? (It
17 A2
may be helpful to read the next theorem first).

Theorem 2.5.2: Let E(Y) =9, D[Y] = ¢?1,. Then

(1) For any a, E(a, Y) = (a, 0)

(2) Forany a, b, cov((a, Y), (b, Y)) = 6*(a, b), so that Var((a, Y)) = o2|la]|>.

(3) Let Y have a multivariate normal distribution, let a,,. .., a, be vectors
of constants, and W; =(a,, Y). Then (W, ..., W) has a multivariate
normal distribution.

Proof: (1) E(a, Y) = (a, 0) follows by the linearity of expectation. For
(2), compute cov((a, Y), (b, Y)) = a’D[Y]b = a%a’b = ¢%(a, b). (3) follows directly
from Theorem 2.4.2 by taking the ith row of C to be aj. 4

The linear models we will consider will have the form ¥ ~ N, (9, 6’1,), where
8 is supposed to lie in a subspace ¥ spanned by vectors x,, ..., x; of constants,
and ¢ is an unknown parameter. For this reason we will be interested in the
statistical properties of projections Y, = p(Y|¥) and functions of ¥, and
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Y — Y, . Expectations of linear functions of Y (Y, is an example) are determined
by 0 alone. Expectations of quadratic functions of Y (Y, |2 is an example) are
delgrmined by 6 and D{Y]. The distributional form of functions of Y (such
as Yy) are determined by the distributional form of Y. We will prove, for
example, that Y ~ N,(0,0%1,) implies that ||¥,||2/0> has a noncentral >
distribution.

Theorem 2.53: Let V be a k-dimensional subspace of R, and let Y be a
random vector taking values in R,. Let E(Y) =0, Y, = p(Y|V)and 6, = p(0} V).
Then

(1) EY,) =0y,

(2) D[Y] = 021, implies that D[Y, ] = ¢?P, and E[}|Y, |*] = 6%k + |0, }|>

(3) Y ~ N0, ¢21,) implies that Y, ~ N,(0,,02P,) and [|Y,[%/6? ~ y3(9)
for & = {0, %/c2.

Proof: (1) follows by the linearity of expectation and the fact that
p(Y|V) is a linear function of Y. To prove (2) note that D[Y,]=0P, P}, =
0*P, and |Y,|2=Y'P,Y. By Theorem 221 E|Y,|? = trace(c*L,P,) +
0'P, 0 = o trace(P,) + 0'P, P, 0 = o2k + 10,2

The first conclusion of (3) follows from (1) and (2) and the normality of Y.
To prove the second conclusion let a,,...,8;, #;,,,...,a, be an orthonormal

basis for R, with a,,..., &, spanning V. Then Y =} (Y, a;)a,. Let W, = (Y, a,)
for each i. Then !

x
?V = Z Wa;
i=1

and from Theorem 2.5.1, W,, ..., W, are independent N(1;, %) random variables,
k k

where 7, = (8,a,). Then [Y,|*/o® =Y (Wi/jo)* ~ x}(d) for & =73 (n;/o)* =
118y 1 2/‘72- o ! !

We will be interested in the joint distributions of projections Y; = p(Y|V;)
onto different subspaces V;. For example, for a subspace V, we shall be interested
in Yy and the residual vector Y — Y, = p(Y|V*). In the case that the subspaces
under consideration are mutually orthogonal, the resulting projections are,
under suitable conditions, independent random vectors. Their squared lengths,
the sums of squares of the analysis of variance, are therefore independent
random variables.

Theorem 2.54: Let V,,..., ¥ be mutually orthogonal subspaces of R, and
let Y be a random vector taking values in R,. Let P; be the projection
matrix onto V. Let E(Y)=0, Y,=P,Y and 0,=P#8 for i=1,... k
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Then

(1) D[Y] = ¢*1, implies that C(Y,, Y,) =0 fori #i".
(2) Y ~ N,(0,46°1,) implies that ?l,...,?k, are independent, with ?.' ~
N(0,, ¢*P,).

Proof: Let P, be the projection matrix onto V. C(Y,VY.)=
C(P,Y,P.,Y)=P,C(Y,Y)P; = a¢*P,P, = 0.

If Y has a multivariate normal distribution, it follows that the linear functions
Y,=PY are jointly multivariate normal and are independent if and only
if each CY,,Y.)=0 for i#i. (3) of Theorem 2.5.2 then implies (2)
above. 0

The following important theorem, first given by William Gosset (Student)
in 1908 and proved rigorously using n-space geometry by R. A. Fisher, is an
easy consequence of Theorems 2.5.3 and 2.54. This theorem justifies the
statements of Example 2.5.1.

Theorem 2.5.5: Let Y,,..., Y, be a random sample from a normal distribu-

. . . = 1
tion with mean y, variance ¢%. Let Y =~ (Y, +--- + ¥,) and
n

1 2 .
§2=_—— Y, - Y).
n— I;(‘ T}
Then
(M) Y~No 2/n)
52 —l . Y
O LA
1

3Y and S? are mdependent

C)] Y _—fio has a noncentral t distribution with (n — 1) d.f,, noncentrality

S/yn t—
parameter (——-° ) for any constant pug.
o/\/n

Proof: Y =(Y,,....Y) ~N(ul}, o’1,), where J, =(1,...,1). Let ¥ =

. Y,J, _
Z(J,), a l-dimensional subspace of R,. Let Y = p(Y|V) = (“j "‘} J, = YJ,.

2
Y has mean p and variance [J;,D[Y]J,,]/ilJ,,n“=02/||J,,l|2=1, and of
n

course is normally distributed. This proves (1).
Y-Y=pY]| Viy=(Y,—Y,..., ¥, = Y), the vector of deviations, is in-
dependent of Y, hence of Y. Thus, S% a function of Y —Y, and Y are
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S%(n -1
mdepcndent. By (3) of Theorem 2.5.2 and the fact that 8 = uJ, L V, ﬁz—) =
Y 2 ¢
Y - V—Y"o* is distributed as yZ_,. This proves (2) and (3).
O'
Y — U
Finally, for U = Y- o ,T= Y— Ho [ ”0]/ /Sg? = et~
o n sifn LejgmndY JVin—1)
N@T@J)mdv_lzw ¥)2 ~ 2_,. U and V are independent by
o/ /n v
(3). Thus, by the definition of the noncentral t distribution, Y ;‘0
_ S//n
t,,-,(gi—-) proving (4). 3
0'/\/I1

Example 2.5.2: Let Y,, ¥,, Y;, Y, be independent N(u, 6%). Find a constant
K such that

W=K ?_“

has one of the distributions noncentral x2, noncentral F, or noncentral t. Identify
the parameters. K must be a constant.

Solution

Y — uo ~ N((u — o), 6%/4) SO Y —Ho N(l‘ “jff(?, l).
o//4 o/\/n

. v
The r.v.’s

Ulz),l'—YZ,U2=Yl+Y2—2Y3,U3=YI+Y2+),3—3Y4

are each normally distribution, with zero means, and with variances 20?, 60%,
and 1202. Moreover, U,, U,, U, are independent of Y and of each other since
their coefficient vectors are mutually orthogonal. Thus,

UZ U2 UZ 1
2t ot * g = 33 W WU IUD ~ 1

and is independent of the numerator ¥ — u,. Therefore,

i_, Ho
LA Ve (e
\/5 20 .2 [U2 + LUz + 6U2] a/\/ 0’/\/

//60'i
We therefore need ¥ - — /K = 1 or K = 2,/6.
o/ s
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Theorem 2.56: Let Y =0+ ¢ for 8¢V, and £ ~ N,(0, 0’L,). Let V; be a
subspace of V. Suppose dim(V)) = k;, <k =dim(}V). Let Y = p(Y[|V), Y, =
p(Y{¥,), and 8, = p(8} V,). Then

AR
1Y = ¥/ — k)

F

H

has a noncentral F distribution with k, and n — k degrees of freedom and
noncentrality parameter é = |10, |%/0%.

Proof: Since Y — Y= p(Y|V+) it follows from (2) of Theorem 2.5.3 that
the squared lengths @, and @, in the numerator and denominator are
independent random variables. By (3) of Theorem 2.52 Q, ~ ¥} () and
Q, ~ x2_,. The definition of the noncentral x* distribution then implies the
theorem. [

For completeness we present the following more general theorems. Their
proofs are given in Srivastava and Khatri (1979, p. 66--67). These theorems will
not be needed for the statistical applications to follow.

Theorem 2.57: Let Y ~ N,(0, L), with I positive definite. Let A, A,, ..., A,
be symmetric matrices of ranks r, r,,..., 7, and define Q = Y'AY, and
Q;=YAYforj=1,...,k Let A =0'A8, and 4; = 8'A;0 for each j. Consider
the statements:

® @~AGA) j=1..,k

(ii) Q,,...,Q, are independent random variables.
Gii) @ ~ x2(4).
)y r=3r,

Then (a) any two of (i), (ii), (iii) imply all four statements, and (b) (iii) and (iv)
imply (i) and (ii).

Cochran’s Theorem follows as a corollary of Theorem 2.5.6:

Cochran’s Theorem: Let Y, A, A,,... A, @, Q,,..., O be as defined in
Theorem 2.5.7. Then Q,, .. ., Q, are independently distributed as noncentral x?
random variables if and only if ). Rank(A;) = n.

Problem 2.5.3: The following questions are designed to acquaint students
with the central and noncentral x%, F and t distributions. For each question
give the distribution name, and parameters.

Let X,,...,X,, and let Y,..., ¥,, be independent random samples from
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N(u,,0%) and N(u,, 63), respectively. Find the distributions of:
(a) X, —p Xi— o
4! Ty

(b) (Xl - #1)2 (Xl - #0)2
o, ' o,

| o
© S5 YXi-w) S Z (X; — C,)? for arbitrary constants C,, ..., C,.
0, 1

011

(uo an arbitrary constant)

Y- Y ~ x
(d) - = Iiz_ T —H A Ilz

Uz/\/"2 ‘72/ [: 011\/"1

(©) “H(X — po)?, —; (X — u)?
g

i

2 2
) (X - Y¥)-48)] / \/; + 2 (8 = an arbitrary constant)

1 M

(hy ¥ [){ -“2]/\/3%1, for St = -3 (X = X)?
/~ —19

g,/

() m(X = py)*/o} + ny(Y — ny)*/o3. Suppose in (k), () and (m) that
o} =0l=0"

(k) [S3(n; — 1) + S3(n, — 1)]/?
) —2;- (¥ (X — w)* VX (Y — 1)?)
1

_ _ 1
(m) [(X - 7) - a]/[s, -+ nl]
1 2

For the remainder find a constant K, so that the resulting random variable has
one of the distributions: normal, 2, t, or F (central or noncentral). Give the
degrees of freedom and noncentrality parameters.

X, + X,
( i
) lY1 -1l
Xty
(0) s,

(Xl - a)z + (Xz - a)z
7oK
53

(p)
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Problem 2.54: Let (X,, Y;),...,(X,, ¥,) be a random sample from the

bivariate normal distribution with parameters y,, y,, o3, 63, and p. Find a
constant K so that

(X-Y)-96

T=K -- -5 177 ~ tml0).
{Z [(X, - ¥) - (X - 7)]2}
i=1

Express m and @ as a function of the parameters and the constant 8. Hint: Let
D, = X; — Y. Express T as a function of the D,.

Problem 2558: Letx, =(1,1,1, 1L, 1),x;=(1,1,0,0,0),0=(6,6,2,2,2)
and suppose that Y ~ Ny(0, 91;). Let V' = Z(x,, x,). Find a constant K such
that K[|Y}2/IlY — Y||? has a noncentral F distribution. Identify the parameters
n,, ny, 9d.

Problem 2.5.6: The gamma distribution I'(m, 6) with power parameter m,
scale parameter 6, has density f(y;m, 0) = [['(m)8"] 'y™ 'e > for y > 0.
Thus, the y2 and I'(n/2, 1/2) distributions are identical. If ¥V ~ I'(m, 1) then
V6 ~ I'(m, 0).

Suppose that V,, V, are independent I'(m,,8) and I'(m,,0). Let W, =
V, + V;, Wy = V,/V,. Use a density transformation theorem to show that (1)
W,, W, are independent, (2) W, ~ I'(m, + m,, 8), (3) Wy(my/m)) ~ F, ...
Hence conclude that U,, U, independent 2, x2, implies that

U+ U, ~ X:.i-nzv A~

and that these r.v.’s are independent. (4) Let Y,,..., Y, be independent with
Y,~T(m,0). Let §;,=Y, +---+ Y, and let W, =Y,/Y,, Wo=Y;/S,,...,
W, ,=VY/S, .., W,=S8,. Use (3) and induction to argue that W,, ..., W, are
independent. What arc the distributions of W, ..., W,?



CHAPTER 3

The Linear Model

3.1 THE LINEAR HYPOTHESIS

Suppose we observe Y, an n-component vector, and our model states that
Y =8,x; + - + BiX¢ + &, where x,,..., X, are known vectors of constants,
and £ ~ N,(0, 6°1,), for B,, ..., B, unknown parameters.

This model, called the linear hypothesis, or the multiple linear regression
model, includes a great variety of statistical models, including simple linear
regression, one-way, two-way and higher order analysis of variance, and
analysis of covariance. The assumptions on ¢ are not all necessary in order
to make useful statements, and we will point out which can be dropped
under certain circumstances.

The inner product space Q in which the vectors Y, x,,..., x, take their
values will usually be R,, the space of column vectors. In this case we can
definc the nxk matix X=(x,,...,x,), and the column vector
B=(B,,....B) and write the linear model in the briefer form Y = X§ + ¢.
This briefer form makes it possible to use matrix algebra to investigate the
properties of the estimators of B and of o2. However, other configurations
for these vectors sometimes have an intuitive value which will make it
worthwhile to give up the column form.

Example 3.1.1: We observe pairs (x;, Y) for i=1,...,n and suppose
Y, = Bx; + ¢. Then in vector form Y = fx +&. This model, about the simplest
of interest, is called regression through the origin. Taking x = J, the vector
of all ones, and § = u, we get the one sample model with Y, ~ N(y, 62).

Example 3.1.2: (Two regression lines with equal slopes) Suppose the
yields on one-acre plots of land of varying fertility levels are recorded for
two experimental conditions. Let Y;; = yield of corn under condition i on
jth plot, and

x;; = fertility of plot j for condition i, for j=1,...,n,i=12
75
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Yuu  Ya
Define Q to be the collection of vectors| : > |. Y a random element

Yim y2nz
of Q, x the corresponding vector of x;;’s, w, the indicator of the first column,

w, the indicator of the second column. Then Y = f,w, + B,w, + B.x + € is
a commonly used model. §, > §, could be interpreted to mean that experi-
mental condition #1 provides higher average yields, given the same fertility
levels, than does #2. f. is the additional yield of corn for one unit more of
fertility. Generalizing tko k experimental conditions we get the analysis of

covariance model Y =) B,w, + f.x + &
1

Example 3.1.3: (Two-way analysis of variance) Suppose yield of corn Y, is
observed on rc¢ plots of land for seed levels 1,2,...,r and fertilizer levels,
1,2,...,c. Let Y = ();) be the r x c rectangular array, Q the sample space,
J € Q the vector of all I's R; the indicator of row i, and C; the indicator of
column j. Then the additive effects model states that

Y=pJ+Yo,R+)BC,+e=0+¢
1 1

We will be interested in deciding whether row (seed) effects are zero, i.e., that
the mean vector is 8 = uJ + ) §,C;.
j

Example 3.1.4: (Polynomial regression} Suppose we observe pairs (x;, ¥)
fori=1,2,...,n and that it is reasonable to suppose that

Y= Bo+ Bixi + Box? + Bax} + &

i

with ¢,, ..., ¢, independent N(0, a%). By defining wy; = 1, w;; = x;, wy, = x}
3

wy; =x; we get the model Y, =) B;w;+¢, or in vector form, Y =

3 o

Y B;w; + €. We could replace 1, x{, x7, x} by any other four functions of x;.

o

The model remains linear in the g;s. Or, we might have reason to expect the
regression function g(x) = E(Y{x) to have the form of Figure 3.1.

We might then consider the model ¥, = f,e®*¢;. Taking logs (all logs are
base ¢), we get log ¥, =log B, + B, x; + loge, and, defining Z, =log ¥,
70 = log Bo. 1, = log g;, we get Z; =y, + Bx; + n;, so that for x, the vector
of all ones, Z = yoXo + B;x + 1. If we suppose 5 ~ N,(0, ¢*1,) then the ¢
are independent with log-normal distributions.
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Po

X

FIGURE 31 Y = g(x) = fee?*.

We can fit the model with g(x) = E(Y|x) = f,x% and ¥; = B,x%'¢, by again
taking logs to get the linear model Z; = log ¥, = log B, + B, log x; + log ¢;.

Some Philosophy for Statisticians

The linear models we discuss make statements about (1) 8 = E(Y), (2) D[Y],
and (3) the distribution of ¢ = Y — 8, and therefore of Y (almost always multi-
variate normal). In practice we rarely know whether these models hold. In fact,
models should be viewed as idealizations, oversimplifications of a very complex
real world. Models should be thought of as approximations, guidelines which
enable us to understand relationships among variables better than we would
without them. Since the statement of the model will hold only in approximation,
the probability statements, and statements about means, variances, covariances,
and correlation coefficients should be expected to hold only in reasonable
approximation. In general it is difficult to make precise statements about the
precision of these approximations.

In Chapter 4 we will discuss some techniques which allow us to investigate
the appropriateness of the models we adopt. Fortunately, it will turn out that
the procedures we use are often robust in the sense that they almost have the
properties claimed for them, even though the models justifying them are satisfied
in only rough approximation. Much of the reason for studying the theory and
applications of linear models, rather than the applications alone, is that we
must have a reasonablc understanding of the effects of deviations from the
models studied, and must be able to convey these effects to users of statistics,
who usually do not have a strong understanding of the theory.

We end this excursion into philosophy with a quotation of John von
Neumann, the great mathematician, taken from Statistics and Truth, the fine
book of C. R. Rao (1989):
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The sciences do not try to explain, they hardly even try to interpret, they mainly
make models. By a model is meant a mathematical construct which, with the addition
of certain verbal interpretations, describes observed phenomena. The justification of
such a mathematical construct is solely and precisely that it is expected to work.

In general, the representation of @ as a linear combination of given vectors
X, ..., X, is the most crucial part of the selection of a model. Second most
crucial is the choice of a model for D{Y]. Certainly, the model which supposes
D[Y] is a multiple of the identity matrix is often inappropriate in econometrics,
particularly if the the observations on Y are time series data (ordered by time).
Fortunately, normality is often not crucial, particularly if the sample size n is
large. Statisticians are always on safe grounds when recommending sample
sizes of 10,000 or more. But they must be prepared for looks of horror, and
perhaps early dismissal.

Estimation Theory

The linear hypothesis may be written in the equivalent form, depicted n
Figure 3.2:

Y=0+¢ for BeV = 2L(x,,...,%) and £ ~ N(0,6°1,)

Sometimes is is cnough to estimate 8, and the representation of @ in the form
k

Y B,x; is not important. On other occasions the coefficients B, ..., B, are
1

themselves of interest. So that we can use matrix notation, let us write all vectors
as columns, and let X = (x,,...,x,). The matrix X is often called the design
matrix, particularly when the experimenter has control over the choice of the
x-vectors. Then 8 = XB, and if x,, ..., x, are linearly independent, (X'X) 'X’
0 =p.

FIGURE 32
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The principle of least squares leads to estimation of by §, where 6 = 6
minimizes [Y — 0]|% = ©(0), subject to 8 € V. Thus, the principle of least squares
leads to the estimator 8 = p(Y|V) = Y.

In the casc that X has full column rank (the x; the linearly independent)

0=XXX)"'XY, and B=XX)'XY.

Then ﬁ =(X'X)"!X'(Xp +¢) = B + (X'X)"'X'e. The coefficient matrix
(X’X)"'X’ is the Moore—Penrose inverse X * of X discussed in Section 1.7. If
the column vectors of X are orthogonal, then Y= Zp(Y|x;) = EB iX;, where
By = (O, x)/Ix,012 = B, + (& x)/ X112

Thus, each component of B is equal to the corresponding component of p
plus a linear combination of the components of £. In fact,

(1) E@) =B+ (X'X)"'XE(e) =
(2) D[B] = D[(X'X)™'X'e] = (X'X) ' X'(¢’L)[(X'X)"'X'] = (X'X) " 'q?
3) ﬁ has a multivariate normal distribution (if € does)

Of course, (1) requires only that Y = XB + ¢ with E(g) = 0. (2) requires only
that D[€] = ¢°l,.(3) requires only that € has a multivariate normal distribution.
In applications it is often unrealistic to suppose that € has a multivariate normal
distribution. However, a form of the Central Limit Theorem suggests that
for large n, k different linear combinations of independent components of &
should have an approximate multivariate normal distribution even when &
does not.

Maximum Likelihood: The likelihood function is for each observed Y =y

L(e, O.Z;Y) (2 )l,,/z' e"'(llz)")' 8Ya?

for@e V = L(x,,...,x,) and 62 > 0. The maximum likelihood principle leads
to the estimator of the pair (0, %) which maximizes L for each Y =y, or,
equivalently, maximizes

log L = —-; log(2n) — ;log o2 — % ly — 011%/¢?

For each fixed 62, log L is maximized by taking @ = p(8] V') = 0. For this choice
of 0 we get

logL = ——log(21r)— loga —~—||y 0))2/0?
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Replacing ¢? by w and taking the derivative w.r.t. w we find

ddog L) _ —m/2  (1/2)ly - B

dw w w?

e l)’: 0 |2 a2 Iog

which is zero for w = ¢* = —— = It is easy to verify that <0, so

that 6° = ||y — Gllz/n does maximize log L for each 0. Thus, the pair (0 o)
maximizes L, i.e., this pair is the maximum likelihood estimator of (0, o2).

Estimation of ¢?: The maximum likelihood estimator of o2 is 42 =
Y — 0||2/n We can employ Theorem 2.5.2 to determine the expectation of 62
Since Y—-0=P,.Y, D[Y] =021, we get E[|P,.Y|?] =o? dlm(V*)+
IP,. 0] For0e V, P,.0 =0, so that

E(6Y) = o dim(vt) = o [n - dim(V)].
n n

Thus, unless dim(¥) = 0, i.e. ¥ = £(0), 62 is a biased estimator of ¢2. For this
reason the most commonly used estimator of 62 is

$2 = )Y — 0%/[n — dim(»)] 3.L.1)

In the special case that 8 = uJ,, so that V = ¥(J,), we get 6= YJ..
dim(V) = 1, so that 2= |Y — YJ,|1%/[n— 1]1= Y. (¥;— V)?/(n— 1). Students

i=1
should remember, however, that this is only a special case, and S? will, in general,
be as defined in (3.1.1).
If £ has a multivariate normal distribution then by Theorem 2.5.2

1Y —801%/02 ~ 22— simary
Since the central y? distribution with m degrees freedom has variance 2m, we
have
Var(§?) = 26*[n — dim(M)][n — dim(})] "% = 20*/[n — dim(})]
for £ multivariate normal.

Properties of § and S%: Since 0= p(Y}¥V) and Y — 6 = p(Y| V), with V
and V* orthogonal subspaces, 0and Y -0 are uncorrelated random vectors,
independent under normality. It follows that Gand $? = 1Y — 0|| /(n — dim(V))
are independent, and, in the case that the columns of X are a basns for V,
l} X'X)~ X9 = (X’X)"'X'Y and the residual vector e =Y — 6 are uncor-
related random vectors, independent if Y is multivariate normal.
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To summarize, under the model Y =0+ ¢ for 8¢V, ¢ ~ N,(0,0°L,) it
follows that

(1) 6~ N,(8,P,.c?).

@ e=Y -0~ N0, -P,)cd).

(3) Oand Y -0 are independent random vectors.

@) Y — 012/6% ~ 12_ gimw» 50 that 2 = Y — 8))2/(n — dim(})) is an un-
biased estimator of ¢°.

(5) If the columns of X form a basis for ¥ and @ = X, then § = (X'X)"'X'Y
and S? are independent, with B ~ N (B, (X'X) '6?). If, in addition, the
columns of X are mutually orthogonal, the estimators Bj are uncor-
related, and therefore independent.

Problem 3.1.1: A scale has two pans. The measurement given by the scale
is the difference between the weights in pan #1 and pan #2 plus a random
error. Thus, if a weight p, is put in pan # 1, a weight p, is put in pan # 2, then
the measurement is Y = g, — pu, + & Suppose that E(g) = 0, Var(¢) = ¢, and
that in repeated uses of the scale, observations Y, are independent.

Suppose that two objects, #1 and # 2, have weights §, and f,. Measure-
ments are then taken as follows:

(1) Object # 1 is put on pan # 1, nothing on pan #2.
(2) Object #2 is put on pan #2, nothing on pan # 1.
(3) Object #1 is put on pan # 1, object #2 on pan #2.
(4) Objects #1 and #2 are both put on pan #1.

(@) Let Y = (1}, 13, Y3, ¥,) be the vector of observations. Formulate this as a
hnear model.

(b) Find vectors a,, a, such that #, = (a,, Y) and B, = (a,, Y) are the least
squares estimators of f#, and §,. .

(c) Find the covariance matrix for g = (., 32)'.

(d) Find a matrix A such that $2 = Y’AY.

(e) For the observation Y = (7, 3, 1, 7) find S, and estimate the covariance
matrix of f.

(f) Show that four such weighings can be made in such a way that the least
squares estimators of 8, and f, have smaller variances than for the experiment
above.

Problem 3.1.2: The following model has been used to predict the yield Y
of the valuable chemical “gloxil” as a function of the temperature T. The
expected yield is continuous function g(T) of T. There is no yield for
T < T, = 20 (degrees Celsius). For temperatures between T, and T; = 100, the
expected yield is a linear function of T. For temperatures above 100 the expected
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yield is also linear, though the slope changes at 7 = 100. Suppose measurements
on the yield are made for T = 40, 80, 120, 180 and 2490.

(a) Formulate this as a linear model.

(b) Suppose that the measurements at the five temperatures were: 57, 176,
223, 161, 99. Estimate the parameters of your model and plot your estimate of
the regression function of yield on T. Determine the residual vector e and use
it to determine S2.

Problem 3.1.3: A chemist wishes to determine the percentages of impurities
B, and B, in two 100 gram containers (1 and 2) of potassium chloride (KCI).
The process she uses is able to measure the weight in grams of the impurities
in any 2 gram sample of KCl with mean equal to the true weight of the
impurities and standard deviation 0.006 gram. She makes three measurements.
Measurement # 1 is on a 2 gram sample from container 1. Measurement #2
is on a 2 gram sample from container 2. Mcasurement #3 is on a mixture of
a 1 gram sample from container 1 and a 1 gram sample from container 2.

{a) Formulate this as a linear model.

(b) Give formulas for unbiased estimators £, and £, of B, and B,.

(c) Determine the covariance matrix of (8,, 1132).

(d) Estimate (8, f,) for the three measurements (.036, 0.056, 0.058. Also
determine S%, and compare it to the true variance, which we know to be
a? = 0.006%.

Problem 3.1.4: Chemical processes A, B, and C have yields Y which have
expectations which are each linearly affected by the amount x of a catalyst used.
That is, g(x, p) = E(Y|x, p), where p = A, B, or C, is a linear function of x for
each p, with slope which may depend on p. Suppose also that the expected
yields for x = 50 are the same for A, B, and C. Two independent observations
Y were taken for cach combination of values of x and the three processes. Their
values were

x =20 x = 80

A 69 63 120 132
B 34 4 151 167
C 18 12 204 186

(a) Let p = A, B, C index the three processes, let j = 1, 2 index the the two
levels of x, and let k = 1, 2 index the two measurements made for the same
process, x-level combination. Let Y,,; be the yield for the pki combination.
Define a linear model. That is, define vectors x,, ..., X,,so that Y = Z Bix; + &

—-30 -30 30 30

Hint: Let x, = 0 0 0 of
0 0 0 o
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{b) Find the least squares estimate of the vector B of regression coefficients.

(c)Find Y,e = Y — Y, SSE (Sum of Squares for Error) = Y — Y3 and S
Also estimate the covariance matrix for .

(d) Suppose that the assumption that the expected yield is the same for each
p is dropped. What are Y, e, and SSE?

Problem 3.1.5: Consider the model of Example 3.1.2 for two experimental
conditions with n, =4, n, = 3. Give explicit nonmatrix formulas for the
estimators f,, £, b Hint: Orthogonalize x with respect to w, and w,.

3.2 CONFIDENCE INTERVALS AND TESTS ON
n=cfy+ o+ by

We are often interested in giving confidence intervals or testing hypotheses on
the §; or on differences §; — p;. More generally, we may be interested in a linear
combination = (¢, B) = ¢, 8, + -+ + ¢, i, for ¢;'s chosen by the statistician.
A natural estimator of yis i = ¢, B, + -+ + c'kﬁk. By the linearity of expecta-
tion # is an unbiased estimator of . Its variance is Var(f)) = ¢M ™ '¢a? = do?,
where M is the inner product matrix. The corresponding estimator of Var(#)
is S2 = dS2. In the special case that n = B, ¢ is the jth unit vector, and d is the
jj term of M~ If, for example, n =, — §,, then ¢ = (0,1, —1,0,...,0),
and if M™! = (/,J) then d = f,, + f33 — 2fs3, and Var(d) = do’ = f,,6° +
£330 = 2fz30% = Var(Bz) + Vaf(ﬁs) —~ 2 cov(f,, B3).

Thus, #~ N(7,do%), -— "L~ N@©, 1), and -="~t _,, so that, for

\/(702 Jds?

b=ty il —a= P( t< 3/5- < z> = P(} — t/dS* < n <# + 1,/dS?).
Thus, [# > 1,4, _,V/dSZJ is a 100(1 — a)% confidence interval on .

Example 3.2.1: Let x;, =(1, 1, L 1), x, =(1,1,0,0), x,=(1, =1, 1, -1}
3
and suppose Y =Y B,x; + € for £ ~ Ny(0, 6°1,). Then
1

210 2 -2 0
M=XX=2l1 1 0 and M"=‘: -2 4 0].
00 2 0 01

Thus, for n=RB, — B, c=(1, —1,0)y and d=cMlc=
[7 +4 + 2(—1)(—2)]/4 = 10/4, so that a 95% confidence interval on n is

~Bxt. 973y /S2(10/4). The 95% confidence interval on B, is
[k +t, 09755) sinced = 1.
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Tests of Hypothesis on n = ) ¢;;; Suppose we wish to test Hy: n < 19 vs.
H,: n > ne, where n, is a known constant, often chosen to be 0. Since

p=" (rl—rlo)
. — n—k R A Y
Jds? Jda?

which becomes central 1 when 5 = n,, the test which rejects H,, fort = ﬁ "o
VS

Ly- 1 1-q 15 an a-level test. The two-sided hypotheses Hy: n = 5o vs. Hy: p # nq
is rejected for {t| = 1,_,  _42-

In the applications of multiple regression it is very common to take n = f;
and n, = 0 for some j, so stausucal software packages print the corresponding
t-statistics ¢; = B /S5, where Sﬂ‘, /£;;8%, and f; is the jj term of M~ '. Usually
they present @;-values as well (p-values, the probabilities under the null
hypothesis that it;| would be as large or larger than the value observed).

There is a one-to-one correspondence between a family of tests of hypotheses
on 7 and confidence intervals in the following sense. If C(Y) is a 100 (1 — a)%;
confidence interval on 7, then A(n,) = {y|no € C(y)} is the acceptance region
(the part of Q for which H, is to be accepted) for an a-level test of Hy: n = 15,
and C(y) = {nly € A(n)}. For example, if [35, 47] is a 95%, confidence interval
on n, then we should accept Hy: n = no vs. H,: n # n, at level 2 = 0.05 for any
no € [35, 47] reject otherwise. The one-sided 95% confidence interval
(1 — to.os+/ /S, + o0) on 5 corresponds to the 0.05-level t-test of Hy: 7 < 5,
vs. H,: n > ng.

Example 3.2.2: (Simple linear regression) Let Y, = f,+ B,x; +¢ for
i=1,...,n Thatis, Y = B,J + f;x + &, where

1 Xy
J = ' s X = : s g("& x) = "(f(J’ x*)‘

1 X,

and since x* = X — xJ, J L x*. Thus

(Y, J) (Y, x"‘) T4 Sey

=PI =g T e s

where
s,,=(v,x*)=§"j X(x;—i):Zi:(};_ y)(xi_f)zgxi(yi_ Ve
=Y x Y, —nx¥
S = (%, x*)=;<x.-—f)2 =Y xix— ) =L x? —ng
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- - S
Since x*=x—x%J, we get Y=0,J,+fx="FI+ Sﬂ (x — xJ), so that
S, = -
Bl = S‘y, Bo =Y le~

The variance of the estimator 8, of the slope 8, in simple linear regression is

Var(B,) = Var(s—"‘) - (l)ZVar[(Y x%)] = (—'-~>Z[a2ux' 17]
! S S ’ S

XX xX xX

- (_—1_)262311 = —0’72'7
Sxx ’ Sxx

2
Var(P) =2, cow(7, B,) =0,  since JLx*
n

XX

Then
COV(BO, Bl) = COV(’—,‘_ Bliv Bl) = COV(}—” Bl) —X COV(BvBl)

=0- fO’Z/S“ = —(X—/Sxx)ﬂz.

Alternatively, we could have found the covariance matrix of IAS = (BO*BI)'
from

I FZ VL VS | v n le'
D[] = e¥(X'X) for xx_[ZXt ZX?]

WeAnow want to ﬁng S2=|Y - Y| 2f(n — 2). Since error sum of squares =
Y — Y12 = | Y(|12 — [[Y]|% we first determine Y%
Y=Y, V) =(Y, V) =(Y, P+ B,x") = P2n + B;S,, = Pn
+ 8%,/8ex = IP(Y I xo)? + Up(Y X2
Then
IY = Y12 = |YI? = [Pn + B,S,,] = X(%, - D* - 4.5,

= Syy - Blsxy = Syy - SJZ:y/Sxx'

1
and S = [—2] [S,, — B.S,,]. Since Var(B,) = ¢*/5,,, an unbiased estimator

of Var(B,) is S%(B,) = $?/S,,. It follows that a 100(1 — «)% confidence interval
on f; is given by Bx * tn—Z.l—a/ZS(Bl)~

We sometimes want a confidence interval on g(x,) = B, + B,%,, the mean
Y for x = x,, where x, is a specified value for x. Since §(xo) = fo + Bixo =
Y + B.(x, — %) is an unbiased estimator of g(x,), with

Var[§(x,)] = az[l + (xg — i)z/S,,:l = 62h(x,)
n
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and is normally distributed, it follows that §(xo) — 4(xo) ~t,-4, SO that a

V' S$2h(x,)

(1 — «)100%, confidence interval on g(xgy) = f, + B,X, is given by

[9(x0) % ta-2,1-ar2v/ S?h(x0)] = 1(x0)
This means that this random interval [(x,) satisfies
P(g(xp)el(xg)) =1 —2 for all x,. *)

This is not the same as P(g(xg) € I(xo) for all xy), which is smaller. (See the
difference?). We will later develop methods for finding random intervals I,(x,)
(s for “simulataneous™) so that P(g(x,) € I,(x,) for all xg) =1 — a.

Problem 3.2.1: (a) For Y as in Problem 3.1.1, (a) Find a 95%, confidence
interval on 8, — f,.

(b) Consider instead the four weighings in part (f). What is the ratio of the
expected lengths of the confidence interval found in (a) to that found for these
four weighings?

Problem 3.2.2: The following model is often used for the scores achieved
on a standardized exam taken by students, such as a S.A.T. or A.C.T. exam
required for entrance to colleges or universities. Let 8 denote the student’s “true
score”, the theoretical long-term average score that student would achieve on
repetitions of the exam (assuming no learning effect). Let Y denote the student’s
score on the cxam, and suppose that Y =0 + ¢ for E(g) = 0, Var(Y) = g2.
Suppose that ¢? is the same for all 8 (this may not be realistic). Suppose also
that ¢ is normally distributed.

(a) Suppose g, is known and Y is observed. Give a formula for a 959
confidence interval on 6.

(b) Now suppose g, is unknown but n students have been given different
versions of the exam twice, with scores (W, W,;) fori = 1,..., n. Suppose that
W;=0+¢;forj=12andi=1,...,n where the 6, arc any fixed unknown
parameters, and the ¢;; are all indecpendent, each with variance ¢7. Find an
unbiased estimator S2 of 62 and prove that nS?/a? ~ x2.

(c) Now suppose another student takes the exam and achieves a score of Y.
Let 8, be her (unknown) true score. Find a function of ¥,, 8, and S, which has
a t distribution and use this function as a “pivot” to find a 95% confidence
interval on 6,.

Problem 3.2.3: Let x; >0 for i =1,...,n Suppose that Y, = fix; + ¢, for
i=1,...,n with the ¢ independent N(0, ¢%)

(a) For x, > 0 give a formula for a 100y%; confidence interval on g(x,) = Bx,.

(b) Apply the formula for the observed pairs (x;, ¥)): (2, 3), (3, 11), (4, 12),
X = 5, and y = 0.95. Repeat for x, = 10.
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Problem 3.2.4: For the wormy fruit data of Example 14.1 find 95,
confidence intervals on g(x,) = Bo + B;x, for x, = 6, 18, and 50.

Problem 3.2.5: For the simple linear regression model Hy: f, = 0 or Hy:
B, <0 or Hy: B, >0 may be tested using the test statistic t=B,/’S,;l =
B,/\/S‘Q/S,,. Show that t = [r{/n — 2]/\/1_— r?, where r = Sx,./'\/TS“Sy, is the
correlation coefficient.

Problem 3.2.6: (a) Consider any collection of n pairs (x,, y;). Define u;; =
x; —x; and vy =y;— y;. Show that Y u;v; =23 wu v, =nS,, and that
ij i<j

therefore S,, = Z ul/n.
ij
(b) Let b;; = w;/v,; for i # j. Then b;; is the slope of the straight line from

1 x
(x;, y)) to (x;, y;). Let D;; = (x; — x;)? = det(X j; X;), where X;; = [1 x,]‘ Show
X

{ J

that ﬁ, = (Z D;;b; j) / D;;. Thus, ﬁ, is the weighted average of the two-at-
i<j fi<j

a-time slopes. C. F. J. Wu (1986) shows that this result holds more generally.

If s is a subset of the integers 1,...,n of size r > k, and B, is the least squares

estimator of B based on those observations Y; with ies only, then p=

[Z det(X;X,)B,]/[Z dct(X;Xs)], where X, is the submatrix of X consisting of

the rows with index in s. In the case r = k, as in the simple linear regression
case, take ﬁ, = (X)) 'Y, if the inverse exists, zero otherwise.
(¢} Check the formulas of (a) and (b) for the three pairs (1, 9), (3, 2), (5, 3).

33 THE GAUSS-MARKOV THEOREM

Each least squares estimator B; of §; and # = chﬁ,- of n =Y ¢;B; is linear
and unbiased, where “linear” refers to linearity in the components of Y. In
fact, for the full rank case with column vectors x,,..., X, X = (X, ..., X),
M=XX,and ¢ = (¢y,...,c,), it follows that y = ¢ = ¢M ™ 'X'0 = (a,0) and
n = (a, Y) for a = X(X'X) " !¢. The vector a is an element of ¥, the column space
of X, satisfying the condition

(a,0) =a0=aXp=cP for all B,ie.,

a’X = ¢ or X'a=c. We have shown that a is the vector in ¥ which has
inner product ¢; with x; for j=1,...,k Arc there other vectors d such
that (d, Y) is an unbiased estimator of n, and has smaller variance than
(a, Y)? The answer is no, as shown by the famous Gauss--Markov Theorem
(Figure 3.3).
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FIGURE 3.3 lliustration of the Gauss—Markov Theorem: Full-rank case.

k
Gauss-Markov Theorem: (Full-rank case) Suppose that Y =Y 8,x; + &,
H

where x,,..., x, are linearly independent, E(g) =0, D[e] = ¢°I,. Let =
Y. ¢;B;, and let n* be any linear unbiased estimator of n. Then Var(n*) > Var(f})
with equality only if n* = ij for all Y.

Proof: First note that g = (X'X) ':X'O and n=cp = c'(X'X) 'X'0=(a,0)
for a = X(X'X) " 'c. Similarly, 4 =¢'p = ¢'(X'X)"'X'Y = (a, Y). These repre-
sentations of 5 and # as inner products facilitate the computation of variances
and provide an intuitive justification for the conclusion.

Consider any linear estimator n* = (d, Y) of #. Then E(n*) = (d,0). n* is
unbiased for n if (d,0) = (a,0) for all B¢ V, ie,if (d—2,0)=0for all Oe ¥V,
equivalently if (d — a) L V. Then

*=dY)=0,Y)+d-2aY)=7+{d-20+e) =74+ (d—ac¢)
The r.v.’s /j and (d — 8, €) are uncorrelated since a L (d — a). It follows that
Var(n*) = Var(4) + |d — a|’s?,

so that Var(n*) > Var(f) with equality only ifd = a, ie., n* =/ for all Y.
a

Comments

(1) The estimator # is often called the best linear unbiased estimator (BLUE).
It is also called the least squares or the Gauss—Markov estimator.

(2) Var(®) = la||*¢* = [¢'(X'X) " 'c]a’.

(3) Figure 3.3 illustrates the proof:

Every vector d for which (d, Y) is an unbiased estimator of n is of the form
d =23 + bforb L V. The vector a of coefficients of the ¥, in 4 lies in V. The set
{d| Ed, Y) = n} = a® V*, the hyperplane of vectors of the formd = a + b for



THE GAUSS—MARKOV THEOREM 89

be V. The variance of n* is Var(s) plus ¢?|ibl)®> = o*||a — d||2, which is
minimum for b=d —a = 0. Since n* =4 + (b, Y), the part (b,Y) of n* is
wasteful in the sense that E(b, Y) =0 for all 8 V, but (b, Y) increases the
variance by ||b| %02
Let u; be the jth k-component unit vector, having one in the jth component,
0 otherwise. Then f; = ujf has least squares estimator u;ff = Bj = wjAY for
A = (X'X) " 'X". It follows that for all linear unbiased estimators f* = BY of B,
*= AY + (B - A)Y, and D[p*] = [AA’ + (B — A)(B — A)Jo?, which _has
minimum diagonal elements (minimum variances) for B = A, ie., p* =p. It
may not always make sense to insist that the estimators we consider be
unbiased. For a discussion of this see Sections 4.2 and 4.7. For an example of
a silly unbiased estimator, consider the unbiased estimator of e~ * for a single
observation X from the Poisson distribution with mean A.

Example 3.3.1: Let x, =(1,0,1,1), x, =(0,1,1,1) and suppose Y =
1
B1x, + B,Xx, + & Suppose we wish to estimate # = f, — B,. Then ¢ = l]'

A linear unbiased estimator n* = (d, Y) must satisfy (d, Xp) = d'Xp = ¢'$ for all
g. Thus d'X = ¢/, equivalently, X'd = c¢. That is, d must have the “correct™ inner
products with the x;'s, with (d, x;) = ¢; for j = 1, 2. In this case d must satisfy

(Xl,d)=d1+d3+d4_=l
(Xz,d)=d2+d3+d4=—l

One such vector isd = 2(3, 1, —1, = 1), for eAxample. The estimator (d, Y) has
variance [|d[|262 = 1262. The BLUE for 5 is 7 = ¢(X'X) " !X’Y = (a, Y) for

1 0

0 1)1/ 3 =2 1
=XX'X -1 = - = 13—1‘030",
&= XXX)e 11 5(—2 3)(—1) ( )

11

so that B, — B, = ¥, — Y,, which has variance ja}%¢? = 202.

Note thatd — a = (2,2, — 1, — 1) is orthogonal to V. All unbiased estimators
of  have the form # + (b, Y)for b L V.

The vector a is p(d| V) for V = ¥(x,, x;) for any d such that (d, Y) is an
unbiased estimator of n = B, — B,. To see this note that P,.d = X(X'X) ™ 'X'd =
X(X'X) le=a

Example 3.3.2: Consider the enrollment totals in Table 3.3.1 and Figure
3.4 for minority students at Michigan State for the years 1981 to 1990:
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Table 3.3.1
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Men 1,357 1,393 1493 1477 1528 1,539 1,661 1,793 1919 2012
Women 1,867 1930 1937 2038 2,117 2,199 2212 2464 2625 2,798

Let Y;, and Y3; be the logs of enrollments for men and women in year (1980 + i)
fori=1,...,10. We have chosen to make a log transformation because the
following model seems more appropriate for logs than for enrollments them-
selves. Let x;; = x,; = (year — 1980) = i.

Suppose Y, =B + Bixy;+&y; for i=1,....ny, =10 and Y;; =8, +
Bixy + gy fori=1,...,n, = 10. That is, we suppose that the Y}, satisfy one

3000
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FIGURE 34 Minonty enrollments of men and women, 1981-1990.
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linear regression model and the Y,; another, with the slopes being the same.
By defining Y to be the 2-row array with Y}; in the ith place in the jth row
(j=1,2), x and ¢ similarly, and J, and J, the indicators of the rows, we can
write

Y=8Jd,+B,d:+Bsx +¢

We suppose that the components of ¢ are uncorrelated random variables with
equal variances. It seems doubtful that correlations are zero, since students
enrolled one year have a tendency to be enrolled the next, causing positive
correlations, but let us proceed as if the model is at least a reasonable
approximation.

Suppose we wish to estimate 4 = §,, the intercept of the first regression line.
It might seem that we should use the Y,;’s only. However, the Gauss- Markov
(G--M) Theorem states that we should use 3, =Y - 33)21, which depends on
the Y,;'s as well. Similarly, the common slope f, of the two regression lines
could be estimated unbiasedly using only the Y,;s. However, assuming the
model holds, so that the regression slopes are the same, the G—M estimator fi‘s
has smaller variance.

Example 3.3.3: For the model Y = fx + € (regression through the origin)
linear unbiased cstimators of § have the form f* = (d, Y) for d = a + h, where
a2 =x/|x}|> hLlx

Problem 3.3.1: Let Q=R ,x,=(},1,0,0Y, x,=(0,011)y, V=
2L(Xy, X,), and 1 = 2B, — B,.

(a) Find a so that (a, Y) is the BLUE.

(b) Find d so that n* = (d, Y) is another unbiased linear estimator of ». Show
that p(d| V) = a, find Var(n*). and show that Var(n*) -- Var(s) > 0.

Yir Y1z Vi3
Problem 3.3.2: Let Q bc the space of arrays | y,, y,2 Va3 |- Let C; be

Y32
the indicator of column j, let Y = 4, C, + u,C; + p3C; + €, where E(g) = 0,
D(e] = ¢’1,.
(a) Find the BLUE for 5 = 2u, — u, — u5, and determine its variance.
(b) Suggest another unbiased linear estimator of 5, and show that it has larger
variance.

Problem 3.3.3: In testing the “bounce factor” in baseballs, balis are
dropped onto concrete from a height of x feet. The height Y in feet to which
the ball bounces is then recorded by taking a picture against a linear scale. The
following model seems appropriate:

Suppose that for each x, E(Y|x) = fx and Var(Y|x) = a?g(x) for § and ¢*
unknown parameters, and g(x) a known function of x. Suppose that (x;, ¥) are
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observed independently for i = 1,2, ..., n. Consider the x; to be constants, all
nonzero. Define Y = (Y, ..., I).

(a) Consider estimators (a, Y) = B, of B. What condition must a satisfy in
order that 8, be an unbiased estimator of ?

(b) Show that 8, has minimum variance among all linear unbiased estimators
when a is a multiple of the vector G~ !x, where G = diag(g(x,),..., g(x,)).
Hint: Let Z, = Y;/c;, where ¢, is chosen so that the resulting vector Z satisfies
the hypothesis of the Gauss—Markov Theorem. What is the optimum choice
for a?

(c) Let B be the estimator corresponding to this optimum a. Find Var(f).

(d) Give formulas for ﬁ for the cases (1) g(x) = 1, ) g(x) = x,(3) g(x) = x%.

(e) For each of the cases in (d) find Var(p).

(f) How would you estimate 62? Hint: Use the Z,.

(g) Find § for each of the cases in (d), and estimate Var(f) for the following
(x, ) pairs (3, 2.2), 5, 3.2), (10, 7.3), (15, 10.0).

Problem 3.34: Let Y,,..., Y, be a random sample from the double
T . . 1

exponential distribution, with density f(x; 6) = > e =% for all real x and
1

6, 1 > 0. (mean 6, variance 2n?). For the case n = 3 this might be a reasonable
model for the distribution of the times recorded on three hand watches in the
timing of swimmers or runners.

(a) Show that the vector of Y's satisfies a linear model.

(b) What is the BLUE 6 for 62 . n

(c) Find the maximum likelihood estimator 8, of 6. Hint: G(c) = Y |x; — ¢|
is minimized by ¢ = median(x,, ..., x,). J=1

(d) Since éM is symmetrically distributed about 8, it is an unbiased estimator
of 8. Though it is not possible to write a simple expression for the variance By,
we can give an approximation for large n: Var(d,) ~ 1/[4nf?(@; 6)]. Show that
this is smaller than the variance of 8. Why is § not a better estimator of 6 in
this case? Has the Gauss—-Markov Theorem failed to hold?

34 THE GAUSS-MARKOV THEOREM FOR THE GENERAL CASE

For simplicity we have supposed that the vectors X,, ..., X, spanning V are
linearly independent. For purposes of estimation of 6 this is not really a
restriction in the model, since enough x;'s may always be dropped so that this
is the case, and any 0 € ¥ may then be expressed as a unique linear combination
of the remaining x-vectors. There are occasions, however, when interpretations
may be more easily made if the x-vectors are linearly dependent.

For example, consider the usual one-way laymit with observation Y;; for

i=1,...,n;jand j=1,...,k Y; ~ N(u;, 6%, n =Y n;, ¥;s independent.
1
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Define pu =£ Ej: By %;=p;— M, &;=1Y;—p; Then Y;= pk+ %+ &
Writing this in vector form with k columns, we have Y = uJ + ZajC,- + &
where C; is the indicator of column j, and J= ZC,. 'll'hus, 0=
Z uiC;=ul + Z %;C; lies in V = £(C,, ..., Cy), which ha; dimension k, but

has been cxpressed as a linear combination of (k + 1) linearly dependent
vectors.

In general, suppose X has rank r < k, so that the columns of X span an
r-dimensional subspace. In this case the null space of X (the collection of vectors
b such that Xb = 0) has dimension k — r > 0, and the set W = {#|Xp = 8} for
fixed ® € W, is a hyperplane in k-space. In order to have a unique representation
of 0, B is often required to satisfy some additional linear restriction of the form

Hp = 0, where His (k — r) x k and the matrix Xy = (}’:) has rank k. We could,

for example, require that § lie in the row space of X, in which case H could be
any collection of k — r linearly independent vectors such that Xy has rank k.
The same linear restrictions placed on § may aiso be placed on B Without
these restrictions B is not defined uniquely, since any Be Wy implies XP =Y.
A least squares estimator of § is any function of Y satisfying XB Y (any
B e H3).

If, in this non-full-rank case, B is allowed to range over all of R*, then not
all components of § may be estimated unbiasedly (and linearly). Consider the
one-way layout example above. Can we find an unbiased linear estimator

T= Zau cof 2,? E(T) = Za,jy, Zajuj pa.. +Zaja,, where the dot

subscnpl indicates summahon over lhe subscript rcplaccd This is E(T) = «,
for all parameter values only ifa., = 1,a.;=0for j > 1 and a.. = 0, which is
impossible. Thus, «, has no unbiased linear estimator if the parameler vector

is unrestricted. If the parameter vector is restricted so that Z a; =0, then a,
does have the unbiased linear estimator ¥., — ¥ .. =1

Definition 3.4.1: Letc = (cy,..., ) bea vector of constants. The parameter
n=(c.p) =Y c;B; is estimable if there exists a vector a in n-space such that

E(a, Y)= (c,’B) for all e R,.

Thus, n = (c, §) is estimable if there exists a such that E(a, Y) = (a,0) =
a’Xp = c'p for all e R,. This is true if and only if there exists a such that
X'a = ¢, i.e, ¢ lies in the row space of X.

If X'a = c and V is the column space of X, then for a, = p(a| V), X'ay = ¢,
so that we can always take a € Vif n = (¢, §) is estimable, and (a,, Y) has smaller
variance |a,[|?6* than any other linear unbiased estimator.
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Example 34.1: Let x, =(L,L LIy, x,=(, 1,1, 1), x3=3x, —2x, =
1

1
(1, 1, L, 3). Then X = (x,, X,, X,) has rank 2, and for ¢ = X' | =i 31,

2
(e, B) = 5B, + 3B, + 986, is estimable. The parameters f§, and #, — B, are not
estimable, since 3¢, — 2¢, must equal ¢, (why?).

The Gauss-Markov Theorem (General Case): Let Y=8+¢ for 0=

k

Y B;x;=XPB = and E(z) = 0. D[] = ¢’l,. Let n = ¢'§ be estimable. Let V' =
1

Z(xy,...,%)and Y= p(Y| V). Let B be any least squares estimator of §. That
15, X = Y for every Y. Then

M q= c'l:’o is a linear unbiased estimator of 1.

(2) For any other linear unbiased estimator #* of 5, Var(#) < Var(n*) with
equality only if # = »* for all Y.

Comment: An estimator B is called a least squares estimator if Xp =Y for
every Y. The estimator B need not be linear. In fact, B is a function of Y which
chooses one member of W5 = {b|Xb = Y}. This choice need not be linear. In
the casc of one-way analysis of variance we might, for example, choose f =
=Y. —-Y. whenever all components of Y exceed 7, but 2=0, 4,

i
otherwise. Clearly B (4 4,, ..., 4) 1s not linear in Y, but does satisfy X§

Y.,
= }_’: .
=Y.

Proof: Since n = c¢'f =is estimable, there cxists a vector a such that
E(a, Y) = (a,0) = a’Xp = ¢'B for ail . Since a and p(a| V) have the same inner
products with the columns of X we may take a e V. Since the equality holds
for all B, we conclude that ¢ = X'a. Thus, 4 = ¢ = a’Xp = a’Y = a'Y, a linear
function of Y.

Let n* =(d,Y) =d'Y. Since E(n*) =d'0 =d'X$ =c'$ = n for all § only if
¢ = X'd, #* is unbiased for n only if ¢ = X'd. Then d and a have the same inner
products with all vectors in V. Since a € ¥, a = p(d| V). Therefore n* = (a, Y) +
d-—3Y)=H+(@Wd—-aY) and f and (d — a, Y) have covariance 0. Thus,
Var(n*) = Var(4) + ¢%j|d — a||?, which is minimum for d = a. 0

Problem 34.1: Letx, =(1,1,1,1), x, =(1,0,1,0), x5 = 3x; — Xx,.

(a) Find conditions on ¢ = (¢, ¢3,¢;3) so that 5 =B, + ¢, 8, + ¢35 is
estimable for the linear model Y = #,x, + B,x; + B3x; + €.

(b) Show that n = 38, — 8, — B, is estimable, find a such that § = (a, Y) is
the BLUE for #, and find another unbiased estimator n* of 5. Show that
Var(#) < Var(n*).
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Problem 3.4.2: For the one-way layout example above, find conditions on
CosCps .- -, ¢ Such that cop + ¢y2, + - + ¢, 2, = n is estimable.

Problem 34.3: For the one-way layout withk=1,n,=2,n,=3,n; =1,
find two vectors a; and a, such that 7, = (a;, Y) and T, = (a,, Y) are both
unbiased estimators of n = a; — 2,, T; is the Gauss-Markov estimator, and
Var(T,) > Var(T;). Also show that a, = p(a;| V), where V is the subspace
spanned by the indicators of the columns.

Problem 3.44: Let Q be the collection of 2 x 3 tables with elements
y = (). Suppose that Y = (), with ¥, = u + o, + B, + ;. for &;; ~ N(0, 6?).

(a) Write the model in vector form.

(b) Find conditions on ¢, ¢,, c¢; such that n=¢,8, + ¢, 8, + ¢38; is
estimable. Show that f; is not estimable, but 8, — f, is. Give two unbiased
estimators of §; — §,, one of which is the Gauss-Markov estimator.

3.5 INTERPRETATION OF REGRESSION COEFFICIENTS

k
Let Y=Y B;x;+¢ with x,,...,x, linearly independent. Define ¥, =

ji=1
.l’(x,,.. Xy D Xy = p(xe| Ve_y) and xi = x, — X,. Then x* L ¥,_,, and
Ix& i = (b, x&) = (x&, %) — (x5, %) = (xiF, x,). x{ is the part of x, which is
orthogonal to the other x;, or in more intuitive language, the part of x, which
measures something different (in a lincar sense) than the other x;. xi is
sometimes called the signal part of x,. In the case of simple linear regression
with Y = ,J + B,x, x* = x - p(x|J) is the vector of deviations, with ith

component x; — X. We have called this x* in the past.

0, x;)

Then 0, xi) = Z ﬂ (x;, xi) = Bu(xy, Xi) = BelIxi-||?, so that B, = “ an
Xk

Similarly, for ¥ = p(Y[¥), (Y. x¢) = (¥, x) = Z Bix; x) = Pulxy, xib) =

Bllxiti2, so that B, = (Y, x2)/ Hx,‘ |2. Thus, Bn is determmed solely by the
rclationship between @ and x;. Similarly, B, is determined solely by the
relationship between Y and x;-. Thus, for example, in any multiple regression
analysis which includes the vector J of all ones as an x-vector, the f's and f's
corresponding to other vectors are not affected by adding the same constant
to all elements of those vectors.

Define 8, = p(@| ¥, ;). Then 8 = 6, + B, x;" and |0]* = | kll2 +ﬂ Ixg ) =
16,01% + (8, x;)?/{x; 1%, Similarly, for Y, =pY|V_) Y= Ekx;} and
1y = HYkII2 + BRIxEI? = WYl + (Y. D2/ Ixi N2

We can express the variance of §, in terms of x.

Var(B) = 7 Vart, Yy = O
u Il
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This is a useful formula in that it provides insight into the effects that
“collinearity”, the “near” linear relationship among the independent variables,
has on the precision of the estimators of the regression coefficients. It provides
a warning: independent variables which are “almost” linear combinations of
other independent variables wili have coefficient estimators with large variances.

More generally, if for any j, x; is the part of x; orthogonal to the other x,,
then

cov(B., B;) = ! cov((Y, X)), ((Y, X)) = o 2(xit, x )/l 112lx;t 1.

i 12Xy 02

Since we already knew that the covariance matrix for B is e2(X'X) ", we
have discovered that the jj element of (X'X) ™! is (x*, x;')/IIx I12[Ix 2.

The cosine of the angle w between two vectors u and v is defined by cos w =
(u, v)/(jlul {iv{)). Thus,

2 \ 1
cov(B,, B;) = o*(cos w;,)/ X Ix}|

where w;; is the angle between x;* and x; . The correlation between B, and B ;
is therefore p(B;, Bj) = COS wy;.

Example 3.5.1: LetQ = Rg,x, =(1,1, 1,1, 1),x, =(1,0,1,0,1),and x; =
(1,1,1,0,0Y. Let V= %(x,,X,,X3) and ¥V, = ¥(x,,x,). V, is spanned
by x, and w=x, —x,, and x, Lw. Thus, xy=p(x;|V})=(2/3)x,+(1/2)w=
(1/6)(3x; + X,) = (1/6)(4,3,4,3,4),50 x5 = X3 — &y = (1/6)(2, 3,2, — 3, —4).
Notice that x5 L V; and ||x3}|*> = 7/6.

ForY =(3,4,3,3,9), 85 = (Y, x3)/Ix3|* =
a*/Ix3 > = 65%/7.
More generally, suppose instead x5 = X3 + (2, 3,2, —3, —4). Then x5 =

2(2,3,2, =3, —4), By = (Y. x})/x§}|2 = —1/(20), and Var(B,) = 6%/(422%),
so that for small x (“short x1 ™), Var(8,) is large.

—-21/6
£(7%/)“) = —3and VarQ?,) =

1 0

Problem 3.5.1: Let x, = ,u=|1], x,=x; +au, V=2(x,x,).

0
0
Find x{, x$, [x{ 112 [x512, (. x3), Var(B,), Var(B,), p(B,, B,). What happens
to these variances and to the correlation as ¢« - 0 or o = +w0?

Problem 3.5.2: Consider Example 3.1.2, withY = 8,w, + B,w, + B.x + &
(a) Find x*, and use this to find nonmatrix expressions for f, and Var(8,).
(b) Use B, to give simple expressions for B, and Bz-
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(c) Give a simple formula for the variance of the predicted yield g(1, x) on a
one-acre plot with fertility level x, under experimental condition 1.

91 107 25
101 139 2 9 )
d) For Y = = ,andX= ,ﬁnd s s Mer Yv €, SZ’
( Y1124 115 6 7 Buo B B
132 119 6 7

and S’t.

Problem 3.5.3: Let V= #(x,....,%;) have dimension k. Find simple
formulae for the coefficients a; in p(yIV)=Zajle and prove that

Lt xbH) =V i

Problem 3.5.4: Let x,, x,, x; be linearly independent vectors in R,, with
X, = J, the vector of all ones. Suppose that Y = §,x, + f,x, + fl3x; + ¢, with
E(e) = 0 and D[£] = o°l,. Define x} = x; — p(x;|x,) for j = 2, 3. Then ry; =
(x3, x3)/[ x5l Ix%{] 1s the correlation between x, and x;. Show that

(@) xy=x3-p(x}Ix}) and x3 =x3-p(x}|x3}). Hin: L(x,,x3) =
ZL(xy, X3).

(b) Var(B) = a?/[Ix}II(1 — r3;)) for j=2,3.

(c) P(Bz, bs) = —r23.

36 THE MULTIPLE CORRELATION COEFFICIENT

Definition 3.6.1: Let y, Xx,,...,X, be elements in R, Let V=
Z£J,xy,...,x) and let § = p(y| V). Let §, = p(y|Jd) = jJ. Then the multiple
correlation coefficient of y with x,,.. ., X, is R=Ry 5 ;= ::y~7~?—9—:=.

Y—Yo

Comments: (1) From Figure 3.5, since (y—$) LV and (# —9,)eV,
ly — $oll2 = ¥ — $olt%> + lly — 31> by the Pythagorean Theorem.

Total SSgs. = Regression SSgs. + Error SSgs.
(about mean)
Thus
R? = Re__gression SSgs. i Error SSgs.

Total SSgs. " Total SSgs.

so that R? may be interpreted as the proportion of variation in Y which is
explained by linear regression on x,, ..., X,.
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v £

FIGURE 35 The multiplc regression coefficient R, where R? = [§ — ¥o%/Iy ~ ¥ol®.

(D letw=cy+dIsothatw,=cy,+dfori=1,...,n¢+#0. Then W, =
p(w|J) =cy, + dJ and W = p(w{ V) = ¢§ + dJ. Thus,

W — W, = c(¥ — ¥o) w—W=c(y-9¥

and Ry. 2 4« = Ry 3 4

In addition, note that R is a function of y and the subspace V, not of the
particular x; vectors spanning 1. For J € Vit follows that R remains unchanged
when scale and location changes are made in the x; vectors, more generally
when X is replaced by XC for C (k + 1) x (k + 1) nonsingular.

(3) The ordinary correlation coefficient of y with y is ry, = - J{o_:_)f:— Yo) .
N hy — Yol 1§ — yoll

But y—§,=(y—¥) +(¥ - ¥,) and (y~?o)l(y~iz)- Thus, (y —¥o,¥ — Yo) =

s s s s NN Iy — ty — Yol
G = 9o §—J) = 19 = Fol? and ryy = 12 YolT WV = Fol_ g
1y — Yol 1y — yoll Ny — ol
multiple correlation coefficient is the ordinary correlation cocfficient between
y and §. It must be nonnegative.

Coatribution of x, to the Reduction of Error Sum of Squares

Let x;,...,x, be linearly independent, ¥,_, = #(x,,...,%,) and b, =
L(Xy,.... %) Let Y, =p(Y| V) and ?,‘_1 =p(Y|V,_,)- The error sum of
squares when the independent vectors are X,,...,%,., is |Y — \7,‘_1"2 =
1Y — IIV,‘_,;IZ = ES§,_1. The error sum of squares wheg Vi, is replaced
by ¥, is ESS, = |Y — %2 = 1Y}12 — [ %1% Since [l 2 = ¥, )% + BZIxit12,
the difference is B2ixt)12 = (Y, x#)?/Ix; 2. That is, ESS,=ESS,_, —
(Y. xiO) i |12
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0 R:_, R} 1
FIGURE .6

The r-statistic for testing Hy: 8, =0vs. Hy: f, #0is ¢ = ﬁ,‘/\/S2 ||x,‘ 12 =
B (ESS, -, ~ESS,)

". Since $2={|Y—Y,[|2/(n—k), we find that 2= (n—%k)
2 FSS,‘
and ESS,‘ = ESS*_]/(I + o 7()
n —
Let R? and R}. | be the squares of the multiple correlation coefficient for Y
with, respectively, x,,..., X, and x,,..., X,—;. Then
ESS, ESS, n —
Ri=1— - R, ,=1-"X1' for TSS=Y (¥,- D2
k TSS k-1 TSS r ;( = Y)
Thus,
ESS t?
RI=1- . =1-(1 - RL (1+ -»)=R2_
) TSS(1 + £2/(n — k)) (= R0+ 7y ) = R

H“”‘”(fi‘é) for d=t2/(n— k).

It follows that

is the proportion of possible improvement in the explanation of the variability
of Y which x, gives beyond that provided by x,,...,x,_;. The possible
improvement in the multiple correlation coefficient beyond that given by the
first k — 1 variables is 1 — R2_,. From Figure 3.6 the actual improvement
provided by using x, as well is R} ~ RZ..,. The proportion of actual improve-
ment to possible improvement is d/(1 + d).

Problem 3.6.1: Show that for the case of the simple linear regression, R, ,,
the multiple regression cocfficient with one x-vector X, is the absolute vaiue of
the simple correlation coefficient r,,.

Problem 3.6.2: For the data of Example 3.5.1 find R and R, ,, and

y.x2x3

show that R} .. = R; .+ (1 - y,u) A for d as defined above.
I+d
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6 11 B8
Problem 3.63: lety=|4 7 , and let C; be the indicator of column
jflor j=1,2,3 2

(a) Find the multiple correlation coefficient R of y with C,, C,, C;.

(b) Let ESS, and ESS; be the error $Sgs. corresponding to ¥; = #(C,, C,)
and £(C,, C,,C,). Verify that ESS; = ESS, — pilix3||> and ESS; = ESS,/

2
(l + - th) for these data.
n—3

(c) For the general one-way layout with three columns, n; observations in

the jth column, give a formula for R.

3.7 THE PARTIAL CORRELATION COEFFICIENT

Suppose an educational psychologist studied the relationship between the
height v, and reading ability v, of children as measured by the score on a
standardized test. For 200 children in the third, fourth, and fifth grades of an
elementary school she measured v, and v,, then found that the correlation

100

2 m‘
g 601
wn
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'S m
e
S a0 -
[« o4
20 A
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1] 1 I 1 ¥ 13
0 20 40 60 80 100

Arithmetic Score

FIGURE 3.7
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vi

FIGURE 38 d, and d, for child #17.

between vy and v, was 0.56. Would she be correct in deciding that taller children
read better, perhaps because they can more easily see over their classmate’s
heads? (The author, being fairly tall, is often tempted by such conclusions. Some
of his students have disagreed vigorously.)

A little thought suggests that the data for the third, fourth, and fifth graders
might be graphed as in Figure 3.7. Thus, the “spurious” correlation could be
caused by differences in grades, or ages of the children, since both v, and v,
would tend to increase with age. For this reason age is called a “lurking
variable”. Somehow the experimenter would like to confine her study to
children of the same age. Even children in the same grade differ somewhat in age,
however, so that confining the study to one grade might not suffice. Confining
the study to children within a few months in age could result in too small a
group.

The partial correlation coefficient is a measure of linear relationship between
two variables, with the linear effects of one or more other variables, in this case
age x, removed. In this example, we could fit the simple linear regression lines
of Figure 3.8 to v; vs. x and to v, vs. x. For each child the deviations 4, and
d, from the fitted lines could be determined. Then the partial correlation
coefficient of v; and v, with the effect of age removed is the ordinary correlation
coefficient among the (d,, d,) pairs for all children.

More generally, the partial correlation coefficient is defined as follows:

Definition 3.7.1: Let v, v,,X,,...,X,€R,. Let V= 2(x,,...,x,), ¢, =
p(vy | V), ¥, = p(v,| V). Then the partial correlation coefficient of v, and v, with
the effects of x,, . .., x; (equivalently V) removed is

vy = V,v — %)

=Tyvxx.a = 77 Ta -
e vy — ¥4l vy — ¥,)

{(Undefined if v, € ¥ or v, € V).
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Comments

(1) In practice it is usually the case that J € V, so that the additive effect of
a constant on v, and v, is removed. We will always suppose this unless stated
otherwise, so that it will be unnecessary to include J among the independent
variables listed.

(2) The ordinary correlation coefficient is the special case k = 1, x, = J.

(3) r is unchanged by scale changes in any of the variables, or, in the usual
case that J e ¥, changes in location (addition of a constant) for any of the
variables. More generally, r is a function of the subspace V, not of the specific
vectors spanning F, so that X = (x,,..., X;) may be replaced by XA for A
nonsingular. For example, if a vector w € V is added to v, then v, — ¥, remains
the same. r is unchanged.

(4) Consider multiple regression of Y on x,...,X;-), X,. Let V_; =
L(Xyy..., X -pand ¥ = Y(x,,.. , Xg)- Let Y,‘ . —p(Yl Vi1 Y,, =p(Y| W),
Xi =X = pX | Vo)) = %, — %4, € = Y — Y, Then

Y=Y_,+8xt+e and x, =% +xi

are decompositions of Y and x, into orthogonal vectors. The partial correlation
coefficient of Y with x, with the effects of x,.....x,_, removed is

r= (kak + €, X; ),[]!kak + e} “xkill] /;k I "2/[/?& ”xk "z + "enz]wz‘
Ika Brixi 12 112 _ t/(n - k)' /2
fell { [ TR 1] - [ o ]1,2’

P+ - =
n—k

| 2 1/2
where t = /?,‘/[ he ik Jixi "2] is the t-statistic used to test H,: 8, = 0 in the
model Y = Z Bix; + &
1

(5) Let x,,...,x, be k>3 vectors and let [ ={3,...,k}, J={4,... k}.
Let r,,4 and r,,.; be the partial correlation coefficients of x, and x, with
the effects respectively of the vectors {x;|j€ I} and {x;|j e J} removed. We will
try to develop a formula relating r,,., to partial correlations r,,.4, r,3.5, and
T23-3-

Let V, = L(x4,....%) and V; = #(x;,...,X,). Let x{ =x; — p(x,|V}),
Xy =X, — p(Xz| l’J) X3 = X3+ X3 for &3 =p(x;1¥;). Then p(x;|V})=
p(x;| V) + P(x Ix3), so that w, =X, — p(x;| ) = xi" — p(x;|x3) = x;it —
p(xt|x3) = xit — [(x}, x$)/ x5 12]x3 for i = 1, 2. Thus, r,, is a function of
the vectors x,l, X3, X5 and by (3) is unaffected by scale changes in these vectors.
We therefore may take their lengths each to be one. The vectors w,, w, therefore
have inner product (xi, X3) — (Xi, X X3, X3) = I 3.5 — F13.3723.5 and lengths
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Ixt42 = (x;, x3)2 =1 —r 4 fori = 1, 2. Therefore,

rlz.l = e = R T
(1 —rys )t —risy)

In practice the vector J of all ones is included in £(x,, ..., x;). Of course, the
choice of subscripts 1, 2, 3 here was only a notational convenience. Change of
notation leads, for example, to the formula

Fa2 —TN32la32

Fig23 = - e
V= "fs.z)(l - "33.2)

(6) Let R, and R,_, be the multiple correlation coefficient of Y with
respectively x,,..., X, and x,, ..., X, _,. Suppose x, = J. Then we showed in

) d
Section 3.6 that R = R}_, + T34 (1 — RZ_,), where d = t?/(n — k). From
(4) above the partial correlation coeflicient of Y and x, with the effects of

. d ' .
Xis---2 Xy Temoved is r = [H— d:l (sign ﬁ,‘). Therefore,

RZ _R2
RZ=R2_,+r¥(1—R%,) and r2=—-+ _*°1
I—R{,

We conclude that r? is the proportion of improvement in the explanation
of the variation of Y caused by adding x, to the collection of explanatory
variables, as comparcd to the possible improvement | — RZ_,.

(7) To see that the pair (r,,, r,, ;) may take arbitrary values in the square
A=(—1,+1) x =1, +1] let w,,w,,x, be length one vectors with com-
ponents adding to zero, (w,,wy)=r, x5 Lw;,x;Lw, Let x, =c;x;+w,
[w‘ﬁi_r_—_ for real
VU +ehd +cd)
numbers ¢,, ¢,. As (r, ¢, ¢,) ranges over (— 1, 1) x R, x R,,(r,,r;,.3) ranges
over A.

(8) Here we summarize some results on the distribution of the sample
correlation coefficients. Proofs are omitted. Under the bivariate normal model
the sample correlation coefficient r is asymptotically normally distributed with
mean p and asymptotic variance (1 — p?)?/n. However, the convergence is
rather slow, particularly for p near —1 or +1. The transformed variable

and x; =¢;x3+w,. Then ry, 3, =r and ry, =

11+ . e e
g(r) = 5 In [ r converges much more rapidly in distribution to the normal,
—-r

with approximate mean g(p) + p/2(n — 1) and approximate variance 1/(n — 3).
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g(r)

4 b
FIGURE 39 The functions u = g(r) and r = g~ '(u).

This leads to a confidence interval [a, ] = {g(r) + z, ﬂ,/z/\/n-—_j] on g(p) and

a corresponding interval [g~'(a), g *(b)] on p, where g~ '(u) = €T o

¢ -
tanh u (Figure 3.9). e +e
Under the multivariate normal model the distribution of a partial correlation
coefficient is the same as that of a simple correlation coefficient, with n reduced
by the number of conditioning varnables (not counting J).

Problem 3.7.1: For v, =(5,1,0,3,5), v, =(5,3,7, 6, 10) find the partial
correlation coefficient of v, and v, with the effects of J=(1,1,1,1,1) and
vy =(0,0,0, 1, I} removed. Verify the formula derived under (5) among the
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preceding comments for this case

Fi2 = Ti3las

Fv2a3= .
: 2/ 2
\/1—"13\/1—"23

Problem 3.7.2: Give an explicit test of Hy:f, =0 in the gemeral linear
model with x; = J, in terms of the partial correlation coefficient Ry,, », .« , =T

Problem 3.7.3: Find vectors X;, X,, X3 €& R, such that r,, = 1/2, while
ri2.3 = —1/2. In ry, 5 suppose the effects of both x; and J are removed. What
is the multiple correlation coefficient of v, with respect to v, and v;?

Problem 3.7.4: Referring to (7) among the preceding comments, show that
|ri2l = 1 implies that r,, 5 = r,, (whenever r,; 4 is defined).

Problem 3.7.5: The reliability of an examination is the correlation p of pairs
(X;, X,) of scores obtained on repetitions of the same (or very similar)
examinations given to the same individual in the population of individuals to
be given the exam. Since the learning effect may preclude giving the same or
even similar exams to the same individual the following technique may be useful.
Split the exam into two equivalent halves and record the scores (Y}, Y;) on each
half. Record the pair (Y}, Y,) for each of a number of individuals and use the
sample correlation coefficient r to estimate py = p(Y], Y5).

Suppose equivalent forms of the exam are given with scores on the two
halves: (Y;,, ¥;;) and (Y;,, Y,,) and total scores X, = Y;, + ¥}, and X, =
Y;, + Y;; on the two exams. Suppose ¥;=A + H;;fori=1,2and j=1, 2,
with A, H,,, H,,, H,,, H,, uncorrelated r.v.’s with Var(A) = o}, Var(H;;) = o},
for all i and j. A may be considered to be the ability of the individual, while
the H,; are random deviations from ability.

(a) Express py as a function of py.

(b) Suppose 100 independent observations are made on (Y}, 1), with
observed sample correlation coefficient ry = 0.31. Suppose these pairs have a
bivariate normal distribution. Give a 95% confidence interval on py, then on py.

38 TESTING Hy:0e ¥, c V

Consider the one-way analysis of variance model

Y. Yy Y \
Y=| : P i =Y udite
i=1
),lnl ),an Ykn

L3
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where J; is the array which indicates the jth column. It is often of interest
to test Hy:p, =- - - = y,. Then H, is equivalent to the statement that E(Y) =
k

0=y, Y J;=pu,J for some yu,. That is, under H,:0¢ £(J).
i=1

Similarly, we might fit a regression model in which Y is college G.P.A,,
x; is high school G.P.A, x, is S.A.T. score, x; is # of years of father’s
education, and x, is # of years of mother’s education. The full model
might then be Y = f8,J+ fix; + -+ + f4x4 + & We might like to test
Hy: f; = B4 = 0 (Mother’s and father’s education are valueless, in predicting
coliege G.P.A, as additional information beyond x, and x,, in a linear
sense). Then, under H,: E(Y) =0¢e Z(xq, X,,X;) = V5, a subspace of V' =
LXg, Xgy .03 Xy).

Thus, we need a procedure which will allow us to test H,:0 € V;,, where V;,
is a proper subspace of V of dimension ky < k = dim(¥). The alternative is
then H,:0¢ V.

Intuitively we should select a test statistic which tends to be large for
0 ¢ 1, small for 0 e V,. We will suggest such a statistic, and show that it has
desirable properties. Later we will show that the test which rejects H, for large
values of this test statistic is the likelihood ratio test.

Refer to Figure 3.10 and let Y =p(Y|V)and ?0 = p(Y| V,), and

MY = Yol2/k = ko) _ (1VI2 = 1¥ol")/tk ~ ko)
Y — Y§i2/(n — k) §?
Y-Y,=p(Y|VinV) and Y-Y=pYiV)

By Theorem 2.5.3:

M 1Y ~ Vol 702 ~ x¥-4,(18 — 8,*/0?) for 8, = p(8| ¥y)
@ IY - Y} /ot ~ xl
(3) The two r.v.’s in (1) and (2) are independent.

FIGURE 3.10 Tilustration for the F-test of Hy: 0 e V.
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It follows that the F-statistic has a noncentral F-distribution with (k — k,) and
(n — k) d.f, and noncentrality parameter § = |0 — 8,]/%/a>.

Since H, is equivalent to & =0, F has a central F distribution under H,.
Therefore, the test which rejects Hy for F > F _, .+ -, = F,_, has level a. It
has power y(8) = P(F > F,_,), which depends on k — ko, n — k, 4, and a.

Comments

(1) The numerator of F can be written in various ways by taking advantage
of the Pythagorean Theorem. Under the full model the error sum of squares
and regression sum of squares are ESS;y = |Y — Y||2 and RSSp,, = |Y|%
Under H, the error sum of squares and regression sum of squares are
ESSy, = IlY — Yol!2 and RSS, =| Y,/ Then, by the Pythagorean Theorem,

1Y ~ Yol2 = Y — ¥oli2 — |Y — ¥(i2 = ESS,,, — ESS;y = RSS;,, — RSS,;,

Thus, to find the numerator of the F-statistic, we need to fit both the full model
and the model under H,, determining the error sum of squares in both cases,
Of course, in order to determine the denominator $2, we need only fit the full
model.

(2) Letting ¥ =Xp and Yo=XB, we get ¥ — ¥, =X(@B-p,) and
1Y = Yol = (B — Bo)(X'X)XB — o). and Y — V|2 = IIYII2 -~V =|Y)?-
(Y, ¥) = [YI? - FXY) o

(3) Once a computational method for |Y — Y, |2 is determined, the non-
centrality parameter é for the F-statistic may be obtained by substituting 8 for
Y (and dividing by ¢?). Of course, & is a function of @ and o2, which are
unknown.

k
Example 3.8.1: (One-way analysis of variance) Let Y = ) u;J; + € and let
1

Hoy:yy; = - - = ;. Then under the full model 8¢ V = £(J,,...,J,) and under
k
Hy:0eVy,=2J) for =Y J;. Thus, since the J; are mutually orthogonal

k ! n,
Y= Z Y,J;and Y, = ¥J, where ¥, = : 121 ;and ¥ = (Z K,),nforn -Zn

Then ¥ — YO—ZYJ—-YJ Z(Y PJ; and [V - Y2 —2()‘: =

Y2 — 1Y = Z Yin, — a7t
The error sum of squares under the full model is

Y -YP2 =Y (Y, - D= 1Yl - ¥ =Y Y3 -3 ¥in,.
ij if i

This information is usually summarized in an analysis of variance table
similar to Table 3.8.1, which gives the squared lengths of the projections of Y
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Table 3.8.1 Analysis of Variance

Sum of Mean Expected Mean
DF Space Source Squares Squares Squares
Mean Vo 1 1¥ol? ® + ji*n

Y

Difference in Vavé k-1 Y — Yolf? o + Z‘ (y JL’Q
means R k-1
Error yt n—k Y — Y2 ¢’
Total Q n Hy)?

on the orthogonal subspace. Mean squares are obtained by dividing sums of
squares by the corresponding degrees of freedom. Since each sum of squares
is of the form |[P,.Y|? for some subspace F*, its expected value is
dim(¥*)o? + ||[P,+0%, so that E(mean square)=q? + || P,.0]/*/(dim '*). [P, 0>
may be obtained by substituting 0 for Y in the formula for the sum of squares.
Thus, for V* = ¥, P, 0 = iJ and |P, 01> = ji’n for i = () n;u))/n.

The F-statistic is

F Mean square for differences in means

,

Error mean square

which has an F,_, ,_,(d) distribution for

k
o=10—8,l%0c* = [Z (w; — ﬁ)znj]/az-
1 .

For a numerical example, suppose that a crop scientist wished to investigate
three hybrids of corn. He had 12 acres of land available. Four (1/3) acre plots
were assigned at random to each of variety 1, 2 and 3. Corn was then planted
and the yield in bushels measured separately on the plots. Unfortunately one
plot (variety #2) was flooded and the observation lost. From the following
data we can construct an analysis of variance table, Table 3.8.2.

Table 3.8.2 Analysis of Variance

Source DF SSqs. Mean Squares Expected Mean Squares
Mean | 35,284.45 35,284.45 62 + @ (11)

Among T 2
Varieties 2 86.55 43.27 ol + ) ‘l‘: u; — f)2n,
Error 8 92.00 11.50 a?

Total 1 35,463.00
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Yield (Bushels)
1 2 3

52 64 53
56 57 55
60 62 58
56 50

56 61 54  Grand mean = ¥ = 56.636
n 4 3 4 Mean SSgs. = 35,284.45

Total 224 183 216 Grand total = 623

Elagi

3
Among Hybrids SSqs. = Y. ¥ n;— ¥n = 35371 — 35,284.45 = 86.55

j=1

Total $Sgs. = ¥ Y7 = 35,463
ij

Error SSqgs. = Total SSqs. — [Mean SSqs. + Among Hybrids SSqs]
= 35463 — 35371 =92

To test Hy: u, = u, = u,, i.e, no variety effect vs. H, : Hy not true, for a = 0.05,
we reject if

hybrids MSqs.
p o AmonghybridsMSas. o
Error MSgs. '

In this case we observe F = 3.74, so we fail to reject H, at 0.05 level.

In general, an analysis of variance table has the columns of Table 3.8.1 with
rows corresponding to subspaces V,, . .., V,,, where the subspaces ¥ are usually
mutually orthogonal and Q= V¥, ® ---® ¥,. In applications the “Space”
column is omitted and the “Total” row is replaced by a “Corrected Total” row,
usually called (somewhat confusingly) the “Total” row, corresponding to
Qn Vg, for Vy = £J).

Example 3.8.2: Letx,=([,1,1,1,1),x,=(1,1,1,0,0),x3;=(1,0,0,0, 1),
3

Y =) B;x;+¢, and we wish to test Hy:B, = B;. Since H, is of the form
1

= ¢'p = 0, it is possible to usc the t-statistic t = 1/S,. However, we will instead
compute the F-statistic, which, as will be shown, is t2. Suppose we observe
Y=y=(7 22311, 12). 5 3 3 35

For V=2(x;,x;,x3), wefind M=XX=|3 3 1|, U=Xy=| 12],
31 2 19
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5 -4 -3 10
=7 -4 6 1], p=M'U=| 7], ¥=(63310,13),
-3 1 6 3

e=(1,—1,0,1, —1), ESSpy = fie|? =4, 52 = 4/2 = 2. Under H, 0 = §,x, +
Ba(x, + X3) = B,%x, + f,x, for x, =(2,1,1,0, 1), so that H, is equivalent to
0e V, = #(x,, x,). The model 8 € V, is the simple linear regression model, so
we can use the formulas developed for that model, or we can simply use the
multiple regression approach. We find IS(, =(9, -2), Y =9x, — 2x, =
(5.7.7,9. 7Y, e=Y~— Yo—(2 -5, -4,2,5), Y- Yo—(l —4,—4,1,6).
Notice that e, and Y — Y, are orthogonal to ¥;,. Then ESS,,,0 lleoll? = 74
and IIY Yon = 70. By the Pythagorean Theorem this is the same as
ESSy, — ESS;y =74 — 4.
The F-statistic is therefore F = [70/1]/2 = 35. Since F, ;445 = 18.5,
Fy 3. 0.975 = 38.5, we reject H, at level o = 005, but not at level 0.025. The
“observed a-level” is 0.0274. Since f, — B, = —7— 3= —10,and Var(8, - §,) =
a*[6 + 6 — 2]/7 = 100?27, the corresponding t-statistic is t = (— lO)/V/ 10(2)/7 =
\//3_5, so that t2 = F,

The Likelihood Ratio Approach: Suppose again that Y=0+¢ for
0¢ ¥, a k-dimensional subspace of R,, € ~ N,(0,5%1,) and we wish to test
Hy,:8€eV,, a ky < k-dimensional subspace of V. Consider the likelihood
function

L®, 6% Y) = L(0,0%) = (2r6%) "™ exp[— (|Y —- 8]|*/26°]

as shown in Section 3.1. L(8, %) is maximized under the restriction ¢ V,, a
subspace of V¥, by taking 0 = Y. =p(Y|Vs) and 0% =63} =Y — ?A*Hz/n.
Define Y = p(Y{ V), Yo = p(Y{V,), 6> = ||Y — Y|i*/n, and 62 = |Y — Y,|*/n.
Then the likelihood ratio statistic is

= [sup £0,0 )] [sup L(®, a)] = L(Y,, 63)/L(Y, &%),

eV eV

so that —2nlog L = A = log(63/063). The likelihood ratio test rejects for large
. , a2 in Y — Y, k —ko
/. equivalently for large 62/63 =1+ "-- 2. =14+ ——}F, a mono-
q y g€ 09/0¢ Y — Yﬂz n_k
tone function of the F-statistic suggested earlier on heuristic grounds. Thus, the
likelihood ratio test is the F-test.
Asymptotic theory for the likelihood ratio statistic states that as n — w0, 4

converges in distribution under H, to x,f_ko where, as usual, k = dim(V),
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ko = dim(},). Since

A=n 1og<1 + F('Lif‘”)) = nr(f‘_——’@) = F(k — ko)
n—k n—k

= Y — Y| */a? ~ Xf—ko
for large n we have another “proof” of this same conclusion.

Testing H$:Ap =0: The null hypothesis 8¢V, is a statement about
E(Y) = 0. It may be more natural to state a null hypothesis in terms of .
Consider a ¢ x k matrix A of known constants of rank ¢, and suppose we wish
totest H§:Ap= 0.

axt

Two approaches are possible. One is to devise a test directly in terms of Afl.
The other is to reduce H: Ap = 0 to an equivalent form H,:0¢€ V;, and then
to use the method already discussed to test H,. The two approaches turn out
to be equivalent.

To take the more direct approach consider the random g¢-dimensional vector
Z = AP ~ N(AB, A(X'X) " 'A'c2). The following theorem will enable us to
devise a statistic depending on Z.

Theorem 38.1: Let Z ~ N,(n,I), with & nonsingular. Then Q=
kx1
ZEX 'Z~ i) ford=n4Z 'n

Proof: This follows directly for the more general theory on quadratic
forms in Chapter 2. For clarity we present a proof here. Let B be a matrix
satisfying BB =X,50 B""B ' =L ' Let W=B 'Z. Then W~ N(B 'y, 1)
and Q=ZT 'Z=WW=|Wjt~g@) foré=[B'nl’=nT'a. 0O

Taking Z = A, we get 0 = ZTAX'X) 'A']"1Z/0? = H(B)/o® ~ x2(3), for
3 = H(B)/a?, where, for each b, H(b) = (AbY[A(X'X)~'A’]"!(Ab), and, since B
and therefore Q are independent of $% = ||Y — Y|12/(n — k), the statistic

Fx = P/4T
82/g? s?

' Fq,n—k(5)

and we can test H} at level « by rejecting H§ for F* > F, ,_4 1,

Now consider a more indirect approach. Consider the subspace
C = {B|AB =0} = (row space of A)'. Define a,=Xc forceC, and let
V, = {a.ceC}. Since p=M"'X8 for each OeV, Ap=0<«
AM ™ !X' 0=0<0LV, =(row space of AM™'X') = (column space of B=
XM 'A) < O@e(column space of B):. Let this last space be V,. Thus,
Vi=Vn Vs
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_The numerator sum of squares in the F-statistic used to test Hy:8¢€ V5 is
Y — Yoli2 = |Py,YI|%. But the projection matrix Py, is

= B(B'B)"'B’ = X(X'X) 'ATAX'X) " 'X'X(X'X) 'A']TIAX'X) " IX
= X(X'X) 'ATA(X'X) 'A)'AX'X) X

(Isn’t this a beautiful formula? It has 12 matrix products, 6 transposes, and 4
inverses.) Since = X)7'X'Y and [Py, Y|? = YP, Y, we get |P)Y|*=
(ABY[A(X'X)"'A]~'(AB) = H(B), the same numerator sum of squares obtained
by the direct approach. Thus, F* = F. The two approaches are equivalent.

Continuation of Example 3.8.2: For Y, x,, x,, x; as above suppose that
we wish to test Hy:f, =0, B, = fi,, equivalently that Ap = [g], for A=
[(1) (l) —(l)] The subspace C of R, in which B lies under H, is the
orthogongl complement of the row space of A, the collection of B of the

form | f,|. The subspace ¥, is the row space of B =AM 'X =

B

2 1 1 5 2 . .
(1/7)[ l 4 4 ) 6]' V, is the image of C under the transform-
ation X, so that vectors 0 € ¥, are of the form B,x, + §,x5 = $,(2,1, 1,0, 1),
and are orthogonal to ¥}, the column space of B. Slnce Vo = L(x4 = X3 + X3),
Yo = p(Y[ Vo) = [(Y, xa)/ x4 [121x4 = GU/T)xs, =p(Y[ ) =YY, =
(1/7)(=20, — 10, — 10, 70, 60Y, | ¥, = 1,300/7 = 1857 The F-statistic is F =
[185.7/2}/S? = 46.4, for 2 and 1 df. Since F, ; 9.975 = 39.0, we reject at the
a = 0.025 level.

We could have computed |Y,}|? from Z'[AM 'A']}7'Z for Z = Af =

10 5 -1 10 1
.Since H = AM™'A’ = (1/7 JH Y =(1/7 , t
[—10] nee o )[—1 10] (/ )[ 1 5} we e
1,300/7 = 185.7, as before.

Still another approach may seem reasonable, and, once again turns out to
be equivalent to the F-test. Again, let A be g x k, of rank &, let C be its row
space, and suppose We wish to test Hy: AP = 0. Let H.:n. = ¢’ = 0 for any
ce C.Let h(c) = ¢M ™ !c. Then Var(4,) = h(c)o? and S? = h(c)S? is its unbiased
estimator. We can test H, using the statistic ¢, n,/ rejecting H, at level a
for 2 = G(B, ¢)/S? = 12_, , _., where G(c, ) =(c B)z/h(c) Then H,: (n, = 0 for
all ce C) <> (AP =0 for all B)<>0¢e V,, where ¥, = ¥V n(column space of
B = XM 'A’)*._ It seems reasonable to base a test on the statistic W = sup 12 =

K (f))/S 2, where K (f)) = sup G(c, ﬁ). We need to know the distributiocﬁcof W,
ceC



TESTING H,:0eV,c V 113

since the test which rejects for W > t2. .1 -. will have level larger than a. We
will show that K(D) =H (ﬁ), so that W/q = F, and again we arrive at the same
F-test.

For each ¢ € C, again let a, = XM~ !c. The vector a, may be written in the
form ) b;x;, where b=M" ‘e =(by,...,b), and c is the vector of inner
products of a, with the x;. Then ¢ B=cMIXY = (a,Y)and h(c) =cM e =
a2, so that G(c, B) —(ac’ Y)?/liai? = lip(Y]a)|>. Since a,€ ¥;, and ¥, =
p(Y|V))=p(Y]|a)+ [Yl — p(Ylac)j the orthogonality of these two vectors
lmplles that |p(Y|a)}® = ||Y 112 - |[Y —p(Y|a)l®, so that G(c, B) <
IIY,J[Z /S?, with equality if and only if a. is a muitiple of Y,. We conclude that
K@) =Y, = H(B) Therefore, W/q = F. The supremum of tZ for ce C is
taken for ¢ = X'Y,, or any scalar multiple.

In establishing three equivalent forms of the numerator sum of squares in
the F-statistic, we have established some useful algebraic identities, which we
summarize now for later use.

Theorem 3.8.2: Let M be a k x k positive definite matrix. Let Abeag x k
matrix of rank ¢. Let C be the row space of A, and define Q = ATAM ™ !A] A,
hy2
Then, for any be R,, (1) sup »,(;'—b)l - = b'Qb, with the supremum achieved
ceCC
for c=Qb, and (2) If X is an n x k matrix, XX =M, §=Xb and ¢, =
XM~ 'Qb, then §, = p(§| ¥,), where V¥, is the column space of XM~'A’, and

9142 = b'Qb.

Proof: These identities were established above by first showing (2), then
showing that ||§,]|*> was equal to the supremum in (1). In order to provide more
insight, let us show (1) directly.

2

As belore, define G(c, b) = Sl%lb—)h Let B be any k x k matrix satisfying
BB=M"! and let d = Bc. Then G(c,b) = (B~ 'd, b)?/|d}|?> = (d, w)?/|d}}%,
where w = B~ 'b. If ¢ is restricted to the row space of A, then d is restricted to the
column space of B'. G(c, b) therefore remains unchanged if w is replace by its
projection onto the column space of BA'. The projection matrix is P =
BATAB'BA] !AB = BATAM 'A'] 'AB'. Thus, G(c, b) = (d, Pw)?/||d}|2. By
the Schwarz Inequality this is maximum (as a function of ¢) for d any multiple
of Pw = PB"!Q, ¢ any multiple of B"'PB~'b = Qb, with maximum value
[Pw|? = b'B~'PB~'b = b’'Qb. This proves (1). (2) follows “easily” by substi-
tution and lots of computation. The author uses “easily” when he wants the
students to do the work. 0O

Continuation of Example 3.8.2: Since Y, = (1/7)(~ 20, — 10, — 10, 70, 60),
t? is maximized for a =Y, ¢=XY, = (1/7)(90, —40, —40), and ¢} =
(cB)?/eM™ e = (1,300/7)3/[1,300/7] = 1,300/7 = |Y,||*> = 185.7.
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Continuation of Example 3.8.1: Consider the corn example with k =3,

n, =ny =4, and n, = 3. Take B = (i, 15, #3), and Hy:pty = -+ = p,. Take
— 0 .
A= [i (1) l]' This A could be replaced by GA for any nonsingular

2 x 2 matrix G, so that the row space remains the same. The subspace C of
R, is the row space of A, the collection of 3-component vectors with components

3
adding to zero. V| is the subspace of V of vectors of the form Y b;J; which
j=t
are orthogonal to ¥, = #(J). Thus ) b;n; = 0. An example is J, — 4J, + 2J;.
The ij element of Y, is ¥, — ¥, where Y=Y ¥,;/n. Thus, Y, =
ij

J
—0.636 4.364 —2.636

—0.636 4364 —2.636 , )
, whose squared length is 86.55. ¢2 is maximum
—-0.636 4354 —2.636

—0.636 _ —2636
fore = (n,(¥, — 1), ny(F; ~ D), ny(Fy — D)) = (- 2.544,13.092, —7.992), and
Y, =3 (c;/n)d; =3 (Y, = 1),
i

Problem 38.1: Let x,=(L,LLL LY, x,=(3,-1,46,3,3), x3=
(71,3,2,0,3,3, x,=1(84,9 —54,4y, Y=(43644,12168 V
Z(X,, X3, X3, X4). Suppose we wish to test Hy: f, =0, ff, = ;5.

(a) Find two matrices A so that H, <> AB = 0.

(b) Find §, Y = XB. and Z = A, for one of your choices for A.

(c) Define ¥, so that Hy<>0¢ ¥, and find Y, = p(Y|V,), Y- ¥, and
Y, =Y-¥Y, X

(d) Determine ESS;,, = {|Y — Y||%, SSE,, = Y — Yo%, 1Y — ¥, |2, and the
F-statistic.

(e) Verify that |Y — Y,|? = Z[AM'A"]"'Z.

(f) Find ¢ and a, so that |¥ — Yo|i2/5% = 12 = (a, Y)*/[S?|la.}2].

Problem 3.8.2: Let Q be the space of arrays of the form of Y in one-way
analysis of variance with k = 3,n, = 3,n, =4,n; = 3, and let J, J,, J, be the

1 2 2
. o 2 1 3
corresponding column indicators. Let x = 4 4l Suppose the model
3
4 4 10
3 9 4 9
Y =3 B;J;+ B4x + € holds and we observe y = s 10 14l Test at level
1

6
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a = 0.05 the null hypothesis that §, = f§, = f;. (The analysis justified by this
model is called analysis of covariance. The y-values might be corn yields and
the x-values fertility measurements on the corresponding plots).

Problem 3.8.3: Consider the baseball bounce example of Problem 3.3.4. Let
type A, B and C baseballs be dropped from heights 5, 10 and 15 feet and let
the rebound heights be as given.

Height, x (ft)

5 10 15
A 24 6.0 9.2
B 24 4.9 7.6
C 37 1.2 103

State a model (assuming equal variances, a questionable hypothesis), and test
the null hypotheses that the bounce coefficients are equal (¢ = 0.05). If instead
the standard deviation of bounce heights were proportional to height x, how
could you proceed?

Problem 3.8.4: Consider the following regression model for n = 20 pairs

(xi, ¥)
Y= B0+ B + Bax} + B3xi + &

fore,,...,¢, independent N(O, %) random variables. The model above was fit,
giving error sum of squares ESS(3) = 160. When the cubic term was omitted,
the error sum of squares was ESS(2) = 180. When both the quadratic and cubic
terms were omitted, the error sum of squares was ESS(1) = 200. Total sum of
squares was ESS(0) = 1,000, after correction for the mean,

(a) Give the sample multiple correlation coefficient for the cubic model
above.

(b) For a = 0.05 test Hy: true model is the simple linear regression model
Yi=p+bixi+ ¢

(c) Find a matrix A such that H, of (b) is equivalent to Ap = 0.

Problem 3.8.5: Show that the numerator sum of squares H () of Theorem
3.8.1 is not changed by replacing A by GA for G nonsingular.

Problem 3.8.6: Suppose you wished to test Hy: Ap = d ford € R,, a known
vector of constants. How should you change H(B) (Theorem 3.8.1)? It can be
shown that Ap=d is equivalent to 8 =0, + v for 0, = BLAM !A")"d,
M= X'X, B=XM7'A, ve I, for ¥, as defined in Theorem 3.8.1. Thus, we
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can test the equivalent hypothesis that Z = Y — 8, has mean vector lying in
V5- The test statistic is therefore obtained by replacing Y by Y — @,, equivalently
by replacing B by p — B, for o = M~ 1X'0,.

Problem 38.7: (Two-sample t-statisticy Let (Y,,...,Y;,,) and
(Y34, ..., Ya,,) be independent vectors, each having independent normally
distributed components with variance all 62, common means y, and u,. Let Y
be the array with two columns, n; elements in column i.

(a) Invent vectors X,, X, so that Y = u,x, + u,x, + &, with £ satisfying the
usual model.

(b) Let Y,, ¥;, S2, S be the sample means and variances for the two samples.
Show that the least squares estimator of (u,, u,) is (¥;, ¥;,) and that

§%=[(n, — DS +(n, — NSH/(n, + n, — 2).
(c) Show that
Y, - Yt 6,y -0nS(/ny + U/ny)'2, for v=mn +n,—2,
is a 100(1 — a)¥, confidence interval on = p; — u,.
(d) Consider H,: n = u, — p, = 0. Show that H, is equivalent to @ € V;, for

some ¥,, and that, for this Hy, F = t? for t = (¥, — ¥,)/[S(1/n, + 1/n;)'1].
(e) Consider the following tire mileages (in 1,000’s) of two brands of tires.

#1 41 49 45 41
#2 51 48 46 48 47

Find a 95% confidence interval on pu, — p, and test Hy: py = pup vs. Hy iy < py
for 2 = 0.05.

() Suppose it is known that 63 = ra? for r known but ¢ and ¢ unknown.
Show that a 100(1 — x)%, confidence interval on yu, — u, is

Y, - )-’2 tt, g2 S(1/ny + riny)t3,
where

_(ny = )S + (n, ~ )SEr
n, + nz - 2

SZ

Hint:letZ, = Yz.‘.i;\/{; and estimate yu, — \/";(;12 /r). Find the interval for r = 2.

Problem 3.8.8: Show that the proof of (2) in Theorem 3.8.2 is really easy.
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Problem 3.8.9: (Behrens—Fisher) Consider the two sample problem
Y., Y, ~ N(u, 63, i = 1, 2, where all random variables are independent.
This problem was considered in Problem 3.8.6. in the case r6? = ¢3, and our
standard linear theory applied to produce the well-known formulas for
confidence intervals and tests. This theory does not apply in the case that the
ratio 62/6% = r is not known. For large n,, n, (say both > 20) S? with high
probability will be close to o7 so that

Y, -V —(uy — p3) for S'2)=S%.{.Sg

SD n, n;

Z=

has an approximate N (0, 1) distribution, and ¥, — ¥, + z, —~a/25p IS an approxi-
mate 100(1 — a)%; confidence interval on u, — u,.

For moderate n,, n, a reasonable approximation due to Welch (1947) is
obtained by replacing z, _,;; by ¢, ., for v the greatest integer less than or
equal to

pe DD s
(n; = Da® + (n, — 1)1 - a?) (81/n1) + (S3/n3)

A study of Wang (1971) shows that the approximation is good for « > 0.05 for
ny, n, >7,0or 2>0005and n;, ny > L.

Apply the Welch method for the data of Problem 3.8.7(e). Even though the
Wang conditions are not satisfied, the method should be reasonably good.

39 FURTHER DECOMPOSITION OF SUBSPACES

Every subspace W of dimension d may be decomposed into d mutually
orthogonal one-dimensional subspaces W,,..., W,. This is accomplished by
finding an orthogonal basis w,, ..., w, for W and taking W, = #(w,). If these
vectors, or, equivalently, the spaces W, are chosen appropriately then we may
break the projection of Y onto W into the sum of its projections onto the
subspaces W, and, using the Pythagorean Theorem, break the squared length
of this projection (sum of square§ for d d.f) into d sums of squares with one

df. each. That is, [p(YI W12 = ¥ (Y, w)?*/lwl%
i=1

For example, consider a one-way layout with n; observations for treatment
level i, i = 1,..., k. The levels of treatment may correspond to measurements
x; (amount of a chemical, temperature, time, etc.), and it may be reasonable to
suppose that g, = g(x;) for some function g(x). It may also be reasonable to
suppose that g(x;) = f, + B,x; for some B, B, or that g(x;) = B, + f,x; + B2 x?
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for some f,, f,. .. In the second case the model becomes
k k k
=Y Bo+ Bixi+ Bx)ICi+e=Bod + B, Y x,Ci+ B,y x/Ci + e
i=1 1 1

We can test H,: {g(x) is linear in x}, by taking ¥, = 2(J, Y x,C) = £(J, x*)
for x* = Y (x; — x)C; in the usual F-test. Then

-~ — k —
Yo=p(Y(¥) =TI+ Bx*=Y [¥+B,(x,— HIC
i=1
for
p =X Y (xi— D) ¥n,
Tt T S s — 02

This is the slope obtained in fitting a straight line to the points (x;. ¥;.), each
such point repeated n; tlmes Then ¥ - Y, = Z (Y- Y- B — 0IC; =

i=t

Z £iCi, 50 ¥ = Y% = Z f#n; is the error sum of squares obtained in a
i=1
81mple linear regression on these points (x;, ¥.).
The noncentrality parameter is therefore

k
18 — 8ll%/a% = (1/0?) ,Z [ — fi — Bytx; — D1%n
=1

for @ =Y mu/n, and B, the same as §, with g, replacing ¥. This is zero, of
course, if the y, are linear functions of x;.

In the notation of the first paragraph of this section we could take
W=V=2%2C,...,C)vo=4J,

k

Vl=zx;C;, V2=Zx,~zc‘-,...,vk_l=fo—lci
]

1

and w,,...,w, a Gram- Schmidt orthogonalization of these v/’s.

pOY1V) = T p(Y W) = T [(Y, w)/lwilIw,

k
The treatment sum of squares is [Y — Yo|i? = Y (Y, w)?/|iw,|%. The ith term
1

in this sum is the sum of squares due to the ith power of the x’s. In the case
that the x;'s are equally spaced, (of the form x; = x, + di), relatively simple
formulas for these sums of squares may be developed. To test



FURTHER DECOMPOSITION OF SUBSPACES 119

Hy: }g(x) = E(Y|x) is a quadratic function of x}, assuming the one-way A of
¥ model, we would use numerator sum of squares

N " 2 ko _ 2
1Y = Yol* — X (Y, wp?/liw||? = [Z Yin — Y.Z.n] - 2 (Y, w)¥/|lw)i?
1 1

1

for k—1-2=k-3df

Example 39.1: Take k=5, n,=10 for i=1,...,5, ¥, =40, ¥, =45,
Y, =48, Y,. = 46, Y;. = 43, Error SSqs. = 720. Treatment SSqs. = 372, and
F =[372/4]/(720/36)] = 4.65, which is significant at the « = 0.01 level.

Suppose now that treatment level i corresponds to x; for x; =3, x; =5,
Xy=7,x4 =9, x5 = 11. A plot of the ¥,. against these x, (Figure 3.11) indicates
a quadratic relation between the x; and g;.

The treatment SSqs. may be composed into four independent sums of
squares, each with one degree of freedom (Table 3.9.1). Take x, to the array
with 10 x;’s in the ith column. Let x,, x;, x, be the arrays formed by replacing
these x;s by the second, third and fourth powers of these x;’s. Then
V=%, X,, X3, Xy, X3). Take W = V ~ V. Use the Gram-Schmidt process
to find vectors wo=J, w,, w,, w,, w,. Then F(w,,w,,...,w)=
LA xy,...,x,) for i=1,...,4 and, of course, these w;, are mutually
orthogonal. W = #(w,, w,, w,, w,). Since the x;'s increase linearly with i, and

50 =
48 X
4 X
Y
44 X
X
42
40 X

=
-
-

FIGURE 3.11 Yvs. x,i=1.2....5
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Table 3.9.1

Column
1 2 3 4 5 Squared Length [Inner Product with Y
Linearw, -2 -1 0 1 2 (10)(10) aoxn
Quad. w, 2 -1 =2 -1 2 (10)14) (10 —21)
Cubicw; —1 2 0 -2 1 (10)(10) (10x1)
Quart. w, 1 -4 6 -4 i (10)(70) 107

the w; may be multiplied by arbitrary constants, we can determine simple
expressions for them. The jth column of these w; have the following identical
10 values. Then

i

4 4 ;
pYIW) = 3 p(iw) = 3 o8

— W
i=1 "Wauz

and
4
Ip(Y1 W12 = Y, (Y, w)?/llw)>
i=1

The inner products and squared lengths are given in the table above. If the
b

elements in the jth column of w; are all w;; then (Y,w) = Y, ¥,.w,;(10) and

s Jj=1
jwll? = Y. w?(10). Thus, treatment SSqs. (372) has been decomposed into
i=1

linear SSqs. (70%/100 = 49), quadratic SSqs. (—210)2/140 = 315), cubic SSgs.
(102/10 = 1) and quartic SSqs. (702/700 = 7). Each has one degree of freedom.
Obviously in this case the quadratic effect dominates. The null hypothesis H,:
{u, is linear in x;} is equivalent to 8e £(J,x,) = L(J,w,) = V, (say). The
numerator SSqs. in the F-statistic is therefore [p(Y|V A VD)2 But ¥ n Vi =
L(w,, wy, w,), so that

4
Y (Y, w)?*/|w,|* = Treatment SSqs. — (Y, w,)?/[lw, ]2 (3.9.1)
)

In this case, 372 — 49 = 323, so that F = 3—22%/3 = 5.38 and H, is rejected.

Similarly, H,: (u, is a quadratic function of x;) has numerator SSqs. =
d 8/2 )

Y (Y, w)?/wil* =850 F = 3/6 = 0.2 and H, is not rejected (at reasonable a
3

levels).
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3.10 POWER OF THE F-TEST

In order to determine the power of an F-test we need a means of computing
P(F 2 F,, ,, ) for given values of v,, v,, « and the noncentrality parameter J,
for F. The most common means of presenting these probabilities uses graphs

o = 0.05 and 0.01. Pearson-Hartley charts present graphs of p(¢); see Tables
5.1-5.8 in the Appendix. For example, for v, = 2, a = 0.05, v, = 30, = 12 we
get ¢ = \/E’ZB = 2 and power approximately 0.85. Odeh and Fox (1991)
describe methods and provide charts which facilitate the finding of sample sizes
necessary to achieve given power.

Recall that the noncentrality parameter is & = |0,/ where 0, = p(0| V)
and ¥, = ¥V~ V. In Section 3.9 we showed that Il?} I12=Z[A'M™'A]"'Z,
when H, is expressed in the form Ap = 0, and Z = AB. We need only replace
Y by 0 in this formula or in any other formula we have for the numerator sum
of squares in the F-statistic. Thus, for { (zeta) = AB, & = (1/62) {[AM ™' A’)¢,

Power of the F-Test in One-Way A of V: Suppose the statistic F has a
noncentral F distribution with v, and v, d.f. and noncentrality parameter o.
Consider also that under the null hypothesis Hy: é = 0 and suppose that H,, is
to be rejected for F > F,, ,, ; -, (which we also denote by F, _,(v, v;).) This is
the situation in one-way analysis of variance when we test Hy: y; = p, = - - =
#;.- In this case

F Among means mean square

Error mean square
and

19 — 8,)*

k
5="" 0 =(1/0%) Y = @,
g ji=1

k
where 8, = p(0| V) for V, = £(J) and i = (Z njyj)/n.
1

Example 3.10.1: This example is taken from Scheffe (1959, p. 163) who in
turn credits it to Cuthbert Daniel, a well-known statistical consultant. Suppose
four different kinds of alloy steel are prepared by varying the method of
manufacture. It is expected that the tensile strength will be of order 150,000 psi
{pounds per square inch) and the standard deviation of duplicate specimens
from the same batch will be about 3,000 psi. Suppose 10 specimens of each kind
are tested, and that

u, = 150,000, iy = 149,000, iy = 148,000, te = 153,000.
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What is the power of the resulting x = 0.05 level F-test?

Solution: We have

L ., 10(14)
5=(1/02);(uj~u)'nj-(3000) [Z(u, 150000)] -OL—_lsss

15.56
vi=4-1=3v,=40-4=136,¢ = \/ > = 1.96. Then from the Pearson--

Hartley charts the power is approximately 0.88.

Similarly for n; = 5 observations per alloy type we get § = é%n) = 7.78,

v, =3,v,=20-4=16,¢= \/7.78/4 = 1.39, power approximately 0.60.

Example 3.10.2: Continuing the alloy example, suppose we wish to design
an experiment which will have power at least 0.90 for a = 0.05 in the case that
any two of the four means differ by 8,000 or more. How many observations
should be taken on each alloy?

Solution: & =n, Y (u; — fi)*/o?, where n, is the common sample size. If
1

two means are to differ by 8,000 or more, then Y (u; — j)* is smallest when
one p, is 4,000 larger than f, one is 4,000 smaller than j, and the other two y;
are equal to j (see Problem 3.10.2). Since the power is an increasing function
of § we must choose n, so that 0.90 power is achieved for the smallest possible

, 2
value of 8. Then § = n,[4,0002 + 0% + 0% + (—4,000)]/ 3,000% = 35 ny. Also

vy=4-1=3, v, =4(ny— 1), ¢ =./6/4=0943./n,. We can proceed by
trial and error.

For n, =9, ¢ = 2.828, v, = 32, power = 1.00. We should try a smaller n,.
For n, =4, ¢ = 1,846, v, = 12, power = 0.76. For n, =5, ¢ = 2.11, v, = 16,
power = 0.89. For n, = 6, ¢ = 2.30, v, = 20, power = 0.955. n, = 5 seems to
be approximately the right sample size.

Problem 3.10.1: Consider Problem 3.8.1, let Hy: f, = i3, B4 =0, let A be
defined as before, and let { = AG.

(a) Express 8, =0 -- 8, as a lincar combination of two vectors v, and
v,, with coefficients (8, — By) and B,. Hint: Define x5 =x, + x5, Xj =
p(x;1 ¥V, = VaV§), for j =2,3,4. Show that 8, = ,x3 + B3x3 + B,x; and
that x5 + x5 = 0.

(b) Express the noncentrality parameter & as a quadratic form in
(B, — B,) and B, by using the result of (a) and also by using the formula
§ =AM A} /0
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(c) For B = (10, 3,5, —2), ¢* = 16, and « = 0.05, find 0, 8,, 8,, 5, and the
power of the F-test.

Problem 3.10.2: Let A > 0. Then G(x,,...,x,) =Y. (x; — X)? is minimum,

subject to max |x; — x;| = 2A for (n — 2) x;’s equal to X, one x; equal to X — A,
ij

one equal to X + A. Prove this. Hint: Let the two x;’s differing by 2A be x, and

x,. Let %, = (x, + x,)/2. Show that G = A%/2 + (X, — %)* + } (x, — %)%
3

Problem 3.10.3: (a) Suppose that for the corn yield in Example 3.8.1 the
true means were 70, 75, 95 and that ¢ = 20. Find the power of the a = 0.05
level test for equal means.

(b) How large should n,, the number of observations per treatment (number
of plots per treatment) be in order to have power at least 0.90 for the parameters
in (a)?

(c) Suppose we wish to design an experiment with the three kinds of fertilizer
which will have probability at least 0.90 of rejecting H,, for 2 = 0.05 when two
means differ by 10 or more, and ¢ = 20. How large should n, be?

Problem 3.10.4: Consider a one-way layout with k =4, n, =n, =n, =5,
ng=6Letx; =2, x,=3,x;=5,x,=6.

(@) For u, =4, u, =11, u3 =17, u, =16, 6 =4, find the power of the
a = 0.05 level test of the null hypotheses that y; is a linear function of x; for
i=1,23,4. Hint: See Problem 3.10.1. The noncentrality parameter is obtained
by replacing Y by 8.

(b) For equal sample sizes ng, how large would ng have to be in order for
the test in (a) to have power at least 0.90?

Problem 3.10.5: Suppose g(x) = E(Y{x) and ¥; = g(x;) + ¢, is observed
fori=1,...,randj= 123, 4fore; ~ N(O, 6?), independent. x, = 1, x, = 2,
x3=4,x,=5

(a) Assuming the full model for which g is an arbitrary function of x, express
the noncentrality parameter for the F-test of H,: {g is a linear in x} as a function
of r, B,, and a? for g(x) = B, + B,x + B,x%

(b) Evaluate the power for r = 5, f, = 0.05, 62 = 3, « = 0.05.

{(c) Determine the minimum value of r for which the power of the test is 0.90,
for 62 = 3, a = 0.05, ff, = 0.05.

3.11 CONFIDENCE AND PREDICTION INTERVALS

Let X = (x;, ..., x), and g(X) = E(Y | X) be the regression function for Y on X.
k

Suppose also that g(X) =) B;x;, and that we observe Y; = g(%X)) + ¢ for
1
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& ~ N(0, 6?) independently for i = 1,..., n, where %,, ..., X, are n values of X.
That is, we independently observe pairs (¥, £,). Suppose that Xg = (X9, ..., Xox)
is still another constant vector and that we wish to estimate 7 = g(X,).

For example, for the simple lincar regression model Y, = B, + f,x; + &,
equivalently Y = ,J + f,x + ¢, suppose we want a confidence interval on
g{xo) = Bo + B1xo. Tl:en Xo = (1, xo).

Sincen = g(Xo) = Y, B;xo;1s a linear function of the f;, we can use the BLUE,
1

= §(Xo) = ioﬁ, the best linear unbiased estimator of 7. Again, from Section
3.2, Var(f) = (X, M ™ 'Xy)o? = h(x,)o? (say), so S} = h(x,)S? and a 100(1 — 2)%,
confidence interval on # is given by g(Xo) £ t; o2 [h(Xo)S?]*2, where t, _,,,
has (n — k) d.f.

For simple linear regression 4 = §(X,) = Bo + B,xo =Y + Pi(xo — %), 50

Var(j) = o [ + (xo — ")Z/Sxx] = ah(x,).
n

Thus, g(x,) is estimated most precisely for x, near X. In fact the variance of
d(xo) is the sum of the variance in estimating the height of the line at x = x
and the variance in estimating the slope, multiplied by the square of the distance
of x from x. Of course, the slope is estimated most precisely if the x-values used
to estimate it are more widely spread, resulting in larger S, subject to the
suitability of the model.

Suppose that we want confidence intervals on g(X) for each of the n rows
of a design matrix X, the points in k-space at which Y has been observed.
The value h(x) can be obtained for all such X very easily as the diagonal of
XM 'X’, which is the projection matrix P, onto the column space of X.
Since trace (P,) =dim(¥) =k, it follows that these h(X) average k/n.
For simple linear regression k(%) = 1/n + (x; — X)%/S,,, so that Y h(x)=1+
3 (x; — %)?)/S,. = 2. More on this in Sections 4.4 and 4.6.

Prediction Intervals: Suppose that we would like to predict the value Y, of a
future observation, to be taken at a point X = X,. This is a tougher problem be-
cause, while g(x,) was a fixed target, Y, is random, a moving target. An analogy
would have an archer shoot n = 25 arrows at a “buliseye” target located on a
wall, after which the target is removed, with the arrows remaining. A confidence
interval corresponds to a guess we make about the location of center of the
target based on our observation of the location of the arrows. A prediction
interval is analogous to a guess as to the location of another arrow not yet
shot by the same archer. Obvnously our prediction should be §(X,) =
Let the error made be €o=Yo— Yo. Then E(es) = g(%o) — 9(Xo) =0, and
Var(eo) = Var(Yp) + Var( YO), smce Yo is independent of the observations used
to determine Y. Thus, Var(ep) = 0% + 02h(%,) = o*[1 + h(%y)]. A 100(1 ~ )%
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prediction interval on Y, is therefore given by ¢(Xo) + t, _,,2[S%k(x()]"? for

k(Xo) = 1 + h(X,). For simple linear regression k(X,) = 1 + 1 + (xg — X)?/S,,.
n

Problem 3.11.1: A Ph.D. candidate in education did a study (actually, this
is fictitious data, but it could be real!) of the relationship between hours of
study (x) and grade point average at a large Midwestern university, whose
name shall be protected. Fifty students were chosen at random from among
those who had earned at least 30 semester credits, and the number of hours
each spent studying during the fall semester was carefully recorded, using
personal diaries kept by the students. Interviews with the students during the
semester convinced the Ph.D. candidate that the numbers of hours reported
were reasonably accurate. The number of hours spent studying during the term,
x,, the previous G.P.A. (x,), and the G.P.A. for the fall term, Y, were all
recorded. Consider the data of Table 3.11.1 and the inner product matrices
M = XX and U = X'Y. X is the 50 x 3 matrix with ones in the first column,
x, and x, values in the second and third columns.

(a) Find the least squares simple linear regression line for Y vs. x,, and sketch
the estimated regression line on the scatter diagram. Also determine S* and the
correlation coeflicient (c.c.) r,, .

(b) Let the 95%; confidence interval for g(x,) = B, + f,x; be (L(x,), U(x,)).
Sketch the two functions L(x,) and U(x,) on the same axes.

(¢) Let (L,(x;), Uy(xy)) be the corresponding prediction intervals for a
student who studies x, hours. Sketch these intervals,

(d) What conclusions can you reach about the relationship between studying
and G.P.A. for the fall semester? Would it be better to study the partial c.c.
between x, and Y, with the effects of x, removed? (Computations show that
Tax, = 0.3862 and r,,, = 0.5754, so you should be able to find this partial
c.c. without difficulty.) How much higher could you expect a student’s G.P.A.
to be if the student studies 100 more hours during the term? (Think about this;
be careful about your conclusions.)

Problem 3.11.2: Let x,, x,,.. ., x, be positive constants. Let Y, = fx; + ¢,
fori=1,...,nfore,,...,ct,independent N (0, 62). The pairs (x;, ¥) have been
observed for i = 1,..., n and the value of Y; is to be predicted.

(a) Give a formula for a 100(1 — x)% prediction interval on Y.

(b) Apply the formula for n =4, a = 0.05, and (x;, Y pairs (1, 2), (2,7),
(3, 10), (4, 1), xo = 5. Repeat for the same pairs, but x, = 10.

(c) Repeat (a) and (b) for confidence intervals on g(x,) = fx,, rather than
prediction intervals.

Problem 3.11.3: Let Y,,..., Y, be a random sample from a N(y,¢?)
distribution. Give a formula for a 100(1 — )%, prediction interval on an
observation Y, to be taken independently from the same distribution. Hint: See
Problem 3.11.1.
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Table 3.11.1
# Xy X, Y # Xy X, Y
1 303 2.74 2.85 26 396 3.18 322
2 206 2.46 212 27 416 298 354
3 247 3.00 2.81 28 350 2.59 2.94
4 234 2.82 246 29 387 2.9¢ 3.25
5 266 2.74 2.74 30 296 3.10 319
6 365 228 3.08 31 288 267 219
7 33t 2.15 245 32 303 2.66 2.26
8 337 2.82 279 33 353 2.61 3.24
9 369 3.00 3.15 34 217 3.01 2.80
10 391 330 334 35 349 352 3.72
11 366 2.61 2.66 36 359 2.99 2.96
12 355 3.15 3.34 37 157 2.39 224
13 208 3.06 2.32 38 n 3.50 3.76
14 287 3.57 2.90 39 333 355 273
15 315 2.74 3.05 40 226 245 2.54
16 508 329 3.98 41 235 297 3.00
17 308 2.86 2.79 42 289 2.76 2.73
18 263 2.38 2.74 43 307 2.53 2.06
19 323 2.88 2.28 44 408 291 398
20 251 277 2.67 45 247 2.36 2.34
21 125 225 1.83 46 268 3.12 3.22
22 245 3.20 229 47 305 3.02 3.10
23 392 248 2.73 48 358 3.24 2.82
24 261 2.15 2.30 49 358 3.27 293
25 256 2.90 2.86 50 115 2.52 1.63

50.00 15,204.00 142.41
M =] 15204.00 4910,158.00 43,834.26
142.41 43,834.26 412.18

140.92
U =] 4430023, Y Y} =410778.
406.66

Problem 3.11.4: A chemist has two methods of determining the amount of
a chemical in samples of blood. Method A is expensive, but is quite precise.
Method B is inexpensive, but somewhat imprecise. Label measurements under
method A by x, and under B by y. Because of the extra cost of the x
measurements, it is preferable to obtain y, but not x, but to give a statement
about the uncertainty of the measurement. This is the “calibration problem™,
discussed by Scheffé (1973) much more thoroughly.
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Suppose that pairs (x;, ¥;) are observed independently fori = 1,. .., n, where
the x;'s are constants and Y, = g(x;) + &, g(x) = fx, and ¢ ~ N(0, ). An
additional observation Y, is made on another blood sample using method B,
but the corresponding measurement x,, using method A is not made.

(a) Find functions L and U, depending on the pairs (x;, ¥) and ¥, so that
P(L < xo < Uy =095. Hint: T = (¥, — §(xo))/~/k(xo) S has a t distribution
for the proper choice of the function k(x,). Use this as a pivotal quantity, but
don’t forget that both the numerator and denominator of 7 depend on x,.)

(b) Apply your method to the data:

x 313 445 sed 619
Y 26 4.1 5.1 6.0

(c) Let g(x) = By + B,x, with By, B, unknown. For observations

X 221 354 4.89 596

: and Yo =67
Y 0.8 22 33 4.5

find a 95%, confidence interval on x,, the x-reading corresponding to Y.

Problem 3.11.5: Let h(x) = 1/n + (x — X)?/S,., as defined earlier.

(a) Use the fact that h(x;) is the ith diagonal term of a projection matrix to
prove that 0 < h(x;) < 1 for each i.

(b) Use the inequality in (a) to give an upper bound for |x; — X] in terms of
the sample standard deviation of the x;’s and n. Could the upper bound be
achieved for some choice of (x,,..., x,)?

312 AN EXAMPLE FROM SAS

The following study was carried out at North Carolina State University in
order to determine the relationship between oxygen consumption ( y), a measure
of aerobic fitness, and several other variables related to physical fitness among
31 runners. For each individual the following measurements were made.

Y = oxygen consumption in volume per unit body weight per unit time (oxy)
x, = time to run 14 miles (runtime)

X, = age in years (age)

x5 = weight in kilograms (weight)

x4 = pulse rate at end of run (runpulse)

X5 = maximum pulse rate (maxpulse)

x¢ = resting pulse rate (restingpulse)
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The following analysis (Tables 3.12.1 through 3.12.9) was taken from the S4S
User’s Guide: Statistics Version 5.

The analysis will treat the x-variables as constants, though it may seem
reasonable to consider them as random. However, we are interested in the con-
ditional distribution of ¥, given the x-variables, and not in the distribution of
the x-variables. In fact the manner of selection of the participants in the study
does not support conclusions about the joint distribution of the x-variables.

(1) In Table 3.12.3 under each correlation coefficient r, P(R]| > r) is given
for R having the distribution of a sample cc. from a bivariate normal
distribution with p = 0.

Table 3.12.1
i X, Xq Xy Xa X Xg Y
1 11.37 4 8947 178 182 62 44.609
2 10.07 40 75.07 185 185 62 45.313
3 8.65 4 85.84 156 168 45 54.297
4 8.17 42 68.15 166 172 40 59.571
5 9.22 38 89.02 178 180 55 49.874
6 11.63 47 77.45 176 176 58 44 811
7 11.95 40 75.98 176 180 70 45.681
8 10.85 43 81.19 162 170 64 49.091
9 13.08 44 81.42 174 176 63 39.442
10 8.63 38 81.87 170 186 48 60.055
11 10.13 44 73.03 168 168 45 50.541
12 14.03 45 87.66 186 192 56 37.388
13 11.12 45 66.45 176 176 51 44.754
14 10.60 47 79.15 162 164 47 47.273
15 10.33 54 83.12 166 170 50 51.855
16 8.95 49 81.42 180 185 44 49.156
17 10.95 51 69.63 168 172 57 40.836
18 10.00 51 77.91 162 168 48 46.672
19 10.25 48 91.63 162 164 48 46.774
20 10.08 49 73.37 168 168 67 50.388
21 12,63 57 73.37 174 176 58 39.407
22 11.17 54 79.38 156 165 62 46.080
23 9.63 52 76.32 164 166 48 45.441
24 8.92 50 70.87 146 155 48 54.625
25 11.08 51 67.25 172 172 48 45.118
26 12.88 54 91.63 168 172 44 39.203
27 10.47 51 73.71 186 188 59 45.790
28 9.93 57 59.08 148 155 49 50.545
29 9.40 49 76.32 186 188 56 48.673
30 11.50 48 61.24 170 176 52 47.920
31 10.50 52 82.78 170 172 53 47.467

Source: Reprinted with permission rom $AS/Stat (TM) User’s Guide, Relcase 6.03 Edition, Cary,
NC. © 1988 SAS Institute Inc.
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Table 3.12.6a Analysis of Variance

Source DF  Sum of Squares Mean Square F-Value Prob > F
Model 6 722.543 61 120.42393 22.433 0.000 1
Error 24 128.83794 5.368 247 41

C Total 30 851.38154

Root MSE 2.316948 R 0.848 7

Dep Mean 47.37581 Adj. R? 08108

C.Vv. 4.890572

(2) The matrix in Table 3.12.5 is the X'X matrix and the X'Y vector for X
the x-data matrix of A, with the attached column of ones (intercept). SSCP
denotes sum of squares and cross products.

(3) Table 3.12.6 is the analysis corresponding to the full model Y =
BoXo + " - + BeXe + & For V=2L(Xg,...,%s) and V, = #(xg). The lines
“Model”, “Error” and “C Total " correspond to the subspaces V n V5, V* and
Vs in 31-space.

The F-value in Table 3.12.6a (22.433) is model MS/error MS, which may be
used to test Hy: All B, for j > 1 are 0. It is easy to show that F = (R%/(1 — R?))
[(n — k — 1)/k] for k independent variables, not counting the constant term.
For observed F = f, Prob > Fis P(F > f)for F ~ F,_,_,_, (k = 6 here). C.V.
is the coefficient of variation = s/y = 2.32/47.38. Adj. R? is R? adjusted
for degrees of freedom, defined as 1 — s?/s2. Thus, (1 — R},;) (n —k — 1)/
(n— 1) = 1 — R?, so that R};, is always less than RZ.

Table 3.12.6b reports for each j: B, Sy, t; = B;/Ss,, and P(T > |t;|) for T
with the t distribution for (n — k — 1) d.f. Type I SS is the reduction in error
sum of squares (or increase in regression SS) given by adding that variable to
the model given by the variables on lines above. For example, C total SS = 851
is error SS when only the intercept is used. That error SS is reduced by 633 to
118 when runtime is also used. It is reduced still further by 18 to 100 when age
is also used. The total of all type I SS’s is 722.54, regression SS for the full model.

Type I1 SS for variable j is the reduction A; in error SS achieved by adding
variable j to the model without variable j. It is sometimes useful to compute
RZ2-delete, called R} for variable j. the multiple c.c. when variable j is dropped.
Since R? — R} = A}/TSS, R} may easily be computed. For example, for
runtime R? = 0.848 7 — 250.8/851.4 = 0.554. The partial c.c. r, of variable j with
¥, with the effects of other variables removed is, from Section 3.7, d;/(1 + d})!/?
for d; =t;/(n — k — 1)"/2. Some computer packages allow for printing of R}
and r;. The column “Tolerance” gives | — R? for R? the m.c.c. for that variable
with respect to all the other independent variables. It can be found using
TOL = S%/[S*(B,)S? ,(n — 1)]. The reciprocal of the jth tolerance, often called
the variance inflation factor, is the jj term of (X'X) ™!, multiplied by Y (x;; — %))*.
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Table 3.12.7a  Analysis of Variance

Source DF Sum of Squares Mean Square F-Value Prob > F
Model 3 656.27095 218.756 98 30.272 0.000 1
Error 27 195.11060 7.22631835

C Total 30 851.38154

Root MSE 2.680 181 R? 0.7708

Dep Mean 4737581 Adj. R? 0.7454

CVv. 5.674 165

Table 3.12.7b Parameter Estimates

Parameter Standard T for Hy:
Variable DF Estimate Error Parameter = 0 Prob > | T}
Intercept 1 93.126 15008 7.559 156 30 12.320 0.000 1
Runtime 1 —3.14038657  0.36737984 —8.548 0.000 1
Age 1 —0.17387679  0.099 54587 -1.747 0.0921
Weight 1 —0.05443652  0.06180913 —0.881 0.3862

Standardized estimate is B}SH/S,, the estimated regression coefficient when
both Y and x; are scaled to have standard deviation one.

(4) Table 3.12.7 reports the analysis for the smaller model including data
which might be more easily available, with independent variables runtime, age,
and weight. The new error SS in 195.11, an increase of 195.11 — 128.84 = 66.27
over error SS under the full model. Thus, the F-ratio for a test of the null

hypothesis that coefficients for all other independent variables are zero is

66.27/3
T 128.84/24

Since F; 24 0.95 = 3.01, we reject at the 0.05 level. The model which includes
all independent variables except weight and restpulse would, based on the
t;-values, seem to be of interest.

If one variable alone is to be used as a predictor, runtime = x, would seem
to be best, since its c.c. with Y is —0.862 19. The equation of the simple linear
regression fit of Y against x, has slope ry,,S,/S,, = (—0.86219)(5.327/1.387) =
—3.31, intercept Y - f,%, = 47.38 — (—3.31)(10.59) = 82.43. This variable
alone explains 74.3% of the variation in Y. Other variables, by themselves,
explain much less.

The F-ratio for the test of the null hypotheses that only runtime and the
constant term is needed is F = 3.35, which exceeds F; o5. The partial correlation
coefficients ry, .., for j # 1 would be of interest.
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138 THE LINEAR MODEL

Problem 3.12.1: For a simple linear regression of Y vs. age, give the
equation of the estimated regression line. Estimate o2 for this model, and give
95%; confidence and prediction intervals for a 40 year old.

Problem 3.12.2: Fitthe model Y = fox, + B,X; + B2x, + £for these data.
Hint: First fit the model with x,; and x, replaced by the vectors of deviations
from means. Then the (X'X) and XY matrices may be found from the tables
provided and the inverse is easy to compute by hand. Also find the error sum
of squares, and test the null hypothesis that this model suffices, assuming the
full model Y = Box + Bix; + -+ + Bex¢ + &

Problem 3.12.3: Find the partial correlation coefficients ry, ; and rys ;.

Problem 3.12.4: Find the partial correlation coefficient of Y with age, with
the effects of all other vanables removed.

Problem 3.12.5: What is the coefficient of variation of weight?

Problem 3.12.6: What would R? be if runpulse were dropped from the
analysis?

Problem 3.12.7: Assuming the full model of problem 3.12.1, test H,:
B = fs=Pfe =0, for 2 =005

3.13 ANOTHER EXAMPLE: SALARY DATA

We consider here some faculty salary data, with the particular aim of trying to
determine whether there is evidence of discrimination on the basis of gender.
The College of Arts and Letters (English, History, Art, etc.) at Michigan State
University was chosen for this small study because the data was readily
available to the author (it is published for public use each year), and because
that college had a larger number of female faculty than most. The data contains
158 salaries for full professors on nine-month appointments for 1990-1991. Also
recorded were years in rank and years of experience. The gender of the faculty
member was determined from the name, which shall not be given here. Thus,
we let

Y = full year salary

x, = indicator of females (there were 26 fernales)
x, = years in rank of full professor

x5 = total years of professional experience



ANOTHER EXAMPLE: SALARY DATA 139

Table 3.13.1a Salary Data for the College of Arts and

Letters
Mean Standard Deviation
X, 0.1646 0.3720
Xz 10.6962 6.0336
X3 264114 6.2731
Y 49,304.9304 7,313.196 1
Correlations
Y X, X X3
Y 1.000 —-0.072 0.587 0.359

x, | —0072 1000 —0009 0.066
X, 0587 —0009 1000 0718
X3 0359 0066 0718 1000

Table 3.13.1b Multiple Regression Table

Variable ﬁj Estimate of Standard Error t; R Delete &

Constant 44,4571 2,215.2 2007 0.000
Indicator of female —1,1344 1,278.6 -088 0594 0376
Years in rank 815.0 112.9 722 0372 0000
Years experience —1394 108.9 —~1.28 0591 0202

Total SSgs. (corrected for mean) = 8,396,805,409 R? = 0.35591
Regression SSgs. = 2.988,495,539 R =0.5966
Error SSgs. = 5,408,309,832 S =5,926.1

We will first consider the full model: Y; = f§, + B,x;; + B.xi, + Baxis + &,
for i = 1,..., 158 with the ¢ independent N (0, 0%). Regression analyses were
performed using APL and SPSS, with the results of Tables 3.13.1 and 3.12.2.
Since x, = years of experience seemed to contribute little beyond the other
variabies to the prediction of salary, it was then dropped from the model, giving
the new table 3.13.2.

A reasonable conclusion, bused on these models, is that there is no or little
discrimination based on gender. However, there is danger in such analyses
which must be considered carefully.

Suppose that the true regression function is E(Y) = g(x,) and that g has the
form sketched in Figure 3.12 (concave).

Teachers in the public school system do in fact have regression functions of
this shape, reaching an upper limit after some fixed number of years. Regression
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Table 3.13.2 Multiple Regression Table

Variable B,  Estimate of Standard Error  t; R Delete %

Constant 41,916.2 988.0 4242 0.000
Indicator of female —1,305.3 1,274.2 —1.02 0594 0587
Years in rank 7109 78.5 905 007t 0000

Total SSqs. (corrected for mean) = 8,396,805,409 R? = 0.34905
Regression SSgs. =2,930,874,674 R =0.5908
Error SSgs. = 5,465,930,698 S = 59384

functions for management in some industries may instead have convex rather
than concave shapes. Suppose in addition that female faculty members tend to
have smaller x, values, perhaps due to a recent effort to increase the proportion
of female faculty. In this case f,, the coefficient of the indicator for females
would tend to be positive, suggesting that females are paid at a higher rate
than males, even though the salary policy is gender neutral. If, instead, the
regression function were convex, bending upward, then lower x, values for
females and use of our linear model would suggest that males are paid more.

80
K
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0 5 10 15 20 25 30

Years in Rank
Figure 3.12 Salary in $1,000s vs. years in rank.
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The fault, of course, is in the use of the model linear in x,. Use of an additional
term x2 in the model for the Michigan State data did not improve the fit. The
same conclusions resulted when z = log Y, rather than Y, was used as the
dependent variable.

Consider the model Y = 0 + ¢, where 8 = §,J + 8,f + B,x,, J is the vector
of all ones, f is the indicator for females, and x, is the vector of x;, values. Let
m = J — f be the indicator for males, and X3 =x, — [p(x,|m) + p(x, ] =
X; — Xymm — X, f. Then @€V = L(x,,f,x;) = L(f,m, x3), and these last
three vectors are mutually orthogonal. It follows that if 8 = y f + y,m + y,x3,
then §, = ¥,, . = ¥,, and B, = 9, = (x#, Y)/lix5||* are the least squares
estimators of y, y,,, and y, = B, and that 8, = y, ~ y,, — B,(X,, — X,;). Thus,
B, = Y,-Y, - B, (% 2 — %m2). The model states that for each sex the regression
of Y on x, is linear with slope ##, = y,, with intercept 8, + 8, for females, and
Bo for males. The estimates of these regression lines have slopes §,, and pass
through the points of means (X,, 7,) for females, and (%,,,, ¥,.) for males. The
coefficient B, will be positive if and only if ¥, — ¥, > B,(X,; — %,.,), i.e, when
X35 > X3, if the slope of the line from (X;, ¥)) to (%,,, ¥,) exceeds B,
equivalently if the corrected female mean salary, f’, — fyx;, exceeds the
corresponding corrected male mean score.

There are occasions when it may be more appropriate to interchange the
roles of x, and Y, so that x, is the dependent variable, and Y one of the
independent variables. This might be more appropriate when salary levels are
fixed, but the number of years x, needed to reach a salary may be varied by
the employer. Define Y* =Y — ¥,f — ¥, m. The least squares lines for the case
that the roles of Y and x, are reversed again pass through the points of means,
but have common slopes, when the abscissa is x,, % = | Y1[|3/(x,, Y1) =
1¥Y+124x3,Y) = B,/r, where r is the partial correlation coefficient of Y and
x,, with the cflects of f and m removed. The regression line for females will be
above that for males if the slope of the line between the point of means for
females to the point of means for males is greater than f% = B,/r2. Supposing
r? < 1, it follows that 8% > f,. Thus, it is quite possible for the female line to
be above the male line when Y is used as the dependent variable, but below
when x, is the dependent variable, indicating that females wait longer to achieve
the same salary, though they have higher average salarics for the same time in
rank. Of course, the reverse conclusions are also possible. This paradoxical
situation is a consequence of the use of least squares, with the sum of the squares
of vertical distances being minimized in one case, and the sum of squares of
horizontal distances (x,-distance) in the other. In the courtroom, opposing
lawyers in a dis-crimination suit, with their own “expert” statisticians, can each
find supporting arguments.

For the College of Arts and Letters the estimates of the regression lines were:
Y = 40,611.0 + 710.86 x, for females, and Y = 41,916.2 + 710.86 x, for males.
When x, is treated as the dependent variable we get %, = —12.829 + 4.8631 x
107*Y for females, and X, = —13.370 + 4.863 1 x 10™*Y for males. Reversing
the axes, with x, as the abscissa, we get the lines Y = 2638.0 + 2056.3 x, for
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females, and Y = 27493 + 2056.3 x, for females. The partial correlation
coeflicient of Y and x, with the effects of the gender variables removed was
r = 0.5880. The conclusions are consistent. For the same number of years in
rank, when we use Y as the dependent variable, we estimate that males tend
to have a salary about $1,300 higher. When we treat x, as the dependent
variable, we estimate that males tend to earn about $111 more, and to have to
work about six months less to earn the same salary. Too much should not be
made of this, however, because the differences are not statistically significant.

Problem 3.13.1: Consider the following salary data (fictitious) for the
Department of Sociomechanics at Rich University in thousands of dollars per
month (Y) and x, (years in rank).

Females Males
X; 1 2 2 3 X, 3 4 4 5
Y 2 3 5 6 Y 8 6 12 10

(a) Fit the model Y = , + B,x; + f.x, + ¢ where x, is the indicator for
females.

(b) Estimate o* and give a 95%, confidence interval on §,.

(c) Fit the model x, = B, + f,x; + nY + ¢ Sketch the regression lines for
males and for females, with x, as the abscissa. On the same axes sketch the
regression lines found in (a). Does there seem to be discrimination? Is it for or
against females?

(d) Find the partial c.c. r of Y and x,, with the effects of gender removed.
How is r related to the slopes of the lines sketched in (c)?

(e) The Department of Philosophical Engineering uses the formula ¥ = 40 +
ION/xZ. It has five female full professors, having x, = 0, 1, 2, 3, 4 and four male
professors having x, = 8, 12, 16, 20. Repeat (a) for this department. Does there
seem to be discrimination?

Problem 3.13.2: Suppose that for the model and x, values of problem 3.13.1
B = —2, B, =2, and g = 0.8. What is the power of the a = 0.05 level F-test
(and two-sided t-test) of Hy: f, = 0?

Problem 3.13.3: For that model Y =f,J+ 8,f+ B,%, +¢ let §,, =
lix3)? = Z (X35 — fz;)z + Z (X2mi — X2m)*. Show that

(a) Var(B,) = [1/n, + 1/n, + (%,; — %,,)/5,,]0%,

() S2=[Y (Y, — ¥)? + ¥ (Yo — F,)% + B2S,,)/(n - 3).

Problem 3.13.3: The College of Natural Science (Physics, Chemistry,
Mathematics, Zoology, etc., including Statistics) had 178 full professors on
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nine-month appointments in 1993-1994. For 15 female professors Sy = 7,167.2,
S, = 6.174, with correlation coefficient ry,, = 0.1094. For 163 male professors
Sy = 138930, S,, = 7.773, with ry,, = 0.162 3. The means were Y =57,023.87,
%, = 8.867 for females and ¥ = 65848.7, X, = 14.436 for males.

(a) Use the model of Problem 3.13.1 to decide whether the data indicate
discrimination against females.

{b) Find a 95%, confidence interval on §,.

(c) Find the multiple correlation coefficient for this model.

Table 3.13.3
Team Y X, Xy X3 X4 Xs Xg r
National League
East
New York 0.625 0256  0.328 152 140 0981 291 703
Pittsburgh 0.531 0.247 0.321 110 119 0980 347 651
Montreal 0.500  0.25t 031t 107 189 0978 308 628
Chicago 0475 0.261 0.312 113 120 0980 384 660
St. Louis 0469 0249 0312 ! 234 0981 347 578
Philadelphia 0404 0239 0.308 106 112 0976 4.14 597
West
Los Angeles 0.584  0.248 0.308 99 131 0977 296 628
Cincinnati 0540 0246 031t 122 207 0980 335 641
San Diego 0516  0.247 0.313 94 123 0.981 3.28 594
San Francisco 0.512 0.248 0.321 113 121 0980 339 670
Houston 0.506 0244 0.308 96 198 0978 3.4t 617
Atlanta 0.338 0.242 0.301 96 95 0.976 409 597
American League
East
Boston 0.549 0.283 0.360 124 65 0.984 3.97 813
Detroit 0.543 0.250 0.326 143 87 0.982 37 703
Toronto 0.537 0.268 0.334 158 107 0982 380 763
Milwaukee 0.537 0.257 0.316 I3 159 098t 345 682
New York 0.528 0.263 0.336 148 146 0978 424 772
Cleveland 0.481 0.261 0.317 134 97 0980 4.16 666
Baltimore 0.335 0.238 0.307 137 69 0980 454 550
West
Oakland 0.642 0.263 0.339 156 129 0983 344 800
Minnesota 0.562 0.274 0.343 151 107 0.986 3.93 759
Kansas City 0.522 0.259 0.324 121 137 0980  3.65 704
California 0.463 0.261 0.324 124 86 0979 432 714
Chicago 0.441 0.244 0.305 132 98 0976 4.12 631
Texas 0.435 0.252 0.323 112 130 0979 4.05 737
Seattle 0.422 0.257 0.319 148 95 0980 4.15 664
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Problem 3.12.5: The data of Table 3.13.3 describe the performances of the
26 major league baseball teams during the 1988 season. Teams played between
160 and 163 games (rainouts caused fewer, ties caused more, than the scheduled
162). Presented are: Y = percentage of games won, x, = batting average
(proportion of hits to times at bat), x, = on base average, x; = # home runs,
x4 = # stolen bases, xs = fielding average, and x4 = earned run average (mean
number of runs given up per nine innings), and r = # runs scored. The data
are from page 916 of the 1989 version of Total Baseball, Thorn and Palmer
(1989). It would be of interest to determine the relationship between Y and the
explanatory variables x,, . .., x4, (not including r) and to explain a reasonable
proportion of the variation in Y, using as few of the explanatory variables as
possible. Those who discover a good prediction formula may be hired as a team
general manager. A general manager may be able to control some of the
x-variables, at the expense of others, by making trades of players, drafting some
players rather than others, or by spending money on the a minor league system,
but could not control r directly. For this reason it is of interest to omit r as an
explanatory variable.

(a) Fit the model and use appropriate tests of hypotheses to decide whether
a smaller model would suffice. Prepare a one-page report which could be
understood by the president of a baseball team who had a beginning statistics
class 40 years ago. Particularly ambitious readers may want to analyze such
data for the years 1901-1994.

(b) Since teams win when they score more runs than the opponent, it would
seem that r and x4 alone would serve as better predictors of Y. Is that true for
these data? How well can r be predicted from the x-variables?



CHAPTER 4

Fitting of Regression Models

Good model-building requires knowledge of the subject matter involved, a
grasp of regression techniques, access to a computer and software, and
ingenuity. Rather than looking for the model one looks for reasonable models.
Only in an idealized world is there a perfect model. The regression function is
almost never exactly linear in the independent variables, the errors probably
do not have equal variances, and are not normally distributed.

The purpose of this chapter is to provide some understanding of model-
building techniques and of the effects of deviations from the idealizations we
have made, and provide some techmiques for recognizing them, and for making
adjustments. The chapter should be viewed as a brief introduction rather than
a complete review. Entire books have been devoted to regression techniques.
See Cook and Weisberg (1982), Belsley, Kuh, and Welsch (1980), Myers (1986),
Seber (1977), Searle (197t), Draper and Smith (1981), Carroll and Ruppert
(1988), Hastie and Tibshirani (1990), and Koul (1992).

4.1 LINEARIZING TRANSFORMATIONS

Consider the problem of finding a regression function g(x) = E(Y|x) for a single
variable x. We have discussed techniques for estimating g(x) for the case that
k

¢(x) is a linear combination h(x) = Z B; f;{(x) when the f; are known functions
i=1

of x; that is, g(x) is expressible as a linear function of unknown parameters §;.
Presumably if g is a smooth function and x is not allowed to range too widely
then g(x) may be approximated by a function of the form of h(x) over the range
of intcrest for x. What can we do if this is not the case?

Consider a simple example, with observed (x;, ¥;) pairs as in the scatter
diagram of Figure 4.1.

It may be possible to fit a model of the form of h above, for h quadratic or
cubic, say. However, the model is likely to require a number of parameters and
could very well have undesirable properties at the extremes of x, particularly

145
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if extrapolation is to be used. We might instead like to consider a function
h(x) = h(x, y0,71) = 70€"*% since it is always positive (for y, > 0) and approaches
0 as x — o (for y; < 0). This function is not linear in the parameters, however.
The principle of least squares would, for observations (x;, ¥;),i = 1,..., n, lead
to the minimization of the function

0o, 1) = _; LY, — h(x;, 7o, )’1)]2

Since h is not linear in y, and y,, the solution (¢, #,) is not lincar in the Y.
Many statistical computer packages include routines which find the solution
by iterative means.

We will instead show how the model may be linearized so that techniques
already discussed may be employed. Ignoring an error term, consider the
approximation Y = h(x, 7o, 71) = yo¢"* or log Y = log yo + 7,x, (the symbol =
means approximately equal). Setting Z =log Y, B, = log yo, B, = 7,, we get
Z = B, + B,x, a function linear in By, #,. If we now employ the simple linear
regression model Z; = B, + B,x, + ¢, for Z; = log ¥;, we can obtain an estimate
(Bo, B,) for (B,, B,), then use these to obtain the estimate (7, = €%, 9, = B,) for
(30, 71)- Of course, this linear model is equivalent to

Yx’ = g% = ?oenxaeal

so that the error term 5, = ¢* for Y; is now multiplicative and has a log-normal
distribution if the & have normal distributions. Confidence intervals on y, or
y, may be found by first finding confidence intervals on B, or f,. Lack
of dependency of Y on x corresponds to f; =0. Note that the function
h(x) = 7€ is not the regression function of Y on x in general, since E(g;) = 0
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(@) (b)

FIGURE 4.2

does not imply E(¢*) = 1. However, it may be a reasonable approximation. Of
course, the solution (34, §,) does not minimize Q.

Consider a scatter diagram of the form (a) or (b) in Figure 4.2. Data of the
sort in (b) may arise in chemistry when x = 1/v, v is volume, and Y =p is
pressure at a constant temperaturc. For either graph we may consider
the model h(x) = y,x?', with B, <0 corresponding to (a) and 0< f§,
corresponding to (b). Linearizing again, take Y =y,x%, Z=logY =
log yo + B, log x = B, + B,w. Considering the model Z;, = f, + B,w; + ¢, for
Z; = log Y, w; = log x;, we can again find an estimate Bo. ﬁ,) for (B,. B,), then
let §o = e, §, = Bl'

In the case that Y is necessarily between 0 and 1, a proportion for example,
we might consider the model

h(x) =

- for v=yeem”
I +v

Setting Y = h(x) and solving for v, we get v =Y/l —Y) and logv =
Y
log 7o + 11x = IOg(rT,) =Z. Sctting Z; =log[Y/(1 — X)), Bo = logy,,

B: = v, and considering the model
Z;=Po+ Pix; + ¢

we can now estimate (8, B;), hence y, = ef* and y, = B,. Least squares is not
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in general the best method to be used in the estimation of (B, §,), since the
usual error model for the ¢; is usually not appropriate (see Chapter 8). However,
least squares will usually provide quite reasonable estimates.

More generally for several independent variables (x,,..., x;) the trans-

formation Z = log(l—}:?) (called log-odds for probability Y) facilitates the

fitting of the log-linear model

h(x) = k(X)/[1 + k(X)]

k
for X = (x,,..., x,) and k(X) = exp(z Bjxj).
1

The plotting of Y vs. x, log Y vs. x, log Y vs. log x, etc. can suggest
which model may fit reasonably well. For example, if log Y seems to be
approximately linear in x, then the model log Y = B, + B,x, equivalently,
Y = yo¢f'* may be appropriate. Or, if log Y seems to be quadratic in x, then
Y = exp(f, + B,;x + B,x?) may be appropriate.

Example 4.1.1: Consider 74 makes of automobiles with measurements:
miles per gallon (mpg) and weight (wgt), as reported by the magazine Consumers
Report. Figure 4.3 indicates that the regression of mpg against wgt is not linear.

50 1 50 1
40 40 1
c
5
a -
30 3
3
20 $ 20
s
10 10
MPG = 39.58 + 0.00607 WEIGHT MPG = 3.56 +
o o | 487B(10000WEIGHT)
0 2000 4000 0 2 4
Weight 10000/Weight

FIGURE 4.3 Miles per gallon vs. weight and 10,000/weight for 74 automobiles.
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There seems to be a significant gain in mpg per pound as wgt drops below
2,000. A plot of mpg vs. 10,000/wgt is more linear and suggests the model
mpg = B, + B(10,000/wgt) + ¢ Least squares was used to fit this model, then
the fitted model mpg = 3.556 + 49,780/wgt plotted on the (wgt, mpg) axes for
the weights observed. The resulting curve seems to be a better fit than the
straight line.

Example 4.1.2: Consider ten (x, Y) pairs as follows, where we seek a
model for which 0 < Y < 1 for all x = 0.

x 05 1.0 15 20 25 3.0 35 40 45 50
Y 0035 008 0171 0329 0538 0734 0868 0940 0974 0989

Z= Iog(1 Y Y) is approximately linear in x, with Z = —4.171 + 1.729x (sce

Figure 4.4). Thus ¥ = ¢Z/(1 + &%).

Example 4.1.3: Consider the (x, Y) pairs in the first two columns of
Table 4.1.1. It is possible that a quadratic function of x may fit these data points
reasonably well. However, a plot of Z =1log Y vs. x indicates that Z is
approximately linear in x, or, equivalently, that Y may be approximated by a
function of the form h(x) = ype’'* Taking logs, we get the approximation
Z =1log Y = logy, + y,x, so we can use simple linear regression of Z on x to
estimate log v, and y, (Figure 4.5).

4 1}
] 0.8
2 v
p4 0.6
0-
0.4 1
2] 021
4 0 ——
01 2 3 4 5 01t 2 3 4 5
X X

FIGURE 44 Lcast squares fit of Z = log(Y/(1 — Y)) vs. x and estimate of the regression of Y
on x,
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Table 4.1.1

x Y z 2 Y

1 3394 1.222 1.203 3.330
2 4.161 1.426 1.645 5.182
3 9.786 2.281 2.087 5.182
4 10.850 2.384 2.529 12.540
5 23.000 3.135 2971 19.510
6 34.500 3.541 3413 30.360
7 43.190 3.766 3.855 47.240
8 79.940 4.381 4297 73.490
9 99.880 4.604 4.739 114.300

60 7 Y =exp(0.761 + 0.4A2 x)
40
20 1
o.r T Ll T L] L 0.I L L]
0 2 4 6 8 10 0 2 4 6 8 10
X b

FIGURE 45 Fit of Y vs. x using linear fit of Z = log Y vs. x.

Measuring the Goodness of Fit: In order to compare two or more attempts
at fitting models to the same data we need a measure of the closeness or goodness
of the fit. If the approximation of y; given by the model is Y, then one such

measure is R%(Y,y) =1 — ZZ((yL: y_,)) ; . This is the multiple correlation coeffi-
N Yi—Yy
cient only if the Y; were obtained by fitting a linear model with a constant
term. Consequently R%(Y) can be less that zero!
Suppose that a transformation z = g(y) is made. Let 2 be the predicted value
of z by fitting a linear model for z vs. x. Let Y be the predicted value of y for

a simple linear regression of y on x, and let i’z = g~ !(&). Scott and Wild (1991)
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give_an example of a collection of six pairs of (x,y) values for which
R*(Y,y) = 0.88, while R*(Y,,y) = —0.316!

(x, ¥):(0,0.1), (3, 0.4), (8,2), (13, 10), (16, 15), (20, 16).

In the least squares sense 7 is a better predictor of y than is Y,. On the z-scale
R*(z, ) = 0.94. Scott and Wild warn, and give examples to show, that values
of R? based on different scales are not comparable.

Measurement of the value of a transformation should be based on the scale
to be used in making judgcments about the subject matter. These who use the
methodology must choose the scale on which measures of the goodness of
approximation are to be made. Finally, we should be reminded that the choice
of R? as a measure was somewhat arbitrary. We could, for example, replace
squared deviations by absolute or maximum deviations.

Problem 4.1.1: Consider the ten (x;, Y;) values of Table 4.1.2 and the
corresponding plots of (x;, ¥) and (w;, Y,) for w; = In x, (see Figure 4.6). State
a model which will justify 95% confidence and prediction intervals on E(Y|x)
and on Y for x = 10 and find these intervals.

Table 4.1.2
X Y w X Y w
2 2043 0.693 6 12.45 1.792
2 20.92 0.693 8 10.35 2079
4 15.57 1.386 8 10.18 2079
4 14.85 1.386 10 7.78 2.303
6 13.02 1.792 10 9.09 2.303
Table 4.1.3
X ¥ w z u
I 05 21640 —0693 3075 2000 Y x= 275 Y xz=2150
2 10 8343 0000 2121 1000 Y x*= 9625 ) wy= 4191
3 15 4833 0405 1575 0667 Y y= 5057 ) uy=6038
4 20 4300 0693 1459 0500 Y y*=603.0 Yuzr= 3946
5 25 2343 0916 0851 0400 Y w= 8173
6 30 2623 1099 0964 0333 Y wi= 1152
7 35 1818 1253 0598 0286 Y :z= 1198
8 40 1628 1.386 0493 0250 ) 22 = 21.25
9 45 1909 1.504 0647 0222 Yu= 5860
10 50 1120 1609 0113 0220 Yui= 6199
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FIGURE 46

Problem 4.1.2: Find a 90% confidence interval on y, for the data in
Example 4.1.2. What model justifies this interval?

Problem 4.1.3: For the (x;, Y) pairs of Table 4.1.3 and Figure 4.7 define
w; = log x;, z; =log ¥, u; = 1/x;. Suggest a model, estimate the parameters,
and sketch the resulting function h(x).

Problem 4.1.4: Verify the two values of R? given by Scott and Wild.

4.2 SPECIFICATION ERROR

It is often difficult to determine which of many possible variables in
X =(x;,...,X,) to use in estimating the regression function g(X) = E(Y|X) or
in predicting Y, particularly in cases for which n is relatively small. The
statistican is torn between the wish to keep the model simple and the wish for
a good approximation. If a poor choice of a subset x,,,...,x; of possible
measurements is made, what will the penalty be?

For example, in trying to determine the regression function g(X), should we
use a fifth degree polynomial, or will a quadratic function suffice? Obviously
we can fit the data more closely with a fifth degree polynomial, but may pay
a price in increased complication, poor extrapolation, and, as we shall see, a
loss of precision. On the other hand, if the true regression is cubic (it would be
better to say, is approximately cubic for x of interest) and we fit a quadratic
function some inaccuracy (bias) would seem to result.

To make the discussion precise suppose Y =0 + ¢ for ¢ ~ N(0, ¢21,) and
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FIGURE 4.7 Scatterplots among x, w =log x, u = l/x, Y, and z = log Y.

our postulated model is 0 € V, a known subspace of R, of dimension k. As will
be seen by the following analysis, if 8 ¢ V, errors may result. To see this, let
0=0,+0, for8, =p@|V) Let g, = p(e|V) and £, = € — &,. Then the least
squares estimator of 0 is Y = 6y + £, and the error in the estimation of 0 is
d=Y-0= -0, +¢,. Thus, Y has bias —0,. We can assess the expected
sizes of the errors made in estimating 8 by computing

E(Y - 0)(Y — 0) =0,0, + E(e,&,) = 0,0 + EP,ec'P,) = 0,0, + a°P,.

Here we have taken advantage of the orthogonality of 8, and g, (Figure 4.8).
To gauge the size of this we can compute the sum of the expected squared errors.
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FIGURE 438

Efdy)® = E[110_1° + ey [*] = 18_1* + ko?,

since " has dimension k.

We might also study the random variable Q = ||d||> = /|0, ]|> + |i&,]|* in
order to understand the sizes of these errors. Q is a constant plus 62 multiplied
by a central y? random variable (not noncentral y2), with expectation given
above. R

Error sum of squares is |Y — Y2 =10, + £, so that [|[Y — Y||¥/e¢? ~
72-1(3) for & = [0, | %/a2 Thus, E(S?) = o2 + 8, 12/(n — k).

In searching for a good model we might try to choose a subspace V so that
H, = E{d||*/c* = |!0.][*/6* + k is small. Of course, H, depends on unknown
parameters. It can be estimated if we can find an estimator of pure error variance
o*. We might, for example, use a particularly large subspace ¥, in which we
are quite sure 0 lies, and use error sum of squares for this subspace to estimate
6. Or we might use past data from another experiment with repeated
observations on Y for the same X to estimate 2. Let 2 be this estimator of
pure error variance. Let $? be the estimator for the subspace V.

2 a2
Then E(S% — ¢%)(n — k) = |0}, so that C,, = (S Az.é ) (n — k) + k can be
a

used as an estimator of Hy . C,. is called Mallows C,, for the case that dim(V') = p
(Mallows 1964). Since H, = dim(V) for @€ V, we should hope to find a
subspace V such that C, is close to or smaller than dim(V).

Consider, for example, a sequence of regression vectors X, X,, . . . , with order
chosen by the statistician. x; might, for example, be the vector of jth powers.
Then for ¥, = #(x,,...,x,) and C, = Cy.,, we can compute the sequence C,,
C,, ... and, as recommended by Mallows, plot the points (k, C,), choosing the
subspace F; for the smallest k for which C, is close to k.

One possible criterion for the choice of a subspace V, rather than a subspace
V in which 0 is known to lie may be developed as follows. Since the bias of
f’o =p(Y|¥) is p(0)F,) — 0= —0, and the sum of the squared errors is
Q= 101>+ &y, )% we have E(Q) = {|0,% + k62 (see Theorem 2.2.2). The
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sum of squared errors for Y= p(Y|V)is g, 1%, which has expectation ka2, Thus
we should choose ¥, if

101> + koo? < ka®,  or 10,11 < (k — ko)a?, 4.2.1)

equivalently if the noncentrality parameter § = ||0,(*/a? in the F-test of
Hy:0€ b, is less than k — k,. R .

Let Q = Y — VI and Q, = |Y — ¥ % Then Q — Q, = I¥ — Yoli? has
expectation |0, 1> + (k — ko)a? and E(Q) = (n — k)a?, so that

k— kg
Qo — Q(T——k)

is an unbiased estimator of |8 |i%. Thus, if we replace the parameters in (4.2.1)
by unbiased estimators we get Qo < 2Q[(k — ko)/(n — k)], equivalently F =
(@ — Qo)/(k — ko)

, < 2. This is equivalent to C, < k (see Problem 4.25).
Q/(n — k)

Example 4.2.1: The data of Table 4.2.1 were generated using the regression
function
g(X) = Bo + Bix; + B2xs + Byxs + fuxi

Table 4.2.1
i X, X, X3 Y, Y, Y, Y,
1 1 1 1 8.04 11.46 9.81 14.33
2 1 2 2 17.57 20.17 16.93 19.20
3 2 3 4 2743 34.60 28.20 27.11
4 2 4 3 28.96 20.35 27.78 2523
5 3 1 1 15.78 18.72 11.48 14.69
6 3 2 5 3091 30.04 2992 29.70
7 4 3 4 28.95 18.27 31.72 29.55
8 4 4 3 28.79 33.89 31.30 27.67
9 5 1 5 40.74 34.71 3194 3272
10 5 2 4 23.04 2681 31.52 30.84
11 6 3 3 29.60 34.78 35.18 3277
12 6 4 1 3398 24.67 3098 27.50
13 7 1 1 24.65 26.36 2593 27.88
14 7 2 1 3142 41.04 29.28 29.37
15 8 3 1 3982 37.68 38.56 36.76
16 8 4 5 62.77 54.81 57.00 51.76
17 9 1 5 49.23 53.78 53.79 54.21
18 9 2 3 47.81 50.30 49.60 4895
19 10 3 3 65.14 55.03 60.73 58.41
20 10 4 1 53.56 54.30 56.53 53.15




156 FITTING OF REGRESSION MODELS

for Bo =10, B, = —1, B, =2, B, =3, B, =04, a2 =25. Consider the full
quadratic model

h(X) = By + B1X, + BX5 + Bayxy + Box} + Bsx3 + Box3
+ Bixix; + Bgxyx3 + Box;y X3,

and the sequence of subspaces ¥, spanned by the first k terms. So V5 is the true
model. For these parameters two determinations Y, =0 + ¢, and Y, =0 + ¢,
were made for 20 triples X; = (x,;, X3;, X3;). Table 4.2.1 presents x,, x,,
x4, Y,, Y, and estimates of @ corresponding to Y, and Y, for model V.

An estimate ¢2 of g% was obtained by fitting the full quadratic model with
10 parameters. For Y, and Y, these were ¢ = 26.04 and 42 = 32.18. Then
consecutive models V;, Vi, ..., V, were fit, and values of S} and the Mallows
statistic C, obtained for each (Table 4.2.2). If we define % = 0 — p(8{};), then
C, is an estimate of Hy, = ||8%]]%/0% + k (recall that dim(¥,) =k + 1). In
choosing a model we look for the smallest k for which C, is reasonably close
to k, equivalently S} is close to ¢2. For both Y, and Y, this suggests the model
V.

For these models the analyses for Y, and Y, are given in Table 4.2.3.

Table 4.2.2
Y Y
k s? G, R} S? G R?
2 75.740 37.255 0.684 59.952 17.395 0.696
3 63.902 28.165 0.748 60.024 17.763 0.711
4 33.827 8.080 0875 38.127 6.140 0.828
5 21.458 1.182 0.925 22.239 ~0.943 0.906
6 21.551 2412 0.930 23.606 §.003 0.907
7 20.563 3.054 0.938 25.249 2984 0.907
8 22.048 5.005 0.939 27.299 5.028 0.908
9 24.020 7.067 0.939 29.612 7.041 0.908
10 26.044 9.000 0.940 32.182 9.000 0.909
Table 4.2.3
Y, Y,
J B; 4, t R, J B S5, 7 R;
0 3235 4.579 0.707 0 10.833 4.662 2324
1 —-1.013 1.631 ~0.621 0.961 1 —1.8%6 1.661 —1.142 0.947
2 3.351 0938 3.573 0928 2 1494 0.955 1.565 0944
3 3772  0.684 5.511 0880 3 3.379  0.697 4849 03871
4 0463 0.145 3.197 0935 4 0.519 0.147 3.526 0910
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Table 4.2.4

J B, S, L R,
0 8.116 6.822 1.190

1 —~1.047 1.635 —0.640 0.963
2 —-1.712 5.321 -0322 0.964
3 3.860 0.692 5578 0.880
4 0.466 0.145 3.212 0.937
5 1.012 1.047 0.967 0.962

R; is R-delete for the jth variable, the multiple c.c. when that variable is
deleted.

Thus, for these examples the procedure worked well. It will not always work
as well. Had we entered the B;x3 term before the fi,x? term the Mallows
statistics for Y, would have been C,: 37.3, 28.2, 8.1, 9.5, 2.4, 3.1, 5.0, 7.1, 9.0 for
k=2,..., 10, so that the model ¥, would have been chosen, producing the
regression analysis of Table 4.2.4. This suggests that variable 6 or 3 be dropped.
Since variable 6 is x3, it seems more reasonable to drop this, reducing the model
to V; again. The close linear relationship between x, and xi caused their
regression coefficients to have large variance, so that both ¢, and ¢4 are small.

The AIC procedure of Akaike (1973, 1978) chooses the model .4 in a
sequence of models .#,, . . ., .#, of dimensions given by the subscripts for which
AIC(k) = n(log S + 1) + 2(k + 1) is minimum. Both this criterion and the
Bayesian information criterion, which minimizes BIC(k) = nlog S} + klogn,
can be justified from the Bayesian point of view. See Schwarz (1978) for a
discussion of the asymptotic properties of these procedures. Hurvich and
Tsai (1993) discuss the effects of use of these criteria for model selection
on the estimation of parameter vectors by confidence ellipsoids. For a full
discussion of model-building methods see the book by Linhart and Zucchini
(1986).

Effects of Specification Errors on yy = ¢’

In order to assess the effect of specification errors on B, or more generally,
n = ¢'B we need to specify 8 and V in terms of specific x-vectors. We consider
two cases: overspecification and underspecification.

Overspectﬁcanon

Suppose 0 = Z B,;x;, but our postulated model is @ = Z Bix; + Z ¥;W;, where

(Xyp.o., W )are linearly independent. In matrix form we can write 8 = XB + Wy.
The true model therefore corresponds to the statement that y =0, so
that the least squares estimator (ﬁ ¥ of (B.y) is unbiased. To see how
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this overspecification affects variances, consider a parameter # = ¢, f8; +
r

+ ¢, . The Gauss—Markov Theorem states that #, = chﬁjo, where ﬁo =

(Bio» - .. B.o) is the least squares estimation of i under thc true model, has the
smallest variance among all linear unbiased lincar estimators. Since # = ¢'f is
a linear unbiased estimator, we conclude that

Var(ijo) < Var{f) unless # = .
More explicitly, from the proof of the Gauss—Markov Theorem, we get
fio = (a5, Y) for a, = X(X'X) !¢,

the unique vector in V¥, = Z(x,,. .., x,) satisfying X'a, = ¢.
In order to write 9 explicitly, define Z = (X, W) = (X, ..., X, Wy, ..., W),

[
Then 4 = (a,Y) fora=2Z(Z'Z)"'| 0 | =Z(Z'Z) 'c the unique vector in
rx1 ¢
V=% X Wy, ..., W, ) satisfying Z'a = 0 |. Then p(a]V,) = a,, so
that rx 1

Var() — Var(f,) = lla — a,fj%¢% > 0

For ?A= p(YV), (Y — ?) 1V, since ¥, is a subspace of }. Therefore,
1Y -Y “VZ
0.2
of 4% even in the case of overspecification. The degrees of freedom for error is
smaller by r than it would be for the true model, so we pay a price in reduced

degrees of freedom for error.

~ i, and ST =Y — Y)1¥/[n — (k + r)] is an unbiased estimator

Underspecification

Suppose that the true model is 8 = XB + Wy, but the postulated model is
6 = XB. If V' is the column space of X, then Y, has bias -0, = —(I - P, )Wy.
Since E() = (X'X)"'X'Y = (X'X)"'X'(Xp + Wy) = B + (X'X) 7' X'Wy, p has
blas (X'X)” 'X'Wy as an estimator of p. However, E(Xﬁ) =P, Y = 0,, so that
B is an unbiased estimator of the vector B, = 8 + (X'X) ™ 'X'Wy of coefficients
in the least squares approximation 8, of 0.

Suppose that we wish to estimate # = E(Y|X, W) = g(X, W) = Xp + Wy, the
mean Y for an individual or unit with characteristics (X, ). For the postulated
model the estimator is # = xﬁ where ﬁ is the least squares estimator cor-
responding to X. Let (By,%,) and #, = xﬁo + W, be the estimators cor-
responding to the true model. It is important to interpret the ith component
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of B as the change in g(X, W) given a change in one unit in the ith component
of %, and no changes in other components of (X, W).

Let V=2X),Z=XW), Vy=22Z),d=XM"'%X,d, = Z(ZZ) (X, W).
Then 7 = d'Y, A, = dyY, and

E@A) = d'0 = XM !X'(XB + Wy) = kB + XM~ 'X'Wy
so that # has bias
(%, w) = (d —dy)8 = (KM 'X'W — w)y.

The first term within the last parentheses is the predicted value of W for given
X based on the data (X, W) and a linear model W = XB + @, where @ is an
n x r error matrix. Thus, if W is exactly consistent with the relationship between
X and W, then # 1s unbiased for #.

For example, let Y be college grade point average, x; S.A.T. exam score, w,
high school grade point average, and suppose linear regression of w, on x,
predicts w, = 2.90 for x; = 500. Then # is an unbiased estimator of g(500, 2.90),
but would be biased for g(500, 3.60).

In order to compare 7 and #, let us compute their mean square errors. We
have

Var() = [dj*6> and  Var(f,) = lldofi’s>.

Since de V and, since d,Z = dy(X, W) = (X, W), X'd, =X and Xd =%, d =
p(dy| V). Letd, =d, —d. Thend, L ¥ and d, =d + d, is a decomposition of
d, into orthogonal vectors. It follows that #, = (dy, Y) = f + (d,, Y), where the
two terms on the right are uncorrelated. Thus,
MSE(f) = b*(X, W) + Var(d) = [d; Wy]* + |d|’s?
and MSE(4,) = Var(d,) = l{d,f %07, so that
MSE(#) — MSE(io) = [d, Wy]* — ||d, ||?a>.

Thus # is a better estimator than #, if

_ IpWyid,))? _ [dy Wyl
a? lid, | *a?

o

J is maximized for all d, € V* N ¥, equivalently all (X, W), for d, any multiple
of p(WylV*+ n V) = (I — P, )Wy. We conclude that 4 is better than 4, for all
vectors (X, W) if

A=[yYW{ -P,)Wyljo® = (8,|*/c* <
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A is the noncentrality parameter in the F-test of H,:y=0. Since

E(F) = »v—z—j—l (l + é—) for (v, v,) d.f, and unbiased estimator of A is D =

V2 Vi

(}jz"‘:_z F — 1 )v,, so we could choose to use the smaller model when D < 1,

Va 1
equivalently if F < (-- gl ‘) v22 . This requires knowledge of W, of course.

vy v, —

Here v, = n — (k — r), v, = r. For large n and r = 1, this suggests dropping a
single w if the F-statistic for testing Hy:y = 0 is less than 2, equivalently if
|t} < \/E. It is difficult to evaluate the properties of such a procedure.

It is possible that ¢ can be less than one for some (X, W), greater for others,
since & depends on the bias term (XM ™ !X'W — w)y. In the case that W = w,
a one-column matrix, the subspace V= n ¥, is spanned by w, = p(w|V* n V),
we get

8 =yllw,[1*/s?,

which does not depend upon (X, W), so that 9 is either better or worse than
o, uniformly for all (X, W).

It is important to interpret the ith component of B as the change in
E(Y) = g(x, w) given a change in one unit in the ith elements of X, and no
change in W.

As noted earlier E(S%) = 62 + ||0_]|%/(n — k). In the case of underspecification

0, =(1-P,)Wy, so that ||0,|> = Ag?.

Thus E(S?) = 02(1 . A )
n—k

Example 4.2.2: Suppose that g(x) = E(Y|x) = fo + B,x + f2x? + B3x3,
Var(Y|x) = ¢?, and we observe Y independently for x = —2, 1, 0, 1, 2. What
penalty do we pay if our postulated model is simple linear regression:
g(x) = Bo + B,x?

Define xo=(1,1,1,L1)y, x;,=(-2,-10,1,2), w,=(410,1,4),
w, =(—8, —1,0,1,8), so that X =(x¢, X, X5), W= (w,,w,), B=(8,,58,),
Y={(7.72), 0=06,+0, where 0, =X, 0,=Wy. Then 0, =0 -
p@| V) =0, — p(0,|V) = Bwi + B,w;, where for i=1, 2, w; is the part
of w, orthogonal to V. Thus, w} =w, — 2x4 = (2, — 1, =2, —1,2),wi = w, —
34x, =(—-12,24,0, —24,1.2).

Thus, for example, Y, has bias —(—f; + 2.48,) as an estimator of 8,, while
¥, has bias 28, as an estimator of 0. Since |0, | = 2w+ |2 + B2l|lwi|? =
1483 + 1082, E(S%) = a* + (14/3)B3 + (10/3)B3.

The bias in B = (B,, B,) is (X'X) ' X'Wy = (285, 3.48,). Thus, B, is un-
biased for B, if and only if #, = 0, and B, is unbiased for f, if and only if 8, = 0.
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Table 4.2.5

Model Coo Ciy Ca2 Cas Caa
vs 097713 0.12400 0.04099 0.02183 0.000 98
g 2.15927 0.12406 1.31343 0.022 22 0.00098
vq 228511 0.13147 1.81819 0.896 44 0.001 01
Us 2.566 52 0.13388 2.504 56 1.21820 0.00123
Uy 2.60601 0.141 64 3.32751 1.80493 0.00127
V1o 292370 0.14592 155744 1.886 16 0.001 32

Example 4.2.3: For X as in Example 4.2.1 consider the changes in the
variances of regression coefficients as the number of terms in the model grows.
Table 4.2.5 gives ¢;; = Var(B,-)/er2 for each postulated model Vs, V4, ..., V.
c;, is the jj term in the corresponding matrix (X'X)~'. Notice that Var(8,) jumps
considerably as the model is changed from V¥, to V;, that is, the variable x2,
which has correlation 0.9844 with x,, is added. Similarly Var(#,) jumps when
the variable x3 is added (correlation = 0.980 8).

Suppose we fit model V;. Using the notation for underspecification X =
(Xo, X1, X3), W = (X3, X,). Then v = (B3, Bs)' = (3,3) and B = (B,, B, B,), has
bias (X'X) ™ !X'wy = (—0.232,4.36,0.0149). This bias could cause serious
problems if regression coefficients are to have subject matter interpretations.
B, will almost certainly be positive though its true value is — I.

Example 4.2.4: Suppose Y satisfies the simple linear regression model
Y = foxo + B,x, + & and we ignore the x, vector. That is, our postulated
model is Y = floxo + €& Then X = x5, W =x, = w and w, is the vector of
deviations of the x;’s from x. Let n = f, + B,xo. Under this postulated model
the estimator of 57 is 5j = ¥, which has bias b(1, xo) = By + B1% — (Bg + B1%o) =
—Bi(xg — %), and Var(¥) = o?/n. _

The estimator under the true model is A, = Bo = B,xo =Y+ B,(xo - X),

1 (xg—x)?
which is unbiased for 5, with Var(j,) = 02[— + (—X—O—J) ] Thus, MSE(#) =
n
2 1 52"
Hxo — %) + 7 and MSE(4,) = o’[— + (—XQS}—LJ so that MSE(®#4) —
n h xx
2 2
MSE(o) = (xo — i)z[ﬁf - ;—’—], which is negative for 6 = —2/?19- < 1. dis the
XX o XX
noncentrality parameter in the F-test of Hy: 8, = 0.

In the case that n = g(X,, W) — g(X,, W) = (X, — X,)P represents the change
in E(Y) as X changes from X, to X,, while W is held constant, use of the
postulated model 8 = Xp leads to the estimator # = (X; — X,)p with bias
(X, — X,)M " 'X'Wy. 4 is an unbiased estimator of 5 for all choices X, and
X, from the rows of X if the column vectors of X are uncorrelated with
those of W (see Problem 4.2.6). The comparisons between 4 and #, are the
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same as for the more general case of 7 = Xp + WY with X, — %, replacing X, 0
replacing W.

Problem 4.2.1: Suppose that g(x) = E(Y|x) = f, + f,x + Bpx? + B3x?,
Var(Y|x) = a2, and we observe Y independently for x = —2, ~1, 0, 1, 2. Find
the biases in the estimation of (8,, 8,), 8, and o2, caused by fitting the simple
linear regression model.

Problem 4.2.2: Suppose that the roles of the postulated model and true
model in Problem 4.2.1 are exchanged, so the simple linear regression model
holds. Is (B, B,) in (Bo,.... B3) an unbiased estimator of (f,, f;)? Evaluate
Var(f, + B,x) and show that it is larger for the cubic model than it is for the
(correct) simple linear regression model.

Problem 4.2.3: Let x,,..., X3¢ be 20 real numbers, which include at least
six different values. Suppose that we observe Y corresponding to each x, and
fit a polynomial of degree k in x for k =0,...,5. Let SSE(k) be the error
sum of squares corresponding to the polynomial of degree k. Let ESS(0) =
1,000, ESS(1) = 300, ESS(2) = 120, ESS(3) = 90, ESS(4) = 85, ESS(5) = 84.
Evaluate the Mallows statistics C,, using the “pure” estimate of error ¢ =
SSE(5)/(20 — 6). Which model seems to be appropriate?

Problem 4.2.4: Suppose that the relationship between weight Y in pounds
and height x in inches is Y = 8, + B,x, + fi,w + ¢, where w is the indicator
for males. Observations were made on four males and three females:

Y 150 180 140 160 110 120 130
X, 70 74 66 72 62 64 66
w 1 i 1 1 0 0 0

(a) Estimate the expected weight  of a person 68 inches tall, with (f,) and
without (%) using their sex.

(b) Give an expression for the bias of /i and evaluate it for female 68 inches
tall, if 8, = 20.

(c) For this 68 inch female for what values of pairs (8,, %) would # be a better
estimator than f,?

(d) Let S = SSE/(n — 2) for the fit of the simple linear regression model.
Find E(S?) for 8, = 20, 6* = 25.

Problem 4.2.5: Prove that, for F as defined immediately before Example
421, F < 2 is equivalent to C, < k.
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Problem 4.2.6: Prove that in the case of the underspecified model zero
correlation of all the column vectors of X with those of W implies that
/= (X, — X,)B is an unbiased estimator of n = (X, — X,)p for all pairs (X,, X,)
of row vectors of X.

43 “GENERALIZED” LEAST SQUARES

k
Under the model Y =0 + € =) f;x; + ¢, the assumption that E(e) = 0 and
1

D[e] = o1, leads, by the Gauss—Markov Theorem, to the optimality, in a
certain sense, of least squares estimation. Though the condition D{e] = o1, is
often quite reasonable, there are certainly many occasions when it is unrealistic.
If the components of Y correspond to observations at consecutive points in
time (time series) as is often the case with economic data, there will often be
correlation, usually positive but sometimes negative, between observations at
consecutive points in time. Larger values for the components of 8 often lead to
corresponding large values for the variance terms of D{e].

Though lack of knowledge of X = D[€] can cause severe problems, there are
occasions when X is known up to or nearly up to a multiplicative constant. In
this case we can redl:ce the problem to the previous form.

LetY=0+¢=) fx;+¢=XPp+¢ D[c] =% = A, where A is a known
1

n x n nonsingular matrix, ¢2 is an unknown constant (which is the common
variance if the diagonal elements of A are all ones). Let BB’ = A, where B is
n x n. Since A must be positive definite and (BF)(BF) = A for any orthogonal
matrix F, an infinity of such B can be chosen. Thus B may be chosen to have
special properties. It can, for example, be chosen to be lower triangular (zeros
above the diagonal). Or if A has eigenvalues 4,,..., 4, with corresponding
eigenvectors v,,...,v,, each of length one, then for V= (v,,...,v,), D=
diag(4,,...,4,), AV=VD, A=VDV' so we can take B=VD'? or
B = VD!2V’ (the symmetric version).
For given B with BB’ = A, define

K K
Z=B''Y=B '0+B'e=) (B 'x)+B 'e=) fw,+1q
1 1

for w,=B7'x; and 3 =B 'e. Then E(y) =B 'E(e)=0, and D[y] =
B !(¢’A)B ! = ¢’B 'AB' "' = ¢?l,, so that Z satisfies the standard
linear hypothesis we have considered before. Under the model E(Z) =
B '8¢ L(w,,...,w,). Theleast squares estimator of  based on Z is therefore

(WW)"'WZ = §,
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where W = (w,,...,w,) = B~ 'X. It follows that

B=(XB B 'X)"'X'B'B'Y,
SO R
B=(XATIX)'XATYY @.3.1)

Thus, ﬁ is a function of A alone (as well as X and Y), and does not depend on
the particular decomposition BB’ = A. Because B is the least squares estimator
of B as a function of Z, and D[Z] = ¢*1,, p has the optimality properties of
the Gauss—-Markov Theorem. Any tests of hypothesis can be performed using
Z. Of course, any statistic can be rewritten as a function of Y by making the
substitution Z = B™'Y.

The formula (4.3.1) above, and other formulas used in connection with this
“generalized least squares” can be expressed as functions of inner products.
The inner products in this case have the form

(v, V1) = V1A 1y, (4.3.2)

Thus, when D[e] = ¢?I, the inner product should be as given in (4.3.2) and
p=M"'y,

where M is the inner product matrix among the x;’s using the ® inner ?roduct,

and U is the vector of * inner products of Y with the x;. Then Y= Y [?jx,- is
1

the orthogonal projection (in the * inner product) of Y onto #(x,,..., x;).

Example: Suppose A = diag(wi, ..., w?), B = diag(w,,...,w,). ThenZ =
Yi/w

A

B7'Y = . |. This is usually called weighted least squares, since B as
Y./w,
LJ
defined in (4.3.1) minimizes Y (¥; — £,8)*w}. For k = 1, we get
1

3 n x_‘z -1 n ﬂ)
t}—(zl'wi) 51':( wi ’

so that, for w, = Kx;, we get
b=@ WL x=7Yx

l n
and, for w; = Kx?, we get B = - ¥ ¥/x,.
n,

Suppose A = (a;)) for a,; = p''~/l, —1 < p < 1, as is the case when the ¢
satisfy the first-order autoregressive model ¢ = pg;_, + &;, where the ¢, are
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independent with equal variances. Then

1 P 0
—p 1+p? ~p O
0 -p 14p* —p
A-l o P ) -p
A . . 0
i 0 0
- 1/A 0 0
p/A 1 0
piA p 14 p?
B= —f
0
_,P”‘-l/.A pn—Z pn-—3
A 0 0
—-p 1 0
0 —-p 1
B != 0 -»p
| 0 0 0
Thus,
nL—-plhh
Z=B'Y=| Y,-pl, and

165

., A=1+p?
—p
LI
1—p* —p
-p 1
0-
0
0
0
—p 1]
™ Ax; 7
Xj2 — PXj
4.3.3)

= Xjn = PXjy-
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The first term is often discarded for simplicity. p can be estimated by first using
least squares to estimate g, then estimating p by the correlation of consecutive
pairsine=Y — Y.

The Durbin-Watson statistic is often used to estimate this autocorrelation
coefficient p or to test the null hypotheses that it is zero. Assume equal variances
among the g;, let e be the residual vector in the usual least squares fit, and define

n—1
d=Y (e, — ¢)*/lie)?
i=1

Then E(d) is approximately 2(1 — p), so that p =1 — d/2 is approximately
unbiased for p. The distributions of d and p depend on X, so that an exact test
of Hy:p =0 is not available. Durbin and Watson (1950, 1951) gave an
approximate test. See Theil, (1972) for details. Once p is obtained p may be
found by using z and w; as defined in (4.3.3).

Variance Stabilizing Transformations: In some situations it may be obvious
that it is unrealistic to suppose that the variances of the Y. are equal, and it
may be better to choose a transformation Z = g(Y), which will cause the
variance to remain relatively constant, even as the mean changes. For example,
if W, has a binomial distribution with parameters m and p;, and Y, = W,/m is
the sample proportion, then E(Y;) = p;, and Var( Y} = p{1 — p,)/m. This model
will be discussed more thoroughly in Chapter 8, but let us consider how we
might transform the Y, so that their variances arc approximately equal.

Suppose that Y has mean u, and variance o%(u) = h(u). In the example
h(p) = u(1 — p)/m. If g is chosen to be smooth, and the variation of Y around
u not too large relative to g, then the distribution of g(Y) and that of the linear
function ¢,(Y) = g(u) + ¢'(u)(Y — u) should be approximately the same. But
g1(Y) has mean g(u) and variance {¢'(u)]*h(u). We should therefore choose g
so that this function of u is a constant, say c¢. Thus, ¢'(u) = [¢/h(1)]'/%. This

implies that g(u) = ¢'/? J‘h(p)‘”2 du + C, where C, and ¢, may be chosen

arbitrarily. Usually C is chosen to be 0.
For the example, A(u) = (1 — w)/m, so that we can take

g(y) = (cm)*2 j[y(l — )]~ "% dp = 2(cm)'* arcsin p'’?,

transforming the Y, = W,/m by g(Y)). If, for convenience, we take 2(cm)'/? = 1,
the resulting approximate variance is ¢ = 1/4m. Especially when m is large, g( ¥})
will have approximately the same variance across a wide range of u = p,. For
example, for m = 20, for p, =0.5, 0.2 and 0.1, simulation shows that the
variances of arcsin Y}/ are approximately 0.133, 0.154, and 0.193, as compared
to 1/4m = 0.125 given by the asymptotic theory.
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Another commonly used transformation is used for count data, for which
the Poisson distribution may be an appropriate model. In this case h(u) = g,

so that an appropriate transformation is g(Y), where g(u) = ¢ | u™ "2 dy =

v/l‘» for ¢ = 1/4. For a table of such transformations see Kempthorne (1952,
p. 156).

Though such vanance stabilizing transformations often have the additional
benefit of creating more nearly normal distributions of observations and
estimators, they may destroy the linear relationship between the expected value
of the dependent variable and the explanatory variables. They therefore should
be used with care and with understanding of the subject matter of the
application.

Problem 4.3.1: Let Y, ~ N(u, w;K) be independent for i=1,...,n, for
known w;, unknown K. Find the weighted least squares estimator of u both
by using (4.3.1) and directly by writing Z; = Yi/\/rw(. Give a formula for an
unbiased estimator of K.

Problem 4.3.2: Let Y=(Y, Y,, ¥3) = fix; + B,x; + ¢ for x; = (1,0, 1),
x; = (1, 1,0), € ~ N(0, X), where the components of ¢ have equal variance 62,
ey, £5) = pleq, £3) = 0, p(g,, £3) = 1/2. Find a,, &, such that ((a,, Y), (a;, Y)) =
(B, B,) is the generalized least squares estimator of (8, B,). Give the covariance
matrix for (8,, 8,).

Problem 4.3.3: Let X,,..., X, be a random sample (r.s.) from N{u,, c?)
and let Y,,..., ¥, be an rs. from N(u,, 862), with the vectors of X’s and Y’s
independent, for unknown g,, u,, o2, known 0. Give the generalized least
squares estimator of u; — u,, and the corresponding confidence interval on
H; — H, (sce Problem 3.8.6).

Problem 4.3.4: Suppose that ¥, = f, + B,x; + ¢ with the ¢s independent
with variances k;6%. Give an explicit nonmatrix formula for the generalized least
squares estimator A, of §, and give its variance (k’s known). Compare the
variances of f}; and the least squares estimator (based on the X’s) Bos of B, for
n=5x=0Lk=i

Problem 4.3.5: Find the variance stabilizing transformation g for the case
that Var(Y) = h(u) = iu?, for a constant 4. This is the case for the gamma
distribution, including the chi-square.

44 EFFECTS OF ADDITIONAL OR FEWER OBSERVATIONS

In this section we study the effects on Y and § of the addition or deletion of
an observation vector (X;, Y;) or collection of such vectors. Much work has
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been done over the last 15 or 20 years on this topic, and we will only give here
an introduction. Readers are referred to books by Belsey, Kuh and Welsch
(1980), by Cook and Weisberg (1980) and to the review paper and book by
Chatterjee and Hadi (1986, 1988).

To facilitate the study let us decompose X and Y as follows:

() - ()
Xz A ] Y2 1
where X; and Y, have n, rows for i=1, 2 and n, + n, =n. Let M; = X;X,

M = X'X = M, + M,. We suppose that X, has full column rank, so that M,,
and therefore M, are nonsingular. Let B be the least squares estimator of § for

(X,Y) and let B" be the estimator for (X,,Y,). Let Y= XB (Y ) and

Y,
. . Vs oA . - . . e,
Y* = Xp* = g ) with Y, =X;pand Y? = X;$. Define=Y -Y = and
2 * €;
similarly define e* =Y — Y* = (e') Our tasks will be to develop formulas
€3

relating ll 1o B" and Y to Y*. We will be interested in adding observations
(finding B from Q"‘ and Y from Y*) and deleting observations (finding §#* from
g and Y* from Y).

Adding Observations: The normal equation for f is
MB=M, + M) =XY=X,Y, +X;Y, = M,§* + X;Y,. (44.1)

The last equality follows because f* satisfies the normal equation relative to
(X,,Y,) Thus

M, (B — %) = X5 Y, — M,B = X5(Y, - ¥,) = Xje,,
and
B B‘ M, 1xze2 (4.4.2)

We want a formula depending on e% rather than e,. To find one, multiply
though by X, to obtain

Y, - Y4 =Q,e,, where Q,=X,M['X;.
The left-hand side is e} — e,, so that

e; = (Iug + QZ)eZ
and (4.4.2) becomes

= M; 'X5(1,, + Q;) e} (4.4.3)

-
|
b
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In the literature this change vector is often called DFBETA. Let us call it A
here. The change Y — Y* is therefore

.. X
V-¥*= ( ‘)A = (:‘)M;‘x;(l,,z +Q,) et (4.4.9)
2

To express SSE in terms of SSE* and e3, we write
Y-¥Y*=(Y-V)+(Y-Y¥ (4.4.5)

The two vectors on the right are orthogonal, since (Y — ¥) L (column space of
X). Then

iY — Y*i2 = |Y, — Y2 + [e3]|> = SSE* + [e}]l?, (4.4.6)

and, using (4.4.4), we find Iy - Y*)2 = e3'(I,, + Q;)'Qe3. Then using (4.4.6)
and the Pythagorean Theorem we find

SSE = SSE* + e'(I + Q,) 'et. 4.4.7)

The case n, = 1 is of special interest. Let X, =X,, e =ef =1, - iof}*,
0, = X,M[ 'x5. We get A = B — B* = M[ 'xg(e2/(1 + Q,)). The term 1 + Q,
is k(X,), the multiplier of ¢? in the variance of prediction error (see Section
3.11). Notice that the change A is in the direction of M; '%; with the multiple
depending on both the prediction error e% and the distance measure Q,. The
increase in error sum of squares is SSE — SSE* = e%?/(X,), indicating a large
increase if the additional observation is far from its predicted value in units of
the standard deviation of prediction errors at %,.

Deleting Observations: We want a formula similar to (4.4.2) which uses M
rather than M. It is possible to use formulas for the inverse of partitioned
matrices (Section 1.7), but we will avoid this by beginning with (4.4.1). Since
MB =(M - M,)B* + X,Y,, where

M(B — B*) = Xy(Y, — X, $*) = Xje3,

it follows that
B — p* = M~ 1Xjet. (4.4.8)

This time we should replace e} by a term depending on e,. Multiplying by X,
we get

-~

Y, - Y2 =€t —e, = (X,M !X})e? (449)
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The matrix h = X, M ™ 'X}, in parentheses is the lower right n, x n, submatrix
of X(X'X) X' = H, projection onto thc column space of X, often called the
hat-matrix because HY = Y. From (4.4.8) we get

es=[I, —h] e, (4.4.10)
so that (4.4.8) becomes
Br —B = ~M X[, —h] e, 44.11)
Finally then,
Y* - ¥ = X(@@* - B) = ~XM " X5[1,, — h] e, (44.12)

The n x n, matrix XM ~'X} on the right consists of the last n, columns of H.
Matrix computation then gives

1Y* — Y§% = ey(I,, — h)~'h(l,, — )" 'e, (4.4.13)
To express SSE* = |}Y, — Y*)? in terms of SSE = ||Y — Y2, we again use
(4.4.6):
Y — Y*||? = SSE* + [le}|?
From (4.4.12) and (4.4.13) and the Pythagorean Theorem we get

SSE* = SSE — ey(I,, — h) ‘e, (4.4.14)

In the special case that n, = 1, X; = %4, h = X,M "!xg is the (n, n) term of
H. h = h(X,) is sometimes called the leverage of the observation vector %, since
by (4.4.8) e = (1 — h)e*. Then (4.4.11) becomes

pr—B=-M"%; "2] (4.4.15)

and

Ve_v=- [‘f’» XM %), (4.4.16)

where e; = ¢, = Y, — ioﬁ. From (4.4.14) we get

SSE* = SSE — e2/(1 — h) = SSE — e2*(1 — h)
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It is sometimes useful to study the change vector A = A, for X, = X;, the xth
row of X. ln thns case, letﬁ i= B Y ,=Y*SSE_,=SSE* e_, =Y, — x‘B*
h; = Xx,;M~'x;. Then

A=Poi—B=-M'%le_./(1 — k)], (4.4.17)

where h; is the (ii) diagonal term of the hat-matrix H.
Y_ .- Y= -XM"'%[e_,/(1 — h)]}, (4.4.18)
SSE_; = SSE — e¥/(1 — h;) (44.19)

Study of the values given by (4.4.17) to (4.4.19) for each i may suggest omission
of one or more observations, or perhaps another model. The residuals e¢_; are
called the PRESS residuals, and Z e, is the PRESS statistic. One criterion for

the choice of 1 model s to choose the one with the smallest PRESS statistic.

Example 4.4.1: Consider the simple linear regression model Y = f,x, +
B.x, + & for x, the vector of all ones. It is convenient to suppose X, is in
mean-deviation form, so that x, 1 x;. Then

M=[ﬁ QJ, Sue = Il &= (L x,— ),

and from (44.17),

» A l,"n
B..—B= _[(x.' _ -’E)/Sxx][e_i/(l - h)l
for

1
h;= - + (x, — X)*/S,,
n

The jth element of Y, — Y is

—[1+3——99l ][ﬂﬂl~hu

n S,x

Example 44.2: Consider the eight (x, Y) pairs given in Table 4.4.1 with
values of the corresponding components of Yande = Y — Y corresponding to
the simple linear regression model. The least squares estimate of (f,, f;) is
(49167, 0.4167). Ehmmatxon of each of the observations (x,, ¥;) in turn
produces the eight estimates IL, of (8, ;) given in Table 4.4.2. See, for example
in Table 4.4.3, that elimination of (xg, ¥3) = (8, 3) causes the estimate of slope
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Table 4.4.1

x Y Y e

2 5 5.750 -0.750

3 5 6.167 —1.667

3 6 6.167 -0.167

5 8 7.000 1.000

5 8 7.000 1.000

6 10 7417 2.583

8 i 8.250 2.750

8 3 8.250 -5.250
Table 4.4.2
B B, b B, B B B B B
49167 55667 55318 50045 47738 47738 4.5950 6.2000 24667
04167 03167 03318 04046 04167 04167 03198 00500 L1167
Table 4.4.3
x Y \4 Y, Y, Y, Y, VY., Y., V., Y
2 S 5750 6200 6.195 5814 5607 5607 5623 6.300 4.700
3 5 6.167 6517 6.527 8218 6.024 6.024 5955 6.350 5817
3 6 6167 6517 6527 6218 6024 6024 5955 6.350 5.817
5 8§ 7000 7.150 7.191 7027 6857 6857 6.619 6.450 8.050
5 8 7000 7150 7.191 7027 6857 6857 6.619 6.450 8.050
6 10 7417 7467 7523 7432 1274 7274 6950 6.500 9.167
8§ I 8250 8100 818 8241 8107 8.107 7615 6.600 11400
8 3 8250 8100 8186 8241 8107 8.107 7615 6.600 11400

to be large. Elimination of (x, ¥;) causes the estimated regression line to be
almost flat, while elimination of observation number 4 or 5 has almost no effect
on the slope. This is so because |x; — x|/S, in (4.4.18) for x; = 5 is small. The
residual vectors e_; = Y — Y_; are given in Table 4.4.4. Notice, for example,
that the eighth component of e_g is very negative. Error sums of squares and
the corresponding estimate $%; of variance vary considerably with i (Table

44.5).

Problem 4.4.1: Suppose that a simple linear regression analysis has been

performed on the following pairs:
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(The x’s add to zero, because the original mean was subtracted). Thus
F=6 YTx=2 Yxk=-5 Y Y=39%

(a) Find the last squares estimates ﬁ and Y for the simple linear regression
model. Also find ESS. .

(b) Use (44.11) and (44.12) to find the least squares estimates f* and Y+
for the case that the observation (3, —2) is omitted. Check your work by
computing these from scratch. Also find ESS*.

(c) Suppose an addmonal observation (4, 4) is obtained (so there are eight
(x, Y) pairs). Find A = B B* and use this to obtain li (BO,B Y, the vector
Y, and the new error sum of squares, ESS. (The stars correspond now to the
smaller data set.)

{d) Suppose two new observations (—4, 17) and 4, —6) are added to the
original data. Use (4.4.3) and (4.4.4) to find B and Y, also find ESS. Verify your
solution B by starting from scratch.

Problem 4.4.2: Consider the two sample model with n; independent
observations from N(u,, 62), n, from N(y,, 62). Suppose one more observation
Y, is taken from the distribution. Use (4.4.3) to show that the change in the
estimator of (i, u,) is (Yo — Y,)/(n, + 1), O).

Problem 4.4.3:  Suppose the observations (X,, Y,) are deleted to obtain p*
from @ using (4.4.11). Then a new estimator B"‘* is obtained from p* by adding
(X,, Y,) to the deleted data set using (4.4.2). Show that e = B.

Problem 4.4.4: Fill in the details in the paragraph following (4.4.4) to show
that (4.4.7) holds.

45 FINDING THE “BEST” SET OF REGRESSORS

Whenever a large set of independent vanables x,, . . ., x, is available, particularly
when n is not considerably larger, we are faced with the problem of choosing
the best subset. For example, we may have n = 25 observations (X;, Y;) where
X; is a vector with k = 10 components. While we could use all 10 components
to predict Y, and as a result reduce error sum of squares as much as possible,
considerations of precision discussed in Section 4.2, and the wish to find a model
with reasonable simplicity suggest a smaller subset of variables.
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There are 2* — 1 subsets of k-variables with at least one member. Given
today’s computer power it is often possible to fit models for all such subsets.
Algorithms for doing so are available. See, for example, Seber and Wild (1989,
ch. 13) on choosing the “best” regression. We would need some criterion for
choice of a model from among a large number. Knowledge of the subject
matter should almost always be a guide. Such knowledge may suggest, for
example, that variables # 1, #3, and #7 should be included, and that future
observations of variable #9 may be so difficult or expensive that we should
look for a model not including #9.

A number of procedures are available for choosing a model. For details see
Seber (1977). Usually these are step-up or step-down types. A step-up procedure
begins with a small set of variables, possibly only the constant term, and adds
variable one at a time, depending on the contribution of that vanable to the
fit. The procedure may allow for elimination of certain vanables after addition
of another. The step-down procedure begins with a more complex model,
possibly all x-variables, and eliminates variables one at a time, choices being
made in such a way that error sum of squares increases least (or regression
sum of squares decreases least). Both procedures usually involve F- or t-tests,
but it is usually difficult or impossible to evaluate error probabilities. The sweep
algorithm, to be described here without proof, facilitates computation. See
Kennedy and Gentle (1980) for a complete discussion.

The Sweep Algorithm: (Beaton, 1964, in slightly different form) Let the k
columns of X correspond to the set of explanatory (regressor) variables under
consideration. Usually the first column of X is the column of ones. Let
W=(X,Y),andletQ=W‘W=[xx XY

YX YY
the sweep operator S(k) (sweep on the kth row) is a matrix-valued function of
a square matrix A = (a;;) with value S(k) A = B = (b;;) of the same size defined
as follows. We assume for simplicity that A is nonsingular: (1) b, = 1/a,, (2)
by = ayj/an, and by = —ay/ay for j# k, (3) b; = a;; — agay;/ay for i #k,
j # k. Let S(0) be the identity sweep, that is, S(0) A = A for all square A.

For any sequence of integers (i, ..., 1), let S(i,, ..., i) = S(i,)S(i,)" - - S(Q,).
That is, S(i,, ..., i) A = S(i,)S(i,)- - - S(i,) A. Then, these sweep operators have
the following properties.

], the inner-product matrix. Then

(1) The order in which (i,,..., i) is written is irrelevant, ie. if (j;,....Jj,)
is a permutation of (i,,..., i) then S(iy,...,4) = S{,....J,)
(2) S(i, i) = S(0). That is, sweeping A twicc produces A.

All AlZ

(3) Suppose that A i1s symmetric. If A =[ ] and A,, is n, x n,,

12 22

B B

1 12 -
, Whel’e Bll = Alll, Blz =

-B B
. \ 12 22
- , I
AfA,, Bzz =A;; —ApRATA,.

then S(1,...,n,) A=B=,[
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Suppose now that we apply S(I,...,r) to the inner-product matrix Q. Let
X = (X,, X;), where X, consists of the first r columns of X. Let M, = X}X,,
U, = X}{Z, where Z = (X,, Y). Then S(1,...,7)

Q=[ M;! M[!Z }
—-ZM[! Z’Z -ZM;'Z]

The matrix in the upper right is the matrix of regression coefficients when the
last (k — r) variables are regressed on the first r. In particular, f, the coefficient
vector in the regression of Y on the first r regressor variables, is the vector
consisting of the first r elements in the last column. The matrix on the lower
right is the inner-product matrix among the (k — r) residual vectors, after
removal of the effects of the first ». ESS for the regression of Y on the first r
regressors is in the lower right corner. The r x r matrix on the upper left is
useful because D[B] = M; '6? in the case that Y = X, + ¢, D{e] = o°I,. By
sweeping consecutively on rows 1, 2, 1, 3, 2, 1, for example, we get important
statistics in the least squares fits of all of the possible linear models involving
the first three variables. An algorithm due to Garside (1965) can be used to
consecutively fit all possible regressions of Y against subsets of the regressor
variables with a minimum of sweeps.

Example 45.1: Let

1821
16.29
1437
12.10
10.05
8.13

W=(XY)=

b et ot et et

[- NV I VR S

and
6 3 21 79.15
3 3 6 48.87
21 6 91 241.32
79.15 4887 241.32 1,117.04

Q is the inner-product matrix corresponding to W. Y = Xf + g, where §§ =
(20,0, —2Y, and € was an observation from Ny(0, 6%I¢), o = 0.2. Refer to the
second and third columns of X by x, and x;. The following sweeps were
determined:
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0.167 0.500 3.500 13.192
—-0.500 1.500 —4.500 9.299
—3.500 —4.500 17.500 —35.707

—13.192 9.299 —35.707 72,902

S(HQ =

Sample means are given in the first row. The 3 x 3 submatrix on the lower
right is the sum of squares and cross-products matrix for deviations of the
second, third, and fourth columns of W from their means. For example, the
total sum of squares for Y is 72.902.

0333 -0.333 5000 10.092
—0.333 0.667 —3.000 6.199

—5000 3000 4000 -—7810]
~10092 —6.199 —7810 15257

S(2, NQ = SQ2)8(1)Q =

This indicates, for example, that simple linear regression of Y on x, produces
the estimate Y = 10.092 — 6.199x,, with ESS = 15.257,

0.333 —0.333] 2

2Ry —
S )_[-0.333 0.667

0867 1400 —0200 20.333
501,30 —~1400 0343 0257  0.117
CTETL 20200 -0257 0057 —2040 |

~20.333 0.117 2.040 0.046

6.583 —4.083 -—1250 19.855
—4.083 2917 0.750 0.341
1.250 —-0.750 0.250 —1.953
—19.855 —0.341 1.953 0.007

5(1,3,2)Q =

A 95% confidence interval on f,, assuming the model corresponding to the
design matrix X, is [0.341 + (3.182)\/r(0.007/3)(2.917)). R =1~ 15257/72.902,
R = 1 — 0.046/72.902.

Model fitting is an art, and different good statisticians may arrive at
somewhat different models. There is no substitute for a strong interaction
between statistical and subject matter knowledge.
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In one situation it is possible to determine the probability of the correct
choice of a model. Suppose that V, = Q, of dimension n,and that V;, = V, o - -~
o ¥, 1s a decreasing sequence of subspaces of dimensions k, =n >k, >
k; > -+ >k,. Suppose that Y =0 + ¢ for 8¢ ¥ for some jo, 1 <jo, <1, jo
unknown, and & ~ N(0, 6°1,). Suppose also that «%,,...,«, are chosen error
probabilities. Define 8; = p(8]V)).

Let H(i) be the null hypothesis: @ ¢ V. Then we choose a subspace by first
testing H(2) assuming H(1) holds, using an F-test at level «,. If H(2) is rejected
then we decide that @ € V,,0 ¢ V. If H(2) is accepted then we test H(3), assuming
H(2) holds, using an F-test at level a,. If H(3) is rejected then we decide that
@ V, but 8¢ ;. We continue in this way until an F-test rejects H(j) for some
J. In this case we decide @€ V,_,, but 8¢ V.

More formally, let Y p(Yl ¥;) and

E=1¥ - Yo 2= Va2 — ¥ 12 =Y = ¥ 12— 1Y — Vi

Defined, =n,—n;,,and F;, = Ei/d, - . Let I; be the event
(BEo + ' + E;_)/(n — k)

[F, < Fy_,(di,n — k;))]. Then we decide that (0 V,, but 0¢ V,, ) if I,..., I;
occur but not [;, ;.

We therefore want to evaluate the probability of the event D;=
Uy~ ) nI§,, forj < j,. We can do so because the events I, ..., [,
are independent for j < j,. To see this, note that

(1) E,,...,E, are independent

(2) For j <jo, E; ~ ~ g2 ,(d,

M Ej, .~ ozxiu(A) for A = ||0 6,0,, N

(4) I; depends only on R; = E;/ Z E; From Problem 2.5.5 R,,...,R; .,

are independent.

Thus P(I;) = 1 — a; for j < jo and P(I5, ) = a;,, for j < jo, 7(A) for j = jo,
where y(A) is the power of the F-test for d;, and n — k;, d.f. and noncentrality
parameter A. It follows that

PD) = (1~ a)(l —ay) (1 —2;_y) for j<jo
=(l—oa)(I —ay) (1 — a4 )7(8)  for j=j,

5
Example 4.5.2: Suppose that g(x) = E(Y|x) = ¥ B;x" and we wish to decide
o

whether a polynomial of smaller degree than five is reasonable. We fit each of
6—j
the models .#;: g(x) = 3. f:x*in turn, and determine the error sum of squares
0
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and their differences E;, for each. We first compute F, = F(ﬁl 6
o/ (n —

F, > F,_, (1, n — 6) then we decide that the fifth degree polynomial is required.
Since the spaces ¥, and F; have dimensions 6 and 5, E, has one d.f, so that
we could use the t-test for Hy: B = 0. Otherwise we fit the fourth degree model,

E,
(Eo + Ey)/(n —5)
required if F, > F, _,,(I,n — §5). Continuing this way we decide among six
possible models, of degrees 5, 4, 3,2, 1, 0.

Suppose Y is observed for x=0, 1,...,10, 8, =30, 8, = -2, B, =0.15,
By = Bs = Bs = 0, 62 = 2, and we choose each a; = 0.05. The probability that
we make the correct decision is then (0.95)%y(A) for A = |0 — 0,}/%/a2, where
Vs = %(x,, X;), the space spanned by the vector of ones and the x-vector,

In this case 8, 05 = p(8|}5), and 0 — @,, are given in Table 4.5.1. So
that A =19.31/4 = 483. From the Pearson-Hartley charts, we find for
o= \/4.83/2 =155 v,=1 v, =10~3 =7, y(A) =047. Thus, the prob-
ability of a correct decision is (0.95)*(0.47) = 0.40. The probability that
the simple lincar regression model is chosen is (0.95)3(0.53) = 0.45. Table 4.5.1
presents 0; = 30 — 2x; + 0.15x} and the best linear approximation. We
obtain A = }}0 — 8,12 /0% = 19.31 and 8y; = 27.75 — 0.5x;,05 = (05, ..., 05 ,,) =
P81 ZL(x,, x,)).

compute F, =

, and decide a fourth degree polynomial is

A Simulation: Y =0 + £ was generated according to Example 4.5.2. The
vectors Y, Y;, ¢,=Y —Y, are given in Table 452 for j=1,...,5
0.366 2.817

Then F, 63484 0.23,s0 H(1): Bs = 0 is accepted. F, 67145 2.108 <
. 2.339
Fo.05(1,5), 50 H(2): By = Bs = 0 is accepted. F; = —— = 1.47 < Fy 44(1, 6),
9.531/6
Table 4.5.1
x 0 0, 0-0,
0 30.00 27.75 2.25
1 28.15 27.25 0.90
2 26.60 26.75 —-0.15
3 25.35 26.25 —-090
4 24.40 25.75 —1.35
5 23.75 25.25 —1.50
6 23.40 24.75 —1.35
7 23.35 24.25 —0.90
8 23.60 23.75 —0.15
9 2415 23.25 0.90
10 25.00 22.75 2.25
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275

31.085/7
5.59, so we decide that the model should be quadratic. This time, we made the
right decision.

SO H(3) ﬁ3 = ﬁ4 = ﬁ5 =0is ampted F4 = = 6192 > Fo_gs(l, 7) =

Problem 4.5.1: Let

1 1 | 0
1 I -1 1
1 1 0 -1
X = R 0 = (Xo, X3, X3, X3),
1 -1 1 1
L1 —1 0 —1d

3
and consider the model Y =) #;x; + &.
o

(a) Let Y = (16, 10, 7,0, 2, 1)’. Use the step-down procedure described above,
with «;’s all 0.0S, to choose an appropriate model. Notice that, in a rare act of
kindness, the author has chosen orthogonal regressor vectors. The projection
vectors Y ; consist entirely of integers.

(b) Let .#; be the model Y =} B,x; + €. Suppose that §, =4, 8, = f, =0,
[}

and ¢? = 8.333. What are the probabilities that the procedure chooses each of
the models .#;, i = 3, 2, 1, 07 (B, is not given because the probability does not
depend on fy). In order to facilitate the computation, we offer Table 4.5.3 (as

for the Pearson-Hartley charts, ¢ = //(v, + 1)).
(e) Repeat (b) for the case ;5 =0, B, =2, B, = 4, 6* = 8.333.

Problem 4.5.2: Consider the inner-product matrix Q of Example 4.5.1.
(a) Verify that S(2)Q = S(1)S(1, 2)Q.

Table 4.5.3 Power of the a = 0.05 F-Test for v, = 1, Small v,

¢
v, 000 040 080 120 160 200 240 280 320 360 4.00

005 006 008 011 014 018 021 024 028 031 034
005 006 011 017 026 036 046 056 065 073 080
005 007 013 022 035 049 063 075 084 091 095
005 007 014 02 04! 057 072 084 092 096 098
005 008 015 028 045 062 077 088 095 098 099

oS W) -
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(b) For the simple linear regression model for ¥ vs. x,, find f. Use this to
find a 95% confidence interval on §,, and a 95%, prediction interval for x; = 7.
(c) Find the partial correlation coefficient r 5 ;,.

4.6 EXAMINATION OF RESIDUALS

In judging the adequacy of the fit of a model and the distributional assumptions
on ¢ for these models it is useful to examine the residual vector e = Y — Y, for
Y =pX|V), V=%L(x,...,%) Since e=Py.e=(,—P,)e, E(€)=0 im-
plies E(e) = 0 and D(e] = ¢?1, implies D[e] = a*(I, — P,). For H = P, = (h;)),
the hat-matrix, ¢; therefore has variance a(1 — h;), for h; = h;, the ith diagonal

1
term of H. For simple linear regression h;; = - + (x; — X)(x; — X)/S,,. Since
n

the trace of a projection matrix is the dimension of the subspace onto which
it projects,

Y Var(e,) = o? trace(l — P,) = 0*[n — dim V)
1

An observation on Y taken at X = X,, the ith row of X, is said to have high
leverage on the residual e; if an observation on Y for that X will tend to cause
the prediction error to be small compared to what it otherwise would be. Since,
from (4.4.5) e, = e_,(1 - k), Var(e))/Var(e__;) = (1 — h)? so that large values
of ; imply a significant payoff toward prediction at X, by taking an observation
at X,. For example, in simple linear regression h; will be large for x; far from
X, and in two variable regression with a constant term h; will be large for
X; = (1, xq;, X5;) far from (1, X,, X,). Of course, placement of observations too
far from corresponding means often leads to nonlinearity of regression.
Though the regression of weight on height may be roughly linear for
heights near the average, weights for the range (4 feet, 8 feet) are centainly not
linear in height.

We obtain “Studentized residuals,” often abbreviated as R-student;, by
dividing ¢; by an estimate of its standard deviation, uncontaminated by Y.
From (4.4.18) this uncontaminated estimator of o2 is §2; = SSE_,/(n — k),
where SSE_; = SSE — e/(1 — h;). Then

R-STUDENT; = r; = ,/(S_ /(1 = h)).

Since r; is approximately distributed as standard normal for reasonably large
n, these r; may be used to decide whether some observations are outliers, not
consistent with the model. Values of |r;| greater than 3 or 4 may be labeled as
outliers, and some consideration given to discarding them, or to methods not
so sensitive to outliers as least squares methods.
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Checking for Normality: These r,, being distributed under our usual model
approximately as standard normal, may be used to check for normality of the
;. We will not suggest any formal test of hypolhesis but will instead describe
a graphical technique. As will be discussed in Section 4.7 the normality of the
g; is not vital to normality of |.’. or even to the Y,, since these statistics are linear
combmatlons of the ¢; so that, particularly for large n, a form of the Central
Limit Theorem holds.

Suppose we have observed a random sample W, ..., W, from some con-
tinuous distribution F and wonder whether F is a normal distribution; that is,

F(;g):(b(x_—-l—l) for some yu and o. Let W, < W < - < W, be the
G

corresponding order statistics, the ordered H[s. Since F(W;) has a uniform
distribution on [0, 1], it can be shown that E(W;) is approximately F~'(u;)
for u; = (j — 1/2)/n. Since, under normality, F~ '(u;) = u + o® '(u;), this
means that in approximation E[W,] = u + ¢®~'(u;) so that for Z,=®" Yu;)
the (Z;, W;)) pairs satisfy the simple linear regression model. Therefore, if we
plot the (Z;, W;,) pairs for j = 1,...,n they should fall approximately on a
straight line with slope g, intercept u. “Normal” graph paper allows for easy
plotting of the pairs. The horizontal Z-axis is labeled with u; values instead of
Z; so that the Z; need not be computed.

Example 4.6.1: Table 4.6.1 below gives values of ¥; = 50 — 2x; + ¢, for 60
x;’s as in the first column, where the ¢; have the double exponential density
S (x) = (1/20) exp(—|x|/8) for 8 = 5 /2. f has mean 0, standard deviation
\/20 10. Figure 4.9 compares this densnty with the normal density with the
same mean and variance. Figure 4.10 compares corresponding c.d.f’s. Figure
4.11 presents the scatter diagram and the corresponding least squares line.
Figure 4.12 is a plot of the ordered R-Student values r; vs Z; = ®~ (u,). For
ordered r; values r;, < ryp) < - < Tesy, W = (i — 1/2)/63, the points (u,, r,)

0.06 1

0.02

Values of Densities
o
£

0
: - v T : v

-30 -20 -~-10 O 10 20 30
X

FIGURE 49 Normal and double exponential densities.
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14
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FIGURE 4.10 Normal and double exponential c.d.['s.
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FIGURE 4.11 Scatterplot of Y vs. x and LS fit.

and the best fitting straight line were plotted in Figure 4.12. The plot indicates
that the tails of the distribution are spread more widely than would be expected
for observations taken from a normal distribution. The intercept and slope were
—0.008 and 0.898, near 0 and ! as would be expected.

In order to investigate the behavior of the estimator f, of the slope for the
case that the ¢; have a double exponential distribution this same example was
repeated 1,000 times. As Figure 4.13 illustrates the distribution of §, certainly
appears to be normal. The sample standard deviation of these 1,000 values was
0.205 8, very close to the theoretical value 0.208 1. Among 1,000 90%, and 95%
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r order statistics

FIGURE 4.12 Plot of the pairs (j;1000, ) for 1,000 samples, where B is the jth order statistic.
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FIGURE 4.13 Histogram of 1,000 sample regression slopes for double exponential errors.

confidence intervals 909 and 955, respectively, covered f; = —2. The experi-
ment was repeated for 10 observations on Y corresponding to x = 1,..., 10,
again with the ¢; double exponential. Again f3, seems to have an approximate
normal distribution. This time 893 among 1,000 90% confidence intervals
covered ff, = —2.

4.7 COLLINEARITY

Collinearity in general is a relationship among the vectors x,, ..., X, in which
one or more are “almost” a linear combination of the others. Such collinearity
can cause (1) inflation in the variance of estimators Bj of regression coefficients

or of linear combinations 1} of such coefficients, (2) excessive effects of roundoff
€rrors or measurement errors on the x;.
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Let X = (x,,...,x;) be a point at which we would like to predict Y. If
E(Y|X) = g(X) = kP, then under our usual model §(X) = xp is the BLUE, having
variance h(X)a?, for h(X) = X(X'X) " 'X’. In general h is smaller for X near the
row vectors of X. For example, in simple linear regression, h(X) = h(1, x) =
(1/n) + (x — x)¥/S,,, so that h is large if x is far from the mean of the x-values
used to estimate the regression line.

In order to investigate the variation in h(X) as X varies, let (4;,, w;) for
i=1,...,k be eigenvalue, eigenvector pairs for M = X'X. Suppose that the W,
have been chosen to be orthogonal. Then M~! has eigenpairs (1/4;, W;).
Suppose also that 0 < i, < -+~ <4, and [W;]|> =1 for each i. If we let
P, = w;w;, then F, is orthogonal projection onto £(W;), FP;=0 for i #}j,
M=Y LP=WdAHW and M™! =Y (1/i)P, = Wd(1/)W’, where W =

(W, ..., W), d(4) = diag(1/4,,...,4,) and d(1/4) = diag(1/4,,...,4). Then
h(w,) = 1/4;, and h is maximum for X = W,, minimum for X = W, (each subject
to IX}j = 1). The ratio

ChCi /h(R)]'2 = [4/2,)'2 = K

is usually called the condition number for X. i}2,..., A}? are the diagonal
elements in the singular value decomposition of X and of X'.

If K is large then we can do rather poorly in estimating g(x) for some X
relative to that for others at the same distance from the origin. K may not be
an interesting number if our interest is in g(X) only for X near those for which
observations have already been taken. For X = X,, the ith row of X, h(X;) = h;;,
the ith diagonal element of H, the hat-matrix. Thus, if h; is large (X, has high
leverage), then the prediction Y, at X; depends heavily on Y;, and has relatively
high variance. Since Y h;; = trace(H) = &, the average h,, is k/n.

Scaling of the x-vectors does not affect prediction of Y, since the §’s are
correspondingly inversely scaled, and when a constant term is included in the
model, replacement of an x-vector by the corresponding vector of deviations
from the mean also does not affect predictions. Such scalar and centering
changes do affect the condition number K, however. K therefore has more
meaning for comparison purposes if these changes are made. If each x-vector
is centered and has length one (except the vector of ones) then M = X'X is of

M"|n 0 |,
0 R

where R is the correlation matrix, and we can consider the ratio of the largest
and smallest eigenvalues of R as a measure of the condition K for R, large
values indicating a problem, K = 1 being ideal, achieved when all x-vectors are
uncorrelated. The eigenvectors W; for R are called the principal components.
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FIGURE 4.14 Contours of constant variance for predicted values.

If the aim is to estimate f; then we can take X = #;, the ith unit vector, so that
h(x) = 1/Ix;]|*

If x; has been centered, and has length one then this is 1/(1 — R}), where R, is
the multiple correlation coefficient of x; with the other x-vectors. 1/(1 — R}) is
called the variance inflation factor (Marquardt 1970).

Example 4.7.1: Consider the model Y = fyxo + f,x, + B:X, + € where
X, is the vector of ones, and 50 (x,;, x,;) pairs are as given in Figure 4.14. For

% = (1, x,, x,), Var(x) = h(X)a? for h(X) = ! +dM M, d = (x, — %y, X, — K,),
n

M the 2 x 2 sum of cross products of deviations matrix. The sample covariance
matrix among the (x,;, x,;) pairs is M/(n — 1). Contours of constant values of
h(X) are as indicated in_Figure 4.14. The straight line, the major axis of the
cllipse, has the equation dw) = 0O, where w, = (0.867, —0.498) is the eigenvector
corresponding to the smallest eigenvalue of M~ (largest for M).

The contours indicate that variances are smallest in the direction of the
major axis, and that for X in a direction away from that axis, variances increase
rapidly as distance from (X,, X,) increases. Since (1, 1) is much more in the
direction of the major axis than is (1, — 1), we could expect Var(8, + #,) to be
much smaller than Var(f, — f,). These variances are (7.95 x 10~4)¢? and
(47.70 x 10~ %02

M= [2,538 1,169" M- =[ 7.238 —7.165] < 104

1,169 1,181 ~7.165 15.565
5 =321131  w, =| 08687
0.498 8
0.498 8
iy = 507.92 a2=[ 49 ]
—08667
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One of the problems with use of the condition number K as an indicator of
possible difficulty caused by collinearity is that it gives no indication of the
cause or of possible solutions. If a major aim of the regression study is the
estimation of slopes §; then a finer analysis can suggest such causes and
solutions. Since

D[Pl =Mt = a2 Y (1/2)W, W],  Var(B)) = a® ¥ Wi/i; = a’c,,

8

and the variance proporticns
2 _
pij = wii/(Zicyy)

are measures of the relative contributions of the ith eigenpair to the variance
of [}j, since Y p;; = 1. Study of these p;; provides some insight into the causes

of large variance inflation.

Example 4.7.2: Consider the following excerpt from SAS/STAT User/
Guide: Volume 2, GLM-VARCOMP 5, page 141. The collinearity diagnostics
(Table 4.7.1) for the fitness data, discussed earlier in Section 3.12, based on the
matrix with columns scaled to have length one, but with the means not
subtracted, are presented. Tables 4.7.2 and 4.7.3 present corresponding diag-
nostics based on the correlation matrix R for two diflerent models. In the
author’s opinion these last diagnostics are much more useful. The condition
number of R is \/42.68. The variance proportion ps, = 0.953 5 indicates that
variability of x, (runpulse) in the direction of the eigenvector w, corresponding
to the smallest eigenvalue (0.060 3) contributes 95.35%; of the variability of B..
W, is essentially a multiple of the difference between runpulse and maxpulse.
This same eigenvector contributes 95.97% of the variability of fs. That
variations in f, and Bs are affected so strongly by the same eigenvector
should not be surprising in light of the correlation 0.929 8 for the corresponding
variables. These considerations suggest that runpulse and maxpulse measure
substantially the same thing, and that we should try an analysis in which one
of these is omitted. Table 4.7.2 presents a regression analysis for the model {1,
2, 3, 4, 6} (with runpulse dropped). The condition number K for this smaller

model is \,/3.320, considerably smaller than for the full model. The variance
inflation factor for variable 5 (runpulse) has been reduced considerably from
that for the full model.

The estimated standard error for ﬁ4 is correspondingly smaller than for the
full model. These p;; can be helpful in indicating possible difficulties caused by
roundoff or measurement errors in the independent variables. H errors are made
observing a row X; of X in the direction of the eigenvector corresponding to
the smallest cigenvalue 4,, X'X it can have large effects on the Bj for which p;,
1s large.
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Table 4.7.2a  Correlation Matrix R for Indepenent Variables x,,..., x¢

X, X, X3 X4 Xg X6
1 1.0000 0.1887 0.1435 03136 02261 04504
2 0.1887 1.0000 -0.2335 -0.3379 —0.4329 ~0.1641
3 0.1435 —0.2335 1.0000 0.1815 0.2494 0.0440
4 03136 —0.3379 0.1815 1.0000 0.9298 0.3525
5 02261 —-0.4329 0.2494 09298 1.0000 0.3051
6 04504 —0.1641 0.0440 0.3525 0.3051 1.0000

X, = runtime, x, = age, x3 = weight, x, = runpulse, x; = maxpulse, x¢ = rstpulse

Table 4.7.2b Eigenvectors w; for R

1 2 3 4 5 6
0.2794 0.6670 0.2369 ~0.0732 —0.6430 —0.0467
—0.3156 0.5617 0.0759 —~0.5341 0.538 8 —0.0597
0.2370 —-0.1939 09210 0.0193 0.2355 0.0475
0.5647 —0.0414 —0.2118 —0.3686 0.1156 0.696 7
0.566 6 —-0.1565 ~0.1639 —03297 0.1125 —0.7115
0.3555 04192 —0.1349 0.6815 0.4635 —~0.0206

Table 4.7.2¢  Variance Inflation Factors 1/[x}{| = i

j 1 2 3 4 5 6
¢y 1.591 1.513 1.55 8.437 8.744 1416

J.

Table 4.7.2d  Collinearity Diagnostics p; for Model {2, 3,4, 5, 6, 7}

j
i A i1 2 3 4 5 6
2575 10000 00190 00256 00189 00147 00143 00347
1.328 19390 02106 01571 00245 00002 00021 00935

09251 27830 0.0382 00041 07936 00057 00033 00139
0.7432 34650 00045 02536 00004 00217 00167 04415
0.368 7 69840 07408 05206 0.1302 00043 00039 04115
00603 426800 00228 0.0390 0.0324 09535 09597 0.0049

L= R R S N
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Table 4.7.3a  Regression Analysis for Model {1, 2,3, 5, 6}, R? = 0.9042

J B S5, L R;
0 116.5 11.62 10.030

1 —2.704 0412 —6.561 0.709
2 —0.285 0.104 —2.753 0873
3 —-0.052 0.058 —0.898 0.901
) —0.126 0.052 -2414 0.880
6 —0.027 0.071 —0.382 0.904

Table 4.7.3b  Variance Inflation Factors for Model {1, 2, 3, 5, 6}

j 1 2 3 5 6
¢ 1579 1.408 1116 1.389 1414

Table 4.7.3c  Collinearity Diagnostics p; for Model {1, 2, 3,5, 6}

j
A Ak j 2 3 5 6
1 1.873 1.000 0073 0.030 0.030 0.107 0.098
2 1.275 1469 0.169 0.271 0.070 0.011 0.036
3 0.900 2,081 0.064 0.091 0.704 0.039 0.097
4 0.036 3.153 0.821 0.575 0.099 0.196 0.319
5 0.594 5.230 0.009 0.056 0.032 0.629 0.465

The hyperplane ¥ = 3, + 8,x, + B,%, above the (x4, x;) plane therefore
has a wobble in the direction of W, = (0.8671, —0.498 1). We are trying to
balance a thin board sheet on a rough picket fence running in the direction of
W,, the major axis. A few more pickets (observations) taken at points distant
from this fence would contribute considerably to the stability of the sheet.

Ridge Regression: Since M ™' =Y (1/4,)W,Ww; = W'd(1/2)W, the error in the
estimation of Bis p—p=M"'X'e = Y (/A)Diw; =Y Fifvi/\/z,, where D, =

w;X'e, and F = D(/\/l_,- which have zero mean. Let F=(F,....F) =
dii” UhW'X’e. Then E(F) = 0 and D[F] = ¢°I,. Of course, it follows that
D[] = 0> M ™! = 02 Y (1/4;)P, so that some of the variances of the #; may be

large if any of the A; are close to zero. The ridge regression estimator of § was
defined to remove some of this excessive variation by instead accepting a certain
amount of bias.
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Definition 4.7.1: For r > 0 the rth order ridge regression estimator of B is
B, = M+ rl,) XY,

Note that B, is a vector, not the rth component of f. This should not cause
confusion. We can write B, in a form which will provide more insight. Since
XY=MB, B,=2Zp for Z = (M + rI,)"'M. But, writing M in its spectral

form, we get
g EIORL] B e R

s _[s[ 4 )p T T Vi pa
B, = [Z [/‘;.- " r]P.][li + Y FWw//A) [Z P rP.]ﬁ + >,:;.,. " rF,w,.

i

so that

The bias in ﬁ, is the first term on the right minus B, which simplifies to
1 .
V[Z P E]ﬁ =r[M + rI,] " 'B. One measure of the bias of the vector B, is
; r

1 2
the squared length of this vector, which is y,(r) = rzli’[z (-I—) ]p =
i \I A;

r*Y ai(r + 4;)%, where o, = §'P,p = ||p(BIW;)Il>. The function y,(r) in an in-
i
creasing function of r, with 7,(0) = 0, (corresponding to the least squares

estimator) and lim y,(r) = Z a; = [iBli>. Thus, as r becomes larger B, is forced
r—x
to be nearer the origin. In the limit it is the zero vector itself.
The payoff in the use of B, is in the decrease in variances. The covariance
matrix for B, is

DB =0*Y ot ) P =a*M + rI,) M. (4.72)

All terms are decreasing as functions of r. An overall measure of the precision of
B, is the sum of the variances, the trace of D[ﬁ,] We find y,(r}) = trace(D[ﬁ,])

2 i
R
squares estlmator ﬁ. It is easy to show that y, has a negative derivative near 0,
so that for at least some values of r near O this measure of overall variance is
smaller than it is for B. Since 7, has derivative with limit zero as r approaches
zero from the right, it follows that for at least some positive r the sum

7:(r) + 7,(r) of the mean square errors is smaller than it is for B.

Hoerl and Kennard (1970a) show that, subject to the willingness to let the

71(0) = a? Z (1/4,) = o® trace(M ') is the variance of the least




COLLINEARITY 195

SSE increase by some fixed amount ¢,, the estimator which minimizes the
squared length of the estimate b of B is a ridge estimator.

An obvious generalization of the ridge estimator is produced by substituting
avectorr = (ry,...,r.), with nonnegative components, for the number r. Define

fo
A 1 A . . .
g, = [Z e R]X’Y =y n\/ “~ F,w;. Formulas for biases and covariance
+ 14+

matrices are given merely by replacing each A, +r by 4,4+ r,. It seems
reasonable to use larger r; whenever 4; is small. In the extreme, when 4, is

particularly small we could take the limit as r; approaches infinity, equivalently

i i

omitting w; from the analysis. We get ﬁA = Z (1/4,)P, )X'Y, where A is the
icA

set of indices not omitted. Properties of f§, are those of the estimator obtained

by taking the r-vector to be the vector of zeros and infinities (really taking limits

as r; = o), with zeros corresponding to indices in A.

A ridge trace (for the case that r; = 1) is a graph of flj(r), the jth component
of B, as a function of r. Some insight into the effects of the use of ridge regression
on individual regression components is gained. An appropriate choice of r may
be made by studying all ridge traces, though in general it is not an easy choice.
Nor is it easy to decide whether to use ridge regression at all. It is tempting
to try to estimate the functions y, and y, and to minimize this estimate. This
requires an estimate of the bias term, and our reasoning becomes rather circular.
The reader might try to replace §f in y, by ﬁ, or by fi, to get an estimate §,,
then compute E(},).

Example 47.3: Letu, =(1, —1,0,0,0/./2,u; = (1, 1, —2,0,0)/,/6, u; =
(1,1,1, -3, 0)/\,/12. Let x; =u,, x,=u,, and x, = (a,u; + a,u, + u,)/
\/;z‘," + :1?;_1'. Thus, the x-vectors are orthogonal to (1, 1,1, 1, 1), and each
has length one. As a, and a, increase in absolute value the matrix M = X'X
becomes increasingly ill-conditioned, so that ridge regression becomes more

appropriate. To illustrate this let a, = 5, and a, = 10. Then

1 0 0.4454
M=|0 1 0.8909 {,
04454 0.8909 1

which has eigenvalues 1.996, 0.996, 0.00396, so that M is somewhat ill-
conditioned. The corresponding ecigenvectors are W, = (0.3162, 0.632 5, 0.707 1),
W, = (0.8944, —0.4472,0), and W, = (03162, 0.6325, —0.7071). For § =
(10, 20, 30y, and 8 = (40.65, 40.61, —45.95, —2.31, 0) and ¢ = 5 an observation
Y = (38.00, 1297, — 37.69, — 3.54, 0.15) was generated. The ridge estimates of
# and the resulting error mean squares for each of 10 values of r are given in
Table 4.7.4. The least squares estimates correspond to r = 0, for which ESS is
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Table 4.7.4

r Brl Brl 3r3 ESS
0.000 —16.98 —1741 77.44 23.74
0.010 —0.71 14.60 41.34 34.10
0.020 1.96 19.79 35.25 38.03
0.030 3.06 21.83 32.66 40.10
0.040 3.66 22.88 31.19 41.58
0.050 4.04 23.49 30.22 42.86
0.060 430 23.86 29.51 44.09
0.070 448 24.10 28.96 45.34
0.080 4.63 24.24 28.51 46.64
0.090 474 24.33 28.13 48.01
0.100 483 24.37 27.80 49.47

smallest. Notice that the estimates seem to be closer to the corresponding
parameters (10, 20, 30) as r increases. As r increases the ridge estimates will
begin to be pushed down toward zero, as we accept more bias in the effort
to decrease variation (Figure 4.15). The problem the statistician faces, of
course, is that B is unknown and it is difficult to choose the appropriate r.
Knowledge of the subject matter may provide some guidance, so that if too
small values of r seem to provide unreasonable estimates, these values can
be rejected. Usually the ridge traces will stabilize and gradually shrink
toward zero, and a good choice for r may be the a minimum value for which
all traces have stabilized. For better understanding see the papers mentioned
above.

Problem 4.7.1: Show that the varniance inflation factor for the jth com-
=2

ponent of the ridge estimator f}, isy — Wi , where W, = (W;;, ..., W, ) is the
T (A + 1)

eigenvector of M corresponding to 4;.

© 80

g 60 betahat3

b . ]

-§’ 5 20 L betahat

2 o 1 betahat1

-20 . . . v -
0.0 0.02 0.04 0.06 0.08 0.10

4

FIGURE 4.15 Plots of ridge estimates of the betas vs. r.
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Problem 4.7.2: Use the formula B, = (M + rI,)"'Mp and matrix algebra
to show that D[B,] = (M + rL,)">Me? = M(M + rl,) " %¢2.

Problem 4.7.3: Suppose that M = [1 ‘l‘] for 0 < a < 1. Find 4, and P, for
a

i=1, 2, and use these to write a nonmatrix formula for D[B,]. Compare the
performances of B, and B for the case that 1 — a or | + a is small, say &.

Problem 4.7.4: What are the variance inflation factors for p in Example
4.7.17

48 ASYMPTOTIC NORMALITY

In this section we will briefly discuss, without proof, conditions under which
the estimator f is approximately normally distributed, even though the usual
assumptions on ¢ are not satisfied. Though in any application n is finite, any
mathematical treatment of the distributional properties of p under these relaxed
conditions must be asymptotic. In order to investigate the closeness of these
distnibutions to normality some computer simulations will be discussed.

Eicher's Theorem 3.1 (Eicher, 1965) considers a sequence of regression
models

Y, =X,B+¢,

where Y, has n components, E(g,) = 0, £, = D(¢,] = diag(¢?, ..., ¢2), and X,
is an n x k matrix of constants. Suppose the components of ¢, are independent.
Then, as usual,

Bo = M, XY, = B + M, 'Xe,

for M, = X, X,. Then ﬁ,, is an unbiased estimator of B with covariance matrix
D[B.J=M;'X,EX,M, ' =F,

For a simple example suppose k = t and X, = (1, 2,...,ny withe, = - - = g,.

Is B, = Y i¥;/| ¥ i* ) asymptotically normally distributed? Since B, is B plus a
1 1
linear combination of the components of €, we might hope that a form of the
Central Limit Theorem will cause f, to be normally distributed even when the
components of €, are not,
Consider an even more extreme example. For k = 1 take X, = (,..., 1, n),
the components of ¢, identically distributed with variance a2.

B, = [z Y+ nY.]/(n —14n?)
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has variance ¢%/(n* + n - 1) and

~1

= [B, - B1//Var(h,) = ["z o+ ms,}/\/in’?'? " = 1)o?
1

1t e f 1 1]y
= [_ Y g/ /n— l][(n - Djin* +n—- 1D} + (s,,;’a)/[l +-- —2] .
g n n

The first factor in the first term on the right is asymptotically N(0, 1), and the
second factor converges to 0. Thus the first term converges in probability to
zero. The second term converges in distribution to the distribution of ¢,/a. Thus
Z, will be asymptotically normally distributed only if ¢, is normaily distributed.
Too much weight has been put on Y,, relative to the weight on the other Y.

Similarly, if X, is the vector of all ones, but the components of &, have
variances which differ greatly, then most of the variation in §, will be caused
by those components with relatively large variance. Eicher’s Theorem makes
the requirements that not too much weight be given to some components, and
that there be not too much relative variation in the components of ,.

Let X, , be the ith row of X, and let B, be the symmetric k x k matrix
satisfying B2 = M,. Let # be the collection of all distributions with mean zero,
finite positive variance. Suppose that all components of €, have a distribution
n #.

Theorem 4.8.1 (Eicher): Let Z, = B, '(§, — B). Then Z, is asymptotically
distributed as N (0, L) for all G € # if and only if

(1) For d;, = X;,,M; 'X/,, h, = max d,, » 0asn— .
i=1.....k

2 sup J‘xsz(x) —0asc— .

GeFlx|>c

(3) inf J'xsz(x) > 0.

Ge ¥

Condition (1) assures that not too much weight be put on any single
observation Y. d,, is the leverage of the observation corresponding to X;.
Condition (2) does not allow components of €, to have probability mass at
locations which diverge too far from that of other components. Condition (3)
forces all components to 2 minimum standard of variation.

Consider the first example above with X, =(1,2,...,n). Then d,, =

x2S xt=1/Y i =6i%/[n(n + D2n+ 1)], so h,=6n/(n+ 1)2n + 1) <
7 1

6(2n + 1)~ = 0 as n — oc. Therefore, if the components of g, have identical

distributions with finite positive variance then Z, = (ﬁ,, - |3)/\/\7 iir(B,,j, where
Var(B,) = 6/[n(n + 1)(2n + 1)], is asymptotically N(0, 1).
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In the second example, with X, = (1,..., 1, n),

X,M, %5, = 1/[(n — 1) + n?] for 1<j<sn-—1
=n?/[(n - 1)+ n?)] for j=n

Since this is maximum for j = n and this maximum converges to one, (1) is not
satisfied, so that Z, is not asymptotically normal for all Ge #.

Eicher showed, for example, that if the ij element of X, is i for¢, > -+ >
¢y > — 3 then X, satisfies (1). Thus polynomial regression (c; = j) on integers
1, ..., nsatisfies I.

One of the problems with Theorem 4.8.1 is that Z, depends on the unknown
L. Fortunately it is possible to replace M, by C, = M, 'X.S,X,M, ' where
S, = diag(e,,...,e,) and e = (¢,, ..., e,) is the usual residual vector.

Theorem 4.6.2 (Eicher): Let G, be the symmetric n x n matrix satisfying
G? = C, and define W, = G, '(§, — B). Then W, converges in distribution to
N,(0, I) if all three parts of Theorem 4.8.1 hold.

In the case that the components of ¢ have identical distributions F we can
state a simpler version of the Central Limit Theorem for least squares estimators
for linear models, duc to Huber (1981). We follow the presentation of Mammen
(1992).

Theorem 4.8.3: Let the components of ¢ be independent, with common c.d.f.
F. Let h, be the largest diagonal term (leverage) of the projection matrix
P,=XM, 'X;. Let ¢ = (¢,, ..., ¢) be a vector of constants, let n = ¢'§, and
f,=¢ ﬂ,, Then Z, = [¢'M,, c]“z(ﬁ — 17) converges in distribution to standard
normal if and only if either (1) h, — O, or (2) F is a normal distribution.

Example 4.8.1: Suppose g, has independent identically distributed com-
ponents with mean 0, variance a2 > 0. Let x,, be the vector of n ones, and let
x, be the first n components of (1, 1, 1,.. ). Let x¥ = x, — X,X, and X = (Xq, x¥).

Then M, = XX, = diag(l/n, |x*||?), for [|x¥;2 Z(l/zz) ~ 3. (1/i))*/n. Since
U, Z(l, i’y ~T1%/6 - 0and ¥, —Z(l/:)—logn — 1 =0.577 23 (Euler’s con-

stant), for X, =(,1-x))

0 (1-x,)?

T

St

dip =%,

- 1/(I1%/6) =6/T1> as n - .

1
| B
n

S | e

1/lixt 4

Thus condition (1) is not satisfied. The regression slope #, depends too heavily
on the observations corresponding to the first few x;. If F were a normal
distribution, then the standardized version Z of B has a standard normal



200 FITTING OF REGRESSION MODELS

distribution for every n. However, if F is not a normal distribution, then §,
cannot be asymptotically normal.

This result suggests that in the case that the errors ¢; corresponding to a few
of the x;’s which are relatively far from the mean have distributions which differ
greatly from the normal, that f, will also have a distribution differing greatly
from normal (though not as much as for the g;).

Though limit theorems are useful in that they indicate the conditions under
which a distribution may be approximated by the limiting distribution, they
do not in general say how large n must be before the approximation is
good. The next few examples may provide some understanding of these
approximations.

Example 48.2: Let Z have the standard normal distribution, Let ¥ be 0
or 1 with probabilities 1 — p, p independent of Z. Then

6,2 if v=0
e=fo,(l = Vy+0o,V}Z=<"'"
{o( Y+ o,V] {022, P Vel

has the “contaminated normal distribution,” with c.d.f.
F(x) = (1 ~ p)D(x/a,) + p®(x/0;).

F has mean E(¢) = 0, variance Var(g) = (1 — p)o? + po3. The density of E is
plotted in Figure 4.16(a).

Now consider simple linear regression ¥, = o + Bix; + ¢ fori=1,...,n,
where the ¢’s are a random sample from F above. Take n =10, x; =i for
i=1,...,9and x,, = 30. Take 0, = 2, 0, = 20, p = 0.2

o : (I) (30 — 7.5)
Thus, d,o 10 as defined in Eicher’s Theorem is | — } + = . — " = 0913,
) 10 622.5

not very close to 0 as suggested by condition (1). The other d; ;, values are
considerably smalier. Certainly the ¢; are not normally distributed, and it seems
that too much weight on x; = 30 in the determination of B, may cause Bl and
the corresponding t-statistic to have distributions differing greatly from the
normal and t distributions. Figure 4.16(b), the histogram for #, for 1000
simulations, indicates that f, takes more extreme values than would be
expected under the normal distribution. These values are caused by large |¢;|
corresponding to x; = 30. Figure 4.16(c) is the corresponding histogram for
T= ﬁ 1/Sg, .

The comparison of the distribution of B, with the normal distribution is
more evident in Figure 4.16(d). Notice that the c.d.f’s are approximately equal
at the 5% and 95%, percentile points. Figure 4.16(e) indicates the same things
for the t-statistic, showing that T has a 95th percentile somewhat larger than
that given by the ¢4 distribution. As a result claimed 959 confidence intervals
on f§, would in reality be roughly 90% intervals. Among 1,000 values of T
(requencies and nominal probabilities using the tg distribution were as follows:
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t —2897 —-2306 —1.860 —1.397 1.397 1.860 2306  2.897
P(T<1) 0.01 0025 005 0.10 0.90 0.95 0975 099
Frequency 30 42 57 72 915 931 947 959

We estimate P(| T} < 2.306), for example, to be (947 — 42)/1,000 = 0.905, while
the nominal value is 0.95.

Thus, even for this case, for a distribution F with rather “heavy tails”
(kurtosis 13.67), and relatively heavy weight on one observation (corresponding
to x = 30) the distribution of the t-statistic is not terribly far from the nominal
t distribution. Certainly for a larger number of observations or less relative
weight on a relatively few observations, or “more normal” distributions for the
¢ the approximation is better.

Figure 4.16(f), a comparison between the sample c.d.f. for W = ESS/o? =
5%(8)/6? and the c.d.f. for xZ indicates that the heavy tail for F has a stronger
effect on the distribution of W. In general, nonnormality has a much stronger
effect on the distribution of $2 than on B, so that conclusions concerning o?
must remain somewhat tentative in the presence of suspected heavy non-
normality. In general, positive kurtosis (u,/6* — 3) tends to cause W to have
heavier tails than does x°.

We will go no further in discussing these approximations. Readers interested
in the effects of departure from the assumptions of the usual linear model,
especially in the case of the analysis of variance are referred to Chapter 10 of
Scheffé’s text, The Analysis of Variance. At the conclusion of Section 10.2 Scheffé
summarizes

Our conclusions from the examples of this section may be briefly summarized as
follows: (i) Nonnormality has little effect on inferences about means but serious effects
on inferences about variances of random variables whose kurtosis y, differs from
zero. (ii) Inequality of variances in the cells of a layout has little effect on inferences
about means if the cell numbers are equal, serious effects with unequal cell numbers.
(iii) The effect of correlation in the observations can be serious on inference about
means.

The kurtosis of a random variable ¢ is y, = E(¢ — p,)*/0* — 3. For the
normal distribution y, = 0.

49 SPLINE FUNCTIONS
On occasion we may choose to approximate a regression function g(x) = E(Y|x)

by functions h;(x) over nonoverlapping intervals I;. We could simply treat the
data corresponding to x;'s in ; as separate curve fitting problems. However, it



204 FITTING OF REGRESSION MODELS

often desirable that the approximating function h(x) = h;(x) for x € I; have
certain smoothness properties. For example, the viscosity of a chemical may
change continuously with temperature x (degrees Celsius), and linearly for the
three intervals (— 100, 0), (0, 100), and (100, 300), but the slope may change at
x =0 or at x = 100.

Let vo <v, < -+ <v,,, be fixed known points and let I; be the closed
interval [v;_,,v;] for j=1,...,r + 1. Suppose that the regression function is
g(x) which we hope to approximate by a function

h(x) = p;(x) for xel, for j=1,...,r+1,

where p;(x) is a polynomial of degree at most m. It is common to choose m = 3.
In the viscosity example above m = 1. Suppose that h(x) has continuous
derivatives of order m — 1 on the interval (vg,v,,,). The points v; for
i=1,...,rare called knots and the function h(x) is called a spline function.

The word “spline” is taken from the draftsman’s spline, a flexible thin rod
tied down at certain fixed points (the knots), which physically must then follow
a cubic path (m = 3) between points. The word was chosen by Schoenberg
(1946).

It is possible to represent such spline functions in a simple way, so that least
squares computations are facilitated. Define d;(x) = p;(x) — p;_,(x) for j =
1,...,rforxe(xq, X, +4). Thenp;,y, = p; +d, + -+ + d;. Because derivatives
of h up to order m — 1 are continuous, the first m — 1 derivatives of d; at v;
must all be zero. Since d; is a polynomial of order at most m, this implies that
d;(x) = Bj(x — v;)™ Thus,

j
h(x) = py(x) + 3 Bx —v)y™  for xelj,j=1...,r
i=1
" __{u for uZO}
YTl for u<0
we can write g in the form

900 = py(x) + ¥ Bilx — o)1, 49.1)
i=1

By defining

since for x€l;,,, i>j, (x —t;), =0. Let a(x) =(x — )%, and p,(x) =
% + 0, X + - + a,x™ Then

W) =S + 3 Brao),
0 1

so that h has been expressed as a linear combination of unknown parameters,
with known coefficients (for known knots). Thus, if we observe n pairs (x;, ¥),
we can represent the model Y, = h(x;) +¢; in the usual regression form
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for p=(2g,..., 0 B1s-.-.B8.Y. X=X0,-..5Xp8¢,...,48,), With ith row
(lv xi' xizv ) x;"v al(xi)' cecy ar(xi),)'

Example 49.1: Let m=2, r=2, v5=0, v, =5, v, =10, v; =20, and
suppose p,(x) = 80 — 10x + 0.5x2, B, = 0.6, and B, = —2, so that

p2(x) = py(x) + 0.6(x — 5)* = 95 — 16x + 1.1x?2
and
p3(x) = py(x) = 2(x — 10)> = — 105 + 24x — 0.9x2.

Then h(x) = p;(x) over I;, j=1, 2, 3, where I, =[0,5]}, I, =[5,10}, I, =
[10,20]. For x;,=0.5(i— 1) and i = 1,..., 4] observations ¥, = h(x,) + ¢, for
& ~ H(0, 100) where taken independently. .

Figure 4.17 presents graphs of the points (x;, X)), h(x), and h(x). Table 4.9.1
presents X, 0, Y, Y, = Y — Y, for 8, = h(x;). The parameters and their estimates
were

2 [ 80 86.39
a| —10  —1354

an| 05 08s3
Bo| 06 0280

a2 = 100.0
S2 = |Y - Y||}/(41 - 5) = 1426

gL -2 —2.026.
100
.] . Regr.Fen.
\ —— ~ ~ _Fitted Fen.
80 1 .
60
Y
40
20 A1
0 L v
0 5 10 15 20
X

FIGURE 4.17
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Table 4.9.1
X 0 Y Y e

1 0.0 0.00 0.00 0.00 80.00 93.24 86.39 6.950
1 0.5 0.25 0.00 0.00 75.12 75.14 79.83 —4.692
1 1.0 1.00 0.00 0.00 70.50 67.79 73.70 -5.913
| 1.5 2.25 0.00 0.00 66.13 66.86 68.00 —1.143
| 20 4.00 0.00 0.00 62.00 57.71 72.72 -5017
] 2.5 6.25 0.00 0.00 58.13 72.10 5787 14.230
| 30 9.00 0.00 0.00 54.50 42.12 5345 —11330
1 3.5 12.25 0.00 0.00 51.12 63.96 49.46 14.500
| 4.0 16.00 0.00 0.00 48.00 45.01 45.89 —~0.880
1 4.5 20.25 0.00 0.00 45.12 41.45 42.74 —1.290
1 5.0 25.00 0.00 0.00 42.50 31.28 40.03 —8.751
1 5.5 30.25 0.25 0.00 40.27 2797 37.01 —9.040
] 6.0 36.00 1.00 0.00 38.60 49.26 36.16 13.100
1 6.5 42.25 2.25 0.00 37.48 29.55 35.07 —5514
1 70 49.00 4.00 0.00 36.90 42.69 34.55 8.146
1 1.5 56.25 6.25 0.00 36.88 30.31 34.60 —4.282
] 8.0 64.00 9.00 0.00 37.40 44.99 35.21 9.779
1 8.5 72.25 12.25 0.00 3848 36.98 36.39 0.596
1 9.0 81.00 16.00 0.00 40.10 50.96 38.14 12.830
i 95 90.25 20.25 0.00 42.27 40.87 40.45 0.421
1 10.0 100.00 25.00 0.00 45.00 39.67 4333 —3.664
1 10.5 110.30 30.25 0.25 47.78 44.69 46.27 —-1.579
| 11.0 121.00 36.00 1.00 50.10 31.39 48.76 -17.370
1 11.5 132.30 42.25 2.25 51.97 58.89 50.81 8.078
1 12.0 144.00 49.00 4.00 53.40 43.12 52.41 —9294
1 12.5 156.20 56.25 6.25 54.37 35.61 53.57 —17.950
| 13.0 169.00 64.00 9.00 54.90 60.35 54.28 6.071
1 13.5 182.20 72.25 12.25 5498 31.72 54.54 —22.820
1 14.0 196.00 81.00 16.00 54.60 71.76 54.36 17.400
! 14.5 210.20 90.25 20.25 53.78 37.47 53.73 —16.250
i 15.0 225.00 100.00 25.00 52.50 54.21 52.65 1.562
1 15.5 240.20 110.30 30.25 50.77 75.81 51.13 24.680
] 16.0 256.00 121.00 36.00 48.60 51.88 49.16 2.725
1 16.5 272.20 132.30 4225 45.97 49.50 46.74 2.754
1 17.0 289.00 144.00 49.00 42.50 55.00 43.88 11.120
1 17.5 306.30 156.20 56.25 39.37 67.29 40.57 26.720
1 18.0 32400 169.00 64.00 35.40 2148 3682 —15.340
1 18.5 342.20 182.20 72.25 30.97 32.02 32,62 —0.603
] 19.0 361.00 196.00 81.00 26.10 19.47 2797 —8.500
] 19.5 380.20 210.20 90.25 20.78 1742 22.88 —5.465
1 200 40000  225.00 100.00 15.00 13.18 17.34 —4.163
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The estimate of D[fi] was

T 69.160 —39.57 4742 5748 1.2127
-39.57 3169 —4.248 5661 —1.726
S = 4742 —4248 0596 —0831 0294
—-5748 5661 —0831 1218 —0.505
L 1212 1726 0294 —0505 0311

We can test the null hypothesis of no change of regression at knot v,
equivalently f; =0, using t; = §,/5;,. We obtain ¢, = 0.280/,/1.218 = 0.254,
t, = —2.026/\/0.3-17 = 3.63. We conclude that a model with a single knot at
v, = 10 would seem to suffice (an incorrect decision).

The prediction function A is an approximation of k, which itself is an
approximation of the regression function g. The approximation of g by 4 can
be improved if the number and positions of the knots are chosen carefully. For
a discussion of splines in a nonstatistical setting see deBoor (1978).

One problem with the choice of the matrix X is that the vectors a; may be
almost dependent so that X is somewhat ijl-conditioned. The functions a{x)
may be replaced by other functions B(x), called B-splines, which are zero
outside relatively narrow intervals, so that the column space of X remains the
same. The solution B remains the same, but computations are likely to be more
precise. The condition that the polynomials and their first m — I derivatives
agrec at the knots may be weakened by requiring that they agree for fewer
derivatives, or the value of m can be made to vary with the knots, with resulting
complications in computations. For a thorough discussion of the fitting of
surfaces (regression functions of two or more variables), see the book by
Lancaster and Salkauskas (1986), or the paper by Friedman (1991).

Problem 4.9.1: Let O<v, and let O <x;, <x;, < - <x,, S, £

X3y £ * £ Xy,,. For observations (x;;, ¥;))forj=1,...,n,i=1,2, find the
least squares approximation by functions of the form

h(x)={ﬁ‘x for 0<x<u,.
Bivy + Bi(x —vy) for x2zuv;.

Evaluate f3,, f, for v, = 3, and pairs of observations (1, 3), (2. 5), (4, 3), (5, 5).
Sketch the scatter diagram and the function A.

Problem 4.9.2: (a)Supposem = 2,r = 2,v5 =0,v, = 4,v, = 8,v; = 10and
observations on Y are taken for x = 1, 2, ..., 10. What is the matrix X needed
in order to fit a spline function?
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(b) For the following (x, Y) pairs estimate the coefficients («,, a5, a3, B,, B5).

X 1 2 3 4 5 6 7 8 9 10
Y 1281 1173 1574 2829 4044 5060 59.52 68.11 78.10 97.23

{c) Suppose these Y, satisfy a spline model for m = 2 and v; as in (a). Find
a 95% confidence interval on g(x) = E(Y|x) for x = 7.

(d) Test the null hypothesis that g is the same quadratic function on [0, 10]
for a = 0.05.

4.10 NONLINEAR LEAST SQUARES

Almost all of the models so far considered have been linear in the parameters.
Even when nonlinear models were considered in Section 4.1 we made a
linearizing transformation, in order to take advantage of the mathematical
apparatus available for linear models. There are occasions, however, when a
nonlinear model cannot be linearized, or when we would greatly prefer to get
a better fit to the data than that provided by linearizing,

Suppose, for example, that we have observed n pairs (x;, y;), and for
theoretical reasons, or simply based on a graphical ook at the data, we hope
to fit a function of the form g(x; B) = g(x; Bo. B1, B2) = Bo + B;x** to the data.
There are no transformations on x or y which will result in a function which
is linear in the parameters. Instead, we can attempt to use least squares directly.
Let O(B) = Z [y; — g(x;; B)])%. The principle of least squares chooses p = ll the

value which minimizes Q. What makes this problem different from those already
considered is the nonlinearity of g(x; ) in p.

To emphasize the dependence of g(x;; B) on B, define g(B) = g(x;; B), and let
g(B) be the corresponding n- component column vector. B is also written as a
column vector. Define r(g) = y — g(B), the vector of residuals. Our task is to
choose B = ﬁ so that Q(B) = llr(l!)li2 is minimum. The trick we will use is to
suppose that we have a rough estimate, or guess, say ﬁ° of p. For B reasonably
close to ll° g(B) will be approximately linear in B. If g(B) is a reasonably smooth
function (that is, all the component functions of g(p) are smooth), then we can

. and let 2/(°) be

. g,
By =%

B;
the corresponding n-component row vector. Let W = W(ﬁ°) be the n x 3
matrix with jth column g’(ﬁ°) with ith row W,. The linear Taylor approximation

(the differential) of g(B) at B° is h(B°) = g(B°) + 28'030)(/31 %) = g(B°) +
W(B°)(B — f°), which, of course is linear in B. Let ¥ =B — B°. Replace O(B)

use a Taylor approximation of g(B). Let gJ(
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by Q*®) = [: — h(®)1* = T [ — 94B) — Wir1®. Letting z, = y; — g4B"),
we get O*(B) = Z [z; — W,7]* = iz — Wyjl%, where z = y — g(B°). The function
O*(B) is minimized by y =% = (W'W) Wz, B = =4 + B° More explicitly,

B =B° + (WW)'W(y — g(B). (4.10.1)

Once we have obtained the improvement B! we can replace f° by f!, then
improve on B!, using (4.10.1) again with W = W(B'). In this way we get a
sequence of vectors ", which will under suitable smoothness conditions, (which
are concerned with the existence of derivatives of the g,(B)), will converge to a
point in 3-space. At the (r + 1)th iteration take W, = W(f") and

Bt =5+ (Wi W,) "' WiTy — g()]. (4.102)

We will refer to the procedure provided by (4.10.2) as the Newton NLLS
method. If the starting point is too far from the minimum point the procedure
can fail to converge. It is sometimes worthwhile to choose a collection of points
b in the parameter space at which to evaluate Q(b), then start at the point B,
at which Q(b) is minimum.

Example 4.10.1: Suppose Y, = g(x;; B) + ¢; for g(x;P) = B, + B,xf* for
i=1,...,12 The following x; and parameter values §,, f,, 8, were chosen in
order to generate Y; values: f, = I, §, = 3, and §, = 0.5. Using these parameters
and x; values given in Table 4.10.1, values of g(B) = g(x;; p) were determined.
Then a vector € =(¢g,,...,&,,) was generated, with the ¢’s independent
N(0,0.01) and Y = g(B) + £ determined.

Table 4.10.1 A Fit Using Nonlinear Least Squares

i x 94B) & Y, Y, e=Y,-¥
1 0.05 1.671 —0.032 1.639 1.664 —-0.025
2 0.05 1.671 0.010 1.681 1.664 0.017
3 0.10 1.949 0.093 2.042 1.941 0.101
4 0.10 1.949 —-0.169 1.780 1.941 -0.161
S 0.20 2.342 0.061 2.402 2.336 0.066
6 0.20 2.342 0.022 2.364 2.336 0.028
7 0.40 2.897 0.200 3.097 2.900 -0.197
8 0.40 2.897 —0.128 2.769 2.900 0.131
9 0.80 3.683 —0.267 3416 3.704 —0.288
10 0.80 3.683 0.120 3.803 3.704 0.099
11 1.20 4.286 0.222 4.508 4325 0.183

12 1.20 4.286 —0.048 4.238 4325 -0.087
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The functions g%B) = 1, ¢*(B) = x**, ¢*(B) = B,(In x)x?* were then deter-
mined. Following this, a rather arbitrary starting point B, = (0.5, 2,0.8)' was
chosen. Formula (4.10.1) was used iteratively. On the rth iteration the matrix
W, = W(§") and g(B,) had to be determined. The sequence converged rapidly:
Q = (1.228, 2.808, 0.440), B2 = (1.044, 2.986, 0.520), #* = (1.016, 3.014, 0.513Y,
B* = (1.015, 3.014, 0.513). The difference p* — p*> had maximum absolute value
less than 0.001, so the computer program written to perform these computations
ordered the iterations to stop. Table 4.10.1 presents interesting statistics. We
find ESS = (Y — Y|iZ = 02319, §2 = ESS/(12 — 3) = 0.0258.

Asymptotically, as n — oc, the statistical properties of fi Y, and $? are the
same as they would be if the model were truly linear, with design matrix
W = W(B), which must be estimated by W = W(B). Thus, for example, for large
n, In approximation B ~ N(B, 63 (W'W)™1), even without the normality of &, (if
g(x; B) is reasonably smooth, and the x; are not spread out too much.) We are
obviously being somewhat vague here. The student eager for more rigor is
referred to Nonlinear Regression by Seber and Wild (1989).

Continuation of Example 4.10.1:  For these observations with $2 =0.0258,
we estimate the covariance matrix for p by
0.159 —0.156 0.048
SAWEYW@P)] =] —0156  0.160 —0.046 |.
0.048 —0.046 0.016

Since we know B = (1, 3, 0.5) and ¢, we can compute the better approximation

0.152 —0.149  0.045
C[WEWP] ' =| —0.149  0.152 —0.043 |.
0045 —0043 0014

Even this is an approximation, since it pretends that g(p) is linear near the true
parameter value. We simulated the experiment 500 times, each time computing
B. The sample mean of the 500 values of B was (0.946, 3.049, 0.497), suggesting
that B is almost unbiased. The mean value for S? was 0.0089, so S has a small
0.085 —0.083 0.022

negative bias. The sample covariance matrix was | 0.083 0.084 -0.0211},

0.022 -0.021 0.006
indicating that the estimates of the variances of f,, f,, and Bz were somewhat
larger than their true values. Since the sample size was relatively small, we did
rcasonably well. Histograms of the coefficients based on the 500 simulations
indicate that the distribution of f3, is somewhat skewed to the left (long tail on
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the left, with a few negative values), B, is skewed to the right, but that /?2 has
a roughly normal distribution.

We have emphasized the example with three f/s, and one independent
variable x. Of course, three may be replaced by any number k <n of
independent variables, though g(B) must be a2 1-1 function on the domain on
which P takes its values, and unless k/n is small the statistical distributional
approximations may be poor. In the following example, a multiplicative model,
we compare the solutions given by nonlinear least squares, and those given by
a lincarizing transformation.

Example 4.10.2: Let Y, = g(X;; B) + &, where X; = (x;;, x;3), and g(X; B) =
Box%'x8” for & = (x,, x,). Observations ¥; were taken for 18 values X; as given
in Table 4.10.2. These were taken for B = (2.7, 0.5,0.9), and ¢, ~ N(0, a) with
g = 0.5. Define g(B) = g(X,, B), and, as before, let g(P) be the corresponding
18-component column vector. Let g/(B) be the vector of partial derivatives with
respect to f; for j =0, 1, 2. For example, the ith component of g!(P) is
Bolln x;)x%ixP3 = (In x;,)g:(B). Then W(B) is the 18 x 3 matrix with jth column
g'(B).

The Newton method was used to minimize Q(B) = Y [¥; — g(B)]1?, resulting

in the estimate B = (2.541, 0.551,0.799), and Y = g(P) as given in the table. The

Table 4.10.2 Comparison of the Fits Provided by Nonlinear Least Squares and by a
Linearizing Transformation

Xao X gdB) & Y, Y, Y-Y v Y-1r

—

L5 02 0717 0279 1.056 0.879 0.178  0.663 0.394
1.5 06 2088 0015 2103 2113 —-0.009 1442 0.662
1.5 1.0 3307 0003 3309 3.177 0.132 3138 0.172
10 20 02 0897 0346 1243  1.030 0214 0.852 0.391
I 20 06 2411 —-0.507 1904 2476 0.571  1.855 0.050
1220 10 3818 0.029 3847 3723 0.124 4.036 —0.189
13 25 02 1.003 0086 1.080 1164 —0.075 1096 —-0.007
14 25 06 2696 0217 2913 2800 0.113  2.386 0.527
15 25 1.0 4.269 —0208 4.061 4210 —0.149 5192 - 1.131
l6 30 02 1.099 0.250 1.349  1.287 0.062 1410 —-0.061
17 30 06 2953 0359 3312 3.095 0217 3.069 0.243
18 30 1.0 4677 —0.144 4533  4.655 —-0.122 6679 —2.146

1 05 02 0449 —-0.087 0361 0.480 —-0.119 0400 —0.039
2 05 06 1.206 0.256 1461  1.153 0.308 0871 0.590
3 05 1.0 1909 —0622 1287 1734 —-0447 1896 —0.609
4 10 02 0634 —0525 0109 0703 —-0594 0515 —0.406
5 10 06 1705 0.193 1898  1.690 0209 1.121 0.778
6 10 1O 2700 0.144 2844 2541 0.303 2439 0.405
7
8
9
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function g can be linearized. Taking logs, we get the approximation Z, = In ¥, =
In By + B, Inx;; + B, 1n x,,. Least squares, minimizing Z [Z; — In g(B)]° was

used to obtain the estimate * = (2.47,0.711, 0.988). The error sums of squares
for the two estimates were Q(B) = 1.339 and Q(ﬂ") = 8.695. The estimate of ¢?
was $? = 1.339/15 = 0.0893, substantially below ¢ = 0.25. The approximation
of Y by ¥ is certainly better than that provided by Y= g(p*), as must be the
case. We estimate the covariance matrix of ﬁ to be

20.51  -17.51 3.07
1073 —7.51 4.17 0.00 |.
307 0.00 527

The entire experiment was simulated 400 times, providing the estimate

5300 -0.02 490
1073 —19.82 1146 1.3t
490 1.31 16.56

of the covariance matrix, with (mean ﬁ) = (2.713,0.491, 0.8994), and (mean
§?) = 0.253. Histograms indicated that B has a distribution which is close to
normal (see Table 4.10.2).

Problem 4.10.1: Use least squares to determine B so that g(x; f) = e**
approximates y for the three (x, y) pairs (1, 2.071), (2, 4.309), (3, 8.955).

Problem 4.10.2: Repeat 4.10.1 for g(x; B) = B,¢%**, for the three (x, y) pairs
(1, 2.713), (2, 3.025), (3, 11.731).

Problem 4.10.3: Let g(x, ) = x/f, and suppose (x, y) takes the values (1, 2),
(2,4), (3,6), 4,8).

(a) Show that if f* = b, then f7*! = b — b2(2 — 1/b).

(b) Use nonlinear least squares beginning with #° = 0.8, and iterate until you
get tired. What happens if the starting point is f° = 1?

(c) What is the estimate of § if we use the linearizing methods of Section 4.1?

Problem 4.10.4: Make one iteration of the Newton NLLS procedure for
the starting point Bo (0.6, 3, 2), to try to improve on the least squares fit for
the regression function g(X; B) = g(x,, x,; B,, B, B3) = Boxh' x4, for (x4, %3, )
tnples (1,1,1.382), (1,2,0.192), (2, 1,27.567), (2,2,3.633). Let B! be the

“improved value.” Evaluate Q(ﬁo) and Q(ﬁ ) to see whether you have an
improvement. If you have a computer or enough patience also find the least
squares estimate ﬁ
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Problem 4.10.5: If Y, ~ N(g(X;;B), 6%), for i=1,...,n are independent
r.v.'s, what is the maximum likelihood estimator of §?

Problem 4.10.6: Suppose that Y = Xp + g, and that €~ AN(O, o). If the
Newton method is used with a starting value g° what are !, p2,...?

4.11 ROBUST REGRESSION

Consider the scatter diagram of Figure 4.18, with straight lines fit to the data
using three different methods: least squares, the M-method of Huber, and least
median squares. The aim under each method is to minimize the distance between
the vector y and the vector of predicted distances y = f,J + f,x. Under the
least squares method, the squared distance is ||y — §||>. A problem with this
measure of distance is that it puts particularly heavy weight on larger deviations.
If a relatively few of the error terms (the ¢;s) are exceptionally large, these may
have a heavy influence on the estimates of (f8,, 8,), particularly when the
leverage [1/n + (x; — %)%/ (x; — %)*] of an observation at x = x; is large, that
is, when x; is far from X. This sensitivity of least squares to one or a few
observations led Box and Andersen (1955) to use the word “robust” in
connection with a study of the effects of departures from the usual assumptions
of a model. A robust statistical procedure has come to mean that the procedure
continues to have desirable properties when the assumptions of the model are
not satisfied. For example, a robust procedure would work well in the case that
¢ has the contaminated normal distribution, being an observation from a
N(u, 6?) distribution with a large probability p, but being an observation from
N(u, %K), for large K, with probability 1 — p, Tukey’s paper (1962) on data

X

FIGURE 4.18 Least squares, least median of squares, and Huber estimates of a regression
function.
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analysis, calling for more realistic statistical methodology, less dependent on
assumptions, was very important in stimulating the effort of the last 30 years
or so on robust methods. Huber’s book of 1981 listed 116 papers and books
on the subject, and the pace has increased each year, particularly with the rapid
increase in computational power. For a thorough discussion of the use of robust
methods in regression, both for the M-method discussed here and for the
R-method (R for rank) see the monograph by H. Koul (1992).

Huber (1964) suggested the M-estimator for the location problem. In the
location problem we observe a random sample Y, ..., Y, from a distribution
F(y — 8) and wish to estimate 6. The letter M was chosen to remind us of the
mean, the median, and the maximum likelihood estimator. Let p(u) be a
continuous convex function on the real line converging to +oc asu - —oc or
u — + oc. Informally convexity means that a straight line connecting two points
of the graph of p lies above or on the graph. Simple choices are p,(u) = u?/2,
pa(u) = |u], and

<k

>k

w2 for |u

. , for some k> 0.
lulk — k*j2 for

p3(u) = {

u

The M-estimator of 8 is the value & of r which minimizes

Q) =Y (Y — ).

The M-estimators corresponding to p, and p, are ()l =Y and 4, =
med(Y,, ..., ¥,). The estimator 0, corresponding to p,, usually called the Huber
estimator, is more difficult to compute, but may be thought of as a compromise
between the mean and the median. Suppose that p has the derivative ¢, so that

Q@ = ;)r o) = Z Y(Y, —1). For p,, p;, p5 the corresponding ¥ are y ,(u) = u,

-1 for u<0
'JIZ(H)_{+1 for u>0"
and
—k u< —k
Yau) = u for —k<u<k.
k u>k

Let U have distribution F, and define i(t) = E[Y(U —1)]. Let i(¢c) =
min,|A(t)]. If p{—u) = p(u) for all u, as it is for the examples above, and f is
symmetric about zero, then ¢ = 0. In his 1964 paper Huber proved (in slightly
different notation, Lemma 4) that if (1) 2(¢c) = 0, (2) 4 has a derivative at ¢ and
A(c) <0, (3) E[Y*(U — 1)] is finite and continuous at ¢, then n*/2[8, — 6 — ]
is asymptotically normal with variance V(y, F) = E[Y*(U — ¢)]J/[X'(c)]*. In the
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case that ¢ is sufficiently smooth, 2'(¢) = — E(Y'(U — ¢)). Thus, V(y,.F) =
Var(U)/1,¢ = 0,and E[Y3(U — ¢)] = 1, A(c) = 1 — 2F(c), and #'(¢) = 2f(c), so
that V(Y 5, F) = 1/[4f*(c)]. If the distribution of the ¥’s has median 8, so that
F has median O, then this is the usual formuia for the asymptotic variance of
the median.

Consider the contamination model F = (I — £)G + ¢H, where ¢ > 0 is small,
and G and H are c.d.f’s. G is considered to be fixed but H is allowed to vary
over a collection of c.d.f’s. Huber showed (Theorem 1) that there exist ¢, F;
such that supy V(,, F) = V(y,, ;) = inf, V(¥, Fy). The first supremum is
taken over all c.d.f.'s H for which E,[¢o(U)] = 0. The density f, corresponding
to F, is given explicitly in terms of G, and ¥, = — f¢/f,, the choice of ¢
corresponding to the maximum likelihood estimator, is a Huber estimator for
an explicit choice of k depending on ¢ and g. This result suggests that if we
want an estimator which will perform well when F is G with no more than &
contamination, we should use a Huber estimator. At least asymptotically this
will minimize the worst we can do (in a certain sense). As Huber points out,
his Lemma 4 is somewhat unsatisfactory in that the supremum over H depends
on ¥, though this can be avoided by assuming that both G and H define
symmetric distributions about 0. See the paper for details.

Figure 4.19 presents Q'(t) for the choices ¢, ¥,, Y5 for the sample 1, 2, 3,
12, 17. The parameter k for the Huber estimator is k = 6. The median and
Huber estimates would not change if 12 and 17 were made arbitrarily larger.

Now consider simple linear regression. Define

e; = efbgy, by) = y; — (bg + b,x;) and Q(boy, by) = Zp(e.’(boy by)).
Let
d
Q°%bo, by) = o Qbo.by) = 2 e)
(-’bo

and
é
Ql(bOv b)) = 2b. Q(bo. by) = Z Yle)x;.

|

40 -

Q')

o { =B

2010 1 2 3

40 1

.60 -

FIGURE 419 Q'(1) for §, Y5, ¥; for the sample 1, 2, 3, 12, 17.
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We seek the pair (b,, b,) for which Q° and Q' are simultaneously 0. The
estimates corresponding to ¥,, ¥,, and ¥, are called, respectively, the least
squares, least median of squares, and Huber estimates of (f,, #,). The Huber
parameter k is usually chosen to be a multiple ¢ of a consistent robust estimator
of a scale parameter. For example, for some choice (b, b,), which is considered
to be close to (f,, B,) with high probability, k might be chosen to be ¢
med(|ei(bo, b,)]). By defining w; = y(e,)/e;, the equations Q° =0, Q' =0,
become ) w;e; =0, and ) w;x;e; = 0, the weighted least squares equations.
Since the ¢; depend on (b, b,) the weights ¢; and weights w; must be recomputed
on each of the iterations used to find the solution. For the function rreg
in the software package S-Plus ¢ is 1.345. In the S-Plus language the
weight function is ¥(u)/u. For computational details see Heiberger and Becker
(1992).

In Figure 4.18 the straight line estimates provided by these three methods
differ considerably, because the observations corresponding to x = 13,...,19
are above the straight line extrapolation suggested by the observations for
smaller x, and because the observation (20, 58), which appears to be an outlier.
The least median of squares (LMS) estimate ignores these last eight observa-
tions almost completely. The Huber estimate puts no more weight on this
outlier than it would if it were considerably closer to the Huber line. Had all
points except the outlier been close to the LMS line, the Huber line would
almost coincide with it, and the least squares line would have a smaller slope,
since it must account for the outlier.

Suppose now that ¥; = 10 + 2x; + ¢, and that two observations Y, are
taken for each integer x;, 1 <x; <20. Explicitly, x, =1, x, =1, x;3 =2,
X3 = 20,..., x40 = 20. Suppose also that ¢; ~ F, where F = (1 — ¢)N(0, 3%) +
eN(0, ((5)(3))%), & = 0.1. That is, the ¢; have the distribution of 3Z)[(1 — &) + 5¢],
where Z is has a standard normal distribution, and ¢ is 0 or 1 with probabilities
0.9, 0.1. The ¢;’s have a contaminated normal distribution with contamination
probability 0.1, contamination distribution N(0, 225).

This experiment was performed 200 times, with the coefficient estimates of
(Bo, B,) produced for each of the Huber and LS methods. Figure 4.20 presents
the pairs of estimates for both the Huber and LS methods. Notice that there
is considerably less vanation in the Huber estimates. The corresponding sample
covanance matrix, with order (RO,B,) for least squares, then (Bo, B,) for the
Huber estimates) among the four estimates (based this time on 400 experiments)
was

3431 —0.249 1.865 —0.138
—0.249 0.023 —0.135 0.013
1.865 —0.135 1.53¢ -0.112
—0.138 0013 -0.112 0.010.

The sample means were 10.002, 2.001, 10.049, 1.995, so that ail estimators appear
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FIGURE 420 Least squares estimates and Huber estimates.

to be unbiased. Histograms (Figure 4.21) of A, for 400 simulations indicate that
the least squares and Huber estimators are normally distributed.

The Gauss-Markov Theorem states that the LS estimators are best among
linear unbiased estimators (in having smallest variance). The Huber estimator
(and other M-estimators, other than the least squares estimator) are not linear,
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FIGURE 4.21 Histograms of least squares estimates of slope and Huber estimates of slope.

so that they are not eligible for the Gauss—Markov competition. The con-
taminated normal distribution is not itself a normal distribution, so we cannot
call on normal theory to argue that the LS estimator is best. Perhaps we should
therefore not be surprised to learn from this simulation, or from the theory
described in Huber (1981) or Hampel ¢t al. (1986) that we can do better in the
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presence of contamination than the LS estimator. The problem, of course, for
the applied statistician is recognizing whether contamination is present. It is
tempting to view the data before deciding whether to use a robust, rather than
a LS estimator, and good statisticians will do that, though it is difficult to judge
the properties of procedures which use informal judgments.

Let us return now to the more general linear model Y = Xp + ¢, where the
components of € are independent with ¢.df. F. To avoid confusion with the &
of Huber’s estimator, suppose that X is n x p, and that B has p components.
Define Q(b) = Z p(Y; — X;b), where X; is the ith row of X. The M-cstimator of
B in the minimizer B of Q(b), equivalently, the b satisfying Y y(Y; — k;b)x;; =0,
for j=1,...,p. Let e = ¢(b) = Y — Xb. Then this normal equation can be
written in the form y(e) L x;, for each j, or y(e) L #(x;....,x,) = V. By y(e)
we mean the componentwise application of ¥ to the components of ¢. In order
to consider the asymptotic properties of an M-estimator in this regression
setting, we must consider, as in Section 4.8, a sequence of matrices X,. Let
M, = X;X,. and let H, = X,M, 'X,, projection onto the column space of X,.
Let h, be the maximum of the diagonal elements of H,. That is, h, is the
maximum of the leverages of all the rows of X,. For simple linear regression
this is max,[1/n + (x; — X)%/8..] = l/n + max(x; — £)*/S,,. Consider any
parameter n = (¢, ) = ¢, 8, + - + ¢,B,. and the estimator 7, = (c, B,), where
B, is the M-estimator of B. Huber proved (1981, Section 7.4) that Z, = (1, — n)/o,
is asymptotically standard normal, under suitable conditions on ¢ and F, when
h,— 0 as n - x. Here 67 = [¢'M,, 'c]W(y, F), where V(y, F) = E[Yy(U)*]/
[E(")]? as defined above (not the subspace). ¥(y, F) is minimum if ¢ = f'/f,
producing the maximum likelihood estimator. In practice we will not know F,
but can estimate ¥ consistently by ¥, = [(1/(n — p) ¥ ¥(e,)*1/[(1/m) Y. ¥'(e)]%
as suggested by Huber. If fact, Huber suggests that ¥, be multiplied by
Var(y'(U))
E(W'(U))? .
one if p « n. In the case Y(u) = u, corresponding to least squares, V, becomes
the usual error mean square S2.

For the contamination example above numerical integration was used to
find E[y(U)?] = 10.30, and E[y'(U)] = P(—6 < U < 6) = 0.890 1. Simula-
tions gave approximately the same values. Thus, V(y, F) = 12998, so that
the asymptotic variance of the Huber estimator (for k = 6) is 12.998/S.. =
12.998/1330 = 0.009 77, which compares well with 0.010 given in the sample
covariance matrix. We were a bit lucky because the value of k used in the S-
Plus procedure is itself estimated from the data. The variance of the least
squares estimator is ¢2/S,, = [0.9(9) + 0.1(225)]/S,, = 30.6/1,330 = 0.0230,
which compares well with 0.023 3 obtained in the simulation.

Other simulations indicate that the variances of the Huber estimators
remains about the same across a wide ranges of choices of the parameter k. As
k becomes larger the Huber estimator becomes more like the least squares
estimator. In the case that F is a normal distribution, least squares, cor-

K* =1+ (p/n) . We will ignore this factor, which is close to
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responding to k = o, is best. However, for more commonly chosen values of
k, variances for Huber estimators increase relatively little over those for LS.

We estimate o2 by 62 = [¢'M; 'c] 17;, Corresponding 100(1 — «)% confidence
intervals on n are given by #, + 2z, _,4,. For large n this is the same formula
as given in Section 3.2, with the extra multiplier 17,',’2, so the asymptotic relative
length of confidence intervals produced by the M-estimator to the length of
those produced by the method of LS is V}/2,

Huber showed that asymptotic normality holds even in the case that p = p,
is allowed to increase with n so that h,p? — 0. Yohai and Maronna (1979)
showed that the power 2 on p, may be replaced by 3/2.

Huber (1981, Section 7.10) suggests the following procedure for test-
ing Hy:0=Y B;x;€ V,, where ¥, lS a po-dimensional subspace of V=
£(xy, ..., X,). Find the M-estimate Y = Xp of 8. Find the M-estimate of ,
based on the model 8 € V5. using Y, rather than Y (the answers will be different).
Call this Y,. Define

W= |IY — Yol /{{K?a*n — p) "' T W(e/a)* I/ [(1/m) Y. ¢'(e;/0)]?}.

o must be replaced by a consistent estimate of a scale parameter based on
e = Y — Y. Under H,, Wis asymptotically distributed as chi-square with p — p,
degrees of freedom.

Problem 4.11.1: (a) For the location parameter problem and the sample 3,
5, 8, 16, 30, plot the function Q'(t) corresponding to the Huber estimator with
k = 5. To do this first find Q”(t), which is constant on intervals. Use your plot
to determine the Huber estimate. Repeat for k = 10 and k = 15.

(b) For the same sample determine the M-estimate corresponding to

p(u)z{lul for lul<é6

6 for |u|>6

What is the estimate if 6 is replaced by 1 million?

Problem 4.11.2: Is the Huber estimator with k = 4 as applied in simple
linear regression the same as least squares estimate of §, for the pairs of
observations (1, 3), (2, 6), (3, 21)?

Problem 4.11.3: Let X be an n x p matrix of rank p < n. Let ﬁ and ﬁ,, be
the least squares and Huber estimates of B in the lincar model corresponding
toy Let e=y— XB={(e,...,e,). Prove that max(]e;|) < k implies that

ﬁﬂ=b' :

Problem 4.11.4: (a) For p = p; and the uniform distribution on [—1, 1]
for errors, with density f(x)=(1/2) for —1 < x < I, show that V{y, F) =
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(1 — 2k/3) for k < t and V(y, F) = 1/3 for k > 1. What is the optimum choice
for k? What is the resulting Huber estimator? Find its variance and compare
it to ¥(y, F).

Problem 4.11.5: Let Y, = fx; + ¢, for i = 1, 2, 3. Find the least squares and
Huber (k = 5) estimates of P for the (x,, ¥;) pairs (1, 1), (2, 2), (3, 30). For which
values of y; does the sample of pairs (1, 1), (2, 2), (3, y;) produce the Huber
estimate (k = 5) which is equal to the least squares estimate?

412 BOOTSTRAPPING IN REGRESSION

Bradley Efron (1979, 1982) introduced the “bootstrap estimate™ as a means of
estimating the distribution of a function R(Y, F) of data and an unknown
distribution F, where the components of Y are a random sample from F.
Suppose, for example, that R = R(Y, F) =T = (Y — y)/[Sy/\/n], where u is
the mean for F. R is Student’s “t-statistic” (not strictly a statistic, since it
depends on the unknown p). T is used as a pivotal quantity in order to
determine confidence intervals on u. This requires that its distribution be
known. If F is a normal distribution then R has the t distribution with n — 1
df. However, if F is not normal then R does not, in general, have a t distribution.
If n is large the t distribution may serve as an approximation, but certainly in
some applications # may not be large.

For another example let R(Y, F) = T,(Y) — 6, where 8 is the median of the
symmetric distribution F, and 7, is the trimmed mean, the mean when the
smallest k and largest kY's are omitted. In this case R is the error made in
using 7, to estimate 0. More explicitly, if ¢ = Y¥; — 0, then, since T, (Y)=
8 + Ti(z), R(Y, F) = T,{£). In still one more example discussed by Efron, Y was
a vector of pairs of observations (U;, V}) from a bivariate distribution F, and
R(Y, F) =r — p, where r and p are the sample and population correlation
coefficients.

Efron suggested that the conditional distribution of R* = R(Y*, F,) given Y
serve as an estimator of the distribution of R. Here Y* =(Y?,...,Y¥) is a
random sample (the bootstrap sample, taken with replacement) from the
empirical (or sample) distribution function F, determined by the components
of Y. That is, F,(y) = (1/n) ¥ I[¥; < y], the proportion of the ¥s less than or
equal to y. His intuitive argument was that at least for large n, R*, conditionally
on the sample Y, should have a distribution close to that of R.

Consider R(Y, F) = Y — u = §, the error in using the sample mean Y to
estimate the mean p of the distribution F. Then R* = ¥* — ¥, where Y* is the
mean of a bootstrap sample of # from the “population” {Y,, ..., ¥,} with mean
Y. If we define ¢f = Y* — Y, then R* = &*. We know that the conditional
distribution of R*, given Y, has mean 0 and variance 6}/n, where 6, =
(1/} ¥ (Y, — Y)>. We also know that for large n, and reasonably behaved Y,
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conditionally on Y, R* will be approximately normally distributed. We usually
use 6% /nor (6%/n)[n/(n — 1)] as an estimator of the variance of R. We also know
that R has an approximate normal distribution if n is large and F is reasonably
well behaved. Can we find the exact conditional distribution of R*? In theory
we can, since Y is known, though the problem may be mathematically
intractable. Efron’s idea was to take bootstrap samples of n from F, some large
number B times to obtain RY,...,R%, then to use these to estimate the
distribution of R. The use of F,, rather than some other estimator F;, obtained
by assuming that F = F, belongs to some collection of distributions para-
meterized by 2, causes the bootstrap methods we will discuss to be called
nonparametric.

Theory developed over the last 15 years has shown that in a number of
circumstances, the “bootstrap™ is a better approximation to the distribution of
R than is the normal theory. In fact, there are cases in which the normal
approximation may be quite poor, but the bootstrap approximation is good.
The bootstrap has become practically possible because computing power has
increased tremendously over these last 15 years.

In this section we will avoid presenting proofs or even precise statements of
the limit theory which justifies the approximations provided by the bootstrap.
We are particularly interested, of course, in applications to linear models. Refer
to the book by Rousseecuw and Leroy (1987) and the monograph by Mammen
{1992). Mammen'’s references include 79 papers with the name bootstrap in the
title. For a less theoretical expository review of the bootstrap see Efron and
Tibshirani (1986).

Let 0 = 6(F) be an unknown parameter, a function of F. Let § = 6(F,) the
corresponding value of 0 for the distribution F,. Let R(Y, F) = 6 — 0, the error
made when 0 is estimated by 0. The bootstrap estimate of the variance of R is
6% = Var(R*|Y), the conditional variance of R* = R(Y*, F,), given Y. There
are n" possible samples of the components of Y of size n, all equally likely under
“simple” bootstrap sampling. In theory, all we have to do is compute R* for
each such sample, then compute the variance of these n” values. Though this
is in the realm of the possible for n = 10 (10 billion samples), for larger n this
soon becomes impossible. Instead the bootstrap method requires that we choose
some large number B samples at random, determine R}, ..., R, then estimate
Var(R) by 6% = (1/B) Y. (RF — R*)%. In practice it is often enough to let
B = 200, though it is usually relatively inexpensive to let B = 1,000, 10,000, or
even 100,000.

Example 4.12.1: Let F be the contaminated normal distribution:
F(x) = 09®(x) + 0.1d(x/5).

Let O(F) be the 0.2-trimmed mean. That is, for F(x, ,) = 0.2 and F(xy4) = 0.8,
X0.8
(F) = J xf(x)/0.6, where [ is the density corresponding to F. By symmetry

X 2
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FIGURE 4.22 Density of error for trimmed mcan and bootstrap estimate of the density, based
on one sample of 40.

0(F) =0 and f = 6(F,) is the sample 0.2-trimmed mean. We consider samples
of size n = 40. To find Var(f) 500 samples of 40 were chosen. The variance was
found to be 0.0349. Then a single sample of 40 was taken and B = 1,000
bootstrap samples of 40 were taken. The sample variance of these 1,000R*’s
was ¢% = 0.030.

Figurc 4.22 presents estimates of the density of R based on this simulation,
and also by bootstrapping a single sample of 40 1,000 times.

We will briefly discuss two basic methods for the determination of bootstrap
confidence intervals, the naive or percentile method and the t-method. For a
full discussion of these and others from a theoretical point of view, see Hall
(1988). For a more general review of the bootstrap method with examples, see
Efron and Tibshirani (1986, 1993). Let # = 6(F) be an unknown parameter and
let § = O(F,). If, for example, 0 is the mean of the distribution F, then 6 is the
sample mean. If O(F) is the median for F then 4 is the sample median. Let
R = R(Y, F) = O(F,) — 8(F) = § — 0, the error in estimating ¢ by ., We would
like to estimate the distribution Z(R) of R. Let R, be the yth percentile of Z(R).
Then | —a=P(R=R,) =Pl —0>R,)= Pl —R,>0), so that 6 — R, is
an upper 100(1 — «)%, confidence limit on . Similarly,

l-2x=PR<R,_.)=PO—-0<R,_)=PO>0-R,_,,
so that § — R,_, is a 100(1 — «)% lower confidence limit on 6. Thus,

[0 — R, Cay - R,,]is a 100(1 — a; — «,)%; confidence interval on 6.
The problem with this is that the distribution of R is unknown. For an



224 FITTING OF REGRESSION MODELS

observation Y let R* = R(Y*, F,), where Y* is a bootstrap sample from F,, the
empirical distribution of Y. We can estimate Z(R) by 2(R*|Y), the conditional
distribution of R* given Y. We can do this, if we have enough computing power,
by determining R* for all n* possible bootstrap samples. In general this is
impossible so we instead choose some Jarge number B (say 200 or 1,000 or
10,000) of bootstrap samples. For the ith bootstrap sample let R¥ = §* — 8,
the bootstrap estimate of the error. We can now estimate R, for any y by the
corresponding sample percentile of RY,..., R}. That is, if k, is the nearest
integer to yn, then we estimate R by R = R, the k, th order statistic
among the R?. The interval [6 — R, _ o ,0 R,,] is then an approximate
100(1 — o, — %)% confidence interval on . This is a confidence interval
obtained by a percentile method, though it does not quite correspond to the
100(1 — 2a)% percentile interval [§ — R, _,,, 8 — R,,] of Efron (1982).

In the case that F is symmetric about §, R, =1 — R, _,, so that a better
confidence interval is given by 0 + A, __, where A, _, is the (1 — x)th sample
quantile of the absolute values |R¥|. It is reasonable to believe that near
symmetry will also cause the absolute percentile bootstrap method to be slightly
better.

The bootstrap t-method for confidence intervals requires that some estimator
¢ of the standard deviation of @ be available. This could be the bootstrap
estimator. Define T(Y, F) = (0 — 6)/6. 1f we knew the distribution of 7 then
we could determine quantiles ¢, _,, and ¢,,, so that | —a, = P(T<1t,_, ) =
PO—-0<t,_,6)= P(O —t,_,6<0), and 1 —2, = P(T 21t,,)= P <t,6).
Then [8 —¢,_,,6, 6— t,,6] would be a 100[1 — &, — «,]%, confidence interval
on 0.

We can estimate the dlstrlbuuon of T by that of T* = é* - #)/6*, con-
ditionally on the sample Y. Here * and é* are the estimates of 6 and the
standard deviation of § based on a bootstrap sample Y* from F,. We can
generate B values of T*, then estimate r,_,, and t,, by the corresponding
percentlles £y _q, and tLu of these B values of T*. The bootstrap t-confidence
interval is then [0 — {,_,,6,8 — f,,8). If 6 itself is a bootstrap estimator, this
would require bootstrap of a bootstrap sample. If B = 1,000 for both stages of
bootstrapping, this would require 1 million bootstrap samples, each of size n.
Again in the case of symmetry or near symmetry of F about 8, it might be
better to use the interval § + A,_,6, where A,__ is the (I — a)th sample
quantile of the T¥’s.

Example 4.12.2: Consider the contaminated normal example of Example
4.12.1, for samples of size 20. To keep things simple consider the mean
0 = 0(F) = 0. Then § = ¥, and 6% = $%/n, where S is the usual sample variance.
In this case F certainly is not a normal distribution so that T does not have a
t distribution. We computed six 90%, confidence intervals for each sample of
20, by (1) the usual t-method with interval Y+ 1.7298/\/ 20, (2) the bootstrap
percentile method described above, (3) the bootstrap percentile method of
Efron, (4) the bootstrap absolute percentile method, (5) the bootstrap t-method
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Table 4.12.1 Coverage Percentages and Lengths for 909, Confidence Intervals Determined
by t-Method and Bootstrap Methods

Method 1 2 3 4 5 6
Percentage 90.09 89.96 84.2 86.8 819 93.8
Mean Length 1.75 1.62 1.62 1.62 1.99 2,06

described above, and, finally, (6) the bootstrap absolute t-method. Table 4.12.1
above presents the coverage percentages, and the mean lengths of cach of these
intervals. The conclusion would seem to be that we are quite well off if we
stick to the t-method, and forego bootstrapping. Another simulation, with
F=03N(—1,1) + 0.7IN(3/7, 1), n = 15, a nonsymmetric distribution, produced
essentially the same results. In these examples the variance for F exists, so that
the t-statistic is asymptotically normal. Simulations for F with a mean but not
a variance, showed that the bootstrap percentile method can defeat the
t-method, and that the bootstrap t-method can also be bad. Comparisons of
lengths of intervals based on their mean lengths can give false impressions for
such distributions, however, since heavy tails for F tend occasionally to produce
very long intervals.

Application of the Bootstrap Method to Regression

k
Suppose that the linear model Y =) B;x; + £ holds, where the components
1

of £ are independent, identically distributed with c.d.f. F. Let the column space
of X be V, of dimension k. By the Gauss—Markov Theorem the least squares
estimator p=X*Y =p + X*g, for M =X'X, X* = M~!X’ has minimum
variance among all linear unbiased estimators of the components of . However,
p is not normally distributed unless F is a normal distribution. We know from
Section 4.10 that B is asymptotically normally distributed if k remains fixed and
the maximum h, of the diagonal elements of the projection matrix P, = XX*
XM™IX’ converges to zero as n — o0. However, we usually do not know the
distribution of B or of a linear combination cB for small n. The normal
approximation may not be good. From Section 4.11 on robust estimation we
know that in some circumstances it is better to give up the relative simplicity
of least squares in order to gain precision. The bootstrap method offers a way
of avoiding the assumption of normality and the relative complexity of the
analysis required by these robust methods.

Let R(Y,p) =P ~ Pp=X"¢ and for fixed ¢c={(c,,...,¢c) let R(Y,B)=
cPp-p = ¢'R(Y, B). We would like to know the distributions of R and R.. Let
e=Y-Y=(0 - XX"Y = (I, — XX "), the residual vector. Let e* be an
n-component vector obtained by randomly choosing, with replacement, from
the components of e (not £). That is, conditionally on Y, the components are
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independent and identically distributed with c.d.f. F,, the empirical c.d.f. of e.
One bootstrap idea is to use the conditional distributions of R* = X*e* and
of R¥ = ¢’X7e*, given Y (and therefore e), to approximate that of R = X "¢
and R, = ¢’X*¢. It turns out (Bickel and Freedman 1983) that k*/n — 0 implies
that the conditional distributions of R* and of R* will converge (in a certain
sense, not to be discussed here) to that of R and R.. We will describe the
percentile bootstrap and t-bootstrap methods for finding confidence intervals
and the F-bootstrap method for testing linear hypotheses. See Mammen (1992)
for details of the theory. We are assuming here that the vector of all ones lies
in the column space of X; otherwise the components of e should be adjusted
by subtracting their mean, before determining e*.

Let e be determined. Let e}, fori = |,..., B, be a random bootstrap sample
from the empirical distribution determined by e. That is, each eF is an
n-component vector whose components are independently chosen from the
components of e. Let R¥ = X*e¥ and R% = ¢'’X*e¥ = ¢'R¥. Then the empirical
distributions of the k-component vectors R}, ..., R} and of RY, ..., R serve
as approximations of the distribution of R and of R*.

Define h(e) = ¢M !¢, ST = Y — XBJ?i(n — k) = |lel|2/(n — k),

and
T=c(p~ B)[he)s’]? = [R,/STh(e) '

In order to determine a confidence interval on 5, = ¢'B we should know the
distribution of 7. We can approximate the distribution of T from the bootstrap
samples e¥,....e%, to obtain T%,.,., T%, where TF = [R*/S¥]h(c)” /2. Here
S¥* = i, — Py)e*li%. Thus, in order to determine 7%, we must perform a
regression analysis on e*. Though e € V%, because of the random choice of the
¢} from the components of e, e* is not contained in V. From the ordered
values of these TF we can determine estimates {, ., and {,, of the percentiles
t; _,, and t,,. One percentile bootstrap 100(1 — x, — &,)%, confidence interval
on ¢ is [¢'B — f, —z, Sh(c)'?, cp— t.,Shic)''?].

We can determine bootstrap cutoff points for the F-test of H,:0 =
Y B;x;€ ¥V, a ky < k dimensional subspace of V. Let ef, ..., e} be defined as
before. Let F¥ = [P, — P, et 2/[(k — ko)]/S¥], the usual F-statistic for the
observation vector e*. Then the proper cutoff point for the F-test can be
estimated by the (1 — «)th quantile of the empirical distribution of F}'s.

Scheffé simultaneous confidence intervals can be obtained by simply sub-
stituting the estimated F-cutoff point for F;_, in the usual normal theory
formula. Of course, the Bonferront method can also be used, finding, for
example. five 99%; confidence intervals by the t-bootstrap method in order to have
95% overall confidence. In theory the bootstrap Tukey method could also be used
by bootstrapping to approximate the distribution of ¢ = Range(¥,,..., %,)/S.

Fundamental to our discussion of the bootstrap has been the assumption
that the #; have the same distribution F. There are certainly many applications
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when that is not a reasonable assumption. Theory has been developed in recent
years which allows the bootstrap method, (the “wild bootstrap” for example)
to be applied to the case that the ¢; do not have the same distribution. In other
applications it may be more reasonable to believe that the pairs (X;, Y;)
constitute a random sample form a (k + 1)-dimensional distribution. For
discussions of applications of the bootstrap in these situations, see Wu (1986)
and Tibshirani and Efron (1993).

Example 4.12.3: We looked for a design matrix X and distribution F for
which the usual normal theory method would perform poorly, while the
bootstrap method did well. This suggests that we estimate a parameter = ¢’
for which the estimator 4 = c'ﬁ put heavy weight on one or just a few ¢&;s, and
that F differ considerably from any normal distribution. As an extreme we
chose X = (x,, X,), where x, = (1,0,...,0), and x, = (0, I,..., 1), each of 50
components, and ¢ = (1, 0), so that y = §,, the coefficicnt of x,. Then § =
B, = B, + ¢,. The distribution of 4 — = &, is F. F was chosen to be the 1,2,
1/2 mixture of N(0, 1) and N(O, 100). The t-95%; -interval on »n: Bl + 2.018,
would be expected to have approximate probability of coverage F(1.96¢) —
F(-1.960) = 20(1.96(50.5)'?) — 1 = 0.918. Using B = 1,000, six nominal 95%,
intervals were found for 2,000 repetitions of this experiment (see Table 4.12.2).
The methods were as described in Example 4.12.1. Even in this extreme case,
chosen to make the bootstrap method look good, the usual t-method (#1)
does reasonably well. The two t-bootstrap procedures (#5 and #6) have
coverage probabilities closer to the nominal 959, but they pay the price of
larger mean length. An x = 0.05 level F-test of Hy: 8, = B, was performed for
the case that H, was true for each repetition of the experiment, using both the
usual method, which rejects for F > Fj 45, 4s. and the bootstrap method
described above. These two methods rejected 169 and 127 times, respectively,
so that the true x-levels are estimated to be 0.084 5 and 0.063 5.

Example 4.12.4: The t-method can be expected to fail when the variance
for F does not exist. For that reason we also chose F to be the c.d.f. for the
distribution of ¢ = EU "', for ¢ = | or —1 with probabilities 1,2, 1/2, and U
uniform [0, 1], £ and U independent. The mean exists for é > 1, the variance
for § > 2. For § = 1.5 we simulated the two-sample problem with n, = n, = 15,

Table 4.12.2 Coverage Percentages and Lengths for 95, Confidence Intervals on B, as
Determined by t-Method and Bootstrap Methods

Method 1 2 3l 4 5 6

Percentage 904 92.2 86.7 91.9 93.6 93.8
Mean Length 14.2 15.7 18.8 15.7 17.0 17.0
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Table 4.12.3 Coverage Percentages and Lengths for 957, Confidence Intervals on p, — p,
Determined by t-Method and Bootstrap Method

Method 1 2 3 4 5 6
Percentage 95.1 94.6 874 81.6 93.4 90.9
Mean Length 7.32 6.31 6.31 8.32 9.76 12.1

again finding six intervals as described in Example 4.12.2. 2,000 samples of
n; + n, = 30 were taken, and B = 1,000 bootstrap samples were taken in each
case. Application of the bootstrap regression method requires in this case
that the deviations e;; = Y;; — ¥, and e,, = Y, — ¥;, a bootstrap sample
(et ... .ef,,. €34,...,¢%,,) taken, then the bootstrap distributions of
(&3 — ét) — (¢, — &,) = d* and of t* = d*/S} obtained by B repetitions (Table
4.12.3). The conclusion in this case is that the usual t-method performs
surprisingly well, that the Efron percentile method does rather badly, that the
absolute t and absolute percentile methods do not not do well as compared to
methods # 2 and #6, and, as would be expected in a case in which the variance
for F does not exist, it is better to use a percentile method rather than a
t-method.

In general, the author found in a number of other simulations, that the usual
t- and F-methods perform surprisingly well, with respect to confidence intervals
and to tests, both for the level of significance, and for the power. In a wide
range of problems, it seems to be doubtful that with replacement bootstrapping
will do much better than the classical methods.

For discussion of “permutation bootstrapping in regression” see LePage and
Podgorski (1992, 1994). For a discussion of bootstrapping for non-normal
errors see LePage, Podgorski, and Ryznar (1994).

Problem 4.12.1: (a) For the sample 3, 9, 6 find the exact bootstrap
distribution of the sample mean.

(b) Find the bootstrap estimate of the variance of the sample mean. Can you
do this without answering (a) first?

(c) Repeat (a) for the sample median.

(d) Repeat (b) for the sample median.

Problem 4.12.2: Define an algorithm which could be used on your favorite
computer and software package to find a 959, confidence interval on the mean
p of a distribution F, based on a random sample of n from F. The method
should use the sample mean as the estimator, and employ both the percentile-
bootstrap and t-bootstrap methods. If possible use the algorithm to carry out
a simulation for the case that F is as in example 4.1.2. n = 10, B = 200. Repeat
500 times in order to estimate the coverage probability and mean lengths of the
intervals.
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Problem 4.12.3: Let Y, = fix; + ¢, i =1, 2, 3, suppose the (x;, ¥,) pairs
(L 1), (2,3), (3, 7) are observed. A

(a) Find the bootstrap estimate of the distribution of § — B. (Since the
residual vector will not have components summing to zero, the components of
e* should be a random sample from the “corrected e”).

(b) Use the result of (a) to find an approximate 80%, confidence interval on §.

(c) The permutation bootstrap method for regression analysis chooses the
elements of e* without rather than with replacement, after correcting so the
components sum to zero. Use this method to estimate the distribution of f — .



CHAPTER 5

Simultaneous Confidence Intervals

We have discussed methods for the setting of confidence intervals on parameters
n=cfy+ -+ cfi. These are of the form I = [# + tS;] and have the
property P(nel)=1—a for each choice of ¢ =(c,,...,¢). It is often
desirable to be able to make the claim

P(nel,ceC)=1-a, (5.1.1)

where C is some finite or infinite collection of such vectors. The collection
{I..ce C} is then a family of confidence intervals with confidence coefficient
l —a

For example, consider one-way analysis of variance with four means p,, u,,
M3, pg of interest. We may be interested in the 6 differences p; — y; for i > j
and might like to have 959 confidence that all intervals of the form of I,
simultaneously hold. Then C is the collection of six coefficient vectors of the
form (1, —1,0, 0 or (1,0, —1, 0), etc.

For simple linear regression we may be interested in intervals on §, + f,x
for all x over the entire range of x for which the model holds. Thus each
¢ is of the form (1, x). Since a confidence interval I, on g(x) determines an
interval al, on ag(x) = afiy + B;(ax) it is therefore equivalent to find intervals
I,, on all linear combination af, + bf,. Thus C may be taken to be
all of R,.

In this chapter we discuss three simultaneous confidence interval (SCI)
methods: (1) Bonferroni, (2) Scheffé, (3) Tukey. The Bonferroni method is
fundamentally the simplest method and for small finite C is usually the best in
that the resulting intervals are shorter. The Scheffé method is the most
mathematically elegant (an opinion of the author), and has applicability to all
the linear models we have and will consider. The Tukey method is applicable
only to cases with repeated observations for each of several means but for those
situations usually provides shorter intervals than the Scheffé method. The
Neuman -Kuels (Kuels, 1952) and Duncan procedures are multiple tests of
hypotheses, rather than methods for the determination of SCI's. The Duncan
procedure is often used because the method finds more significant differences

230
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than the simultaneous methods to be discussed, but does not offer the error
protection that SCI's do. For example, for « = 0.05, with five equal means and
large degrees of freedom for error, the Duncan procedure has probability
approximately 1 — 0.95% = 0.185 that at least one significant difference will be
found. We will not discuss the Duncan and Newman-Kuels procedures.

51 BONFERRONI CONFIDENCE INTERVALS

Suppose we want confidence intervals on a fixed number of linear combina-
tions

m=cp  n=c3p....n=cp

of the parameters of the linear model. We already have a technique for
finding a 100(1 — x)%, confidence interval on each such linear combination,
namely

ljz[ﬁj-_ttl -1,;’28(’?])] for j=]9-'-7"7

where 4; = ¢, $%(4;) = S%¢{(X'X)"'¢; and t, _, ,, has (n — k) d.f.

Let E; be the event that the confidence interval I; covers #; = ¢;B. We can
make use of the Bonferroni Inequality to put a lower bound on the probability
that all confidence intervals hold simultaneously. Thus

r

P( ﬂ E,.)= 1 - P(l() E,.) 21- ; P(Ej) =1 —;a,.

j=1 j=1 j

r

If we want P( ﬂ E,) > 1 — a we therefore need only choose %, ..., a, such
r j=]

that } x; < a. The usual choice is a; = a/r.
1

In one-way analysis of variance treatment # I might be a control, perhaps
the standard seed. Treatments # 2, # 3, #4 might be new varieties of seed, and
we might want to compare each against the control. We may therefore be
interested primarily in the linear combinations p, — u,, g3 — M. He — Uy

Tables 2.1-2.3 in the Appendix, presenting t-distribution quantiles t; _,2,,
for various choices of a and m, facilitates use of the Bonferroni inequality. For
example, for the three parameters above and a = 0.05 we find for v = 20,
tyo.1-0.086 = 2.61 sowecanuse ¥, — ¥; £2.61,/1/n;+ t/n,Sfor j=2,3,4.1If
we wish simultaneous 959, intervals on p; — py, My — H3, Uy — Ha, Uz — H3,
Mz — Mas M3 — fq WE USE 59y g.05/12 = 2.93.
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52 SCHEFFE SIMULTANEOUS CONFIDENCE INTERVALS

k
LetY =Y B;x; + £ withe ~ N(0, 6°1,). Let C be a subspace of R, of dimension
1

4, | < ¢ < k. Consider the collection of parameters #, as ¢ ranges over C. The
Scheffé simultaneous confidence interval method provides a collection of
intervals I, on n, which simultaneously hold for ali ¢ce C with prescribed
probability (confidence).

For example, for the one-way layout we are often interested in “contrasts”
only, linear combinations of y,, ..., 4, with coefficients adding to zero. Thus
C = £(J;)*. For simple linear regression we are interested in linear combina-
tions fo + B, x. In this case we take C = R, and get confidence intervals on al}
linear combinations ¢y + ¢, ;.

To develop these SCI's, define a, = XM ™'¢, where M = X'X. Then 5, =
(c.p) = (ai,ﬂ) forall®e }V and, since a. X =¢, (i, x;)=¢; fori=1,...,k In
addition,p — p=m 'X'(Y — 8) = M 'X'g, s0 4, = (a,, €). We have E(,) = n,
and Var(n,) = Var((a., Y)) = o?||a.|* = 6’¢’M " '¢c. Let S? = $*}ja %, an un-
biased estimator of Var(d,).

Recall the method used to find a confidence interval on an individual
parameter n, = ¢'p. We used the fact that the pivotal quantity T, = ¢'(B — B)/
[S2¢M~ ]2 = (34, — n.)/S. = (a,, €)/[S]la. ] has Student’s t distribution with
n — k d.f. We can determine simultaneous confidence intervals by considering
the random variable W* = sup T2.

ceC

Define ¥, = {a.|c e C}. Then dim(¥;) = dim(C) = ¢. Let &, = p(g|¥,) and
& = p(ela.). Then, since p(,|a.) = €, and (8, — €,) L €, it follows that S*T? =
1€.01% = 116,112 — 1€, — &% < (1€, 1%, with equality only if a_ is a multiple of &,.
Thus, from Theorem 2.5.6, W*/q = [||¢,11*/q}/S* ~ F, ,-,. Taking K*/g=
F;':j_ x.y» the 100yth percentile of the F, ,_, distribution, we get K = (¢F, ,-.,)"%
an

P(T! <KforallceC)= P(W*/q<F,,_,,) ="

Finally, we conclude that

P(n e[ £ (gF, p-s.,)""*S()] for allce C) = y.

The intervals I, within the brackets will therefore contain the corresponding
parameters 1, for all ¢ € C with probability y. The intervals I_ are called Scheffe
simultaneous confidence intervals after Henry Scheffé (1953).

Application to Simple Linear Regression: Let g(x) = f, + §,x. Suppose we
observe (x;, ¥) for =0, + B,x;+ ¢ for i=1,...,n and want confidence
intervals I, on g(x) which hold simultaneously for all x for which this simple
linear regression model holds.

Let C = R,. Then the Scheffée method provides simultaneous intervals on
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coBo + ¢ By, hence ong(x) = B, + B;x.Since C = R,, V|, = V = £(J, x). Thus,
100y%, simultaneous confidence intervals on g(x) = B, + B,x are given by

g(x) + KS(4,) for K=./2F, 5,

where §(x) = B, + B, x. Since Var(d(x)) = h(x)a?, where h(x) = 1/n + (x — X)?/
S.., the simultaneous intervals are

g(x) £ [h(x)S?]'2K

We earlier found that a 100y%, confidence interval on g(x), holding for that
x only, is
3(x) + th(x)"'*S for t=1,_;4+pn

Thus the ratio of the length of the simultaneous interval at x to the individual
interval is (K/1) = 2F, ,_ ../t~ 3 (1+4y2)""%, which always exceeds one.

Connection Between Scheffe Intervals and Tests of Hypotheses: Let

- M _(.a)
“jads  las’
as defined in Section 3.7. ¢, is the statistic used to test the null hypothesis that
n.=0. Note that T, was defined similarly, with € rather than Y. Then
A.— KSla,] <0 <4, + KS|a,|| if and only if [¢? < K?]. It follows that O I,
for all ce C if and only if

W=supt? < K?*=9qF, 4, (5.2.1)

ceC

It was shown in Section 3.7 that W/q = F, where F is the statistic used to test
Hy: 0e Vi< 0LV, where ¥V, = {v=XM"'c,ce C}. Therefore, (5.2.1) holds
if and only if H, is accepted at level x. We conclude that 0e I, for all ce C if
and only if the a-level F-test for H, is accepted. Stated conversely, this means
that rejection of H, at level x implies the existence of at least one ¢ e C for
which the interval I, does not include zero.

One-Way Analysis of Variance: Let C = {c € R;jc L J}. Then the collection
k

of linear combinations (¢, p) = Y. ¢;; for ¢ € C is the coliection of contrasts.
A 1T (% .

Force C,a, =Y (c;/n)J; so Ve = {z €y,
1 1 .

subspace of R,. But [y, =y, =--=u,]<«[0=p,J for some p,]<
[(a,0) =0forac V] c:[z e, =0forallce C].

k
Y= 0}, a (k — 1)-dimensional
1
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k
The simultaneous Scheffé confidence intervals on contrast Z ¢;44; are given by
1

k _ 12
zcl},li [Zcunl} )
1

where K = [qu.n—k.a]Hz = [(k - 1)Fk—l.n~k.l—1]”2~

If it is desirable to make an overall statement of confidence on all linear
k

combinations Z ¢; li;, then we can take C = R,. We can include, for example,
1

confidence intervals on u,, u,,..., i as well as on contrasts. In this case we
need only change K to

K = (kf;z.n—k.l —a)l:‘z'

Confidence Ellipsoids: Let C = R,, so that V. = V. Then g, = p(e|V,) =
pelV)=¢=Y-0= X(B ). It follows that

= lle,I1%/8% = (B — B)’M(B — B)/S>.

Let this last term, considered as a function of §, be Q(B) and define 4 =
{be R,[Q(b) < kF, ,_, ,}. A is the convex hull of an ellipsoid in R, (union
of interior and boundary). Since pe A<« W*k<F,,_, ., it follows that
P(B € A) = 7, s0 that 4 is a 100y%; confidence ellipsoid on B. Since W* = sup 72,

ce Ry
Bpe A<n.el forall ce R,. If B, is a specified value for the parameter vector,
we can test H,: § = B, at level « by rejecting H, whenever the 100(! — x)%,
confidence ellipsoid 4 does not contain B,.

Problem 5.2.1: Consider the weighing Problem 3.1.1 with the two unknown
weights f, and f3,.

(a) Suppose we want Scheffé simultaneous 95% confidence intervals on
all linear combinations of §, and f,. For the four weighings made and for Y =
(7, 3, 1, 7Y find these intervals for the three linear combinations §,, f8,, and
Br — B

(b) Use the Bonferroni method to find 95%;, simultaneous confidence intervals
on these same three linear combinations.

(c) Suppose that we wish to test Hy: 8, = B, = 0. Then sup t2/q = F is the

ceC
corresponding F-statistic. For which value of ¢ does t?/g = F? What is the
corresponding a_?
(d) Find a 95%; confidence ellipsoid for § = (f,, ;) for these data.

Problem 5.2.2: For the pairs (x;, Y): (0, 7), (1, 7), (2, 5), (3, 1) and the simple
linear regression model sketch the 95%, confidence ellipsoid on B = (f,, §,)"

Suppose that you wished to test Hy: § = (7, — 1)". Would you reject H, at level
a2 = 0.05?
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Problem 5.2.3: Consider the model for one-way analysis of variance, with
k = 4, means u,, i5. U3, us, and observations: treatment #1: 3, 5, 7; treatment
#2: 6, 8; treatment #3: 8, 10; treatment #4: 8, 10, 12.

(a) Perform the o = 0.05 level F-test of Hy: 1, = yt; = py = pg.

(b) Use the Scheffé method to find 95% simultaneous confidence intervals
on the six parameters of the type u; — y;.

(¢) For which ¢ = (cy, ¢,, ¢3, ¢5)' does t2/(4 — 1) = F, the F-statistic you
found in (a)?

(d) Supposc that you wish SCI's on all linear combinations of the u;. What
are the resulting 95%, confidence intervals on g, and on (u; — u,)?

Problem 5.2.4: For the fitness data of Section 3.12 consider the simple
linear regression of Y(oxygen) vs. x, (runtime). Find the least squares estimate
g(xy) of g(x;) = E(Y|x,) and two functions k;(x,;) and k,(x,) such that for
each x,  P(g(x;) € [§(x;) £ k,(x;)S]) = 0.95 and P(g(x,) € [§(x,) % k,(x,)S]
for all x,) = 0.95.

53 TUKEY SIMULTANEOUS CONFIDENCE INTERVALS

The Tukey procedure for finding simultaneous confidence intervals depends on
the following definition.

Definition 5.3.1: Let W,,..., W, be independent r.v.’s, each N(y, 62). Let
R = <max m) - <min Wi) = Range(W,,..., W,). Let vS*/6® have a xi

¥ t

distribution and be independent of (W}, ..., W,). Then q = R/S is said to have
the studentized range distribution. Let g,,, be the y-quantile of this distribution.

max(R, M)

Let M =max (|W, — ul). Theng’' = —- S has the studentized augmented

1
range distribution. Let ¢, be the y-quantile of this distribution.

Comment: For k large it is unlikely that all W are on the same side of g,
so that usually M < R and ¢' = gq. For any k, P(g =¢q')=1 —2"%"1 Even
when ¢ and ¢’ differ, they will usually be close. For y large ¢4, = g,

The densities and c.d.f.’s of g and ¢’ cannot be expressed in closed form. See
Table 6 in the Appendix for 95 and 99 percentiles for varying values of k and v.
Harter (1960) presents much more complete tables of the c.d.f.

The following theorem, proved by John Tukey (1953), justifies the Tukey
simultaneous confidence interval method.

Theorem 5.3.1: Let 4,,.... 0, be independent with 6, ~ N(6;, a*s?), where
a is a known positive constant. Let vS?/a2 ~ x2, independent of (f,, ..., 6,).
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Then

(1) P((9; — 0)) e [(0;,— 0;) £ TS] for all j and j') = y for T = aq,,, and
(2) P((6; - 0)e[(8,— 07) + T'S] and 6,8, + T'S]) =y for all j and
j’s for T" = aq',,.

In application to one-way analysis of variance, 9,- will be the treatment mean

}—}, the constant a will be 1 /\/ n;, which we will assume for now is the same for
all j. $? is error mean square. The theorem makes it possible to: (1) using g,
give simultaneous confidence intervals which will cover all differences y; — y;
with a prescribed probability y and (2) using ¢’, give simultaneous confidence
intervals which will cover all differences y; — y; and all means y; with prescribed
probability y. The proof is easy.

Proof: Let R = Range(§, — 0,,...,0, — 6,). Since (8, — 9;)/a ~ N(0, 6?),
R/(Sa) has the studentized range distribution. Hence y = P(R/S < aq,,)

= P(I(8; — 6,) — (0; — 8,)| < Sag,,, for all j, j’)
= P([(6; — 0;) e [(§, — 0,) + TS] for all j, j").
The proof of (2) is similar. O

In order to expand the number of linear combinationson 0,, . .., 6, for which
conﬁdence intervals are given from those of type 8; — 8] to all contrasts Z c;0,

for Zc,—Owe need.

Lemma 53.1: Letd,,...,d, be any real numbers. Then

ol151)) 0

= max (d; — d;) = Range(d,, .. ., d;)
iy

Proof: Without loss of generality we may suppose that 0 < d, <---<d,,

by a change of notation and the fact that adding the same amount to all d;

k k

k
all¢y,...,c, such that ¥ ¢, = 0}
1

does not change ) c;d;, since 3 ¢, = 0. Then
1 1

Yedi= Y i+ ¥ ocdi<dy ¥ i +dy )

>0 ;<0 ;>0 50

g )l ol

i

¢j

o))
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)

Similarly,

<j

1
Tedizdy Y o¢j+d 3 cj=(dx—dx)(52
i

>0 <0 J

Theorem 5.3.2: Under the assumptions of Theorem 5.3.1:

)

for all contrasts(c,, ..., c,‘)) =7, where T = aqy,.

P(i ¢;0;€ [i ;0 + TS(%i

]

Proof: Let d;= 91 — 6; in the inequality of Theorem 5.3.1. Then Theorem
5.3.2 follows immediately from Theorem 5.3.1.

Theorem 5.3.3: Under the assumptions of Theorem 5.3.1:

)

for all(c,,..., c,)) =7y, where T’ = aq,,

P(z c;0;€ [Z cjgj + T8 max( Y

;>0

»)

;<0

j ¢

Extension to Unequal Sample Sizes: Suppose we want simultancous con-
fidence intervals on ) ¢;8,, but Var(@j) = g2/n;, with differing n;. The original
Tukey procedure required all 9,- to have the same variance. Extensions have
been proposed by many authors, including Dunn (1974, 101-103), Sidak (1967,
626-633), Hochberg (1975, 426-433), Tukey (1953), Kramer (1956, 307-310),
and Spjetvoll and Stoline (1973, 975-978). See the comparison of these and
several others by Stoline (1981). Stoline recommends the use of the Tukey-
Kramer (T-K) method (Tukey (1953) and Kramer (1956)). The T- K procedure,
applhied to the one-way model with n; observations for sample i, i=1,...,k,
yields the 100(1 — «)%; simultaneous confidence intervals

Yj- - z' i ql—a.ka[(l/nj + l/nj‘)/z:]”z

on y; — p;.. L. D. Brown (1984) showed that for the cases k = 3, 4, 5 that the
simultaneous coverage probability is at least 1| — «. Simulation work of Dunnett
(1980) indicates that this may be true for all k, or at least that the coverage
probability is not much less than the nominal value. In addition, the lengths
of these intervals are in general a bit less or equal to those provided by other
methods. The T-K method and most of the others reduce to the Tukey method
when the sample sizes are equal.

Example 5.3.1: Suppose that 40 pigs were chosen to take part in a study
designed to determine the effects of four different feeds on weight gains over a
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one-month period. The pigs were randomly assigned to the four feeds, 10 to
cach feed. The weight gains were:

Feed 1 24 20 29 26 29 30 33 27 20 28
Feed 2 37 30 35 41 31 34 33 32 32 32
Feed 3 32 34 31 23 33 31 30 32 33 33
Feed 4 26 22 20 28 28 32 25 27 32 32

The sample means were: feed 1, 26.6; feed 2, 33.7; feed 3, 31.2; feed 4, 27.2; with
grand mean Y. = 29.675, corrected total SSqs. = 840.77, feed SSqs. = 341.07,
error SSqs = 499.7, feed MSq. = 113.69, S? = 13.881. Therefore, the F-statistic
for Ho: py = py = pt3 = p, is F = (feed MSq.)/$? = 8.191. Since F3 34,0.9995 =
7.51, we reject H, at any reasonable a-level. The estimate of the standard
error of the feed means is \/32/10= 1.178. Since ¢g.95.4.36 = 3.81, Tukey
simultaneous 957, confidence intervals on the contrasts y, — u, for i # j are
given by (Y. — V)£ 381(1.178) = (1. — ¥,.) + 4488. Two sample means
which differ by more than 4.488 are said to be significantly different. We
have 959, confidence that all these statements are correct simultancously.
Consider Table 5.3.1. Since the interval on u, — u, is to the left of 0, we
can conclude that u, < u,. Similarly, we conclude that u, > u,, and that
H3 > Uy

Suppose that the eighth, ninth, and tenth observations for feed 2, the ninth
and tenth for feed 3, and the tenth for feed 4 were not obtained because the
pigs died, or were sick for reasons not connected to the feed they ate.
We can still perform an analysis of variance. We find S* = 14.434, feed
MSq. = 121.91, F = 8.45, with means: feed 1, 26.60; feed 2, 33.89; feed 3, 30.88;
feed 4, 25.86. We can use the T-K method to obtain simultaneous confidence
intervals on differences y; — u;-. For u; — u,, for example, the 959, interval (one
of a family) becomes [(33.89 — 25.86) + (3.86)\/[14.434/[(1/7 + 1/9)/2]'2] =
[8.03 + 5.23].

Problem 5.3.1: For the contrasts in Table 5.3.1 find the ratio of the lengths
of 95%;, Bonferroni SCT's to those of 95%, Scheffé and Tukey intervals for the
40 observations in Example 5.3.1.

Table 5.3.1

Contrast Estimate Interval Contrast Estimate Interval
My — My -71 —11.59, 2.61 Hy — 3 25 —1.99, 6.99
Hy — My —-46 —-9.09, -0.11 Hy — g 6.5 2,01, 1099

= Ha -06 —5.09, 3.89 Uy — Ha 6.0 1.51,10.49
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Problem 5.3.2: In Example 5.3.1 with the missing observations, use the 957,
T- K method to find the interval on g3 — u,.

Problem 5.3.3: Find C, not depending on y or v,such thatq, , , = Ct, ;42
for all y and v. Demonstrate this relationship for v = 10, y = 0.95.

Problem 5.34: For the case k = 1, define R = 0. How is the distribution
of ¢' related to the t-distribution for this case?

Problem 5.3.5: Let Y,,..., Y;, be a random sample from the N(u,25)
distribution. Find the probability that at least two of these r.v.’s differ by 28.25
or more.

Problem 5.3.6: For Example 5.3.1, each n; = 10, find a contrast ) ¢;y; for
which 959 Scheffé intervals on all contrasts are shorter than corresponding
95% Tukey intervals.

54 COMPARISON OF LENGTHS

The lengths of Bonferroni, Scheffé and Tukey intervals are each multiples of S,
so that relative lengths are constants which depend on cy,...,c, and (in
one-way analysis of variance) on n,, ..., n,. Therefore the choice of a method
can be made independent of the data, and can be made after «, the n;, and the
set C are chosen. The choice as to method should not depend on the sample
means because probability statements on the performances of the methods
would no longer be valid.
For equal sample sizes n,, relative lengths of confidence intervals arc

_ Tukey length di-ainG 2 16D

rrs = ’ = —
T Scheffe length \/(k’—l)Fk—l.v.l—z(ZCiZ)

where v = (n, — 1)k is error d.f.

Bonferroni length Lot —ajkth— 1)

=———me e and rpg=—
Scheffé length N T res

Ips =

For all parameters of the type # = y; — pu;, 2 = 005, k = 3,5, 7, v= 10, o
these relative lengths are as in Table 5.4.1.

Thus, for simultaneous intervals on all g4, — u; the Tukey method provides
shorter intervals than both the Bonferroni and Scheffe methods. For parameters
of the type p;, — 3(y;, + pj)rrgis 2/\/5 = 1.155 times as large, so that Scheffe
intervals are sometimes shorter. For even more complex parameters the Scheffe
method begins to win the battle. Since inclusion of more confidence intervals
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Table 5.4.1 Ratios of Lengths Among Tukey, Bonferroni, and Scheffé SCI's

v=10 v= o0
k =3 k=35 k=7 k=10 k=3 k=S5 k=7 k=10

ris 0.958 0.884 0.824 0.765 0.956 0.886 0.831 0.768
Ia.s 1.002 0.960 0919 0.875 0.976 0.913 0.854 0.793
ri.s 0.956 0918 0.897 0.874 0.980 0.970 0.973 0.968

in the family causes all Bonferroni intervals to be longer, while Tukey and
Scheffé methods apply to all contrasts, the Bonferroni method is relatively
undesirable if many more complex parameters are of interest.

There is some tendency for users of these methods to apply them only when
the F-test for equal means rejects. However, as shown by Olshen (1973), the
conditional probability that all resulting confidence intervals are correct, given
rejection, is always less than the nominal value. This should make it clear that
probability interpretations for confidence intervals are relative to the entire
sample space, and that it is good practice to present confidence intervals
whether or not the F-test rejects.

Suppose we are interested in five hybrids of corn with four observations on
the yield for each hybrid, so that we have 15 df. for error. Then t,5, _9.05/20 =
3.29and gy.05, 5,55 = 4.37,50 7 p = 4.37/(3.29)\/5 = 0.939. Tukey intervals are
shorter.

If hybrid #1 is standard, and comparisons of y; for j > 1 with u, are
desirable then we may be interested only in confidence intervals on u; — u, for
J > 1. The multiplier of S/\/Z for the Bonferroni interval is \/21,5,0,05,3 = 4.016,
rather than 4.23, so that ryz = 4.23/4.016 = 1.05. Bonferroni intervals are
shorter.

If the family of confidence intervals should also inctude those on the u;, we
can either replace q by q' (which is very slightly larger) for the Tukey method,

or possibly use the _Schetfé method with K = \/F(m"s“s_o,; = 3.81, resulting
in the muitiplier \/ZK = 5.38. For the Bonferroni method the corresponding
multiplier is \/Et,s_, _o.0s30 = 3.40, since there are now 15 confidence intervals

(10 pairs, 5 individuals). Thus, the Tukey method does considerably better than
either the Scheffé or Bonferroni method.

Example 54.1: Five hybrids of corn were each planted on 4 half-acre plots,
each chosen randomly from 20 available plots (completely randomized design).
Yields in bushels for all 20 plots were recorded. Sample means were ¥, = 49.5,
Y, =58.1, ¥, =532, ¥, = 51.3, ¥; = 56.8. Error mean square was §? = 8.73.
Hybrid mean square was 52.59,s0 F = 6.02 > F, ;5 o.95 = 3.06. 95%, Bonferroni,
Scheffé and Tukey confidence intervals on all differences y; — u; all have the

form ¥, — ¥, + KS/\/4, where K = /2t, _g 0520 = 5.12 for Bonferroni, K =
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Y, Y, Y Y, Y,
x x x x

49 50 51 52 53 54 55 56 57 58 59

Figure 5.1

\,/(-5 — DFy 15.0.95(2) = 4.948 for Scheffe, and K = g5 ;5.¢.95 = 4.37 for Tukey,
Thus, Tukey intervals are best, of the form Y, — Y; + 6.46.

Figure 5.1 illustrates a convenient graphical procedure for comparison of
means. Lines are drawn under any two sample means which differ by less than
6.46, for which the confidence interval on the corresponding difference in p;’s
includes zero. Thus, the overall 959, confidence allows us to say that yu, > yu,,

By > [y, Hs > Uy

Problem 5.4.1: Evaluate Ry g, Rg s and Ry g for a = 0.05, one-way analysis
of variance, for k = 4, for common sample sizes n; = 5 and n, = 10.

Problem 5.4.2: Consider the model for one-way analysis of variance with
observations Y; ~ N(y;,6%) for j=1,...,i=1,...,k Let W= ¥ — y, for

eachiand §% = [Z(Y,-,- - .){l/(n — k). Let WMS = [Z(W,- - W)n,]/(k —-D
ij §

and F = WMS/S®. Let q = Range(W,, ..., W)/[S/\/n,]. Lete = (cy,. .., )
2

be a contrast. Let H. = [Z IC.'I] /[Z c,z:l
i ! i

(a) Show that H,. < k. 172
(b) Prove that F(k — 1) = sup T?, where T, = (Z o W,)/[SZ Zcf/nl]

ceC
and C is the collection of contrasts.

1 Fk-1) k
P that - — < -,
(c) Prove 5 < e 2
(d) Use these inequalities to prove that H,/(4k) < Ry s < H,/8.
(e) Compute Ry sforcoftheforms(1, —1,0,...,0)and (k- 1, —1,...,=1)

for k=3, 5, ny = 10, and y = 0.95 and compare the values with the bounds
given in (d).

55 BECHHOFER’S METHOD

It is sometimes desirable not only to compare several means but also to choose
the largest and offer some measure of assurance that it is the best. A method
developed by Bechhofer (1954), by Bechhofer, Dunnett and Sobel (1954) and
improved by Fabian (1962) does this.
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Definition 5.5.1: Let (Z,,.... %) =Zbears. from N(O, 1) and let W ~
be independent of Z.LetD= max (Z; — Z,)/</W/jv. Then D is said to have
k

i=2,...,

Bechhofer's distribution D¢k, v) with parameters k, v.

Dunnett (1955) prepared the tables, which were reproduced in Fabian and
Hannan (1985). As defined in the latter k, _ (k, v) is the (1 — x)100 percentile
of the D(k, v) distribution. See Table 7 in the Appendix.

The following theorem, a direct consequence of the definition, essentially
identifies the population with the largest, or nearly the largest mean. The
theorem is given as originally stated by Fabian (1962).

Theorem 5.5.1: Let X, —py, for i=1,...,k be independent N(0, a%/n).
2
Let p, = max(y,, ..., ). Let S . 7% be independent of (X,,..., X,). Let

2
G

X, =max(X,,...,X,) (I is the index of the largest X,). Definc =
Ky -olk, V)(S2/m)V2 — ()?, — max X&) and 6, = max(0, §). Then

i#1
Plpyzpo—d,)21~a

Example 5.5.1: Consider the data of Example 4.3.1. Then v =15, k =5,
Koos(S, 15) =330, I=2 X,=581, 0=330, 6=35, =(873/4)"2 —
(58.1 — 56.8) = 3.58. Thus, we have 959, confidence that u, > u, — 3.58, that
4, s at least as large as the maximum (of the y;’s, not of the X.’s) minus 3.58.

Proof of Theorem 5.5.I: For simplicity of notation suppose u, = ug.
Define Z; = (X; — ui)/'(o,"\//n) for each i and let W = S%v/a?. Then for x =
Ky -.(k, v) the event

A={mu(z—zm¢ﬁﬁ3x}

2<isn
has probability 1 — 2, and implies the event

H={X;-w)- X, -p) < K\,"Iug—z))?_l} vl =1}

={u <u+ (X, - X))+ K\//‘Szr/—n} vi{l=1}

If { = 1 then, since 6, > 0, certainly u; > uo — &,. If I # 1 then X, < max X,
izl

so that when X, is replaced by this maximum the inequality still holds. Thus

IiinlphCS[q 2:#0'— 6+. L_
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Let A = K\/?/‘n. If uy=po=2p;+Afor j=2,...,k then, since A > 9.,
with probability one, y; > u, — &, implies y; > u, — A, which then implies
I = 1. Thus, if the maximum ; is at least A larger than the second largest y;
then with probability at least 1 — ay; is the largest sample mean. This was the
original formulation by Bechhofer (1954). In this formulation $* was obtained
from a first sample, then n was chosen to make A equal to a prescribed
constant A,.

Problem 5.5.1: Table 5.5.1, taken from Hald (1952, p. 434), presents the
measured strength minus 340 of nine cables, with 12 independent measurements
on each cable. The last two rows present (sums of squared deviation) = s;, so
that the sample variance for the ith sample is S? = 5,/11, and the sample means
x; = X; for each cable. Error sum of square was Y s, = 2,626.9, and Y x; =
—6.58, ) x? = 165.1.

The usual one-way analysis of variance model with means u; seems
appropriate.

(a) Fill out an ANOVA table and test Hy: u, = -+ = y, for « = 0.05.

(b) Suppose you wish confidence interval on all pairs y; — u; with simul-
taneous confidence coefficient 0.95. For the Bonferroni, Schefié, and Tukey

methods find constants K = K, K, and K; so that ()?j - )?,-,) + KS/\/]2 are
the appropriate confidence intervals.

(c) For the smallest of Kg, K, Ky find KS/\/'IZ and present a line diagram
similar to that of Example 4.3.1.

(d) Suppose cable #1 is the standard cable and you therefore only want
simultaneous intervals on g; — g, for j > 1. Which method is appropriate?

(e) Use Bechhofer’s method to estimate the largest population mean g, and
make an appropriate 95%, confidence statement.

(f) Suppose these cables are of three types, with cables 1, 2, 3 of type A; 4,
5,6 of type B; and 7, 8, 9 of type C. Suppose also that you only wish to compare
cables of the same type. Thus you want simultaneous confidence intervais on
u; — pj- where j and j* are of the same type. For coefficient 0.95 use Scheffé’s
method to do this for all nine such differences. Compare the length with that
given by the Bonferroni method. How could the Tukey and Bonferroni method
be combined to do this? Additional quantiles for ¢ would be needed, so the
tables for q given here are inadequate.
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CHAPTER 6

Two-Way and Three-Way Analyses
of Variance

6.1 TWO-WAY ANALYSIS OF VARIANCE

Hicks’ (1982, p. 105) has the following problem:

To determine the effect of two glass types and three phosphor types on the light
output of a television tube, light output is measured by the current required to
produce 30 foot-lamberts of light output. Thus the higher the current is in
microamperes, the poorer the tube is in light output. Three observations were taken
under each of the six treatment conditions and the experiment was completely
randomized. The following data were recorded.

Phosphor Type
Glass Type A B C
1 280 300 270
290 310 285
285 295 290
2 230 260 220
235 240 225
240 235 230

Do an analysis of variance on these data and test the effect of glass type, phosphor
types, and interaction on the current flow.

By “completely randomized” the author means that the 18 tubes were
randomly partitioned into six groups of 3 with the glass on the tubes in group
i receiving treatment i for i = 1,...,6. By the “analysis of variance” in this
case we mean that the measure of overall variation (corrected total sum of

245
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squares) is expressed as the sum of four measures of variation due to glass type,
phosphor type, interaction between glass and phosphor types, and error.

It will be particularly useful in the consideration of such tables to consider
them as vectors without reshaping them into column vectors. By keeping the
shape of the table, the corresponding linear models, with x-vectors which are
indicators of rows, columns or cells of the table, will be much more obvious.
Mathematically, models remain the same whether or not we reshape into
columns. Reshaping into columns does have an intuitive cost, however.

In general suppose we observe Y for k=1,...,K, j=1,...,J, and
i=1,..., 1 The values of j correspond to the levels of a factor B. The values
of i correspond to the levels of a factor 4. The values of k correspond to repeated
measurements taken for each i,j combination

Model: ¥ ~ N(uj, 0%) and these Y, areindependent.

Let Y be the array of Y. Let p (rather than ) denote E(Y). All the elements
in the same cell of p are identical (Figure 6.1).

Define
n= (z I‘ij) /IJ
i I
_ 1
“I':I‘i"#:‘ZI‘.,—I‘
J
B
1 2 J Means
Ylll YlZl Yl.ll
1 Y.
Y1k Yi2k Yyax
A
Ylll YIZI Yl.’l
1 7
Yiix Yia Yk
Means Y, Y. Y, Y.

FIGURE 6.1
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_ 1
Bi=ij—n= Ym—n
(2B)iy = wij — [n + o + B;].
Then y;; = u + a; + B; + (af);;. The full model then can be written as follows.

FU" model: }’gﬂ‘ =u + o + ﬂj + (aﬂ)ij + sijk’
where

i J
;ai = Zl:ﬂ; = Z‘:(aﬂ)a; = Z (“ﬁ)ij =0, and Eijy ~ N(O, 0'2)-

The ¢, are independent. There is a 11 correspondence between the parameter
vectors p = E(Y) and the (1 + 1+ J+ IJ)tuple of parameter vectors
(s % By s Bys 011, - - - » (af),,) satisfying the above equalities. This
expression of the full model is simply another way of presenting the model on
the previous page. Thus it is not necessary and is employed only because it
makes the study of the variability of the u;; more convenient. The parameters
(«p);; are called interactions.

Example 6.1.1: Consider a 2 x 3 table of y,;’s as follows:
Mean
[69 65 58] 64
57 59 524 56
Mean 63 62 55 60
Then pu=60, 4, =4, 2, = -4, §, =3, B, = 2, f; = — 35, and the (af),; are
B
4 [ 2 -1 - 1]
-2 1 1
A graphical display is useful. Sce Figure 6.2. The fact that the graphs of the
means for rows 1 and 2 are almost parallel is a reflection of the fact that the
interactions are small. If, in fact, interactions were zero, so that u;; = u + o; + B;,

we would say that means are additive, or that there is additivity of means.
In vector form, we can write

p= Zj:l‘ijctj = Z (u+ o + B; + (aB);;)C,;

= uxy + Z oA + Z B;B; + Y (@B);Cyj,
i i i
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70 1
Row 1
w0
Row 2
50 J L] L L
1 2 3
Column

FIGURE 6.2 Cell population means.
where X, is the array of all 1's
C;; = indicator of cell ij

J
A, = Y C,; = indicator or row i (level i of A)
j=1
1
B; = Y C; = indicator of column j (level j of B)
i=1

Define Q to be space of I x J x K arrays, so that each realization of Y is in L

Let V= #(C,,,C,,,...,C,;) =set of arrays with elements in the same
cell equal. Let V= 2L(xy), Va=L(A,,....,A)), V,=VannV§, Vc=
PB,y,....B), Vag=Vern Vi, Vig=Va(Vo®V,® Vy). Then it is easy to
show that

Vi={Y aAlY =0}, Va= {2 b;B;I}. b, =0}
Vg = {Z ¢;;Cy|Y. ¢;; =0 for each j and ) ¢;; = O for each i}.
ij i 7
The subspaces V,, V,, Vs, V,5 are mutually orthogonal and V=1V, V, @
Vs ® V5. That ¥, L V; follows from a simple computation of inner products.
The other orthogonalities follow from the definitions of these subspaces. Thus

every vector y € Q is the sum of its projections onto the five mutually orthogonal
subspaces V,, V,, Vg, Vaa, V*. Thatis, Y =Y, + Y, + Yz + Y5 + €, where

Yo = p(Y|Vp) = ¥... %o = fixo,
YV =p(YIV) =p(Y[Ve) —p(YIVo) =Y. (F,.. — V. )A, =¥ 4,A,
i i
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Ys = p(YIVp) = p(YIV) — p(YI Vo) =Y. (¥, — ¥ )B,=Y BB,
J
Vas=p(YVee) = p(YIV) = (Vo + Y+ V) =Y (¥, — (Y. + & + BIC,,
if

= Z (/“\B)ijcija

e=Y - Y, where Y= p(Y|V) =Y ¥, C; = Yo + Y, + Y5 + Y5 Substituting
ij

p for Y in these formulas we get

BR=Wo+ §,+ Pg+ Byp,
where

Ko = p(r] Vo) = o, = p(nlV, )—ZaA

Bz = p(n| V) = ;ﬁijv Bz =PRI Vyp) = Z (aﬁ)ijcij'

These expressions explain why #, 4;, B i (u\ﬁ)u were defined as above.

Properties of the Estimators ji, &;, ﬁ,-, and @\ﬁ)ﬂ: Each of these estimators
is Jinear in the observations Y,l,‘, so that their properties are relatively easy to
determine. It may be surprising that we should even attempt to estimate any
of a;, B;, or (2B),;, since, as defined in Section 3.3, these parameters are not
estimable with respect to the parameter space R, . ;,,+;; of all possible
parameter vectors. However, we have restricted our parameter space by forcing
row and column sums to be zero, so that relative to the restricted parameter
space these parameters are estimable. Since E( }7,, ) = nyj, it follows that any
linear function of these y;; are estimated unbiasedly by the corresponding
functlons of the }(j Thus, i=Y ., 4=Y —Y . B Yj ~ Y. and
(1;‘3), =Y, — [+ + B ] are all unblased esumators of the corresponding
parameters (the “polite” versions of the same symbols—without the hats). The
four arrays 2, {&,,...,%}, {B..... B}, {fa?ﬁ)u} are mutually uncorrelated
because they are linear functions of the corresponding four orthogonal
projections Yy, Y,, Y5, Y 5. By symmetry it is clear that the members of the
same array have the same vanance Let us ﬁnd formulas for these variances:
o} = Var(g), o2 = Var(4,), 6 = Var(B)), and 2, = Var@ﬁ)ij).

Since ji=Y . is the mean of n = KIJ uncorrelated observations with
variance o2, we find Var(g) = ¢%/KI1J. Similarly, Var(¥,..)=0%*KJ and
Var(}-’,.) =02/KI. Since Y. . =f + &, and the two terms on the right are

Y [ 1] ol -1) -1 .
uncorrelated, 62 = (62/JK)| t —- |= " —-—-". Similarly, 62 = -~ — —-". This
{ 1JK {JK
expression for ¢2 may also be found from the computation trace(D[Y,]) =
1JKo? = trace(Py 6%) = ¢? dim(V,) = o*(I — 1).
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Since )-’,, =;2+oz,.+ﬁ,.+(271),.,, and the four terms on the right are

— 21 — IXJ —

uncorrelated, we find 62, = Var(¥,;.) — 63 — 02 — 0} = ot -hHu-1 .

Covariances among terms in the same array may be found by exploiting the

linear restrictions: Y. & =Y B, =Y (@), = ¥ (@B),; = 0. For example, suppose
i i i

1
that ¢, = cov(&,, 4;.) fori # i’. Then Var(z &i) =0=lo2 + (I - 1)Ic,, so that

ce= —0a/(I —1)= —a*/1JK and p(&;, ;) = — 1/(I — 1). Similarly, cov(ﬁj, B,,)
= —a/(J - 1), p(ﬁj, ﬁj.) = —1/(J — 1). Covariances among interaction terms
can be shown to be

—(I — Yo/ 1JK for i=i,j#j

cov((&?}),,., (a/Ti).-»y) =¢ —(J — Da?/IJK for i#i,j=j
o?/1JK for i#i,j#j"

If ¢ has a multivariate normal distribution then these estimators are jointly
normally distributed.

The Analysis of Variance: By the Pythagorean Theorem, we can write || Y||?
as the sum of the squared lengths of the five vectors in the decomposition
Y= ?0 +Y,+ ?,, + ?u + e and organize the data into the analysis of variance
table, Table 6.1.1. We present these sums of squares in their more intuitive
forms and also in their computational form. In the old days, when the author
was a student, not long after R. A. Fisher developed these methods, before easy
computations were possible, these formulas were necessary to avoid the
necessity of first computing means, then sums of squares. These computational
formulas are no longer so important. In fact, sums of squares are computed
more precisely in their “deviation” form, using the first expression given below.
If the computational form is used, precision can be enhanced by first subtracting
a convenient constant from all ¥,;,. Only I ¥oll? is affected.

(Y,li2 = “Correction Term” = CT = ¥2. (IJK)
IV 2=KJY 82 =KJY (Y.~ ¥ )=KJY ¥}.-CT =Y T? /(KJ)~CT

where
T..=Y Y, T; =% Y T =Y Y
Jjk ik k

IVal?=KIY B2=KIY (Y, -7 Y=KIY ¥} -CT=Y T%./UK)~CT
i j i i
Subtotal SSqs. = | Y - Yo|2 =K Y (¥, - V. ) =KY V2. - CT
ij ij

=Y T3/K~CT
ij
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Adjusted Total SSqs. =Y (Y — Y. ) =Y Y}, - CT

ijk ifk
A x B Interaction SSqs. = Subtotal SSgs. — ASSqs — BSSgs.
Error SSqs = Y (¥, — ¥;;.)* = Adjusted Total SSgs. — Subtotal SSgs.
ijk

§? = Error Mean Square = Error SSqs./[(K — 1)1J]

Suppose we wish to test H,g: (2f);; = 0 for all i, j (no interaction). Under
H,s pliesin Vo @ V, @ Vg = V,. Since V n Vi = Vg, the F-statistic needed
to test H,p is therefore

Va2 = DU~ 1)

Fop= - for (I—1)(J—1) and (K- DIJdf,

Similarly, suppose we wish to test H,: ;= 0Vi (no A effect). Under H,
p lies in V,@® Vy® V,p and, since V (Y, @ V@ Vi)' = V4. the statistic
needed to test H, is

YA
F, = I,Y,_il__.sjzj_ D for U-1) and (K- 1IJ AL
Similarly, the F-statistic for testing Hp: f8; = 0 for all j (no B effect) is
¢ — 1
F, = &_“,,;S,(j =D for W=1) and (K- DIJ AL

Distributional Properties of the Sums of Squares: Being projections on
mutually orthogonal subspaces, the random vectors Yy, Y,, Y, Y5, € are
independent. We also know that for any subspace V*

IpCYIV*)I2/0? ~ xiim v~ PRIV /%)

ip(n| V*){i* may be determined by substituting p for Y in the formula for
(Y1 V*)||2. Thus, for example,

1
lp@IVOl? =Y (. — W'JK = JK } af
i 1

To summarize:

M) {Yal*/o? ~ xi- (L @)K /o?)(A SSas))
@ 1Val?/o* ~ 13, (X B})K/o)(B $Sgs.)

3) "?AB" 2/02 ~ Z(zl— 1IN -~ 1)(_2 (aﬁ)izjK/az)(AB Inter. SSqs.)
ij

@ Y — Yoli¥a? ~ 13- ,(Z (g — u)zK/az)(Subtotal SSgs.)

g
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(8) 1Y — Y[?/6® ~ xé - 1,1,(0) (Error SSgs.)
©) Y — Yo2/0% ~ xix- x(; (T u)ZK/H) (Adj. Total SSgs.)
D 1¥l%/0? ~ x%(IJK#Z/GZ;
@) 1Y|*/o* ~ xiJK(K gu,-,- /o’)

The r.v.'s | Y, 12 [¥sh2, Y0502, llell?, | Yoli? are independent.

Example 6.1.2: Consider the television tube data at the start of the chapter.
These vectors are then

280 300 270 111
290 310 285 111
285 295 290 BRER
Y= XO'-—
230 260 220 SRR
235 240 225 111
| 240 235 230 11 1]
T 1] [0 0 0]
P11 00 0
11 00 0
A1= A2=
00 0 111
00 0 111
0 0 0. |11 1]
100 010 "0 0 1]
100 010 001
100 010 001
Bl= Bz= Bs=
100 010 00 1
100 010 00 1
L1 0 0, Lo 1 0. L0 0 1
"0 0 0
000
a8 000
271001
00 1
00 1
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(2622 2622 26227 T 2722 27122 2722
2622 2622 2622 2722 2122 21.22
o _| 2622 2622 2622 ¢ _| v w2 n2
712622 2622 2622 AT —2722 —2722 —2122
2622 2622 2622 2722 —2122 -2122
| 2622 2622 262.2 ] | —27.22 2722 -27.22 ]
T 222 1111 —8889 | M —222 111 L1
222 1111 —8889 —222 111 Ll
R 222 1LI1 —8889 R —222 L1 LI
Yp = Y=
~222 1111 —8889 222 — 111 —LII
~222 1111 —8.889 222 —111 —111
| —222 1111 —8889 | 222 —111 -1l
285 3017 281.7 ] [ .5 167 —167]
285 3017 2817 5 833 333
| 285 3017 2817 0 -667 833
Y=1235 2450 2250 | =5 1500 500
235 2450 2250 0 —500 000
| 235 2450 2250 | 5 —1000 500

Means
Y. =2622 Y, =284 7, .. =2350
Y, =2600 Y, =2733 Y, =2533

5 [285 301.7 281.7
235 2450 2250

Squared Lengths
IYo02 = 1,237,689 V|2 =1252,317 Y| = 1,253,150
IV, 012=13339 Y- ¥,1°=14628  ||Y — Y,|i2 = 15,461
Vgl = 1244 Je)> =833  [[Vp> =44

And the analysis of variance table is Table 6.1.2.
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Table 6.1.2 Analysis of Variance Table

Source Subspace  DF SSgs. MSaq. Expected MSq.
Glass A 1 13,339 13,339 o> +9Y o}
Phosphor Vs 2 1,244 622 o +3Y B}
GxP Van 2 44 2 A +32DY @B
Subtotal Vv 5 14,628 29256 o+ (3/5) Y (u; — 0’
Error vt 12 833 69.4 a?
Corr. Total Vi 17 15,461
Mean Vo 1 1,237,689
Total Q 18 1,253,150
F-ratios
Subtotal MSq.
Fop= o 2% 4216
Error MSq.
G x P MSq.
= e X =032
Error MSq.
MSq.
o OMSa o9
Error MSq.
P MSq.
29 596

2~ Error MSq.

F;4 may be used to test the null hypotheses that all cell means are equal. Since
Fs7 is so large we certainly reject. F,p is certainly consistent with interactions
all zero or small. F, and Fj indicate strong A (glass) and B (phosphor) effects.

A graphical display of cell means makes the conclusion clear (see Figure
6.3). Cell means have standard errors "/\// 3, which we estimate to be V""Sz/?a =
V/69.4/3 = 4.81.

Tukey 95% confidence intervals on differences p;; — y;-;- are of the form
)7,.,-. - )_f, + qS/V/g for g = q¢.95.6.12 = 4.75. Thus, cell means differing by
more than ¢S/./3 = 22.8 may be labeled as “significantly different.” Any two
cells means corresponding to different glass levels are significantly different.
Otherwise they are not.

If we believe that no interaction is present, a reasonable belief in this case,
then the «; and §; are interesting parameters, and we may wish to find confidence
intervals on differences «; — x; or §; — B;.. For example, Tukey intervals on

these B, — B are [V, — ¥, +3.77/69.4/6) = [¥,,. — V.. + 12.82], since
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300"////\

Sample Cell Mean

220

1 2 3
Phosphur

FIGURE 6.3 Sample cell means for combinations of phosphor and glass.

do.9s.3.12 = 3.77. Thus, levels 2 and 3 of phosphor can be viewed as significantly
different at overall level 0.05.

Estimation of Cell Means: In the possible presence of interaction the model
Yiu ~ N(uyy, %) implies that y;; should be estimated by the corresponding cell
mean Y;. Simultaneous confidence intervals on all or some cell means may be
obtained by treating the I x J cells as k = I x J treatments in one-way analysis
of vanance. The Bechhofer method may be used in the same way if the object
is to estimate the largest u,;.

If interactions are known to be zero or nearly zero, these methods may be
improved. It is tempting to perform an F-test for interaction, then decide upon
failure to reject or for small F that interaction is lacking. Such procedures have
been advocated. See Yates (1935) and a discussion of this problem by Traxler
(1976). It is quite possible that a fair degree of interaction is present, however,
but that by chance the F-value is small. This procedure can therefore lead to
bias in the estimation of the y;;.

Under the assumption of no interaction Y% =47+ & + [?j =Y. +
(¥ — Y )+ (Y, —Y.) is sometimes used as an estimator of . Since
E(Y) = my; — (aB)yy, Y} has bias —(af),;.

3 1 (1 1 1 1\l o
Var(Y}) = o% - + —-——)+(——-)]==— 1+J-1
ar(Y7) a[n (.IK o R V7 auied § bl | ]

for n=1JK, so that the mean square error for Y3 is E(Y}‘}-p”)2=
[—(@p);;3* + Var(Y}).

— 1
MSE(Y%)YMSE(Y;) = [1 + (2f)}/0?] T (I +J — 1), which is always less

than 1 if (28);; = 0, considerably so for large I or J. ?‘-“j has smaller mean square
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error than ¥; if and only if (af)} < Var(T};) — Var(Y¥) = Var(aﬂ),-j) =
[(d — DY — D/IJYe?/K). If we choose to use Y* =(Y}) to estimate p
whenever the sum over i and j of these mean square errors is less than that for
Y= (¥,;.). we are lead to the inequality

Z(aﬁ) <(I - 1)J - He¥/K

If we then replace these parameters by unbiased estimators in terms of MSAB
and MSE, we get the inequality F <2 (see Section 4.2). Thus, if F < 2, we
might expect to do better (smaller total mean square error) using the Y* rather
than the Y Some computer simulations indicate that such a procedure works
better than the procedure which uses (¥;;.) only in the case that interactions
are very close to zero, which we almost never can know.

Fabian (1991) shows that when the goal is to find a confidence intervals on
one y;; or on all y;; or to find the largest 4;;, a two-stage procedure which uses
Y"' and bounds on the sizes of interaction terms determined from the Y~ will
not in general improve on the direct use of the YU ., treating the problem from
a one-way ANOVA point of view.

In the case that interactions are absent p ranges over V., which has
dimension v=1+J — 1 Seheffé simultaneous confidence int intervals on nc

Zc,JY“ For contrasts only, v becomes I +J —2. Since the cell mean

esumators ?O,j have unequal covariances, the Tukey method must stick to the
estimators )_ﬁj., so that Scheffé intervals will be shorter. Recall, however, that
if in truth interactions are present, the biases in Y7; could causc errors in some
of the Scheffé intervals.

Problem 6.1.1: Let the number of observations in cell ij be K;;. Define
Vi= %A, ....A) 0 V5, Vyg=2(B,,...,B,) n V{. What conditions must
the g, satisfy in order that ) «;A,e V,? Prove that V, L V; if and only if
K;j = K; K.;/K.. (where a dot means that the corresponding subscript has been
summed over). Thus the subspaces ¥, V, Vy, V5, V' are still orthogonal
when the cell frequencies are proportional. Hint: First show that the vectors
Al = A, — p(A)V,) span V,, and define vectors B¥ similarly.)

Problem 6.1.2: In order to determine the effects of training on rats the
following 2 x 4 factorial experiment was performed. Rats were trained by
forcing them to swim in a tub of water for a given length of time with small
weights attached. Four different lengths of training session (10, 20, 30, 40
minutes) were used. Training occurred every day, every second day, or every
third day. For each of the 12 treatment combinations, 5 rats were trained. The
experiment was completely randomized. That is, 60 rats were used and
randomly assigned to the 12 treatment combinations. The measured variable
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was the log of the length of time the rats were able to swim with added weights
after 6 weeks of training. (An experiment similar to this was actually performed.
The experimenter called on the author’s help because some observations were
missing--some rats drowned.)

Length
10 20 30 40
326 401 288 3.76] Cell Totals
Ever 3.18 333 280 587 1391 1722 1630 2380
y 284 494 387 431 1581 20.16 1635 18.76
Day

194 221 3.57 533 22.14 2358 2377 2994
| 269 273 3.18 453

366 579 298 295 Cell Means

Every | 307 423 421 434 2782 3444 3260 4.760
Second| 235 325 331 3.84 3.162 4.032 3270 3.752
Day 423 328 244 405 4428 4.716 4.754 5988
| 250 361 341 358]

™ 336 335 347 6.53'1 Sum of Squared Deviations
Every | 5.10 536 586 596 From Cell Means

Third | 453 494 361 532 1.108 4.604 0831 2812
Day 455 446 640 554 2495 4485 1.678 1.115
L 460 547 443 6.59 1.647 2965 6995 1404

Y = 241.709 Z Y,-Zj,‘ = 1052.88
Training means: 3.561, 3.554, 4.972
Length means: 3.457, 4.064, 3.761, 4.832

(a) State an appropriate model and fill out the analysis of variance table.

(b) Perform appropriate F-tests and state conclusions.

(¢) Use Tukey’s method to make comparisons among training and also
among length effects.

(d) These data were actually generated using computer simulation for
d=08 u=4, ¢, = —-07, 2,=0, 23=0.7, f, = —-06, f, =02, ;=02
By = 0.6, (xf),; = 0, 6 = 0.64. Determine the powers of the a = 0.05 level tests
of the null hypotheses of no training and of no length effects.

(e) Suppose that §; = B, + 10jy. That is, log of swimming time is linearly
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affected by the length of the training session. Give a 95% confidence interval
on y.

(f) Suppose that the observations 3.26 in cell (1, 1) and 5.54 in cell (3,4)
were missing. Determine an unbiased estimator of 42, assuming that the loss
of these observations was independent of their values, and evaluate it.

Problem 6.1.3: Considera 2 x 3 table with two observations per cell. Make
up data so that the following conditions are satisfied:

(a) SSA = SSB = SSAB =0, SSE =2

(b) SSA > 0, SSB > 0, SSAB = SSE =0

(c) SSA = SSB =0, SSAB > 0, SSE = 100

(d) SSA > 0,SSB =0, SSAB >0, SSE=0

P/rgblem 6.1.4: Derive the formulas for the variances and covariances of
the (af);;.

6.2 UNEQUAL NUMBERS OF OBSERVATIONS PER CELL

Let the number of observations in cell ij be K;;. Define V5 = £(J),
Vi=Vea Ve, Ve=Vern Ve, Vi=VaV,®V,® V),

as before. Then

Vi= (X aAlY aK;. =0}, Ve = {Z b;B;1Y bK ;= 0},
i

Vig = {Z ¢;;Ci;| Y. Kijc;j = 0 for each i and ¥ K;;¢;; = 0 for eachj}.
ij i i
As shown in Problem 6.1.1, V, 1 Vpifand onlyif K;; = K; K _;/K. foralliandj.
Under the full model ¥, ~ N(u;;, 6%), so that the BLUE for y;; is ¥;;., which
exists if K;; > 0. It follows in the case that K;; > 0 for all i and j that the BLUE
for u, %;, B;, (¢B);; are

1 _ o~
/;j=izy,.,_—ﬁ, @B =Y — (R + 4+ B;).
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Variances and covariances are easy to determine. For example, Var(4,) =

2 1 _
(1 -2/ + %Za} for 6? = Var(W,)) = ‘ Y. -, where W, = lz Y;. and
%7 J2FK; J5
Var(&; — 4;) = Var(W,. — W..) = 6} + a,-z.._
Under the full model Y = p(Y|V) = Z i. Ci;- The error space V* is the null

space unless at least one K;; > 1. As before SSE={Y - Y|I2 =Y (¥ - ¥;)%
ijk
The statement that aIl interactions (xf);; are zero is equivalent to the
statement that pe V, = V, @ V, ® V5. To test the null hypothesis of no
interaction, equivalently p e V,, we must find Y* = p(Y|V*) = p(Y] V*)
Define A = A, — A;fori=1,...,] —Land B =B, — B, forj = R
Then, since ) « —0 and ZBJ—O y* = P(Xo, AY,...,AF_, B, . BJ 1)
Regression methods may be employed to ﬁnd the least squares estxmates i,

dl,..., dl"l’ Bl"“’BJ—l and a, —Z d,, BJ=— ZB Then Y-—

ﬁxo+ZazA+ ZB,B and |Y*|2 =T .. +Zar +z,§r Only in

excepuonal cases wﬂl there be simple formulas for these estimators and
squared lengths. The F-statistic for Ho: me V* is F = {[|¥|? — |¥*|2)/
(I — 1}J — D}/S%

We may be interested in testing the null hypotheses of no A effects (all a.’s 0)
in the absence or in the presence of interaction. Absence is equivalent to p € V,,
and Hy: (no A effect) then impliesp € V, ® V; = #(B,, ..., B,). The numerator
sum of squares in the F-statistic is therefore || Y* — \(on2 where Y, = Z Y, B,

for (I — 1) d.f.. The denominator sum of squares is ([Y* — Yoll2 for K. -
(I + J — 1) d.f. It may be preferable to use | Y — Y13, however, since interaction
just may be present.

In the presence of interaction it probably does not make much practical
sense to test the null hypotheses of no A effect. The null hypothesis then states
that the average A effect z; across all levels of B is 0 for each i. It is rare that
such an average is of real interest. Nevertheless, there is nothing which prohibits
such a test from a mathematical point of view. Under Hy: p = uxo +Y B;B; +
Y (aP);;C;;, so that H, is equivalent to pe L(B,,...,B,) N V,; = Vyy (say),
4

where V, = {Z (2$);;C;; Z (aB); = Z (aB);; = 0 for all i andj}. Unless K;; is

of the form g; f; for all i andj, 218 not Vs It can be shown that V4 is spanned
by the vectors (A; — A;) x (B; — B,), where multiplication is componentwise.
V.5 is not, in general, orthogonal to V. Using these basis vectors p(Y|V,,) can
be computed using regression methods. If K;; >0 for all ij then V,, has
dimension J + (I — I){(J — 1).

The F-statistic Fp for Hy: (no B effect) is given analogously. The numerators
of statistics F, and Fy are no longer independent.

In the case that the K;; are approximately equal a shortcut approximation
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is available. Computer experimentation has shown that even in the case of a
2 x 3 table with two observations in cells (1, 1) and (2, 3), four in the others,
the null distributions of F-statistics remain approximately the same.

-1
Define K = (l Y- 1») , the harmonic mean. Let Error SSgs. =
5K,

Y (Y — }_’, .)2. Since sums of squares higher in the ANOVA table depend only
ijk

on the means ¥;., compute these using the formulas for the equal K,; case using
K instead of K, using these X, Thus, take

l 7

"‘"Zu' Zu’

Subtotal SSqs. =K Y (¥.. - V. .)» =K ) ¥2. —CT,
ij ij

-1—2 CT = Y2 .(1JK).
15

SSA=JRY (Y. . -Y. )Y=JKY ¥ ~CT,
i i

SSB=IKY (Y; —Y.)*=IKY ¥* —CT,
i j

and
SSAB = Subtotal SSqs. — SSA — SSB.

Approximate confidence intervals on linear combinations ) c;;4; can be
obtained by using the usual formulas with X replacing K. i

Example 6.2.1: Suppose that we observe Y as follows for I =2, J = 3.

B, B, B

24 12 9]
A, | 22 10
11
10 5 4
A L 3 i
Then, for example, - -
0 1 ~t
0 ~1
B} = -
0 1 -1
L0 1 .
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The vectors Y, x, Af, Bf, B%, were put in column form and multiple regres-
sion was used to find 4 = 10 47 4, =452, B, = 6.53, B, = —2.30. Therefore
&, =452, and By=—423 Then ¥, =T,,=a+a +p =2152.
Similarly, 1"1 = 1269, Y3y = V3, =10.76, ¥,,, = Y212 1248 Yagy =
Y32, = 3.66, Y231 =1.72. We find ||Y}? = 1,8000, |Y||* =1,775.6, ESS =
1Y — Y2 = |Y}2 — |Y||? = 24.4, S? = 24.4/(11 — 4) = 3.49. (SSE and §? cor-
respond to the model p € ¥,; for the model with interaction term SSE = 8.)

To test Hy: 2, = 0, we fit the model p € V& = #(B,, B,, B,). We find Y3 =
pY|VE) =Y Y, B;, where Y, =1700, ¥, =667, Y, =850, and
NY2)2 = 1578.3, ||Y Y#|2 = 197.5. Then F = [197.5/1)/8% = 56.6, for 1 d.f.
Since dim(V* N V%) = I, F = 2, wheret = &,/[S/{d[|], &, = (d, Y)/}|d}|2, where
d = At - p(A}|V8), and (djj* = |AT)? — | p(AY] V‘)l =11 —4/3 =29/3.
Thus ¢ = 4.52/[3.49(3/29))'? = 7152 = /566

Problem 6.2.1: Consider the following 2 x 3 table:

Factor B
B, B, B,

25,23 1517 8,7,9]

Factor 4 Ay [
A, 10 1,3 4,8

(a) Find the least squares estimates of the parameters yu;;, 4, &;, f;, (%f);; in
the full model.

(b) For the model with interactions zero determine the least squares estimates
of the u;;, and the resulting error sum of squares. Also show that for this model

=74/7,8, = —d, = 23142, f, = 99/14, B, = —22/14, 8, = —77/14. Test the
null hypothesis H,,: (no interaction effects) at level « = 0.05.

(c) Assuming no interaction effects, test H,: x, = a, = 0 at level x = 0.05,
using an F-statistic, F,. The assumption of no interaction is not realistic, based
on the test in (b).

(d) Repeat the F-test of (b) using the approximate procedure.

Problem 6.2.2: Suppose that the factors 4 and B have each have two levels,
A,, A, and B,, B,. Suppose also that one observation Y;, is taken in cell ij
for all (i, j) # (2, 2), and that for cell (2, 2) two observauons Y;,, and Y;,, are
taken. Consider thc additive model Y; = u + o; + B; + &, with 2, + a, =0,
By + B2 =0, ¢;’s independent N(0, a?).

(a) Give explicit nonmatrix formulas for the least squares estimators of y,
2y, By

(b) Test Hy: ay, =0, for x =005, for Y,,, =19, Yi,, =13, V,, =11,
Y32, =3, Y3, = 7. Also find a 95% confidence interval on a,. What is the
relationship between this confidence interval and the test?

(c) Consider the approximate method. Let the estimators of u, «,, f, be

=(m, Y), 2} =(a,Y), ff = (b, Y). Find m, a, b. Show that these estimators
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are unbiased, but that they have larger variances than the least squares
estimators.

(d) Show that the results of (c) hold in general for any I x J table with K;
observations in cell ij.

J

6.3 TWO-WAY ANALYSIS OF VARIANCE, ONE OBSERVATION
PER CELL

If the number K of observations per cell in a two-way layout is just one, the
degree of freedom for error is zero. In fact V), the space spanned by the cell
indicators, is the sample space. If there is another estimator $? of g2 available,
possibly from some previous experiment, then this estimator can serve as the
error mean square. Otherwise there is no way to separate ¢ from the interaction
effect. If interaction mean square is used instead of error mean square in
the F-tests then power is lost if the interaction effect, as measured by

K . . .. .
e — Z (az[}),»zj, is large relative to 6. Similarly, confidence intervals on
(I-DJ-17
linear combinations of the y;; (or on the parameters y, a;, B;, (af);;) will be
longer.

It is sometimes reasonable to believe that the model
Hij= H +°‘i+["j+8ij (6.3.1)

for } o, =Y B, =0 holds at least in good approximation. Then interaction
i i
mean square can serve as a stand in for error mean square in the F-tests and
in confidence intervals. The ANOVA table is Table 6.3.1.
The model (6.3.1) is called the additive model.

Problem 6.3.1: In an effort to compare the mileages produced by three
types G,, G, and G, of gasoline, four automobiles 4,, 4,, 4,, 4, were chosen.
Each automobile was driven over a 200 mile course three times, beginning once
with a full tank of gasoline of type G;, i =1, 2, 3. The numbers of gallons
of gasoline consumed were:

Automobiles
A4, A, Ay A,
G, | 834 916 782 825
G, | 807 878 761 895
G, L8501 941 795 865

Gasoline
Type

(a) State an appropriate model, determine the corresponding analysis of
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Table 6.3.1

Source DF SSqs. MSq. Error MSq.

A 1-1 JY (5. - TF.) 62+~I—lv~-12a,-2

- - 1

B J-1 IY(Y;-7V.) az+:,--—i-2ﬁ}
7 -

Residual dq-nJ-1 Difference o?

Corr. Total ~ IJ -1 Y¥;-Y.)

i

variance table, and perform appropriate F-tests. Use the symbols u, ¥, (for
gasoline type) and «; (for automobiles).

(b) Find 95%; simultaneous confidence intervals on a; — x;. for j # j'. Use
the method which provides the shortest intervals.

(c) Suppose that in previous tests with an automobile similar to these on
the same 200 mile test track, the sample variances S* were 0.0237 for G, for
three trials, 0.034 5 for G, for four trials, the 0.0199 for G for two trials. How
could this additional information be used to change the F-tests and the
confidence intervals?

Problem 6.3.2: Suppose that automobiles A, had engine trouble just before
it was to be used with gasoline G, so that that observation was missing, though
all other observations were obtained.

(a) Show that the least squares estimators of the parameters y, a;, ; are for
this case of one missing observation, the same as they would be if the missing
observation Y;, were replaced by y;4 = ¥;. + ¥, — Y., where these means are
determined from the observations which were obtained. Hint: Pretend that the
observation y,, was available, and add to the model the extra parameter j;4,
the mean of cell 34. For cach possible selection of y;, the least squares estimates
of the cell means would be, as functions of y,,, the same as discussed for the
full data case. But, the estimate for cell 34, with this extra parameter, would
equal y34. Thus, y34 = ¥t + Y%, — Y*, where the starred means are expressed
in terms of y;, and the means of the observations actually obtained.

{b) Generalize the result to the case of any I x J table with one missing
observation.

(c) Carry out the arithmetic for the data in Problem 6.3.1, and determine
the estimate S. Use it to test Hg: no Gasoline Effect.

(d) S}how that §;, — 9, =(7T,. + T3. — 8T5. + 3Y;, — 3Y,,)/24, where

T;. = Y Y;. Find Var(§, — ;). Also determine Var(§, — §,).
j=1
(e) Find individual 95%, confidence intervals on y; — y, and y, — ¥s.
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6.4 DESIGN OF EXPERIMENTS

The purpose of this section is to introduce the student to some of the language
of the design of experiments. It is the design of the experiment which justifies,
or at least makes credible, the models we have and will be considering. The
randomness which the experimenter deliberately introduces not only makes the
conclusions reached more believable to justifiably suspicious readers, but often
makes the distributional assumptions of the models used more realistic.

Definition 6.4.1: An experimental design is a plan for the assignment of
treatment levels or combinations of levels of treatments to experimental units
and for the taking of measurements on the units under those treatment levels
or combinations of levels.

Comment: An experimental unit is an element, thing, material, person, etc.,
to which treatment levels are applied as a whole. Experimental units are not
split; the entire unit must receive the same treatment level or combination of
levels.

Definition 6.4.2: A completely randomized design is a design for which the
levels of treatments (or combinations of levels) are assigned randomly to the
units, i.e, so that if a treatment level ¢ is to be assigned n, times to the N
experimental units available, for t =1,...,k, then all (ng,n;,...,m)=

k

I/ k

N! /' (n n,!) possible assignments are equally likely. Here no = N — Y n, is the
0 1

number of units receiving no treatment level.

Example 6.4.1: For k = 3 treatment levels. Level 1, a control, is assigned
to four units, level 2 to three units, level 3 to two units. Then N = 9, and there

9
are (4 3 2) = 91/(4!1312!) = 1,260 possible assignments. The three treatments

might be methods of heart surgery, the nine experimental units 3-month-old
rats.

Definition 6.4.3: A randomized block design is a design for which the
experimental units are separated (partitioned) into blocks of units, and
treatment levels are then randomly assigned within the separate blocks.

Example 6.4.2: In an agricultural experiment we might be interested in four
levels of seed, with the measured variable being yield on half-acre plots. The
field might have 40 half-acre plots as follows.
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Blocks

West East

We could allocate each of the four levels to 10 randomly chosen piots from
among the 40, a completely randomized design. However, if the land has higher
fertility as we move to the east, we might restrict the randomization so that
each seed level occurs in each of the 10 blocks.

In general, blocks should be chosen so that units within blocks are relatively
homogeneous, while block-to-block variation is as large as possible. In the
language of sample surveys blocks are called strata.

6.5 THREE-WAY ANALYSIS OF VARIANCE

Consider a three-way complete factonial. Three factors A, B, C have, respectively,
a, b, ¢ levels and m observation are taken for each combination of the A4, B, C
levels, for abem observations in all.

Factor B
1 2 b
FactorC—-» 1 2 -+ ¢ 1 2 - ¢ 1 2 -+ ¢

1

2
Factor A

Let the observations corresponding to level i of 4, level j of B, level k of C be
Yicrs - - Yijum We suppose Y4y ~ N(pu, 6%) and that the ¥, are independent.
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Define
1
H= ;zl; uzk Hijx»
4=~} ﬂj—':#-j- Sl - N S
(@P); = ;. — [+ 2 + B;] First-order
p)s = i — [0+ 2 + 7] interaction
Be=iip—[u+f+nd

@B = i — [ + o + By + 7 + (@B);; + (@) + (BY)ij]
The (2f7);x are second-order interaction terms. Then the model can be stated as

Y = Mije + Eija
=p+ o+ + i+ @By + @i + (B + @B7)in + &ijrr-

where
Z % = z Bi= Z e = Z (@B)i; = Z (aB);; = Z () = ; (@)
= ;(ay)”‘ = Z (B = ;(B’/)ﬂ( = Z (@) =---=0

i

Define the vectors A;, B;, C,, (AB),;, (AC),, (BC);, (ABC);; to be the
indicator arrays suggested by the letters. Thus, for example, (AB),; is one in
cells at level i of A, level j on B.

The sample space Q of possible values of Y may be broken into mutually
orthogonal subspaces as follows:

Vo= 2(xg) Vi=ZL(A,...,A)NVs= {Z aA,

4

g

Vo= 2(B,,...,B)  VE = {ZbiBi
J

£

%=$(C1,,..,Cc)f\ Vé‘:{ZC,‘Ck
k

Z Ck = 0}
1
Vs = ZL(AB),,, .. ., (AB) )N Vin Vin Vg
Vies Vi (defined similarly)
Visc = (LB V, @ V@ V@ Vg®@ Ve ® Vac): N V,
and

Vi for ¥V =%(ABC),y,,..., (ABC)y.).
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Thus,
Q=VOV, V@ V@D Vs®Vic® Ve ® Vg ® V™.

It is easy to verify that these nine subspaces are mutually orthogonal. For
example, a vector ve V,; is of the form

v=1> d;(AB); r Y d;=Yd;

if j i

A vector w € Ve is of the form

W= jzkfjk(BC)ﬂ, for Z fjk = gj;" =0.
J

Then (v, w) =Y. Y d;;f;((AB);;, (BC),). This inner product is 0 if j 5 j’, m if
if 'k

j=J.Thus (v, W)=Y md, f=mY d;y f; =0.
ijk ij k

The model can be written in the form Y = p + ¢, where

B= Z“”uk(ABC)Uk HXo + Z a; Ai + Z (“ﬁ)i}‘AB)
if ij

+ Z (@) (AC)y + Z (BY) (BC)y,
i &

+ Y (@fy)ia(ABC);,  and &~ N0, %L,).

ijk
The projections of Y onto these subspaces are

Yo =p(Y| V) = . Xg = fiXg
=p(Y|V) = Z(Y. - Y“-)Ai = zdiAi

i(,,:p(wV,,)=§(Y.,._ - Y. )B,=Y 3,8,
?c=p(Y|VC)=g(]7._,‘4 - Y. )C =Y %G,

Vs = p(Y|Vip) = TR, = G+ d;+ f)JABY; = .-Z,-@’“ (AB),
Vic = p(¥1Vic) = 2 [Fx = (A + 4 + 7))AC)

Yoo = p(Y1Vac) =Y [V 5 — (2 + B, + 70)(BO);

if
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Yisc = PYIVise) = ¥ [ ¥ = (2 + & + By + 9 + (2B);;

ijk

+ @ + (B JABO), = ¥ (2B (ABC)

Y=p(Y|V)=Y ¥, (ABC),,, and e=p(Y|V)=Y-

ijk
Sums of squares are computed easily:
SSA = [V 2 =Y @A =Y (F... — ¥ . )(bem)
i i

=Y (Y. . )*bem—Y*..n  for n=abcm
SSAB = [¥,5l2 = ¥ B (AB), 12 = em Y. @B}
if 4]

For computational purposes, let

Y* = p(Y|£((AB),,, ..., (AB),,)) = z )711-(1\3)51'
i

Then Y5 = Y* — (Y, + Y, + Y;) and by the Pythagorean Theorem,
¥apll? = 1V* = Yol — [IV02 + Y5012

But Y* - Y, =Y (¥, — Y. )(AB); so
ij

IV = Yol2 =3 (%,.. = ¥ )¥em) = 1Y*)2 — |¥,l* = Z Y3 (cm) —
ij

Y

Y2
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.n

This is called the ‘4B subtotal’. It is the adjusted total sum of squares when
the data is treated as a two-way ANOVA on 4 and B, with C ignored. Thus

SSAB = (AB Subtotal) — (SSA + SSB).
Similarly,
IYuch? = %, (Fix. — ¥...)%(bm) — (SSA + SSC)
ik

= AB Subtotal — (SSA + SSC)
I¥pcl? =¥ (¥ 4. — ¥....)*(am) — (SSB + SSC)
Jjk

= BC Subtotal — (SSB + SSC)
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Finally, by defining
ABC Subtotal = Y (¥;,. — ¥...)?
ijk
=Y Pm— T2 n= ¥ = Y2 = V)2 - 1 ¥,)2
ijk

we get
I¥4ncll? = (ABC Subtotal) — (SSA + SSB + SSC + SSAB + SSAC + SSBC)

Of course,

2
Yy — ?“2 = ”é”z = Z (Yo — Yijk-)z = Z lejkl - (Z Ymp) m

ijk1 ijk1 ijk
Summarizing, we get Table 6.5.1. We can then test the null hypothesis that the
projection of p on any of the subspaces V,, Vg, ..., Vygc 1S zero, using the
F-statistic with numerator the corresponding MSq. and the denominator
$? = Error MSq. Usually we would want to proceed upward beginning with
the more complex model terms. Whenever we reject the hypothesis that the
corresponding lower-order terms in the interaction are zero. For example, if
we decide AC interaction is present it makes little practical sense to test for 4
effects or C effects.

Example 6.5.1: Consider a three-way factorial discussed by Cochran and
Cox (1957, p. 177):

532 Numerical Example: a 4 x 4 x 3 Factorial in Randomized Blocks

A number of experiments have indicated that electrical stimulation may be helpful
in preventing the wasting away of muscles that are denervated. A factorial experiment
on rats was conducted by Solandt, DeLury, and Hunter (5.8) in order to learn
something about the most effective method of treatment. The factors and their levels
are shown below.

A: Number of Treatment

Periods Daily (Minutes) B: Length of Treatment C: Type of Current
1 1 Galvanic
2 Faradic
6 3 60 cycle alternating
5 60 cycle alternating

Treatments were started on the third day after denervating and continued for 11
consecutive days. There are 48 different combinations of methods of treatment,
each of which was applied to a different rat. Two replicates were conducted, using
96 rats in all.



¥t woq

woqo U [e10L
u,n + ,0 I % ues

; | — wogqo
L — ‘.va R ] — wogo Squg elol 110D
s (1 — w)oqo 4 Jouyg

, X1 =91 — g1 — D) _

Tigo) ” + .0 (1 =)~ 9t —») 28V 4 oqv
(1=21 -9 2% o4
(1—29)1 —7) A ov

) ! - $: —p)
\Savw e (1t~ 91 — ) 4 av

1- w
" N [ -2 2 2

1—9
i W!ii + .2 -9 U g
1-0 "A 14
‘bgW po1oedxyg ‘b 'sbgg Ja asedg [e101qng 20In0g

3duUBLIEA JO SISA[RUY  ['5°9 J|qEL

271



272 TWO-WAY AND THREE-WAY ANALYSES OF VARIANCE

The muscles denervated were the gastronemius-soleus group on one side of the
animal, denervation being accomplished by the removal of a small part of the sciatic
nerve. The measure used for judging the effects of the treatments was the weight of the
denervated muscle at the end of the experiment. Since this depends on the size of the
animal, the weight of the corresponding muscle on the other side of the body was
included as a covariate.

The data are shown in Table 6.5.2.

Though Cochran and Cox did not describe how Reps. I and II differ, let us
assume that they were repetitions of the experiment with 48 rats at different
points in time. For an initial analysis we will ignore this Reps. variable. A
discussion of the use of the covariate x will be postponed until Section 6.6.

Cell means were

a, a, a,

b, ¢ 590 740 635
¢, 605 625 585
ey 665 645 705
ce 690 705 635

b, ¢ 55.5 550 58.0
¢y 58.5 550 55.0
C3 63.0 63.0 715
Cq 63.5 750 7.0

by ¢ 550 580  66.5
c, 640 500 495
¢ 595 610 TS
ca 560 665 805

by ¢ 51.5 55.5 71.0
c,y 58.0 59.0 57.5
c3 62.5 725 65.0
cs 66.0 720 79.5

Two-way means were

a, a, a, a, a, as

b, | 63750 67875 64000 | ¢, | 55250 60.625 64.750
by | 60.125 62000 63875 | ¢, | 60250 56.625 55.125
by | 58.625 58875 67000 | ¢, | 62875 65250 69.625
by | 59.500 64.750 68250 | ¢, | 63625 71.000 73.625
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Table 6.5.2 Weights of Denervated () and Corresponding Normal (x) Muscle
(unit = 0.1 gram)

Number of Treatment Periods Daily

yength of One (ay) Three (as) Six (ag)
{Minutes) Type of Current ¥ x y X y X

Rep.1 1(bl) G 72 152 74 131 69 131

F 61 130 61 129 65 126

60 62 141 65 112 70 111

25 85 147 76 125 61 130

2(b2) G 67 136 52 110 62 122

F 60 111 55 180 59 122

60 64 126 65 190 64 98

25 67 123 72 117 60 92

3(b3) G 57 120 66 132 72 129

F 72 165 43 95 43 97

60 63 112 66 130 72 180

25 56 125 75 130 92 162

4 (bd) G 57 121 56 160 78 135

F 60 87 63 115 58 118

60 61 93 79 126 68 160

25 73 108 86 140 71 120

Rep. I  1(bl) G 46 97 74 131 58 81

F 60 126 64 124 52 102

60 T 129 64 117 71 108

25 53 108 65 108 66 108

2(b2) G 44 83 58 117 S4 97

F 57 104 55 112 51 100

60 62 114 61 100 79 115

25 60 105 78 112 82 102

3(b3) G 53 101 50 103 61 115

F 56 120 57 110 56 105

60 56 101 56 109 ! 105

25 56 97 58 87 69 107

4 (b4) G 4 107 S5 108 64 115

F 56 109 55 104 57 103

60 64 114 66 101 62 99

25 59 102 58 98 88 135
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b, b, by bs

c, | 65500 60.500 67.167  67.667
c; |56.167 56.167 65833  69.833
¢y |59.833 54500 64000 67.667
¢y 59333 58167  66.667  72.500

A means B means C means

a, a, day by b, by b €y Cy Cy Cs

60.5 63375 65791 65208 620 61.5 64.167 60208 57333 65917 69417

Grandmean =Y = ¥.. . =63.218
Then CT = )_’2(96) = 383,674.6

SSA = 32[60.5% + 63.375% + 65.781%] — CT = 447.44
AB Subtotal = 8{63.75% + - - - + 68.252] — CT = 1,038.531
SSAB = (4B Subtotal) — (SSA + SSB) = 367.98
ABC Subtotal= 2[59% + - - - + 79.5%] - CT = 5,177.906
SSABC = (ABC Subtotal)—[SSA +SSB +SSC+SSAD + SSAC +SSBC]
= 1,050.9
Other sums of squares were found similarly. The ANOVA Table is Table 6.5.3.

Only the A and C main effects are significantly different at the 0.05 level
(F3.48.0.95 = 3.20). Thus the A and C means are of particular interest.

Table 6.5.3

Source DF SSgs. MSq. F

A 2 44744 223712 3.36
B 3 223.11 74.37 1.12
C 3 2,14545 715.15 10.73
AB 6 367.98 61.33 0.92
AC 6 644.40 107.40 1.61
BC 9 298.68 33.19 0.50
ABC 18 1,050.85 58.38 0.87
Ertor 48 3,804.50 66.66

(Corr. Total) 95 8,992.41
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Ifatermr, fort =1, 2 is added to the model for the two levels of replication,
then

2
SSRep. =48 Y (Y., — Y. )?
t=1
=48(Y..., — ¥ . .;)%/2 = 48 (65.729 — 60.708)*/2 = 605.01
for one d.f. The error sum of squares becomes 3,804.50 — 605.01 = 3,199.49 for
47 d.f. We reject the null hypothesis of no Rep. effect at reasonable x levels.
Conclusions relative to other effects do not change.

Problem 6.5.1: Consider the following 2 x 2 x 2 table of means ;.

bl bz

a,[SS 25] a,[n 7]

a,| 21 11 at 7 1

(a) Find the parameters g, a;, f;, ..., (xB7)ix-

(b) If three observations are taken independently from N(u, o?) for each

cell ijk, and ¢ = 4, what is the power of the x = 0.05 level F-test of H,: No
A x B interaction?

Problem 6.5.2: Sample of sizes two were taken from each of the eight
normal distributions with the means y;; as presented in Problem 6.5.1, and
variances each ¢? = 16, then rounded to the nearest integer.

a, a
¢ € ¢, €
17 11

b [ 40 33 o [V

31 21 5 16

18 12 2 3
hz b2

21 14 [{V

(a) Estimate the parameters, and fill out the analysis of variance table.

(b) Since the eight subspaces V,, V4, Va, ..., Vyge, V* all have dimension
one, the corresponding sums of squares may all be expressed in the form
I p(Y1x))|2 = (Y, x)*/]x]|2. Give a vector x for each of these subspaces.

(c) What are the lengths of simultaneous 95%;, Scheflé and Tukey confidence
intervals on differences among all cell means? Draw a diagram indicating which
of the means are significantly different.

(d) For the model with ali first- and second-order interaction terms zero
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what is the least squares estimator of u,,,? What is its variance under this
model? Find a 95%; individual confidence interval on y,,, under this model.
(e) What is the bias of the estimator of (d) for 4, as given in Problem 6.5.1?

Problem 6.5.3: Prove that the subspaces V, and V,pc are orthogonal.

6.6 THE ANALYSIS OF COVARIANCE

Suppose that Y is observed under varying experimental conditions in a factorial
design, but that in addition measurements x,, or x, and x,, taking values on
a continuous scale, are made on each unit. In cases in which it is reasonable
to suppose that Y is affected linearly by these covariates the data may be
analyzed by the method of analysis of covariance.

For example, we might measure the yield of corn on 24 plots of land, for 3
varieties of seed, 4 levels of fertilizer, 2 plots for each combination of seed and
fertilizer. It is reasonable to suppose that the yield is related also to the fertility
x of the soil, and therefore measure x for each plot. A reasonable model might
then be:

Yoo =ty + yxip + €ijs

fork=1,2;j=1,23,4;and i =1, 2, 3. We might also observe some other
variable w;; on each plot and then add another term fiw;;, to the model.

Define the parameters g, a;, §;, (af);; as functions of the y;;, and the vectors
Xo, A;, B;, C;; as before. In vector form the model becomes:

Y = HXo + Za.—A‘ + ZﬁIBJ + Z (aﬁ),vIC,) + X + &,
i Jj ij

where x = (x;;). In the case of several covariates yx could be replaced by

7mxnv
2 There is in theory no difficulty in testing null hypotheses of the form H,:
(af)i; = O for all ij or Hy: a; = 0 for all i. We need only fit the model with and
without these terms present, and express the F-statistic in terms of the
appropriate sums of squares.

We will discuss the analysis for the case of several covariates, but will attempt
to give explicit formulas for estimators only for the case of a single covariate x.

Consider the model Y =0 + ¢, for 0 =p + ) y,x,€ V=V, @ V,, where
V, = £({C;}) and V, = Z(x,,...,x,). Suppose V; and V, are linearly inde-
pendent. This means that for each x,, at least some cell has values which are
not all the same. We will refer to V, as the covariate space. Define V;, =
VinV,.Then V=V, ®V,, and V; L V,,. The subspace V;, is spanned by the
vectors X2 = X, — p(x,,|V;). When V is spanned by the cell indicators, each x,
is the vector obtained by subtracting the corresponding cell mean from each
component. ) ) R

Let ?1 =p(YiV), Y=p(X|V), and Y, = p(Y|V,,). Then orthogonality
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implies that Y=Y, +Y,and (Y-V,)=(Y - Y) + Y,,. Orthogonality of
(Y — Y) to V and therefore to ¥V, therefore implies that

1Y — Y2 = 1Y = Y, — 1Y,.0%
That is,

(SSE under the analysis of covariance model)

= (SSE under the analysis of variance model) — || ¥, ||>.

In the case that the number of covariates is one we can give explicit formulas
for the parameter estimates. From Section 3.5 we have $ = (Y, x*)/ fx*|?, and
Var(9) = ¢2/||x*||2. When V, is the space spanned by the cell means we get
xt= Z (xijk - f.'j~)cua (Y, xY) =z_k: Yi]t(xijk - 'iij»)zi and "7‘1"2 = % (xijk - fuﬂ)z-

L
This last sum of squares is the SSE in an analysis of variance on the x-values.
Of course, [|Y,/I* = (Y, x*)*/|Ix|I>.

To get explicitA formulas for estimators of the uy;, u, a;, B;, (aB);, we

first notice that Y =Y ¥, C; + fx* =Y (¥;. — 9%,;.)C;; + 9x. Thus, ;=
ij i

Y,;. — 9%, the corrected cell means. Since the parameters u, «,, B;, (@), are
linear functions of the y;;, their estimators are the corresponding linear functions
1
KJ
with §, and with each other. Variances and covariances among the ji;; can be
determined from the relationship f;; = ¥;. — 7X;;.. These can be used to find
variances and covariances for linear combinations, such as for the &; or for

differences &, — &,..

Suppose that we wish to test a null hypothesis H,: 0V, ® V,, where
V, < V;. In two-way analysis of variance, if we wish to test for lack of
interaction, ¥, would be the subspace spanned by the row and column
indicators. We need to fit the model which holds under the null hypothesis. We
need only repeat the argument above with V] replaced by V,. For V5, = V; n
Vi-" YZx = P(YI V2x)7

. .1 . . 5
of the ji;. For example, i = &0 Y fipo% =Y jiy. The ¥, are uncorrelated
i

(Error sum of squares under the H analysis of covariance model)

= (Error sum of squares under the H, analysis of variance model)
— ¥l

The numerator sum of squares for the F-statistic is therefore

(Numerator sum of squares for test of H, for the analysis of variance model)

- "lenz + "Y2x"2'
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The degree of freedom for this numerator sum of squares remains the same as
it was for the analysis of variance model.

Again, if there is only one covariate, explicit formulas can be given. Let
x3 = p(x| V3 n V) =x — p(x| V), the error vector under Hy, when x is the
observed vector. Then p(Y|V, ® V) = p(Y|}}) + Y,,, where Y, = 7, X3, and
§2 = (Y, x3)/Ix3 1% and | Y5,4% = (Y, x3)*/lixz )%

An analysis of covariance can be performed in much the same way as
analysis of variance is performed. Add two columns to the usual analysis of
variance sums of squares column. Each term in the analysis of variance sum of
squares column is of the form H,, = Y'PY, where P is projection onto the
corresponding subspace. Make the second and third column entries in that row
H,,=x'PY,and H,, = x'Px. Let E, E,, and E,, be the corresponding terms
for the error row of the table. Then sums of squares for the analysis of covariance
are all of the form

C = (Error SSgs. under H;) — (Error SSgs. under Full Model)
= [H}',v + E)'y - (ny + Exy)z/’(Hxx + Exx)] - [Eyy - Ezzry/Exx:l'

The estimate of the regression coefficient y under the null hypothesis corre-
sponding to a given row of the table is (H,, + E,,)/(H,, + E,,). These sums
of squares no longer have the additive properties the terms H,, did, since the
corresponding subspaces V35 n V, are not orthogonal,

Example 6.6.1: Consider the results (Table 6.6.1) of an experiment con-
ducted to study the effects of three feeding treatments on the weight gains of
pigs, as reported by Wishart (1950) and analyzed by Ostle (1963, 455). In this

Table 6.6.1 Initial Weights and Gains in Weight of Young Pigs in a Comparative
Feeding Trial

Food
A B C

Male Female Male Female Male Female

Penl x 38 48 39 48 48 48
y 9.52 9.94 8.51 10.00 9.11 9.75

Penll x 35 32 38 32 37 28
y 8.21 9.48 9,95 9.24 8.50 8.66

Penlil] «x 4] 35 46 41 42 33
v 9.32 9.32 8.43 9.34 8.90 7.63

PenlV «x 48 46 40 46 42 50
y 10.56 10.90 8.86 9.68 9.51 10.37

PenV x 43 32 40 37 40 30
y 1042 8.82 9.20 9.67 8.76 8.57
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experiment 15 male pigs and 15 female pigs were randomly assigned to 15 pens,
combinations of 5 pens, and three feeding treatments, so that in each pen one
male and one female pig received each of the three treatments. The initial weight
x and the weight gain were recorded for each pig. Pens were considered to be
a blocking variable, with interactions between pens and the sex and treatment
variables expected to be relatively small.

For food level i, sex level j (1 for male, 2 for female), pen level k, let the
weight gain be Y; and the initial weight x,;. Suppose that Y;; = p;; + yx;u +
&, with the usual assumptions on the ¢;;. Suppose that y;; = g + f; + 5; +
(f5)ij + po, where f;, s;, (fs), and p, are the food, sex, food x sex, and pen
effects, and these parameters add to zero over each subscript. We have chosen
to use the symbols f;, s;, and p; rather than the more generic notation x;, f;,
and &, (say) because it will remind us more readily of the meaning of the effect.
Such notation is usually preferable.

The terms ) y%, Y xy, and Y x? for food, for example, are computed as
follows:

Y=Y x¥. -7. )% Y=Y x2x%.-X.)%,
i i

Yxy=32 6 x2¥.. - Y. )% — %)

Other sums of squares and cross-products are computed similarly, using the
formulas for two-way analysis of variance. Then the error SSqs. for the analysis
of covariance is E,, — EZ/E,, = 8.414 — (39.367%/442.93) = 4.815. The degree
of freedom for error is 20 — I = 19, since we have one covariate. Notice that
error MSq. has been reduced for 8.314/20 = 0.416 to 4.815/19 = 0.253.

The sum of squares for food, for example, in the analysis of covariance was
computed using the formulas above with H,, = 2.269, H,, = —0.147, H,, = 5.40.
The estimate of y for the full model is § = E, /E,, = 0.889. Table 6.6.2 presents

Table 6.6.2

Sums of Squares and Cross Products Analysis of Covariance
Source DF Y )? Y xy Y x? SSgs.  Mean Sq. $
Pens 4 4.852 39.905 605.87 2.359 0.590 0.076
Food 2 2269 —0.147 5.40 2337 1.168 0.087
Sex I 0434 —-3.730 32.03 1.259 1.259 0.075
Food x sex 2 0.476 3112 2247 0.098 0.049 0.091
Error 20 8314 39.367 44293 4.815 0.253 0.089

Corr.Total 29 16.345 78.507 1,108.70
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Table 6.6.3

F Approx. p-value
Pens 2.33 0.10
Food 4.62 0.025
Sex 498 0.040
Food x sex 0.19 0.980

the estimates of y for the models corresponding to each of the other rows. For
example, 7 = 0.087 is the estimate when the food terms f;, are omitted from
the model.

The F-statistics corresponding to the first four rows of Table 6.6.2 are given
in Table 6.6.3. The model with the interaction terms omitted seems to be the
most appropriate. The parameter g, is estimated by f;, = f’u,‘ — x5, which
has variance Var(f;;) = Var(¥,) + Var(G)Xx5)? = 0°[20/25 + (xin)*/E . 1
with covariances cov( R, fi- k') = 625 XE 3 )/ E .

Table of 2,

A B C
M F M F M F

i [s71 601 513 571 499 538
U | 624 654 566 623 552 591
Pen T | 552 58 494 552 480 5.9
IV | 617 647 559 617 545 585

\ 6.17 6.47 5.59 6.17 5.45 5.85_

The estimates of the standard errors of these f,; were all between 0.41 and
0.45. There are too many covariances for us to attempt to give them here,
though they are small relative to these standard deviations. Estimates of the g,
fi» 8, and (f5);; are given in Table 6.6.4.

To make comparisons of the effects of the levels of the food effects we need
to know

Var(f; - fi)=Va(¥.. — ¥ —9(%.. — %)
=62[2/15 + (X;.. — X;-. ~)2/Exx],

which we estimate by replacing o2 by §2 = Error MSq. = 0.253 to get 0.0849
fori=1,i"=2,00845fori=1,i"=3,and 00849 for i = 2, i’ = 3. Similarly,
we estimate Var($, — $,) = o2[2/15 + (%.,. — X.,.)*/E,,] to be 0.036 2. These
estimates can be used to give confidence intervals on the differences.
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Table 6.6.4
u 5.740
St /s 0.371, —0.070, —0.301
515 82 -0.212,0.212
(f5); 0.063 —0.063

-0.077 0.077

0.014 —-0014

P —0.254,0.274, —0.442,0.211,0.211

As is evident from this example, the payoff in using the covariate in the
analysis, despite its additional complication, is that it reduces the size of error
MSq., providing shorter confidence intervals, and more power. Analysis of
covariance should not be used if the covariate itself is affected by the factors
being studied. In this last example that is definitely not the case because x was
the weight of the pig before the experiment began. Thus, in a study of the effects
of three different methods of teaching algebra to high school freshman it would
be appropriate to use the score on a standardized math exam if the exam were
given before the experiment, but not if the exam were given during or after the
experiment. (The models discussed in this chapter would not be appropriate
for most such experiments because the performances of students in the same
classroom could not be considered to be independent, usually being affected
by the same teacher and by interaction among students.)

Problem 6.6.1: Suppose that following pairs (x;;, Y;) are observed for
i=1,2j=4L2 k=12

B, B,
(10,25) (7, 8)
(14,23) (5,12
(1,20) (0, 7)
(7,12) (4,5

1

2

(a) For the analysis of covariance model Y, = p + o; + B; + (2B);; + yxin +
¢;» determine the analysis of covariance table, estimate the parameters, and
perform appropriate F-tests.

(b) Plot the scatter diagram and the estimated regression line for each ij cell
of the two-way table. (You can do this on just one pair of xy-axes if you use
different labels for the points corresponding to different celis.

(c) Find Var((&, — #,)), both for the model in (a) and for the same model
with the yx;; term omitted. Use this to find 95%; confidence intervals on a; — a,
for both models.

(d) Find a 95%, confidence interval on 7, for the model of (a).
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(e) Let SSA be the sum of squares used to test Hy: a, = %, = 0 for this model.
Show that SSA = (&, — &,)*/[Var(a, — &,)/6%].

(f) How many covariates x, . . ., x, could be used for these eight observations
on ¥?

(8) Suppose that x;, = x;; for all ijk, so that the x-values within the ij cell
were the same. Could an analysis of covariance be performed? Could it be
performed if the model did not include interaction terms (af);;?

Problem 6.6.2: The analysis of covariance models we have considered
has assumed that the slope y is the same for every cell of the table. In the
case of a 2 x 3 table with three observations per cell suppose that Y, =
Bij + VijXij + Eijpe

(a) Describe how you could test the null hypothesis that the y;; are the same
for all i and j.

(b) Could you carry out this test if there were only two observations per cell?

(c) Consider the model with y;; replaced by y;. How could you test the null
hypothesis that y, = y,? Is there a corresponding t-test?



CHAPTER 7

Miscellaneous Other Models

71 THE RANDOM EFFECTS MODEL

In this chapter we consider models which do not quite satisfy the general linear
model in the sense that they contain two independent random terms, say n and
¢ rather than only one. In another sense the error term is the sum ¢ = n + ¢, for
which different observations will not in general be independent. The special
structure of ¢ as a sum allows us to develop estimators and tests in computa-
tionally simple form,

We will only treat a few of these random component models here and will,
for example, not even discuss mixed models for two-way layouts when one
factor has randomly chosen levels. Multivariate analysis of variance is best used
in such situations, and we shall not attempt to discuss its techniques. Those
interested in multivariate statistical methods are referred to books by Morrison
(1976) or Johnson and Wichern (1988).

Suppose we are interested in studying the output in numbers of parts turned
out by the workers in a factory. A large number of workers are available, and
we choose I of them at random, asking each to work J different two-hour time
periods. The measured variable is then Yj;, the number of parts turned out by
worker i in time period j. We suppose that the worker has had enough
experience so that there is no learning effect. The following model may be
appropriate:

Yj=u+a+¢ for j=1,...,J

i=1,...,1

where a, ~ N(0, 62), &; ~ N(0, 6?), and the &;; and g; are JI + I independent
r.v.’s.

This model differs from the usual one-way ANOVA model, called the fixed
effects model, in that the a; are considered to be random variables. In fact,
conditional on the a; (on the specific workers chosen in the example) this is
the fixed effects model with g, = ¢ + a;. This model, unconditional on the g,
is called the random components model, and is appropriate when the levels of

283
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the treatment variable (the workers in the example) under study can be
considered as a random sample from a large collection of possible levels, and
inferences are to be made about this large collection, rather than just those
levels on which observations are taken. The example above and a complete
discussion of the mathematics involved is found in Scheffé (1959, Ch. 7).

As for the fixed model define Y to be the I x J array of ¥;;, A;tobethe ] x J
array with 1's in column i, 0’s elsewhere,

VO = g(xo)’
Va=Z(A,,
V=2(A,

Then

...,A,)f\ VOJ-:-{

MISCELLANEOUS OTHER MODELS

1
for xo=2) A,
1

I
Z biA,'
1

...,Al)z l/o@ VA

fo-o

I
Y=puxo+Y aA +¢ and Y~ N(uxo,Ey),
1

where the elements of X, are given by

cov(Y;, Yop) = covia, + &, a + &)

If we order the elements of Y by first going down columns then across rows, then

=02 + o?
6z  for
for

Ly

xiJ

B}

=g}

0

for

0

=i

at

2
B;

and
i#J

+ 6’1,

J=1]

where B; is a J x J block of all ones. Thus for I = 3, J = 2, we get

S O O O rm

S O O O =

O - - O O

S O = = O O

—_—— 0 O O O

_-—_ 0 O O O

S O O O O M~

o O © O = O

o 0 o - O O

o o -~ O O O

o -~ O O O O

-0 O O O ©




THE RANDOM EFFECTS MODEL 285
As for the fixed effects model, let
Yo=p(YIV)=Y xo=(u+a+E&.)x
?=p(Y|V)=2::7,.A,-=X::[;t+a,~+§,-.]A,
Y, =p(Y|Vy) = p(Y{ V) — p(Y|xo)
=Y. - )—’.A)A,.=2::[a‘+§.. —(@+ & )]A,

= 2‘: [(a; - &) + (. — £..)]A,

R 1
e=Y—Y=p(YlVl)=p(uxo+2a,A,~+clVl)
1

€1y — &y T gpy — &
=pe| V) =
€1y — €. " &y —§.
Then
SSA = ¥, % = i [(a, — @) + G,. — £.)],
and l

SSE = Je|)* = z (&; — §t~)2
i

2
Let W =a,+ ¢, . Then W,~ N (0, a2 + %—) and the W, are independent. It

follows that

u/i_ 112

?f M ssa
02+02 o’ + Jol Ri-
a J’

In addition, the W, are independent of the vector e, and therefore of SSE, which
is the same as it is for the fixed effects model. Thus, SSE/o? ~ xZ _,,,. It follows
that

{ESA/[GZ""’&;]}./(_]:_Q ~F(I —1,(J = DD
[SSE/6*)/(J — 1)

The analysis can be summarized by the usual one-way ANOVA table, with
the same d.f’s, sums of squares, and mean squares as for the fixed effects model.
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The only change appears in the expected mean squares column, with E(MSA) =
o? + Jol.

Though we will not show it here, the maximum likelihood estimator of
the pair (62, 62) is (6%, SSA/n — J4?), where 6% = SSE/n. It is more common
to use the esimator (MSE, (MSA — MSE)/J), which is unbiased. However, it
makes little sense to estimate 62 by a negative number, so that it makes more
sense to replace (MSA — MSE)/J by the minimum of this and zero. Of course
the estimator is then biased. That seems to be a small price to pay to avoid an
cmbarrassing point estimate.

Let

poSSAU-D _ AMSa o et del
SSE/(J — 1)I  Error MSq. o’

We have shown that F/0 has a central F distribution. Thus, for F,;, and F, _,,,
the 100(a/2) and 100(1 — «/2) percentiles of the F;_, -, distribution,

F
]—1::P(I‘;IZSF/BSFI'RIZ)—:P(F —SOSL)

1-aj2 Fa/l

We have a 100(1 — 2)%, confidence interval on @ = 1 + J(62/6*). Manipulating
the inequalities still further, we get

2
P('(,_F._—l)s“-‘;sl(F -—l))=1—a.
J\Fi_a2 g J\Fy2

An approximate confidence interval on 6?2 is obtained by substituting S? for
a2, to get the interval

T )= T
A= =1}<06;<— -1
J\F, ., J\F,,
The approximation is good if I{J — 1) = Error d.f. is large. A 100(1 — «/2)%,
one-sided confidence interval may be obtained by leaving off either end of the
interval.

2 2

We can test Hy: 62/6% <rq vs. H,: 62/a* > r, for ry a known constant as
follows. Since

) 1
Fit = F(m) ~F_ i 1-1

2
2= P(F > (1 +J f'—;)F, ) > P(F > (1 + Jro)F,_,)
g

for 2/62 < r,, so that the test which rejects H, for F > (1 + Jrg)F, _, is an
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a-level test. Its power function for r = 62/0? is

, 1 1+ Jrg
P(F>(1+Jrg)F,_) =P F > F_,
(F2{d+Jro)F-) ((I+Jr) (1+Jr)‘ )

. . 1
= area under F,_, ,,_,, density to the right of TxIn

For the case rq = O the test rejects for F > F, _,, the usual ANOVA test. In
practice it is not reasonable to expect 62 = 0, however.

Problem 7.1.1:  For the random effects model, what is the c.c. p(Y;;, ¥;) for
J# i

Problem 7.1.2: Let U, W, Uy, V;,..., U, V. be independent r.v.'s with
U~ N(0,07) and ¥~ N(0,0}). Let U=y Uk and V=Y V/k, and let
Q=3 U+ 1) —-(U+ N

(a) Describe the conditional distribution of Q, given V, =rv,..., V., = v,.

(b) Describe the unconditional distribution of Q.

(c) Apply the results of (a) and (b) to Y (W; — W)?, where W, = g, + &,.

Problem 7.1.3: In order to determine the contamination by dioxin of land
formerly used as a dumpsite, the land was divided into 20,000 one foot by one
foot squares. Fifty of these squares were then chosen randomly for analysis. Five
samples of soil, each of one cubic inch, were then taken from each sample
square. Measurements, in parts per billion of dioxin, were then obtained; for
example,

Sample Square

1 2 3 4 5 50
C 195 323 257 332 328 ... 2627
180 295 248 263 284 ... 259
187 306 261 281 264 ... 267
196 320 282 292 320 ... 268
149 344 263 326 262 ... 265

Computations gave:
Y K;=96936 Y Y} =40835618 Z(Z )1,-)2 = 203,375,212.
ij ij 7\

(a) State an appropriate random effects model, with variances 62 and o2 (for
squares).
(b) Determine the analysis of variance table.
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(c) Find 95% confidence intervals on 62, R = ¢%/0?, and o2.

(d) For R =0?%/6% test Hy: 8 < 5 vs. H;: 8 > 5, for a = 0.05.

(e) These data were actually generated on a computer using u = 400, ¢ = 30,
a, = 100. Did the confidence intervals include these parameter values? Find the
power of the test of (d).

(f) What were Var(Y. ,,), Var(Y  — Y ), Var(¥..)? What were their
estimates?

(g) Suppose that the cost of observations is $90 for each square and $3 for
each measurement of dioxin, so that the total cost was C = ($90)50) +
($3)(250) = $5,250. Suppose that the purpose of the study was to estimate the
overall mean per square foot as precisely as possible. Find a choice of (I, J)
which would cause Var(Y, ) to be as small as possible subject to the cost being
no larger, and compute Var(Y..) for the experiment performed and for the better
experiment.

7.2 NESTING

Suppose we expand the experiment of Section 7.1 as follows, We are interested
in I different machines (or machine types). J; workers are chosen randomly to
work on machine i, for i = 1, ..., I. Then each worker is assigned to K different
two-hour periods, all on the same machine. The production in time period k
is ¥, for k=1,..., K. Then, since an individual worker works only on one
machine, workers are said to be “nested within machines.”

Example 7.2.1: K=3,1=4,J,=3,J,=3,J,=2,J,=4

Workers
Machine 1 Machine 2 Machine 3 Machine 4
1 2 3 4 5 6 7 8 9 10 11 12

31 41 36 48 39 50 29 37 45 57 50 53
35 38 39 48 42 50 32 39 46 54 50 55
30 37 38 45 41 53 30 39 48 55 54 49

A reasonable model is
Yu=n+m+wg + e,

The nesting is indicated by the notation wy,, since the values which j takes
depend on i, with j “nested” within machine i. Let J, be the number of workers
nested within machine i, fori=1,..., . Let My =0,and M; =J, + - -~ + J,
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for each i. Then for each i, j takes only the values M;_; + 1,..., M;. For each
j, k takes the values 1,..., K. Suppose m,,...,m, are fixed effects with
Y m;=0, and the w;, are random variables, independent, with N(0, cl)

distributions. Then
),Uk"' N(ﬂ + m,,o‘i+ 62)
and
6i+¢* for i=ij=jk=Fk
cov( Y, Yopu) = { 0%, for i=ij=jk#k

0 for j#j forall ik k.

Let Y be the array of K(} J) observations Y;;. Let M; be the indicator of
machine i, let w;(i) be the indicator of worker j, who uses machine i. Define

Vo= #(x) for xo =) M, the array of all 1’s.

I
VM=$(M1,..-,M,)0 Vé-——{zbiM.
1

F
Zbi4=0}
1
V=W W) Vw=Voa(h@® V) =VaVsnly
?0=p(YIX0)= )_,...Xo ?Mzz 2M‘_ ?XO=Z(7‘ _ )—,)M'
i
?W=Z )—,il“wﬂi) “Z Z--M.'=Z(}—'¢,. - }—’,..)w,(,)
iy i ij
Then
1

SSM = [Yyl?=Y (Y. - Y ) UK=KY Y2 J-Y> n for n=KY
i i 1

SSW = ||V 12 =Y (¥, - V. ) K=YV, K-KY T J
ij ij i
SSE= Y-V’ =Y (Y- %)’ =Y YL -Y ¥V} K
ij ijk if
SST=UY - Yl? =Y (Y- =3 Y-V’ .n
ijk

ijk

The analysis of variance is given in Table 7.2.1. For each (i, j)

2
— _ c
Y, =pu+m+wg+ & ~ N(u +m;, 02 + E)
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Table 7.2.1 Analysis of Variance

Source Subspace DF SSgs. MSq. Expected Msq.
Machine Vu I—1 SSM o2 + Kol + I—K—l Y. miy,
1
Worker Vi YU~ SSW a? + Ka?
1
Error vi (K-1) Z J; SSE a’
Adj. Total V§ KQ -1 SST

and the ¥;. are independent. Then

M — _
Mo s-v.y ad Yoy, -
K i K i7

are among means SSqs. and error 8Sgs. for one-way analysis of variance on
the ¥;.. Thus, they are independent,

K 2.
SSM SSM Zm
= ~y}, for b=—"—
K(a2 +g,2) 6+ Kel °~ 6’ + Kol
YK
and
SSW SSW ,
= ~ _, (central x?).
K(az R 02) 0'2 + Kdi lel l( X )
Thus
_ Machine MSq. @)
M~ Worker Msq. ' ThXNTES

Confidence intervals on 62 /062 can be obtained by the same method used in
the one-way ANOVA random effects model. Thus (L, U) is a 100(1 — )%,
confidence interval on

F, 1 F, 1
62/g* for L = (»;1-* - l) — and U= ( i l) -,
1-a2 K fz/l K

where F,,, and F,_,, are percentiles of the F(v,,v,) distribution for v, =
Y J—Iandv,=(K - 1)X} J)and F, = (WMSq.)/S% Since [E(MSW) — ¢*]/
K =¢2,6% =[MSW — §%)/K is an unbiased point estimator of ¢2. It makes
sense, however, to replace 62 by 0 whenever it is less than 0, so the unbiasedness
1s lost.
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Problem 7.2.1: Hicks (1982, Exampie 11.1) described the following experi-

ment:

In a recent in-plant training course the members of the class were assigned a final
problem. Each class member was to go to the plant and set up an experiment using
the techniques that had been discussed in the class. One engineer wanted to study
the strain readings of glass cathode supports from five different machines. Each
machine had four “heads” on which the glass was formed, and she decided to take
four samples from each head. She treated this experiment as a 5 x 4 factorial with
four replications per cell. Complete randomization of the testing for strain readings
presented no problem. Her model was

Yy=u+M+n+ MH;+ gy,

with

Her data and analysis appear in Table 7.2.2. In this model she assumed that both
machines and heads were fixed, and used the 10 percent significance level. The results
indicated no significant interaction at the 10 percent level of significance.

The qucstion was raised as to whether the four heads were actually removed from
machine A and mounted on machine B, then on C, and so on. Of course, the answer
was no, as each machine had its own four heads. Thus machines and heads did not
form a factorial experiment, as the heads on each machine were unique for that
particular machine. In each case the experiment is called a nested experiment: levels
of one factor are nested within, or are subsamples of, levels of another factor. Such
experiments are called hierarchical experiments.

Table 7.2.2 Data for Strain Problem in a Nested Experiment

Machine Head

A B C D E

1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6 13 1 7 10 2 40 0100 8 7 11 5 1 0 1 6 3 3

2 310 4 9 1 13 o1 5 2 010 8 8 4 7 0 7

0o 9 0 7 7 1 74 5 6 0 5 6 8 9 6 7 0 2 4

8 8 6 9 1210 91 5 7 7 4 4 3 4 5 9 3 2 0
Head Totals

16 33 17 27 38 14 21 8 10 34 20 18 21 26 22 19 21 16 7 14

Machine Totals

93 81 82 88 58
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(a) Define a more appropriate model than that chosen by the student.

{(b) Determine the appropriate analysis of variance table and test the
hypotheses 6 = 0 and (all m; = 0) at level « = 0.05.

(c) Find a 95% confidence intervals on 6/0? and (approximately) on 6.

Problem 7.2.2: Express P(¢2 > 0) in terms of the central F c.d.f. and the
parameter 8 = [¢* + Ko2]/o? Evaluateit forthecase I =3,J, = J, = J; = §,
K =4, R =0d%/6? = 0.355.

Problem 7.2.3: For the worker—-machine model find:

(a) The cc. p(¥,;., ¥;.) and Var(¥; — ¥;.) for j # j'.
(b) The c.c. p(Y 4, Yu) and Var(Y; — Y,) for k # k.
(c) Thecc. p(Y;..,Y..)and Var(Y,.. — Y. Y fori # 1.

7.3 SPLIT PLOT DESIGNS

Ostle (1963) describes an experiment designed to determine the effects of
temperature and electrolyte on the lifetime of thermal batteries. The electrolytes
were A, B, C, D, and the temperatures were low, medium and high. The
temperature chamber had positions for four batteries. On six consecutive days
(replicates) the chamber was used three times (whole-plots, so that there were
18 whole-plots). The three temperatures werc randomly assigned to these
whole-plots. Within each whole-plot one battery with each of the electrolytes
was randomly chosen for a position, split-plot, within the chamber. The
measured variable was the activated life of the battery (Table 7.3.1). For an
agricultural example suppose four hybrids of corn H,, H,, H,, H, and three
levels of fertilizer F;, F,, F; are of interest. Three farms (replicates) each have
four acres available for use. On each farm the land is divided into one-acre
whole plots, and one of each of the hybrids assigned randomly to these whole
plots. Then each whole plot is divided into three split-plots and the three
fertilizers randomly assigned to these split-plots.

Consider the battery example again. Let i index replicate, j index temperature
and k index electrolyte. A reasonable model is then

Ya=p+pi+ 1+ p;+ 1+ (W)t i

where p; is the fixed replication effect, t; is the fixed temperature effect, p;; is

the random whole-plot effect, v, is the fixed electrolyte effect, (t7); is the

temperature--electrolyte interaction effect, and ¢, is the split-plot effect. ¢;; also

contains other random errors. In addition, . p; =Y 1, =Y 7% =Y (=0,
J

pij ~ N0, 62), &~ N(0,6%) and these random variables p;;, &;; are all
independent.

The sums of squares for each of the terms of the model are dectermined as
before for a three-way factorial with one observation per cell assuming no
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Table 7.3.1 Activated Lives in Hours of 72 Thermal Batteries Tested in a Split Plot
Design Which Used Temperatures as Whole Plots and Electrolytes as Split Plots

Replicate
Electrolyte 1 2 3 4 5 6
Low Temperature
A 217 1.88 1.62 234 1.58 1.66
B 1.58 1.26 1.22 1.59 1.25 0.94
C 229 1.60 1.67 1.91 1.39 1.12
D 223 201 1.82 2.10 1.66 1.10
Medium Temperature
A 233 201 1.70 1.78 142 1.35
B 1.38 1.30 1.85 1.09 1.13 1.06
C 1.86 1.70 1.81 1.54 1.67 0.88
D 227 1.81 201 1.40 1.31 1.06
High Temperature
A 1.75 1.95 213 1.78 131 1.30
B 1.52 1.47 1.80 1.37 1.01 1.31
C 1.55 1.61 1.82 1.56 1.23 1.13
D 1.56 1.72 1.99 1.55 1.51 1.33

Source: Reprinted with permission from Statistics in Research by Bernard Ostle. © 1963 lowa

State Press.

interaction between replicates and electrolyte or between temperature and
electrolyte. In general, suppose there are R replicates, T temperatures, L

electrolytes. Then
SSR=(TL)Y (Y. - ¥.)?
SST=RL)Y (Y, -Y.)?
j

RTSubtotal = LY (¥, - ¥ .)?
ij

SSRT = (RT Subtotal) — SSR — SST

SSP=LY (¥; - ¥.)?
i
SSL=RNY (Y..,-Y. )
k
TLSubtotal =R Y (¥, — V.. )?
Jk

SSTL = (TL Subtotal) — SST
(Corr) Total SS = Y (¥, — ¥..)?

ijk

{Replicates)

(Temperature)

(RT Interaction)
(Whole-Plots)

(Electrolytes)

(TL interaction)

SSE = Total SS — (RT Subtotal) — SSL (Error) — SSTL
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Each sum of squares is the squared length of the projection of Y on a
subspace, the subspaces for R, T, P, L, error being orthogonal. SSRT is RT
interaction sum of squares, which we have chosen to call whole-plot error and
labeled as p;;.

Since ¥; ~ N(u+ p; + 5,02 + 0%/L), by arguments similar to those for
nested designs we get

_ SSR
Lo} + o?

~th-0)  for 8=TLE p})/(Lek + 0?)

SST _.
ioi o7~ 4@ for 8= RUEHALap + %)
14
_SSP
Lol +d?
SSL | ‘ |
o2 ~ 1i-1(9) for 0= RT(Z 13)/0*

2
~ X(R-1KT-1)

SSTL ; 5
P Xir-va-p@  for &=RY ()j/o?

SSE

2
3~ XR(T— 1ML~ 1)
o

These sums of squares are independent.

F-tests for replicate and temperature effects use the mean square for whole
plots = SSP/(R — 1)(T — 1) in the denominator. F-tests for the split-plot factor,
electrolyte, use error mean square. The ANOVA table presented by Ostle for
these data is Table 7.3.2.

Table 7.3.2 Abbreviated ANOVA

Source DF  SS8gs. MSq. F Expected MSq.
Whole Plots
Replicates S 4.1499 08300 6.09* o +4gl +12) p}/s
Temperatures 2 0478t 00890 065 o +4c+24) 17/2
Whole plot error 10 13622 0.1362 o’ + 4o}
Split Plots
Electrolytes 319625 0.6542¢ 234 e+ 18Y vi/3
Temperature x electrolyte 6 02105 0.0351 125 62+ 6) (179)h/6
Split plot error 45 1.2586 0.0280 o?

*Significant at the x = 0.0} level.
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Since Fs 19.0.99 = 5.64, F3 45 0.09 = 4.24 both replicate and electrolyte effects
are significantly different from zero at the 0.01 level. There seems to be little
effect due to temperature or temperature x electrolyte interaction. It would
be appropriate to compare electrolyte means, which have variances o2/18,
estimated to be 0.0280/18.

Problem 7.3.1: Analysis of the battery data produced: ¥ ¥, = 11497,
Y. Y% = 1927, and means as follows:
Replicates
2068 1.688 1.583 1985 1470 1.205
Temperature | 1.960 1.705 1.842 1453 1.383 1.088
1.595 1.688 1935 1565 1.265 1.268

Electrolytes
1.875 1.307 1.663 1.820
Temperature| 1.765 1.302 1.577 1.643
1.703 1.413 1483 1.610

Rep. Means Temp. Means
1.874 1.693 1.787 1.667 1372 1.187 1.662 1.572 1.552

Electrolyte Means
1.781 1.341 1574 1.691

Y Y3 =47319 Y Y2 =15.645
Y ¥, =30989 Y ¥ =7647
(a) Verify the sums of squares in Ostle’s table.
(b) Find an individual 95% confidence interval 7, — 7,.

¢) Find an individual 95, confidence interval on y, — y,.
Y1 2

Problem 7.3.2: Prove that SST, SSR, and SSL are independent r.v.’s.

74 BALANCED INCOMPLETE BLOCK DESIGNS

Consider the following experiment described by Mendenhall (1968, p. 325):

An experiment was conducted to compare the effect of p = 7 chemical substances on
the skin of male rats. The area of experimentation on the animal’s skin was confined
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to a region which was known to be relatively homogeneous, but this restricted
the experimenter to three experimental units (patches of skin) per animal. Hence to
eliminate the rat-to-rat vanability for the comparison of treatments, the experiment
was blocked on rats using the balanced incomplete block design shown below (k = 3,
r=23,b=7 4=1). The seven blocks correspond to 7 rats.

Blocks

1 2 3 4 5 6 7
Al ol Fcl FeEl B [ET [ A7
10.2 129 1.7 9.1 83 92 1.3
B F B G G F C
69 14.1 12.1 77 8.6 15.2 9.7
D o E D F A G
2] Lood L sed Lissd Liesd Lizad L 62

This experimental design is called an incomplete block design because not all
treatment levels are represented in each block. There are b = 7 blocks (rats),
k = 3 experimental units (patches) within each block, t = 7 levels of the chemical
factor (the treatment), each level is replicated r = 3 times, and each pair of levels
is together in the same block A =1 time. The experiment is called balanced
because r does not depend on the treatment level, block size k is constant, and
the number 4 does not depend on a combination i’ of treatment levels.

A second example, taken from Scheffé (1959, p. 189) has b = 10 blocks (which
corresponds to time), each biock has k = 3 treatment levels (detergents) from
among ¢ = 5 treatment levels, each treatment level is replicated r = 6 times, and
each pair of treatment levels is contained within the same block 4 = 3 times.

In a test to compare detergents with respect to a certain characteristic a large stack
of dinner plates soiled in a specified way is prepared and the detergents are tested
in blocks of three, there being in each block three basins with different detergents
and three dishwashers who rotate after washing each plate. The measurements in the
table are the numbers of plates washed before the foam disappears from the basin.
Use the T-method with 0.90 confidence coefficient on the intrablock estimates to
decide which pairs of detergents differ significantly.

Block 1 2 3 4 5 6 7 8 9 10
A 27 28 30 3 29 30
B 26 26 29 30 21 26
Detergent C 30 4 32 4 31 i3
D 29 33 34 31 33 31
E 26 24 25 23 24 26
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The T-method to which Scheffé referred was Tukey’s method for simultaneous
confidence intervals. He referred to his own method as the S-method.

Other examples may be found in Cochran and Cox (1957, 475--6, 480, 432).
The largest has ¢t = 28,k = 7,r = 9,b = 36, A = 2. Forany k < t, we can always

take b = (;), r = bk/t, 2 = bk(k — 1)/t(t — 1), which may be a larger experi-

ment than desired.

Such experiments can be useful in cases in which blocks are not large enough
to accommodate all treatment levels. In an agricultural experiment with many
locations with at most four plots each of which must receive only one hybrid
of corn, an experiment to compare six hybrids must use incomplete blocks. In
comparing five cake mixes using ovens with only three positions for cakes, the
blocks (baking periods) must be incomplete. In an industrial experiment to
compare three procedures, workers may only be able to use two procedures on
any day. Thus a block (worker-day) must be incomplete.

Before we discuss these balanced incomplete block designs, let us first
consider a model for incomplete block designs which may not be balanced. If
we let the observations at treatment level i, block j be Y;;, ..., ¥;x,, the model

Vi ~ N (50 a?)

with independence, may be fit using standard regression methods as described
in Section 6.2.

Unless K;; is at least one for each ij, however, we have no estimator for g,
particularly for an interaction parameter (af);;. Therefore we are led to
cons:deratlon of the additive model pe V = £(A,, ..., A, B,,..., B,). To test

cpeZBy,. .. B)=V let Vy=Vn Vi, Y =pY|V), Y,,- p(Y | Va),
YA =p(Y]| VA) =Y— Y e=Y—Y. Since B,,...,B, is an orthogonal basis

for V3, ¥ = Z Y B,.Since V, L ¥, Y =Y, + ¥,. ¥, is spanned by the vectors
1

A? = A - p(Ai| Vp) = A; — T (Ky/K ) B (74.1)

fori=1,...,¢t

These vectors sum to the zero vector, so that V, has dimension at most
t — L. In general, without some restrictions on the K;; it may have smaller
dimension.

In the case that the design is a balanced incomplete block design (BIBD),
special relationships among the parameters t, r, b, k, A make it possible to solve
explicitly for Y. First, the total number of observations is

n=YK.=Yr=rt and n=YK;=Yk=bk
-' .- 7 j

so that (1) rt = bk. Secondly, the number of pairs of different treatment levels
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in the same block, summed across all blocks, is i<t> and also (k>b, so that
(2) At(t — 1) = k(k — 1)b. 2 2

For BIBD’s all K;; are zero or onc. Let # be the collection of pairs (i, j) for
which K;; = L. Let #(i) = {j|(i, j) € .#}.

From (74.1) weget A = A, — (1/k) Y K,;B;=A,— ¥ B, For(i,j)e s,

i je f()

the (i j) element of A is | — 1/kif je #(i)and i =i, —1/k if je #(i) and
i #1,0for j¢ #(i). Notice that Z A¥ = 0. These A¥ have inner product matrix
M* = (m;;), where

m;=r—(1/kNkr=rtk — D/k=@—-1i/k for i=j and
= —(I/kDik= —i/k  for i# ] (142)

Thus M* = (4t/k)[1, — (1/t)J,], where J, is the t x t matrix of all ones.
Let ¢ = (At/k) and suppose Y, Za A,. Since Y, L x4, ¥ a; = 0. To find
these a;, compute

Y. AN = (Y, A = ¥ a.(A%, A) + a, (A}, AY)

Vsti

= (—4/k)(—a) + a;(t — 1)(4/k) = cq

It follows that g; = (Y, A¥)c "!. More explicitly,

a;=c?"‘|:Y.-.—ZKij)_’-ij where Y. = } ¥;.
i

js F@i)y

The term B(i) = Z K,;Y ;= Y ¥,is the correction for blocks for treatment
level i. je s

I =p+o,+f, with Y o, =3 B; = 0, then, substituting y;; for Y;, we
get a; = uy, the effect of treatment level i. Thus g; is an unbiased estimator of «;.

The coefficient vector a = (a,,...,q,) has covariance matrix ¢%c *M* =
(a2/o)1, — (1/1)J,], so that Var(a; — a;) = 20%/c = 2ko?/At. More generally, for
a contrast n = Y ¢, Var(®) = (3 c?)ka?)/t.

For (i, j) € 5 the (i, j) term of Y, is a; — b;, where b, = (1/k) Y a;. (see

(. e S

Problem 7.4.1). Of course, the (i, j) term of Yy, for (i, j) e S, is ¥.,.

Explicit formulas for sums of squares may be determined as follows:

SSA = |¥,? = ¢ Y, a?, (see Problem 7.1.2),
Vel = kY Y2, 1Y% = Y% + 1Y% SSE = feli®> = Y| — Y2
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$% = jieli?/v, for v=n—dim(}) =n —t — b + 1 is the usual estimator of o2,
The F-statistic for the test of Hy: (x; = 0 for all i) is F = [[[¥,|2/(t — 1)]/S>.
F has the noncentral F distribution with noncentrality parameter (¢ Y, a?)/0?,
and (t — L, v)d.rf

Notice that the definitions of ¥, and ¥, are not symmetric. A test of Hy:
(no block effect) <= (all 8; = 0) may be constructed analogously to the test of
Hy: (no treatment effect) <> (all o, = 0). The numerator sum of squares is not
AR

The joint distribution of all differences a; — a; is the same as it would be if
the a; were independent, with variances o2/c. It follows that Tukey simultaneous
confidence intervals on the a; — %, are given by [a; — a;. + q, _,,.,(8%/c)"%].

For a randomized block design with all treatment levels within each block,
r blocks, the estimator for n is fjg, = 3, c; ¥;., which has Var(fiy, ) = 623 c)/r.
The efficiency of the balanced incomplete block design relative to the ran-
domized block design is therefore

. Var(ﬁB}) _ A; _ z}k -1

Vary) kG- k-

so that e < 1 for ¢t > k. For the dishwasher example e = 5/6, so the design is
relatively efficient, even though there are three basins rather than five.

Example 74.1: Consider the dishwashing example with k=3, t =35,
b =10, r =6, A = 3. In order to represent the sample space Q conveniently
take Q to be the collection of 5 x 10 matrices with rows corresponding to levels
of treatment, columns to blocks, with zeros where no observations was taken.
Thus

m27 28 30 31 29 30 0 O 0O O
26 26 29 0 0 O 30 21 26 O
Y=|30 0 O 34 32 0 34 31 0 33
0 29 0 33 0 34 3t 0 33 3t
L O 0 26 0 24 25 0 23 24 26l

o O O O© =
©C O O O -
S O O O =
o © © <o ©
o © © o ©
o © © <o ©

o © © ©
o © o ©
o O O ©
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0 00 00 00 O0 0 07
11 1t0001 110
A,=[0 00 0O0O0O0O0GO0O
000000O0OO0TO0O
L0000 0O0O0O0O0 0 O
"0 1 0 0 0 00 0 0 07
01 00000O0O0O0OUO
B,={0000O0O0O0GO0O
01 0000O0GO0O
L0000 0O0O0O0 0 0
"1 1 1. 00 0 00 0 O
1110001 11
p(Al¥)=|10 00 00 1 1 0 %
01 000O0T1OTLO
L0010000110_4
"—-1 -1 -1 000 O 0 0 0
2 2 2000 2 0
Af=| -1 0 0000 —1 —I 00%
-1 0000 -1 0 -1 0
L. 0 0 -1 000 0 —1 —1 0

Notice that p(A;| V) has ones in blocks in which treatment level i appears,
and, of course, each A} L V}.

Example 7.4.2: For the dishwasher data block sums and means are given
Table 7.4.1.

Table 7.4.1

Block 1 2 3 4 5 6 7 8 9 10
Sum mean 83 83 85 98 85 89 95 75 83 90
27.67 27.67 29.33 32,67 2833 29.67 3167 2500 27.67 30.00




BALANCED INCOMPLETE BLOCK DESIGNS 301
Table 7.4.2
Treatment 1 2 3 4 5
Sum mean 175 158 194 191 143
29.17 26.33 32.33 31.83 24.67 c=5
B, 174.3 168.0 175.3 179.3 169.0
a; 0.13 —-2.00 3713 233 —-4.20
The treatment totals, means, correlations, and g; are given in Table 7.4.2.
The projections are
- 27.18 2764 30.49 30.73 28.58 3038 O 0 0 0 T
2504 2551 2836 O 0 0 28.31 23.82 2696 0
Y=|3078 0 0 3433 3218 0 3404 2956 O 33.1t
0 2984 0 3293 0 3258 3264 0 3129 31711
. 0 0 2616 0 2424 2604 O 21.62 24.76 25.18
[-27.67 27.67 2833 3267 2833 2967 0 0 0 0 7
27.67 27.67 2833 O 0 0 3167 25 2767 O
Y,=| 2767 0 0 3267 2833 0 3167 25 O 30
0 27167 O 3267 O 2967 3167 0 27.67 30
) 0 2833 O 2833 2967 O 25 27.67 30l
[* —0.489 —0.022 2,156 —1.933 0.244
—2.622 -2.156 0.022 0 0
Y,=] 3111 o0 0 1.667  3.844
0 2.178 0 0.267 0
. 0 0 -2.178 0 —4.089
0.711 0 0 0 0 T
0 —-335% -—-1.178 —-0.711 0
0 2.378 4.556 0 3111
2911 0.978 0 3.622 1.711
—3.622 0 —-3378 -—2911 -—-4.822]
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Directly from these vectors or from the formulas, we get
1Y% = 'Z Y% =25366, [V|>=253359, |IYsl*=kY V% =251307,
IY2=cY a? =2052, fe|® =Y = Y2 =] Y| - [[V}? =301

205. 2/4

188
(4 — 1) and 16 d.f. We reject the null hypothesis of no detergent effect at any
reasonable a-level.
Since Var(a; — a;)) = 2¢%¢ ™", we estimate these variances to be $%(a; — a;) =
2(1.88)/5 = 0.75, so that individual 95% confidence intervals on «; — a; are
given by ¢; — a; (2.131)\/63.

Thus §% = 30.1/(30 — 14) = 1.88, and the F-statistic is F = = 27.3 for

_ Problem 74.1: Prove that for (i, j) € .#, the (i, j) termof Y, isa; — 5,-, where

(i.p)e s
Problem 7.4.2: Prove that |Y,)|> = ¢ ¥ a?.

Problem 7.4.3: For the rat experiment with seven levels of chemical as
described in this section:

(a) Estimate the chemical effects «; and find a random variable Q so that
(a; — a;) = Q for all i # " are Tukey simultaneous 907, confidence intervals on
all o; — ;..

(b) Test Hy: all «; = 0 at level a2 = 0.05.

(c) Determine A%, Y,, Ys, and Y, or for those with less time, at least the
terms corresponding to j = 3.

(d) Find the efficiency e of this experiment relative to a randomized block
design with 21 observations.

Problem 7.4.4: Consider the case k=2, b=3,t=3r=2, =1, with
observations as indicated.

Y, h —
Y=Y — Y|
— Yy Y
Let Q be the collection of all possible Y.
(a) Find AY, A%, A} and M*.
(b) Give formulas for a,, a,, a; without using summation or matrix notation.

(c) Consider the estimator #=Y,, — Y,, of n =0, —a,. Compare its
variance with that of a, — a,.
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(d) For any BIBD compare the variance of @, — a, with that of the estimator
obtained only using differences between observations in the same block (the
intrablock estimator).

Problem 7.4.5: The following experiment to measure the effects of cold
storage on the tenderness of beef was conducted by Dr. Pauline Paul at lowa
State University (Paul, 1943; see Table 7.4.1). An analysis was described by
Cochran and Cox (1957). The six periods of storage were 0, 1, 2, 4, 9, and 18
days. Thirty muscles were used in 15 pairs. Members of the same pairs were
the left and right versions of the same muscle. The five replicates were types of
muscle. For this analysis we ask the student to ignore the replicate effect, and
to consider the block (pair) and treatment (storage time) effects only.

All pieces of meat were roasted. The measured variable was the total
tenderness score given by four judges on a 0-10 scale. Treatment numbers are
indicated in parentheses, followed by the observation.

Treat this as a BIBD, with nine blocks of k = 2.

(a) Find the parameters b, r, ¢, 4, ¢, and efficiency e.

(b) Find the statistics a,, ..., a, and use these to determine an analysis of
variance table.

(c) Test Hy: (no storage effect) for a = 0.05.

(d) Use the Tukey method to produce a line diagram which describes
significant (@ = 0.05) differences among storage effects.

(e) For braver students: Test H,: (no replicate effect) for « = 0.03, assuming
a model in which block effects are random, replicate effects fixed.

Table 7.4.1 Scores for Tenderness of Beef
Rep. 1 Rep. I Rep. 111 Rep. IV Rep. V

m7 @17 17 327 (D10 (4)25 (D25 (5)40 (11 (6)27
(3)26 (4)25 23 (927 (2)26 (6) 37 (2)25 (4)34 (2)24 (3)21
(533 (6)29 (4)29 (6)30 (3)24 (526 (3)34 (6)32 426 (5)32




CHAPTER 8

Analysis of Frequency Data

In this chapter we will discuss methodology for the analysis of count or frequency
data, for which the observation Y is a table for which the ith component is the
number of occurrences of some event 4;. The names categorical data analysis,
analysis of contingency tables, frequency table analysis, log-linear models, and
discrete multivariate analysis have also been used to describe the subject.
Though the probability models we will discuss are quite different than those
of the first seven chapters, many of the linearity properties developed can still
be exploited to give insight into this somewhat more difficult theory.

The theory to be discussed is more difficult for two major reasons. First, the
mean vector m = E(Y) can no longer be assumed to lie in a known linear
subspace V. Instead we will discuss models in which p = log(m) lies in V. The
function log(-), linking m to p = log(p) € V, is often called the link function.
Fortunately, the need for this link function is not too difficult to overcome, and
we will be able to draw vector space pictures which offer intuitive understanding
which the author (and, he thinks, at least some of his students) finds invaluable.
Secondly, the theory concerning the sampling distributions of the estimators of
B, u, and m is asymptotic, depending for good approximation on large total
frequencies. We will discuss some of this theory, but will omit many proofs.
For thorough discussions of this theory a student should see the books by
Haberman (1974), Bishop, Fienberg, and Holland (1975), Aicken (1983), Agresti
(1990), Santner and Duffy (1989), and Christensen (1990). Some books em-
phasizing application are Everitt (1977), Haberman (1978, 1979), Fienberg
(1977), and Hosmer and Lemeshow (1989). Also of interest, though we will
discuss relatively little of this very general theory, is the book by McCullagh
and Nelder (1990) on generalized linear models.

We begin by giving some examples for which the methodology to be
discussed will be useful, postponing the analysis until the theory has been
discussed. Section 8.2 is devoted to a study of the Poisson, binomial, multi-
nomial, and generalized hypergeometric distributions and their interrelation-
ships. We will also discuss the Multivariate Central Limit Theorem (MCLT)
as it applies to these distributions, and the J-method which will be needed in

304
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order to develop the asymptotic distributions of our estimators. Section 8.3 is
concerned with inference on binomial and Poisson parameters p, p; — p;, 4,
and 4,/4,. Section 8.4 introduces some log-linear models, develops the notation
needed for their analysis, and defines log-odds. Section 8.5 concerns the
maximum likelihood estimation of the parameters. Section 8.6 discusses
goodness-of-fit statistics. Section 8.7 is devoted to the asymptotic theory for the
parameter estimators. And Section 8.8 discusses logistic regression, the case of
one dichotomous dependent variable.

81 EXAMPLES

Example 8.1.1 (Haberman, 1974, p. 5): The drug digitalis was injected into
the lymph nodes of 45 frogs, with each of the drug dosages d,, d,, d;, where
log(d,. d,. d;) = (0.75, 0.85, 0.95). Each dosage was assigned to 15 frogs, chosen
randomly. The numbers dying for these three dosages were respectively 2, 5,
and 8. While it is fairly obvious that increasing dosage tends to kill more frogs,
what can be said about the kill-rates for these or other dosages?

Example 8.1.2: A report of the police department of East Lansing for 1990
gave the numbers of fights and assaults for downtown and nondowntown for
each of the months of the year.

Jan. Feb. Mar. Apr. May June

Downtown 62 44 46 46 64 43
Nondowntown 24 25 19 30 34 40

July Aug.  Sept. Oct. Nov. Dec.

Downtown 42 32 40 29 39 11
Nondowntown 40 48 47 62 30 20

East Lansing is the home of Michigan State University. It had about 25,000
nonstudent residents, and 44,000 students, of which about 35,000 live in East
Lansing in university dormitories and apartments and in rooms and apartments
in the city. The university was in session Sept. 18 to Dec. 10, Jan. 3 to Mar.
17, and Mar. 24 to June 10. A summer session June 21 to Aug. 30 had about
15,000 students. Obviously the numbers downtown seemed to vary with the
number of students in East Lansing, while being somewhat steady for non-
downtown areas (though the number in October seems strangely high). Is there
a relatively simple few-parameter model which fits these data?
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Example 8.1.3: A doctor did a study of osteopathic hospitals in the Detroit
area to see whether there was any relationship between cancer and multiple
sclerosis. He found

Cancer Not Cancer
MS 5 225
Not MS 14,286 119,696

The usual chi-square statistic was 17.4, so the observed significance level for
the null hypothesis of independence was extremely small. Was he correct in
suspecting that there might be something in the biochemistry of the two diseases
which prevents the other? He argued that the age distributions for the two
diseases seemed to be about the same.

Example 8.1.4: A report of the National Center for Health Statistics for
1970 classified 13,832 homicides in the U.S. by the race and sex of the victim
and by the murder weapon used (Table 8.1.1). Is instrument used independent
of the sex and race of the victim, or of either? If the instrument does depend
on race or sex, how strong is the relationship?

Example 8.1.5 (Bickel, Hammel, and O’Connel, 1975): The authors studied
the rates of admission to graduate school by sex and department at the
University of California at Berkeley. To make their point they invented the
following data for the departments of “Machismatics” and *Social Warfare.”
For the combined departments their data were

Admit Deny Percentage
Men 250 300 455
Women 250 400 38.5
Table 8.1.1 Type of Assault
Firearms and Cutting and Piercing
Race Sex Explosives Instruments Total
White Male 3910 808 4,718
Female 1,050 234 1,284
Black Male 5218 1,385 6,603
Female 929 298 1,227

Total 11,107 2,725 13,832
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Assuming relatively equal ability for men and women, there seems to be
discrimination against women. Frequencies for individual departments were

Machismatics Social Warfare
Admit Deny % Admitted Admit Deny % Admitted
Men 200 200 500 50 100 333
Women 100 100 50.0 150 300 333

These data seem to indicate that the two departments are each acting fairly,
yet the university seems to be acting unfairly. Which is true? Or are both
true?

8.2 DISTRIBUTION THEORY

In this section we study three discrete distributions, Poisson, multinomial, and
generalized hypergeometric, which serve as models for frequency data. We also
discuss intcrrelationships among these distributions given by conditioning, the
Multivaniate Central Limit Theorem, the approximations of these discrete
distributions it provides, and the muiltivariate delta method, which provides
approximations for the distributions of functions of the vector Y of observed
frequencics.

The observation vector Y will always have T components, with each having
a discrete distribution taking only nonnegative intcger values. T will be fixed
throughout any discussion on the properties of Y and functions of Y. In most
of the asymptotic theory we will discuss, certain other parameters will change
but not T. For that reason we have chosen T rather than n to represent the
number of components. The index set will be called .#. We can always take S
to be {1,2,..., T}, but in the case of two or multiway tables we will let ¥ be
a Cartesian product. For a 2 x 3 x 4 table we could, for example, take
S ={1,2} x {1,2,3} x {1,2,3,4}.

Definition 8.2.1: Let Y have T components indexed by .#, and let p be a
probability vector with components indexed by .# with component i denoted
by p;. Let u; be the indicator of component i for each i € #, and suppose that
Y takes the value u; with probability p; for each i € #. Then Y is said to have
the generalized Bernoulli distribution with parameter p.

Thus, for example, if & = {1,2,3}, and p=(0.3,02,0.5), then Y takes
the values (1,0, 0), (0,1,0) and (0,0, 1) with probabilities 0.3, 0.2, and 0.5.
If T=2, we can let Y take the values (1,0) and (0,1) with probabilities
py and p, =1 —p,, or, for simplicity, only record the first component
Y; of Y. In that case we say that Y, has the Bernoulli distribution with
parameter p,.
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It is, of course, easy to determine the moments of the generalized Bernoulli
distribution. Since the kth power of any unit vector is still the same unit vector
E(Y*) = E(Y) = p. (By x* for any vector x we mean the vector obtained by
replacing each component by its kth power) If ¥, and Y; are components
of Y for i # i, then YY, =0, so cow(Y, ¥;) =0— p,p;, = —p;p:-. Of course,
Var(Y,) =p;—p? =p{l —p;). If p is a column vector we can write the
covariance matrix for Y in a convenient way: Ly = D[Y] = d(p) — pp’, where
d(u) for any vector u is the square matrix with diagonal u. Since the components
of p sum to one we have ZyJ = p — p(pJ) = p — p = 0. Thus, Iy has rank at
most T — 1. We will show later that the rank of Xy is always one less than the
number of positive components of p. Since the writing of Y and p as column
vectors was merely a notational convenience, the same statements remain true
when these vectors are written in other shapes. If p is not written as a column,
then simply interpret pp’ as the 7 x T matrix with ij element p;p;, the outer
product of p and p under multiplication.

Just as a binomial r.v. is the sum of independent Bernoulli r.v.’s with the
same parameter p, the multinomial distribution is defined similarly as the sum
of independent generalized Bernoulli random vectors.

Definition 8.2.2: Let Y,,..., Y, be independent generalized Bernoulli ran-

dom vectors, all with the same parameter vector p. Then Y = Y Y, is said to
i=1

have the multinomial distribution with parameters n and p. We will denote this

distribution by .#,(n, p).

If a fair die is tossed 10 times, the vector (Y, ..., ¥;) denoting the frequencies
of occurrence of the six numbers has the multinomial distribution with
parameters n = 10, and p = (1/6, ..., 1/6). If a pair of fair dice are thrown 20
times and the total of the two dice recorded for each then . = {2,..., 12}, and
Y = (Y,,..., Y;,), the vector of frequencies of occurrence of these possible
totals, has the multinomial distribution with parameters n =20, and p =
(P2 - - > P12), where p; = [6 — |i — 7|]/36.

If.#=1{4,7,9}, n=4, and p = (0.2,0.3, 0.5), then such a random vector Y

4
takes the value (1, 2, 1) with probability )(0.2‘, 0.32,0.5") = 6(0.009) =

0.054. The coefficient (l ; l) is the number of ways in which the four trials

can be assigned to receive one 4, two 7’s, and one 9. The other factor in
parentheses is the probability four trials will produce one 4, two 7’s, and one
9 in a particular order. Of course, the components of Y must sum to n. In
general, if y is any vector of nonnegative integers adding to n,

my(y;n,p) = P(Y =y) = ( )p{'- pY.

Vio-- V1
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Recall that the multinomial coefficient may be evaluated by

(y " >= Y CRRE )
l""’yT

In the case that T = 2, we need not keep a record of the value of Y, since
T, =n —Y,. We therefore say that ¥; has a binomial distribution with
parameters n and p;. Thus, if p = (p, 1 — p), then %(n, p) is the distribution of
the first component of the .#,(n, p) distribution. The probability function for
the binomial distribution specializes from the multinomial to

b(k; n, p) = my((k,n — k); n,(p, | — p)) = (:)1"‘(1 —-py* for k=0,....n

The mean vector and covariance matrix for the multinomial can be computed
easily from the representation as a sum. Thus,

E(Y)=np and  D[Y]=n[d(p) — pp].

(Recall that d(u) is the diagonal matrix with u on the diagonal.) For the
binomial distribution (the marginal distribution of the first component of the
H(n,{p, 1 — p)) distribution),

E(Y)=np and Var(Y) = np(1 — p).

We will often use models in which Y is a k-tuple of independent multinomial
random vectors. Consider, for example, a study in which random samples of
100 each are taken from the six combinations of the two sexes and three
age-groups in order to determine the opinions of these six groups on abortion,
with the opinion having three possible values. If Y, is the 3-tuple of frequencies
of opinion for sex i and age-group j, then a reasonable model would suppose
that Y is the 6-tuple of independent multinomial vectors Yy, ..., Y,;.

Definition 8.2.3: Let Y; ~ .4, (n,, p;) for ie.#, be independent random
vectors. Then Y = (Y,,i € .#) is said to satisfy the product (or independent)
muitinomial model.

Such a random vector Y has 7 = Zr,- components, with mean vector the
T-tuple with ith component vector n;p;. The covariance matrix consists of
blocks of size r; x r; on the diagonal. Usually the r;, will be the same, though
that is not necessary. We will refer to the case that .# has only one element as the
single multinomial model, to distinguish it from the product multinomial
model, for which # will have at least two elements.

A random variable X is said to have a Poisson distribution if it takes only
nonnegative integer values with probabilities p(k; 1) = e **/kifork =0, 1,. ...
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We will refer to this as the #(l) distribution. Recall that E(X) = 4, and
Var(X) = A. The moment-generating function is m(t) = ¢ ** """ The m.gf. or
an inductive argument can be used to prove that the sum of independent
Poisson r.v.’s is itself Poisson, with parameter equal to the sum of the
parameters of the r.v.’s summed. Our first limit theorem suggests the approxi-
mation of binomial by Poisson probabilities in some situations.

Theorem 8.2.1: Let {p,} be a sequence of probabilities satisfying np? — 0
as n —» . Then lim [b{k; n. p,)/ptk;np)] =1fork=0,1,....

Proof: r(k;n) = b(k;n, p,)/p(k; np,) is the product of the three factors:

Fo=[nn—1)-n—-k+1ln*, F,=0-p)"
and
Fy, = (1 —p,)'/e”" =[(1 — p,)e’]"

These three factors each have the limit one. To see that F;, = | as n — oo,
note that log Fy, = n[log(1 — p,) + p,)]1 = n[—p, + o(p?) + p,] = 0as n > o,
since np? — ou as n — cc. (The notation o(p?) denotes a function of p? having
the property o(p2)/p? = 0 as n - .) C

We can therefore expect the approximation of a binomial distribution by
the Poisson distribution with the same mean to be good if np? is small. A more
general result, and of great practical value is the following theorem, due to
LeCam (1960). For a very interesting and relatively simple discussion of this
see the paper by T. W. Brown (1984). We do not prove the theorem here.

Theorem 8.2.2 (LeCam): Llet Y,,..., Y, be independent, with ¥, ~ 2(1, p,).
Let T=Y X, Let W have the Poisson distribution with parameter 4 = Y b
Then, for any subset A of the real line, G(A) = [P(Te A) — P(We A)| < Y pi.

Comments: Since Var(T) =) p(1 — p,) and Var(W) =4=Y p;, Y p} =
Var(W) — Var(T). If all p; are equal to p = 4/n, we get the upper bound i%/n
on G(A), so thatas n — «©, G(A) = 0 uniformly in A. If, for example, we observe
the number of deaths due to cancer over a large population, it may be
reasonable to adopt a model in which different people die from cancer
independently, with small probabilities which differ across people. Still, the
Poisson distribution can serve as a good approximation of the distribution of
T, the total number of people who die.

Example 8.2.1: Let Y,, Y;, Y, be independent Bernoulii r.v.’s with p, = 0.01,
py = 0.02, p, = 0.03. Then 7 =) Y; and a Poisson r.v. W with mean 1 = 0.06
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have probability distributions, accurate to five decimal places, as follows

k 0 1 2 3

P(T = k) 0.941 09 0.05782 0.001 08 0.00001
P(W = k) 0.94176 0.05651 0.001 70 0.00003

P(W > 3) is positive but less than 107¢. |P(T € A) — G(A)| is maximum for
A = {1}, with value 0.00131. The upper bound given by LeCam’s theorem is
0.001 40. In general, the approximating Poisson distribution puts greater mass
on the left and right tails.

The simplest model we will consider, and thercfore the starting point for the
discussion of estimation for log-linear models will be the independent Poisson
model.

Definition 8.2.4: Let the components of Y be independent, Y, ~ 2(4)),
i=1,...,T Then Y is said to satisfy the independent Poisson model with
parameter A = E(Y), where A = (4,,..., ir).

The models we have considered so far are tied together through conditioning,
Beginning with the simplest model, the independent Poisson model, we
condition on the total to get the multinomial. By conditioning the multinomial
random vector on the totals of subsets of components, we get the product
multinomial model.

Theorem 8.2.3: Let Y satisfy the independent Poisson model with para-
meter vector A. Let S be the sum of the components of Y, and 4 be the sum of
the components of A. Then, conditional on S =5, Y has the multinomial
distribution with parameters n = s, and p = A/4.

Proof: Details of the proof are left to the student. Consider any fixed
vector y with components adding to s, and express the conditional probability
function as the ratio of two probabilities. The denominator is determined using
the fact that the sum of independent Poisson r.v.s also has a Poisson
distribution. O

In particular, if Y, and Y, are independent Poisson r.v.’s with means 4, and
A3, then, conditionally on Y, + ¥, =s, Y; has a binomial distribution with
parameters n = sand p = 4,/(4; + 4,). We will exploit this to develop a formula
for a confidence interval on the ratio R = A,/i, on Poisson parameters.

The following theorem implies that we can construct the product multi-
nomial model by conditioning the single multinomial model.
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Theorem 8.24: Let Y haveindexset.# = .#, U .#%, U - - U .%, where index
set .#; has T, elements and the %, are disjoint. Let T=)_ T;. Let Y ~ .#(n, p),
and partition p in the same way that J is partitioned, so that p is the k-tuple
(P1.- - ., Px)» the components in .#; having corresponding probability vector p,.
Let §; be the sum of the components of Y corresponding to index set .#;. Let
S be the k-vector of sums, and let s be a k-vector of nonnegative integers with
sum n. Then, the conditional distribution of Y, given S =s, is product
multinomial with ith component vector Y; ~ .4 (s;, p;/F;), where P; is the sum
of the components of p,).

Comments: To see that this theorem says, consider the index sets .# =
RxC for R={1,2,3} and C={1,2,3,4}. Then Y is a 3 x 4 table of
frequencies. Let .#; be the set of indices corresponding to the ith row. Suppose
that Y has the multinomial distribution with n = 20, and

01 02 015 005
p=]01 02 O 0
0 o1 01 O

Then, conditionaily on the three row sums S,, S,, S; being 12, 5, and 3, Y
satisfies the product multinomial model with the ith row Y; having the
multinomial distribution with parameter n,, where n; = 12, n, =5, ny =3,
and probability vector p; for p, = (0.2,04,0.3,0.1), p, = (1/3,2/3,0,0), p5 =
(0,0.5,05,0). Here P, =0.5, P, =0.3, and P, = 0.2.

Proof: Again we will avoid the messy details by leaving them to the
student. The crucial point is that the vector S of sums has a multinomial
distribution with parameters n and p-vector, having ith component F;. This
follows directly from the definition of the multinomial distribution, since S; is
the frequency of occurrence of observations in index set .4#;. 0

One more discrete multivariate distribution arises frequently in the analysis
of categorical data. To make the definition to follow more intuitive, consider
a box of 20 marbles of three colors, with 8 red, 7 white, and 5 blue. Suppose
that four people A, B, C, and D randomly partition the marbles by carefully
mixing and drawing with eyes shut tightly, with A drawing 7, B drawing 6, C
drawing 4, D drawing 3. Let Y; = (Y}, ¥;,, ¥;;) be the numbers of marbles of
the three colors drawn by person i, and let Y = () be the 4 x 3 matrix
of counts. What is the distribution of Y? The generalized hypergeometric
distribution.

Anyone who has played a card game in which all the 52 cards are dealt can
think of other examples. If ¥;; is the the number of rank j cards received by
player i for i = 1, 2, 3, 4 then the table Y also has a generalized hypergeometric
distribution, with index set {1,2,3,4} x {Ace,2,...,10,J,Q,K].
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Definition 8.2.5: Let a set B of N elements be partitioned into k subsets
B,,..., By, with N;= N(B;). Suppose that B is randomly partitioned into
subsets A4,,..., 4,, with M; = N(4,). Let Y;; be the number of elements in
A; v B;. Then the random vector Y = (¥;) is said to have the generalized
hypergeometric distribution with parameter vectors N = (N, ..., N,) and
M=WM,,....M,).

In the marble example above k = 3, r =4, N =(8,7,5)and M = (7, 6, 4, 3).

2

32
12 31
A possible observation on Y is 5 , so, for example, person B drew 2
2 01

red, 3 white, and 1 blue marble.

Since the number of ways in which a set of N = )" M, = ' N, elements can
i i

N
be partitioned into the subsets 4; of sizes M,,..., M, is ( ), the
Ml’ ’ Mr

number of ways in which this can be done so that y;; elements are contained
in A; N B; for all i and j is

1 (ym M ,Vu) B [l:l M"!]/[Iu] y"!]'

M. N
PY=y)= !
( N U(}’m---v}’ih)/(Mh---vMy)

=[]

for all tables y for which the ith row total is M; and the jth column is N; for
all i and j.
For the 4 x 3 table with y as indicated

Thus

P(Y =y) = {(BH(T(HIL(N6NH(4)(3hH]/[201] [n }'u!]

= 1.2746 x 10'%/[2.4329 x 10'®][1,152] = 0.004 5.

In order to perform certain tests for two-way tables, we may wish to compute
these probabilities, rather than relying on the asymptotic results.
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The marginal distribution of Y;; is the hypergeometric distribution, with
parameters N;, M;, and N, with

N[ 9 (9 (O 9

Indicators may be used to show that

E(Y;) = (M;N;))/N, Var(¥;) = M{N(N — M)(N — N;)/[N*(N - 1)]
=[M]p(1 — p)IUN — MAN - 1)],  for p;= Ny/n.

The factors within the first two brackets of the last term give the variance for
the case that a sample of M, is taken with replacement. The third factor is the
finite correction factor, since sampling is without replacement. More generally,
the ith row Y; of Y has covariance matrix [d(p) — pp'], where p = (p,, ..., ),
and d(p) is the k x k diagonal matrix with p on the diagonal (see Problem 2.2.4).

If Y satisfies the product multinomial model, with rows independent, with
the ith row Y, ~ .#(M,, p), p the same for each i, then conditioned on column
totals (N,..., Ni), Y has the generalized hypergeometric distribution with
parameter vectors given by row and column sums. Again, details are left to the
hard-working student.

Looking back at the discussion of the Poisson, multinomial, product
multinomial, and generalized hypergeometric models, we see that by con-
ditioning in various ways and determining the parameters from the conditions,
we arc lead from the relatively simple independent Poisson model to these more
“dependent” models.

We now turn to the limit theory which we will need for statistical inference
for log-linear models. We remind students of the meaning of convergence in
distribution.

Definition 8.2.6: Let {Z,=(Z,,,...,Z,;)} be a sequence of random
vectors. Let F be a c.d.f. defined on Ry. {Z,} is said to converge in distribution
to F if

lim P(Z,; < z;fori=1,...,T)= F(z)

n-x

for every z = (z,,..., zy) at which F is continuous. If Z has c.df. F, tgwn we
alsoDsay that {Z,} converges in distribution to Z. We will write Z, - F, or
Zz, -7

The definition does not demand convergence for all z, but only for those z
at which F, the limiting distribution, is continuous. To see the need for this
definition, consider the uniform distribution on the interval (0, 1/n). A reason-
able definition would allow this sequence to converge to the distribution with
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mass one at 0. Under this definition it does, though F,(0) = 0 does not converge
to F(0) = 1. In the case that the limiting distribution is continuous, as it is for
the multivariate normal, for example, the convergence must hold for all z.

Theorem 8.2.5: Z, 5 zifand only if E{g(Z,)] to E[g(Z)] for all continuous
real-valued functions g which are zero outside a bounded set in T-space.
Convergence in probability of {Z,} to Z, which demands that

lim P(JZ, —Z] > ) =0 forall ¢>0,

n-~v o
implies convergence in distribution, but the converse is not true.

This definition immediately produces the following useful limit therems,
which we give without proof.

Theorem 8.2.6: Let {Z,} be a sequence of random vectors of 7 components,
converging in distribution to Z, which has c.d.l. F. Let g be a function on Ry
into R,, which is continuous on a set A4, such that P(Z € 4) = 1. Let G be the
cdf. of g(Z). Then {g(Z,)} > G.

Theorem 8.2.7: Let {Z,} 2 Z, where each Z, has T components. Then,
for any Borel subset 4 of R; for which

P(Z € Bdy(4)) =0, lim P(Z,e A) = P(Z € A).

n-—x

Students who have not studied real analysis should interpret a Borel subset
of Ry as a reasonable subset, certainly including ali those in which we would
normally be interested. Bdy(A) is the boundary of 4, the closure of 4 minus
the interior of A.

Moment-generating functions (or characteristic functions for those who
understand complex variables) may be used to establish convergence in dis-
tribution. Recall that the m.g.f. of an r.v. X is my(t) = E(e¥'), defined at least
for t in some neighborhood of 0. Not all r.v.’s possess m.g.f.’s. If t on the right
is replaced by \/1 1, we get the characteristic function, which is always defined
for all ¢. If two r.v’s possess the same m.gf, defined for all ¢ in some
neighborhood of the origin, then the two r.v.’s must have the same distribution.
(Actually it is enough that two m.g.f.’s agree on any interval.) The m.g.f. of the
standard normal distribution is ¢'*/2, defined for all t. The log-normal distribution
(the distribution of ¢? for Z normal), does not possess a m.g.f.

Theorem 8.2.8, The Continuity Theorem (Billingsley 1986, 408): Let F,
have m.gf. m,. Let F be a c.df. with m.g{. m. Then convergence of m,(t) to m(t)
for ¢ in a neighborhood of 0 implies F, 2F
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In the case that a Poisson parameter is large we will want a convenient
approximation. Moment-generating functions can be used to prove the following
limit theorem for Poisson r.v.’s for which the paramelter A converges to infinity.

Theorem 8.29: Let {¥,} be a sequence of Poisson r.v.'s with E(Y,) = 4,.
Define Z, = (Y, — 4,)//%. Suppose that {4,} — oc. Then Z, > N(0, 1).

Proof: The mgf of Z, is m(t) = e"\‘""‘m,-”(t/\/").,), so that log(m,(t)) =
——t\/ Ay + ).,,(e""/z — 1). Expanding the second term in a power series about 0,
we find the limit t2/2 as n — co. Continuity of the exponential function (inverse
of the log) then implies that m,(t) — e/ for every t. Since this is the m.g.{. of

the standard normal distribution, Theorem 8.2.8 then implies the conclusion of
Theorem 8.2.9. O

The fact that Z, as defined above converges to standard normal is useful
because the probabilitics provided by the normal are close to those provided
by the Poisson for even moderate A. We can improve the approximation by
using the 1/2 correction. Thus, if ¥ ~ Poisson, mean 2, then we approximate

P(Y < k) = P(Y_Q,)” s 1//2 — l) by Ei[/g:f),
Vg Vi Vi

where ® is the c.d.f for the standard normal distribution. Consider the
approximations of Table 8.2.1 given for some selected values of 4 and k. We

Table 8.2.1 Poisson Probabilities and Their Normal Approximations*

k P(Y < k) Normal Approx. P(Y =k) Normal Approx.
i=16
8 0.02199 0.03040 001199 0.021 68
12 0.193 12 0.19079 0.066 13 0.07519
16 0.56596 0.549 74 0.099 22 0.09643
20 0.868 17 0.86971 0.05592 004573
24 097768 098321 0.01437 0.008 02
/=64
48 0.022 59 0.026 34 0.00643 0.008 61
56 0.17478 0.174 25 0.03158 0.03400
64 0.53318 0.52492 0.049 80 0.04945
72 0.85557 0.856 00 0.029 05 0.026 49
80 0.97737 0.98042 0.007 00 0.00523

* The normal approximations for P(Y = k) were found by taking differences of approximations of
P(Ysk)and P(Y <k - 1)



DISTRIBUTION THEORY 317

will need to study the behavior of a sequence of random vectors. Fortunately,
we have the Multivariate Central Limit Theorem, which follows directly from
the univariate theorem by considering linear combinations of components.
Recall (Section 2.4) that a random vector Z has the N;(0, I) distribution if and
only if its m.g.f. is m(t) = e* =42,

Theorem 8.2.10 (The Multivariate Central Limit Theorem): Let {Y,} be a
sequence of T-component independent identically distributed random vectors,
with means g and common covariance matrices L. Let

S,=Y Y, and Z,=(S,—nu)//n

Then Z, 3 N,(0, I).

Comment: We will refer to this theorem as the MCLT. The sample mean

vector is ¥, = ! Y Y, =S,/n. Then Z, = (Y, — p)y/n. If £ has rank r, and B

Ni=1
is an r x T matrix such that BEB' = 1,, then W, = BZ, 2 N, 1,).

Our most important application of the MCLT is to the multinomial
distribution.

Theorem 8.2.11: Let Y, ~ .#r(n, p). Then Z, = (Y, — np)//n 5 N;(0,Q,),
where Q, = d(p) — pp’.

Comment: Let p, = Y, /n, the vector of proportions. Then Z,, = (p, — p)\/r_:.
In particular, the ith component of Z, converges in distribution to

N, p(1 — p;)).

Proof: Y, has the distribution of the sum of n independent generalized
Bernoulli random vectors, each with parameter p. These Bernoulli r.v.’s have
mean p and covariance matrix Q,. The result follows by the MCLT. (]

We are now in position to consider Karl Pearson’s chi-square goodness-of-fit
statistic C, = Y (Y, — np;)*/(np;). Karl Pearson, the leading statistician of the
k=1

period 1890--1910 and the founder of the journal Biometrika in 1901, was the
father of Egon Pearson, who along with Jerzy Neyman developed the theories
of testing hypotheses and confidence intervals in about 1933. Karl Pearson
invented the statistic C, as a measure of the deviation of an observed vector of
frequencies from their expectations.
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Theorem 8.2.12: Let Y, =(Y,,...., Yo7) ~ .#(n, p). where all the com-
ponents of p have positive components. Let C, be defined as above. Then
C, _’Xt 1

Proof: Let Z, be defined as in Theorem 8.2.11. Let p'/2 be the vector
of square roots of the elements of p. Then W, = d(p'”z)Z has covariance
matrix M, = d(p~ *)Q,d(p ') =1, — p'?p 112/ . Thus, W, 2 N, M,). M, is
the pro;ecuon matrix onto ¥V, for V .Z’(p”z) IfZ~ N(0 IT) and Z-—
HZIV*Y), then Z ~ Ny (O,M ») and, from Theorem 2.5.3, 1Z)? ~ xd,m(y; 5

Since W, 2 Z and squarcd length is a continuous function of its argument,
it follows from Theorem 8.2.6 that |W,||* = C, converges in distribution to

There is a rough rule often suggested that the chi-square approximation of
the distribution of C, is adequate if all expectations are at least 5. Actually, the
approximation seems to be quite good even in cases in which some of
these expectations are considerably smaller. Consider the case that T =3,

= (0.2, 0.3, 0.5). Figure 8.1 presents the cumulative chi-square distribution for
2 df. (which is the exponential with mean 2), and the c.d.f. of the Pearson
chi-square statistics for n = 6 and n = 10. Most of the expectations are less than
5. Notice the closeness of the approximations. The 95th percentile of the x3
distribution is —2 log 0.05 = 5.99, while the the true probabilities of exceeding
5.99 are 0.0527 for n = 6, and 0.0502 for n = 10. The approximation is not
always quite this good.

We will be interested in the estimation of p for the case that p= p(B), where
P is a vector with fewer than T parameters. If p = p(ﬂ) replaces p in the definition
of C,, the distribution of C, changes. For some functions p(B) and estimators
B C, is asymptotically distributed as chi-square with T — 1| — (# components
of B).

We will also be interested in the distributions of logs and exponentials of
random variables and random vectors whose asymptotic distribtions we know.
For example, we know that Z, = \ﬁz(Y,, — np) 2 Ny(0,d(p) —pp). f Y, ~
#r(n, p). What happens to the distribution of W, = log(Y,/n) as n - x?
(If any component of Y, is 0, replace it by 1/2, so that W, 1s defined.)
Fortunately, every smooth function is approximately linear over small intervals,
and with high probability the random vector of interest (Y,/n in this case) will
for large n be confined to a small interval. This, together with the fact that
linear functions of normally distributed random vectors are still normally
distributed, provides us with the very useful multivariate d-method.

Theorem 8.2.13: Let U, be a sequence of T-component random vectors,
with the same mean p, = E(U,). Suppose that Z, = ﬁ(U,, - Hg) 2 N0, X).
Let g = (g, ..., gx) be a function from Ry into R,. Suppose that the partial
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FIGURE 81 Sample c.d.f. for 1,000 chi-square statistics and the chi-square c.d.f.

) a
derivatives gi(n) = " g;(n) exist at p, for cach i and j. Let A be the T x k
Wi

matrix with ij element gi(p,). Then

W, = \/n[4(U,) ~ g(1to)] > Ny(0, AZA)
We will only outline a proof here. The essential idea is that by Taylor’s

Theorem g(u) = h(u) + e(u — pn,), where h(u) = g(n,) + A(s — pg), &0) =0,
and lle(x){i/{ix}} - 0 as x = 0. Then

W, = /n[hU,) - hipe)] + \/ne(U, — po) = AZ, + /ne(Z,/\/n).
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The second term on the right converges in probability to 0, so that the first
term AZ, has the same limiting distribution as does W,. By Theorem 8.2.6 it
follows that W, 3 N,(0, AZA").

The existence of first partial derivatives guarantees the breakup of ¢ into
the sum of the lincar function h and the error function e, with satisfactory
properties.

Example 8.2.2: Let Y, ~ .#1(n, py), with all components of p positive, and
let p, = Y,/n. Let g(y) = log y for y € Rf. Then U, = p, satisfies the conditions
of Theorem 8.2.11 with gy = py, E = d(po) — PoPo, and k = T. The matrix of
partial derivatives defined in Theorem 8.2.12 is A = d(p~?!), the diagonal matrix
of reciprocals. Thus, W, = \/ n[log p, — log po] 5 N;(0,d(p™ ') — J;), where
Jris the T x T matrix of all I’s. A less rigorous but more intuitive way to say

this is that log p, is approximately Nr(log P, 1 [dep=" - JT]).
n

We will be particularly interested in contrasts among these logs, inner
products of the form n = (¢, log p), where the components of ¢ add to one. Our
estimator of n will be #, = (¢, p,). Then the estimator #, i1s asymptotically
normally distributed with mean », and variance

i 1 i
-';c[d(P' H—Jdrle= n cd(p™ ) = : Y etpi=Y c¥m,

where m; = E(Y,;) = np,.

Often a random variable whose distribution we are able to determine for
finite #n or asymptotically depends on one or more unknown parameters and
we would like to replace one or more of the unknown parameters by an
estimator, which we expect to be close to the unknown parameter if the sample
size is large. Consider the r.v.

Zn = (‘Yn - #)/(a/nli2)1

where X, is the mean for a random sample from a distribution with mean p,
variance 2. If n is large then by the CLT Z, is approximately distributed as
standard normal, no matter what the distribution sampled. If the distribution
sampled is normal then Z, has a standard normal distribution for every positive
n. These facts allow us to make probability statements about the error X -,
and to give confidence intervals on u. However, ¢ is usually unknown, and it
is tempting to simply substitute the sample standard deviation S, for g, and to
assume that the distribution of Z, is not changed. The following theorem implies
that under certain circumstances the substitution is valid in approximation.
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Slutsky’s Theorem (Fabian and Hannan, 1985, p. 144): Let ¢ be a constant
and let h(x, y) be a function on a subset of R; x R, continuous on the straight
line {(x,c){x € A < R,}. Let {T,} and {W,} be sequences of r.v.’s. Suppose that
T, converges in distribution to a r.v. T, that h(T,, ¢) converges in distribution,
and that {W,} converges in probability to c. Suppose P(T e A) = 1. Then
h(T,, W,) converges in distribution to (T, ¢).

In the example above take ¢ = g, h(x, y) = x/y, A = R,, T, = n"*(X, — ),
and W, = S {S,} is consistent for . We conclude that h(T,, W,) = (X, — p)/
(S, /n”z) = N(O, ). Since a sample proportion is a special case of a sample
mean, with p=p, X, = p,, and 6 = p(1 — p), with a change in notation we
get (p, — p)/[pa(1 ——ﬁ,,)/n]”2 — N(0,1). We can use n or n— 1 in the de-
nominator of the denominator with impunity,

In Example 8.2.2, we showed that for 4, = (¢, log p,)

i — Y o D N, 1).

We can replace the p;, in the denominator by the consistent estimators
b..» and, by Slutskys Theorem, get the same limiting distribution. Hence

fia & 201 ,.,,,,2/\/2 ¢ /(npi,,) is an approximate 100y% confidence interval on 7.
We have not given limit theorems for the generalized or univariate hyper-

geometric distribution, and will only present results without proof. Consider a
finite population B of N elements, with disjoint subsets B,,..., B, of sizes
Ni, ..., Ni. Suppose a simple random sample (without replacement) of size n
is taken. Let Y; be the number of elements chosen from subset B; and let
Y =(Y,,..., %) In order to apply limit theory we must let the population size
grow as well as the sample size. To indicate this growth add the superscript N
to n and the N,, Y}, and to Y. Thus, for example, Nf’ is the size of B, when N
is the population size. Define N¥ = (N¥, ..., N¥). The superscript N is not an
exponent. Then as N — oo:

M) YV 3 #(n,p)as N*/N - p=(p,,...,p) and n" = n remains fixed.
@ Y3 20)asn® -, "NYN - 1> 0for N - o,

@) Z¥ = (YN — i"NYN)/\/n" 2 NSO, [d(p) — pPI(1 — r)) as N¥/N — p,
n/N -r,0<r<1.

r is the asymptotic sampling fraction. The limit would be the same if N¥/N in
the numerator of Z¥ were replaced by p.

These limit theorems become useful when we replace the distribution of the
r.v. on the left by the more tractable distribution on the right for finite N. The
approximations provided are surprisingly good, particularly if the 1/2 correction
is used. Consider, for example, the normal approximation of the hypergeometric
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distribution with N =10, N, = 6, and sample size n=35. Then E(Y))=
N, —
nN (/N =3, Var(Y;) = [nN,/N] ﬁl_: =2/3. We find P(Y, =2)=023810,

and by the normal approximation of P(1.5 < Y, <2.5), 0.237. Similarly,
P(Y, < 2) =0.2619 and the normal approximation gives 0.270. It would be siily
to use the normal approximation in such a case, of course, but such calculations
should give us great faith that these limit theorems are indeed useful.

Problem 8.2.1: Let V), Y., Y, be independent, with ¥, ~ 2(4,).

(a) Prove that S; = Y, + Y, + Y3 ~ P(A, + 4, + 4;).

(b) Show that, conditionally on S, =5, Y = (V,, 1;, 13) has a multinomial
distribution.

(¢) For A, =2, 4, =35, 2, =3, find P(Y, 2 5|5, =6), P(}, =2, Y, =3|5; =6),
and P(Y, + Y, 2 5|5; = 6).

(d) Find D{Y] and D[Y{S, = s], the conditional covariance matrix.

Problem 8.2.2: Perform calculations similar to those of Example 8.2.1,
illustrating LeCam’s upper bound (Theorem 8.2.2) for the case n = 2, p, = 0.02,
p, = 0.03. Determine G(A4) and the upper bound given by the LeCam theorem
for the case 4 = {1,2,...}.

Problem 8.2.3: Let .# = {1,2} x {1,2,3}, and let Y be a random vector
indexed by .#. Suppose that Y, is the ith row of Y, Y; ~ #3(n;, p;),and Y,, Y,
are independent.

(a) For n, = 10, n, = 20, p, = (0.2, 0.3, 0.5), and p, = (0.4, 0.5, 0.1), give the
mean vector and covariance matrix for Y.

(b) Let W ~ .#,(30, p), where W has the same index set as does Y, and

3 [0.08 012 020

024 030 0.06
row sums for W are 10 and 20, is the distribution of Y in (a).

‘l. Show that the conditional distribution of W, given the

Problem 8.2.4: The members of a large population of voters were asked to
select among candidates A, B, C. For the population 40%, favored A, 30°%;
favored B, and 30%, favored C. A polister took a random sample of 200. Assume
for simplicity that sampling was with replacement.

(a) What is the distribution of Y = (Y,, Y, ¥¢), the numbers in the sample
voting for the three candidates?

(b) Find E(Y) and D{Y].

(¢) Find an approximation for the probability that A loses in the sample
(that Y, < Y; or Y, < X;). Hints: The event of interest can be written in
the form E, v E;, where E, =[W,=qa,Y, +b, Y3 +¢,Y-<0] and E, =
[W,=a,Y, + b, Y3+ b, Y- <0]. Find an approximation for the distribution
of (W,, W;). You will have to use tables of or a computer program for the
bivariate normal distribution.
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Problem 8.2.5: A class of 14 students sit in four rows of 2, 3, 4 and 5. The
instructor decides to grade the class randomly, giving three A’s, five C’s,
and six F’s. Find the probability that the observed table of frequencies is

1 200

1 1 2 1]. What is the probability that both of the A’s are given to

00 2 4
students in the same row?

Problem 8.2.6: A, B, and C each throw two coins three times, resulting in
9 throws of two coins. Among these 9 throws, 3 resulted in two heads, 5 in one
head, and ! in no heads. What is the conditional probability that A had two
heads each time, and B had one head each time?

Problem 8.2.7: Let Y ~ #(n, p). Let p = Y/n. Use the é-method to find an
approximation for the distribution of arcsin \/f). Hints: The variance of the

limiting distribution does not depend on p. And dd arcsin u = (1 — u?)~ 2, Use
u

this limiting distribution to find a 95 confidence interval on p for n = 1,000
and Y = 84. Compare its length to that of the interval p + 1.96\/13(1 — py/n.

Problem 8.2.8: In 250 days the number of accidents at a large automobile
manufacturing plant was 579. It seems reasonable to suppose that the number
of accidents on each day has a Poisson distribution with mean 4, and that the
numbers on different days are independent. Use the asymptotic normality of
Poisson r.v.’s to find a 989, confidence interval on the daily rate.

Problem 8.2.9: Let Y, ~ Poisson(nl), for 4 > 0 fixed. Define R, = ¥,/n, and
for a smooth function g define U, = g(R,). Find a function g such that the
asymptotic distribution of W, = ﬁ[g(R,,) — g(2)] does not depend on i. The
function g is often called a variance-stabilizing transformation. What is the

variance-stabilizing transformation for the binomial distribution? See Problem
8.2.7).

Problem 8.2.10: (a) Let U have the uniform distribution on [0, 1]. Show
that X = —log U has the exponential distribution with mean .
(b) Let X,, X,,... be independent, each with the exponential distribution

with mean one. For 4 > O let Y be the smallest value n satisfying S, = Y. X, > 1.
i=1

Show that Y has the Poisson distribution with mean 1. Hint: Use the properties

of the Poisson process, or prove directly using the fact that S, has a

gamma distribution and integration by parts that P(Y > k) = Y e~*4Yi!. (a) and
k
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(b) together may be used to generate an observation Y from the Poisson
distribution with mean 2.

Problem 8.2.11: Let U,,..., U, be a random sample from the uniform
distribution on {0, 1]. Let M, = max(X,, ..., X,). Does M,, or z, = (M, — a,)/b,
for some a, and b,, converge in distribution? To what distribution?

Problem 8.2.12: Suppose that events occur in time in a Poisson process
with mean A. n nonoverlapping intervals of time, each of length 7, are chosen
and the number of intervals Y, the Hansen frequency, for which there is no
occurrence is recorded. Then Y has the binomial distribution with parameters n
and p = ¢~ *7. Since the maximum likelihood estimator (MLE) of p, based on
Y, is p = Y/n, the MLE for 4 is the solution to e AT = B, or A= —[log p1/T.

(a) Find an approximation for P(li— Al < 03) if n=100, T=04, and
A=2.

(b) Suppose the actual numbers X, ..., X, of occurrences in these intervals
were observed. Let 4i* be the MLE of A, based on these X;. Find an
approximation for P(|A — 4| < 0.3).

(c) The asymptotic relative efficiency of 1 = f.,, to that of i* = 2,‘,' is e; =
lim Var(4,)/Var(4*). Show that e; = 1 as T — 0, and e; — 0 as T — cc.

n—+®o

Problem 8.2.13: A trce has unknown height h. In order to estimate h, a
surveyor writes h = & tan o, where & is the distance on the ground from the
base of the tree to the surveying instrument, and « is the angle between ground
level and the top of the tree. The surveyor measures the distance and the angle
independently, with estimators d ~ N(J,a3) and a ~ N(a, a2). Use the 6-
method to find an approximation to the distribution of A = d tana, and to
P(Iﬁ — h{ <£02) if a = n/6, 6 = 50, o, = 0.002 radians, and g, = 0.02 meters?
Hint: In 1,000 computer simulations the mean was 28.881 7, the sample s.d. was
0.1323, the largest was 29.29 and the smallest 28.46. The event of interest
occurred 867 times.

8.3 CONFIDENCE INTERVALS ON POISSON AND BINOMIAL
PARAMETERS

In this section we will be concerned exclusively with the estimation of binomial
and Poisson parameters. Situations arise frequently in which the observed
random variables may reasonably be assumed to have one of these relatively
simple distributions, yet, sadly, many introductory texts and courses provide
only cursory discussion. The methodology discussed will depend on both small
and large sample theory. It is this small sample theory (really any size sample
theory), which provides confidence intervals on the binomial parameter p, on
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the Poisson parameter A, and on a ratio 4,/4, of two Poisson parameters, which
will probably be new to many students.

We will use #(n, p) and $(4) respectively to denote the binomial and Poisson
distributions. We begin by developing confidence intervals on the parameters
p and i. We need two very simple inequalities.

Lemma 83.1: Let X be a random variable with c.df. F. Define F(x) =
P(X = x) for each x. Then, for O0<a <, (1) P(F(X)<a)<sa and (2)
PF(X)<a)<a.

Proof: Let M, = {x|F(x) < a). M, is an interval (see Figure 8.2). Let x,
be the least upper bound of M,, the right endpoint of M,. If x, e M,, then
P(F(X) <o) = P(X < x,) = F(x,) = . If x,¢ M,, then there exists a mono-
tone increasing sequence of points x,, with F(x,) < «, converging to x,. Then

M, = |J (-0, x,], so that
n=1

P(F(X)<a)=P(X e M,) = lim P(X € (-0, x,]) = lim F(x,) < a.

n-t o n—x

To prove the other inequality consider the random variable Y = — X,
which has c.df. G(y) = P(Y <y) = P(X 2 —y) = F(—y). Then P(F(X) <a) =
P(G(—X) < a) = P(G(Y) < 2) < a. The last inequality follows from (1) by
replacing F by G. O

The lemma allows us to use F(X;p) and F(X; p) as pivotal quantities in
order to find confidence limits on p, since the probability inequalities hold for
all p.

3
F(x)
6 1
2 7
a + - — =
0 LS L L] Ll
-+ M (o) —») 2 4 5 7

FIGURE 82 Cumulative distribution function.
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Let F(k; p) be the #(n, p) cumulative distribution. For fixed k, F(k;p)
is a monotone decreasing continuous function of p. To prove monotinicity,
let U,...,U, be independent U(0, 1) random variables. Then, for any p,
X,=Y I[U<p)~%mp). For p>p, X,>X, so that F(k;p)=

P(X, < k) = P(X}, < k) = F(k; p').

For k < n, let p,(k) be the solution p of F(k; p) = a. The subscript 2 is used
because we will later define p,, which will be less than p,. The solution exists
because F(k; p) is continuous in p, F(k; 0) = |, and F(k; 1) = 0. Define p,(n) = 1.
Then p,(k) < pif and only if a = F(k; p,(k)) = F(k; p), so that P(p,(X) < p) =
P(a > F(X; p)) < «. The last inequality follows from Lemma 8.3.1. The r.v.
p2(X) is therefore an upper 100(1 — a)%, confidence limit for p, in the sense
that the probability is at least | — x that p, exceeds p.

Since the distribution of X is discrete, the probability of coverage will be
exactly 1 — «, only for those p for which there is a k such that F(k; p) = a.

Example 8.3.1: Suppose n = 20 and we observe X =0. Since F(0;p) =
(1 —p)*°=a, p=p,(0) =1 —«"2% is an upper 100(1 — «)?; confidence limit
on p. For « =005, we find p, =0.1391. If we instead observed X =1,
then p, is the solution to F(1;p) = q?° + 20pq'® for g=1—p. We find
p2 = 0.216 1, so that we have 95% confidence that p < 0.216 1. For X = 2, we
solve F(2; p) = 0.05 to find p, = 0.282 6. Graphs of the functions F(0; p), F(1; p)
and F(2; p) are given in Figure 8.3.

The function F(k; p), giving right tail probabilities, is a monotone increasing
continuous function of p for each k. For k > 0 let p, = p,(k) be the solution
to F(k; p) = a. Let p,(0) = 0. Then in a argument similar to that for p, we can
show that P(p,(X) = p) < a. Therefore, p, is a lower 100(1 — )%, confidence

F(X; p)

.05
T T T 1 p

0 139 4 8 8 1.0
FIGURE 83 The functions F(0; p), F(1; p), F(2: p).
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FIGURE 84 F(4; p), F(4; p) and corresponding 95%; confidence interval.

limit for p. For example, if n = 20, and we observe X = 20, then p, is the
solution to F(20; p) = p*° = «,s0 p; = «'/2°, For « = 0.05 we get p, = 0.860 89,
so that we have 959 confidence that p > 0.86089.

If we want a two-sided confidence interval on p we can use both p, and p,.
Let p, be the solution to F(X;p)=x,, and let p, be the solution to
F(X;p) =, Then P(p, <p < p;) 21 — (a, + a;). If «, and «, are chosen to
add to «, then the interval (p,, p,) is a (1 — a)100% confidence interval on p.
For example, if n = 20, we observe X =4, and we want a 95% confidence
interval on p, then we can choose a; = a, = 0.025, and we find p, = 0.057 3,
p, = 0.436 6, so that we have 95%, confidence that 0.0573 < p < 0.436 6 (Figure
8.4). These values p, and p, can be found with a computer program generating
binomial probabilities, or by using a connection to the F distribution which
we give now.

Binomial tail probabilities are related to the beta distribution through the
equality

(MY ey e Fn+1) ? k- w1k
,;(/)p]“ Rk T D 1Ry )~ AT e

This can be proved by integrating by parts on the right n — k times. The right
side is the c.d.f. of a Beta(k,n + 1 — k) r.v. U. There is a connection between

U
the beta and F distributions: If U ~ Beta(v,, v,), then F = V_z_l__ has an
\'l —

F(2vy, 2v,) distribution. This relationship can then be exploited to give, for
observed X = k:

p, = 1/[1 + VR vy, vz)] for v, =20n+1—k), v,=2k

Va
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Take
p2= Wil + W) for W= (vi/v))F, _,, (v, vy),

for vy =2k +1), v,=2n-—k).

F-table values may not be easily available for large v, or v,, though most
statistical computer packages now provide them. If v, is large and v, relatively
small then F(v,,v,) = x% ,/v,. f v, is large and v, small then F(v,,v,) =
va/x%, 1-,- If both v, and v, are large we can instead use the fact that
Z = (p — p)/a(p) for o(p) = \/ p(l — p)/n, is approximately distributed as
standard normal. Take p, and p, to be the solutions to Z =z, and to
Z =z,_,,. The solution offered in most introductory texts on statistics is
obtained by replacing p under the square root by its estimator p = X/n, to
obtain p — z,,6, and p + z, _,,6,. Usually, too often in the author’s opinion,
people take, a, = a, = 2/2, so that the interval is symmetric about p. In many
applications it makes more sense to take a, = 0 to get an interval (p,, 1] or
2, = 0 to get an interval [0, p,).

We sometimes are interested on the odds for success 6 = p/(1 — p), or
log-odds u = log 6 = log p — log(l — p) = g(p). As will be shown as we develop
the theory and applications over the next few sections, this scale turns out to
be very convenient for the analysis of frequency data. We begin with one p
only, though the principal application will be to the comparison of two or many
p’s. Since the log-odds function has derivatives of all orders, except at zero and
one, with g'(p) = 1/[p(1 — p)], we can apply the d-method to conclude that
W, = ﬁ[g(ﬁ,,) —g(p)] LA N(O, 1/p(1 — p)). That is, for large n, the sample
log-odds i = g(p,) = log[ p,/(1 — p,)] is approximately normally distributed
with mean u = log{p/(1 — p)] and variance 1/[np(1 — p)] = 62(2) for large
n, p not too close to 0 or 1. Since p is unknown, with consistent estimator p,,
we can replace p by p, in o(), let 6(2) = 1/[np,(1 — $,)], and use [2 — u]/é6(A)
as a pivotal quantity to obtain the approximate 100y%; confidence interval
(L,U) = [u £ 24 4 »y26(8)] on p. Since § = ¢*, and 6 = p/(1 — p), p = €*/(1 + &),
we therefore have the 100% confidence interval (e*/(1 + eb), eVI(1 + ¢Y)) on p.
This interval will not be symmetric about p,. These intervals are shown in
Figure 8.5.

Suppose n =20 and we observe X =4. Then p, = 020, o= —1.3863,
(/) = 0.5590 and, for y =095 L= —-24819, U= —-02907. The 95%
confidence interval on p is (0.077, 0.428). The corresponding intervals found by
the exact and more direct large-sample method are (0.0866,0.4366) and
(0.025), 0.375), all roughly of the same length, but of ditferent shape.

These large sample methods work quite well, even for small n, and p
surprisingly close to 0 or 1. Table 8.3.1 presents probabilities of coverage of p
for various p for nominal 95% confidence intervals on p found by the direct
(method #1, P,) and log-odds (method #2, P,) large sample methods for
samples of size 20. Also given are mean lengths L, and L, of these confidence
intervals. Intervals with endpoints less than 0 or greater than 1 were truncated
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FIGURE 85 95 confidence intervals on u = log(p/(1 — p)) and on p.

back to the interval [0, 1]. Values for p > 0.50 are the same, except that
(1 — py=—p(p).

For the case of two independent binomial random vanables X, ~ #(n,, p,)
and X, ~ #(ny, p,), there is no good small sample confidence interval on
A = p, — p,. For large n, and n,, with p, and p, not too close to 0 or 1, we
can use the fact that Z = (A — A)/6(A) B N(0, 1), for A = p, — p,, and

bl = b)) | 51 — ba)

n, n;

¢*A) =

A 100(1 — a)¥, confidence interval on A is given by A+ z, _,,,26'(3). A slightly
better approximation can be obtained by adjusting p(! — p;) in the estimate
of the varance to (X; + 0.5)(n; — X; + 0.5)/n? for i = 1, 2. The approximation
works surprisingly well, even when n, and n, are very small. For example, for

Table 8.3.1
p u Py 3 L, L,

0.01 —4.60 1.000 0.983 0.104 0.293
0.05 -2.94 0.997 0.984 0.156 0.292
0.10 2.20 0.876 0.957 0.223 0.305
0.20 -1.39 0.921 0.968 0.327 0.345
0.30 -0.85 0947 0.975 0.387 0.378
0.40 0.41 0.928 0.963 0418 0.398

0.50 0.00 0.959 0.959 0.427 0.404
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n, =8, ny,=7p, =05, p, =03 the adjusted and unadjusted coverage prob-
abilities for nominal 95% confidence intervals on A = 0.2 are 0.967 and 0.895.
The mean lengths are 0. 70 and 0.89, very long, and therefore of not much value.
For the same p-values, but n, = n, = 20, these probabilities are 0.947 and 0.942,
with average lengths 0.48 and 0.46. The lesson is that we should not fear the
use of the large sample approximation for relatively small sample sizes, though,
their usefulness is limited because of their excessive length.

We can extend the usefulness of log-odds to the comparison of two
proportions p, and p,. Let g, =1 — p;, 8, = p;/q,, u; = log 6, for i = 1, 2. Then

R=46,/8, = AL is the odds-ratio and & = u, — p, is the log odds-ratio. The

sample odds-ratio is R is obtained by replacing each p; by p, = X,/n;. f = log R
is the sample log odds-ratio. Using the J-method again, we find that

[a- p]/é(;’l) N(O, 1), where &%) = Lﬂ-+ - Al_ ~. It follows that

nmpq,  napag, )
Al + 2 4,28(f) is a 10079, confidence interval on pu. Of course, this interval

can be transformed into an interval on R.

Estimation of Poisson Parameters: If X has a Poisson distribution the
functions F(X; 2) and F(X; 1) can again be used as pivotal quantities. For
observed X, the solution 4, = i,(X) to F(X;1)=0.05 is an upper 95%
confidence limit on 4. Similarly, the solution 4, = 4,(X) to F(X; i) = 0.05 is
a lower 95%; confidence limit for 2. (If X =0, thc lower limit s taken to be 0.)
The rclauonshlp between the Poisson distribution and the chi-square distribu-
tion can be exploited to find explicit formulas for 4, and 4,. If Y ~ x3, then
P(Y > 24) = F(k; 4), the Poisson c.d.f. (see Problem 3.8.5).

Take 4,(X) = x3x.a,/2and 2(X) = x3x +1).1 -2,/2- Then 4, is a 100(1 — ,)%
lower confidence limit on A and 4, is a 100(1 — a,)%, upper confidence
limit on 4. For example, if we observe X = 2, and we want a 95%, confidence
interval on 4, take x, = a, = 0.025. Then A, = x2 .025/2 = 0242 and 4, =
X2.0.075/2 = 7.22, so that (0.242, 7.22) is a 95%, confidence interval on A.

For large X, we can use the cube-root transformation to find quantiles of
the chi-square distribution (Section 2.5) for which table values are not available,

or we can use the fact that Z = (X — ;.)/\/ft is approximately standard normal.
We find that 4, and 4, are the solutions to Z =z, o and Z=2z,_,,. A still
rougher approxlmatlon is given by replacmg /4 under the square root by X to

give A, = X + z,,\/X X -z ,2\/X and l, =X +z,_ n\/X For large X
the lhree methods will provide approximately the same answers.

Suppose now that X, and X, have Poisson distributions with parameters
%, and 4,, and X, and X, are independent. We would like to construct a
confidence interval on R = 4,/4,. We will use the fact that, conditionally on
their sum, X, + X, = n, X, has a %#(n, p) distribution with parameters n and
p=A /(4 + 1) = R/(1 + R) (see Theorem 8.2.3).
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Let (p, = p,(X,), p; = po(X,)) be a 1007%, confidence interval on p. That s,
Plp,<p<pil X+ X,=m) 27 forall p and n
Replacing p by R/(1 + R), and manipulating the inequalities, we get
P(p/Al —p) <R <p,/(1 —=p)lIX,+ X, =n)27y.

Since this is true conditionally for every #, it must therefore hold unconditionally,
so that (p;/(1 — p,), po./(1 — p,)) is a 1007%, confidence interval on R.

Example 8.3.2: Suppose that the number of highway deaths in July of 1998
in Michigan was 145. After a concerted safety campaign, the number of deaths
in 1999 in July was 121. Assuming that the numbers of miles driven in the two
years were the same, find a 959, confidence interval on the ratio R = 4,/4, of
the rates for the two years.

We will suppose that the numbers of deaths X, and X, by highway accident
have Poisson distributions with parameters 4, and A,. This model may not be
realistic, since accidents often kill more than one person. It would probably be
better to deal with accidents in which deaths occur rather than with numbers
of deaths. Conditionally on the total number n = X, + X, = 266 deaths, X,
has a binomial distribution with parameters n = 266, and p = 4,/(4; + 4,). We
first find a 95%; confidence interval on p, given by

(Py. p2) = (P + 1.96./B(1 — p)/n) = (0.545 11 + 0.05984) = (0.48527, 0.60495).

Then a 95%, confidence interval on R is (p,/(1 — p,), po/(1 — p,)) = (0.94277,
1.531 33). We are presenting more decimal places than are warranted by the
methods. In a report to the possibly statistically naive, it would be better to
give (0.94, 1.53). The fact that the interval includes 1 should lead us to be
cautious about claiming that the safety campaign was a success.

Suppose now that X, and X, are independent Poisson r.v.’s with parameters
4y = 6,t,, and 4, = 0,1,, where ¢, and ¢, and known constants. To find a
confidence interval on the ratio p = 6,/0, we can simply first find a confidence
interval on R = A,/4, and, since p = 8,/0, = (A,/t1)/(Ay/t;) = (t,/t;)R, muitiply
the confidence interval for 4,/A, through by t,/t, to get an interval for p.

We can use the log method to find confidence intervals on R = 4,/4,. Define
u=logR, R=X,/X,, p=IlogR. Then, for R fixed, with yu, = Ry,, and

1 1
My — o0, [4 — ul/é(p) LA N(O, 1), where ¢%(Q) = — + X The approximation

1 2
improves as 4, and 4, become large. The resulting 100y%;, confidence interval

on pis ik z(y +y28(A).
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For the highway accident example above with X, = 145, and X, = 121,
we find i = 0.07858, é(j1) =0.12313, and the 95% confidence interval on
¢ (—0.163,0.320). The resulting 95%, confidence interval on R = 4,/4, is
(0.850, 1.377).

Odds and Log-Odds: Suppose that you, as a statistician, are asked to design
a study to determine whether residence near a high-voltage power line raises
the probability that a child will have cancer. Let populations #1 and #2 be
the collections of children living (# 1) and not living (# 2) within 400 yards of
a power line. Let p; be the conditional probability that a child in population i
is diagnosed with cancer during a three-year period. We would like to compare
P: to p,. Let us ignore for the moment the possibility that a lurking variable,
say poverty, may cause children both to live near power lines and also to have
cancer. Suppose also for simplicity that children do not change residence during
the three-year period of interest.

Consider the two-way table:

Cancer No Cancer
Population 1 Pu P2
Population 2 P P22

Here p;; is the proportion of children in the entire population who would fall
in row i, column j of the table. You would like to do a prospective study. That
is, you would like to choose random samples of children from each of the two
population, or one from the entire population of children in the region of
interest, then estimate both p, = p,;/(p;, + p;;) for i = 1, 2, and compare these
estimates. However, the usual cancer rate is (.2 per 1,000 children per year, and
in order to estimate probabilities and to make comparisons which have any
reasonable chance of separating real from chance differences, samples of the
order of 100,000 and more are required. Since no records are kept of residence
near power lines, identification of a large number of children in population # 1
seems practically very difficult.

If a random sample were taken from the population of all children in the
region of interest then p;; is the probability that a child would fall in cell ij. The
conditional probabilities of interest are p, and p,. Since p;, < p;3, pi =
Pi/Piz = Ry = pi/(1 — p). In fact, Ry/p; = 1/(1 — p;)) = (pu/p12) + 1. R, is the
odds for cancer in population i. The ratio R = R,/R; = p,P12/P12P21 =
pi{l — py)/[pa(1 — py)] is called the odds-ratio. This odds-ratio, for the
case that each p; is small, can serve as a stand-in for 0 =p,/p,, since
R/8 = [(p11/p12) + 13/[(P21/P22) + 1] = (1 — py)/(1 — py).

The benefit of the use of R, rather than 8, to compare rates for cancer in the
two populations is most evident when we consider that we can estimate R by
doing a retrospective study. That is, we can randomly sample the cancer and
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noncancer populations and still estimate R, since R is symmetric in row and
column probabilities. Since such records are kept, we may have access to files
of addresses of such children. Suppose that after three years we choose a random
sample of nc (say 400) such children, and another random sample of ny: (say
500) children from the population NC who were not diagnosed to have cancer.
Identifying the children in this noncancer population may not be easy, and we
may need to confine the study to school-age children, since school records could
then be used. Suppose we then use maps to identify whether each of the n. + nyc
children live near a power line.

Let Y, be the number among the sample of n; who live near a power line.
Then Y, ~ #(n,, pc) and Y, ~ #(n,, pyc) in good approximation, where
Pc = P1,/(P11 + P21) is the conditional probability that a child with cancer is
in population #1, and pyc = p;2/(p12 + P22) is the conditional probability that
a noncancer child is in population #1. Let gc=1-pc, gue =1 — Pres
bc = Yi/ny, dc = 1 — P, Puc = Y2/, and yc = 1 — Pyc. Then pc and pyc are
independent unbiased estimators of pc and pyc. Notice that R = peguc/Prcic-
It is this feature of R that allows us to estimate R, despite the fact that sampling
is retrospective, rather than prospective. .

Define R = pcdnc/Pncdc = Yi(n; — Y2)/[Ya(n, — V)], and A=logR =
Ac — finc, Where fic = [log pc — log 4c] and fiyc = [log pxc — log §yc]. From
Section 8.2 4. is approximately distributed as N(nc = log(pc/qc), Ve =
(1/n,pcqc)), and fiyc is approximately distributed as N(nyc = log(pyc/dnch
Ve = (1/n3pncane))s f nypy, 114y, nypy, nyq, are not too close to zero. An
approximate 100y%;, confidence interval on R is therefore given by (4., fy) =

(7 % 20+ 92~/ Ve + Vae), where V. and Wy are obtained by replacing
the proportions by their estimates. Note that V.=1/Y, + l/(n, - Y;) and

V,,,.c =1/Y; + 1/(n; — Y,). The corresponding confidence interval on R is

(e'u e'lu)‘ 47 34
For example, suppose we observe the table Y=(Y;)=y = .
xamp. pp observ able Y))=y [353 466]

That is, we sampled 400 children with cancer, 47 lived near power lines, and
we sampled 500 children who did not have cancer, and determined that 34 lived
near power lines. Then, pc = 0.1175, pyc = 0.068, R = 1.8249, 4 = 0.6015,
i, = 0.1391, 4, = 1.0639 for y = 0.95, so that (1.1492, 2.8978) is a 959, con-
fidence interval on R. There scems to be some relationship between residence
near a power line and the incidence of cancer. We are not justified in saying
that power lines cause cancer.

If we know the overall rate of cancer in these children is 0.2 per 1,000 per
year (60 per 100,000 over three years), then we can estimate the two-way
probability table (p;;). The estimate of p,, is f,, = p(0.0006) = 0.0000705
(7 per 100,000). Similarly, we obtain,

1 705 6,740
p=(p "')"iﬁ&ﬁoﬁ [52.95 92,660]‘
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If the overall rate were unknown, then we could not estimate the conditional
probabilities p,, p,, or the unconditional probabilities p;;.

Problem 8.3.1: (a) Let X have a binomial distribution with n = 50, and p.
Suppose X = 0 is observed. Find an upper 99%; confidence limit U on p.

(b) If X =0, how large must n be in order to have upper 99%, confidence
limit less than 0.001? This sort of question is vital to the developers of vaccines,
who fear recipients will acquire a disease from the vaccine, or automobile
manufacturers, who must guarantee the safety of airbags.

(c) To be extra careful, perhaps the automobile maker should prepare for
the event that X = 1 of the airbags fails. What should n be in order to have
upper 99%, confidence less than 0.001?

Problem 83.2: Suppose X has a binomial distribution with parameters
n = 30 and p. If X = 4. Find a 90%, confidence interval on p.

Problem 8.3.3: (a) Let X have a Poisson distribution with parameter 4.
Suppose we observe X = 10. Find a 90%, confidence interval on 4, using the
exact method.

(b) Suppose X = 383. Find a 90% confidence interval on 4 using three

methods. (1) Use Z=(X—/'.)/\//i as a pivotal quantity. (ii) Use Z=
(X — ),),’V’rj(_ as a pivotal quantity. (ii) Use the fact that the chi-square
distribution for v d.f. is close to the normal with mean v and variance 2v.

Problem 8.3.4: The number of cases of lung cancer reported among 8,791
men of ages 50-59 living in a county in which a nuclear reactor was located
over a three-year period was 81. During that same time period in other counties
in that same state there were 62,547 men of ages 50-59, of which 483 were
reported to have lung cancer.

(a) State a reasonable model.

(b) Give point estimates of the rates 8, and 8, per 1,000 such men per year
for the county and for the other counties. Estimate the standard error of your
estimators and use these to find a 90%, confidence intervals on 8, — 6,.

(c) Find 90% confidence interval on ¢,/0, using the binomial method.

(d) Find a 90%, confidence interval on R = 6,/6,.

Problem 8.3.5: The following properties of the Poisson process are often
established in introductory courses in probability. Suppose that events occur
at random points in time 0 < X, < X, < ---. Let Y(0) = 0, and let Y(¢) be the
number of occurrences in the time interval (0, ¢}. Y(¢) is said to be a Poisson
process with parameter 4 > 0 if

(1) For each t > 0, Y(t) ~ P(it).
(2) The numbers of occurrences in nonoverlapping time intervals are
independent r.v.’s.
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Let Xo=0,and D;= X, - X;_, forj=1,2,... Then X;=D; + --- + D,
and Y(t) = max{n|X, < t} for t > 0. The waiting times D,, D,,... are inde-
pendent, each with an exponential distribution with mean 1/4. The process
{¥(r), t = 0} can therefore be simulated by first generating the waiting times D;
between events.

(@) Prove that D; ~ exponential, with mean 1/.. Hint: P(D; > d) = P(no
occurrences in an interval of length d).

(b) Use induction or moment-generating functions to prove that X;/A ~
gamma, with scale parameter 1, power parameter j.

(c) Show that U ~ gamma, with scale parameter 1, power parameter v, for
v a positive integer, implies that 2U ~ x3,. v-1

(d) For U as in (c), prove that P(U > 4) = Y p(j; 4), where p(j; 4) is the

j=0

Poisson probability function. (Either differentiate by parts on the left v — 1
times or use the relationships among U, X,, and Y(2) to rewrite P(U > 1). The
second method is more elegant.)

(e) Derive the formulas for the lower and upper confidence limits 4, and 4,
on A.

Problem 8.3.6: In order to investigate the effects of smoking on lung
cancer, the files of the hospitals in a large metropolitan area were searched. It
was found that 867 patients (all adults) had been diagnosed for lung cancer
during the year 1990. From these 867, a random sample of 393 was chosen,
of which 261 patients were found to have been smokers for at least 10
years in their lifetimes. Another random sample of 612 adults (the controls)
was taken from among the residents of the area, using telephone directories.
Among these, 197 were found to have been smokers according to the same
definition.

(a) Find a 95%, confidence interval on the odds-ratio R for cancer-smoking.

{(b) The lung cancer rate in this area was known to be 1.2 per 1,000 adults
per year. Estimate the probability table p = (p;;) and the conditional prob-
abilities for cancer among the smoking and nonsmoking populations. Give a
95%, confidence interval on p, ;.

(c) Suppose that the control population used was the collection of people
who were admitted to one of these hospitals in 1990. Does that cause any
problems in the interpretation?

Problem 8.3.7: The Doll and Hill (1950) study of 709 lung cancer patients
and 709 patients without lung cancer in 20 London hospitals in 1948-49 was
one the most important in determining government policy with respect to
smoking. In that study only 69 were women smokers (at least once a day for
a year), of whom 41 had cancer. Among 5! nonsmoking women, 19 had cancer.
Give a 95%, confidence interval on the odds-ratio for cancer among women,
and state your conclusions. Sir Ronald Fisher warned strongly against the
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conclusion that smoking caused cancer, though R for men was even more
extreme. Among other things he pointed out that inhaling seemed to result in
lower rates of cancer. See “Smoking and Lung Cancer” in Fienberg and
Hinckley (1980).

84 LOG-LINEAR MODELS

We will begin by considering some relatively simple log-linear models, delaying
their analysis until Section 8.5. These models will be written in the vector space
form. We will use such notation as log Y or ¢ to mean that these functions
operate componentwise, so that, for example, log(Y;, ;) = (log Y¥;,log Y,).
Differences between the theories for linear and log-linear models occur largely
because (1) the log of the mean vector m = E(Y), rather than m itself, will be
assumed to lie in a linear subspace, and (2) the distributional properties of Y
are more complex for frequency data. Most of the difficulties imposed by (1)
and (2) will be postponed to later sections.

There are interesting correspondences between the explanatory (also design,
independent, or regressor) vectors x; which we will choose and independence
or conditional independence. We will wish to test for independence or
conditional independence, but we shall also wish to measure the strength of
the dependencies which do occur. These measures of dependence will usually
be odds, odds-ratios, or log odds-ratios.

Example 84.1: In order to determine the effect of the length of traffic light
cycle on the accident rate at an intersection, four cycle lengths were used, each
for one year. The numbers of accidents were

Year 1 2 4 4
Cycle length (s) 40 S0 60 70
Number of accidents 149 129 112 112

Assume for simplicity that the traffic each year is approximately the same.
It seems reasonable to suppose that the number Y, of accidents in year i
has a Poisson distribution with mean m;, and that Y;, Y,, Y;, Y, are independ-
ent. Can we find a simpler model? Longer cycle times might be expected to
decrease the numbers of accidents, with m decreasing with increasing cycle time
t. Suppose that m = m(t) = exp(f, + By1), or equivalently, p=put)=
log m(t) = B, + B,t. Writing t = (40, 50,60, 70),J = (1, 1,1, ), Y= (1, 1}, 13,
Y, p= PBod + B,t, we can state the model as follows: Y satisfies the
independent Poisson model with m = E(Y) = exp(p), p € V = £(J, t). Increas-
ing the cycle time by d will multiply the accident rate by the factor e?*4. If we
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decide that B, is positive or only slightly negative, we might wish to keep ¢ near
40 or even less. More negative values of B, suggest that we should be willing
to put up with some of the inconveniences of longer cycles in the interest of
safety.

Actually these frequencies were generated by a computer with f, = 8§,
B, = —0.8, so that m = (1559, 1304, 112.7, 99.6).

Example 8.4.2: In order to investigate the effect of a poison on rats, the
poison was fed to the rats in four different dosages: 0 < d, <d, < d, < d,.
The numbers of rats and the numbers dying at these dosages were

Dosage d, d, d, ds
Log-dosage x, =05 x; =1 x; =15 Xg =
Number of rats 15 17 19 16
Number dying 2 6 il 13

_ {# living when the dosage isd;and i = 1

ij =

# dying when the dosage is d;and i = 2.

Y = (Y;;), the 2 x 4 table of observed frequencies. Suppose that (Y,;, ;) ~
#,(p;, n;) and that these columns of Y are independent, where p; = (1 — p;, p;)
forj=1,2,3,4and n, =15, n, =17, ny = 19, n, = 16. Thus, Y satisfies the
independent multinomial model. Of course, it is equivalent to say that
(Y21, Y2, Va3, Ya4) are independent with Y;; ~ #(n;, p;), and Y,; =n; — Y,;.
Define m = E(Y) = (m,;), where m;; = n)(1 — p)) for i = 1 and m;; = n;p; for
i=2 Letp=logm = (y;). Suppose that the log-odds for death under dosage
Jjis yx;, for x; = log(d;) for each j. The odds for death under dosage d; are

exp(yx;) = d}. Positive values of y correspond to increasing probability of dying
ith i ing d Solving for p p;= weil = ——1 Noti
with increasing dosage. Solving for p,, we get - - . Notice
4 4 4 | get p; i T T+ di

that when x; = 0, equivalently when d; = 1, it follows that p; = 1/2. This model
forces the probability of death at dosage 1.0 to be 1/2.

Let J; be the 2 x 4 indicator of column j, and let w be the array with zeros
irl the first row, and x; as the jth term in the second row. Then log m = p =

Y. #;J; + yw. Thus, m satisfies the log-lincar model. However, not all
ji=1

vectors pe £ (J,,...,d,, w) = V are possible. In fact, the requirement that the
column sums of M = E(Y) be the constants n; determines the restrictions
(1 + &™) = n;, so that u,; = log[n;/(1 + €’*/)]. Since we are interested in y,
rather than the u;, we can reduce the dimensionality of the model by
concentrating on the logits L; = log[p;/(1 — p;)] = yx;. The two statements
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peV, and L; = yx, for each j are equivalent, but the second statement, called
a logit model, seems to be simpler.

This model requires that the death rate for d = 0 be zero. We could relax
this by taking L; = y, + y,xj, or, equivalently, adding the indicator R, of the
second row to the subspace V.

Example 8.4.3: Consider the index set .# = {1,2,3} x {1,2,3,4} for 3 x 4
tables of frequencies. Suppose that Y;; is the observed frequency in cell ij, and
let Y =(Y;). Suppose that Y has a Poisson distribution with parameter
m = (m;;). With no further restrictions on m, this is the sarurated model because
the model allows the estimates m;; = Y,;, so that the model fits with no residuals.
We can state the model in its vector space form by defining C;; to be the
indicator of cell ij. Then p =logm =) p,C eV =L(C,y,...,Cy,), a 12-
dimensional subspace of 12-space. i

We should always seek simpler models, for which the subspace ¥ has smaller
dimension. Let R; and C; be the indicators of the ith row and jth column. One
such model supposes instead that pe Z(R,,R;,R,,C,,C;,C;,C) =V, a
6-dimensional subspace of 12-space. This model implies that there exist
parameters p; and 7; such that y;; = p; + 7; and m;; = e”¢%, so that the Poisson
parameters m;; satisfy a multiplicative model.

If we replace the Poisson model by Y ~ .#,,(n, p), then the mean vector
M = np and the observation vector Y must have inner product n with the vector
J of all ones. For both the saturated and multiplicative models p may take
only those values in V for which (¥, J) = n. If we begin with the inde-
pendent Poisson model, but condition on Y. ¥; = (Y, J) = n, then, conditionally,

4y
Y ~ . #,(n,p), with p;=2,/3 1, (see Theorem 8.2.2). The multiplicative
i

model p e V; is equivalent to p; = p;.p.;, the independence of the row and
column factors.
By expanding the y,; as we did in two-way analysis of variance, we can more

. 1 | _
systematically study two-way tables. Define yu = 1—22 Hijs Mi. = 4»2;1“-, B;=
ij J

1 _ -
SZ Bipp %=l — g, By=ji;—p, («B)i;=p;— e+ 2 + B;]. Then Hij =

#+ % + f;+ (af);, and the parameters x;, fi;, (xff);; satisfy the familiar
zero-sum restrictions of the analysis of variance. The statement that (2f);; = 0
for all i and j is equivalent to the multiplicative model for Poisson Y or
independence of row and column effects for the multinomial model.

In the case that one of the factors has ordered levels, it may be possible to
find a model which has interaction effects, but is still smaller than the saturated
model. Suppose, for example, that a random sample of 400 adults was chosen
from the telephone subscribers in Frequency City. Those sampled were asked
their view on a law before Congress which would increase social security (SS)
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benefits. Their choices were (1) favor, (2) neutral, (3) against. They were
classified by age: (1) 18-35, (2) 36-50, (3) 51-65, (4) 66—99. The results were

Age
1 2 3 4

View Agree 27 39 47 S8 171
on SS Neutral 44 25 20 10 99
127 112 85 176 400

It is reasonable to expect that as people age their view towards increases in SS
benefits should become increasingly favorable. We can quantify this by
replacing the interaction term («f);; (which might better be called (as);; or (a0);;
for this example) by a multiplicative term y(i — 2)(j — 2.5) = yw;;, chosen so
that the vector w = (w;;) is orthogonal to the row and column indicators. Since
we expect frequencies to be higher for small i and large j, and for large i, small
Jj, we should expect to obtain an estimate y < 0. The model can now be written
aspe V, =V, @ #(w), a subspace of dimension 7. We will later develop means
of fitting this and the other models, and discuss measures of their goodness-of-
fit.
We will be interested in odds-ratios and log odds-ratios:

Ry, iz, 5o j2) = [my, g, /mi;, 0/ Img, Imyy . 3 = (my om0/ (mg my )
and

Liy, iz, j1,jz) = log R(iy, iz, j1sJ2) = Bz, = Buyjy — Biyjy = Bigjy + Biyga-

L is the inner product of p with the vector v having ones at indices (i,, j;) and
(i;,j2), minus ones at indices (i;,j,) and (iy,j,). The vector ve V,,, the
interaction subspace, and the collection of all such vectors corresponding to all
possible choices of iy # i, and j; # j, span V4. For the independence model L
is zero for all choices of the indices. That is, independence is equivalent to
p L V. If the interaction term is yw,, L reduces to y(i; —iy)(j, —j,)- For
example, for the four extreme corners of the table L(1, 3, 1, 4) = 6y, which can
be expected to be quite negative, corresponding to a smail odds-ratio

[P(Favor|Young)/P(Oppose| Young)}/[ P(Favor|Elderly)/ P(Oppose| Elderly)].
Example 8.4.4: Consider the Table 8.4.1 of frequencies and percentages,

taken originally from National Opinion Research Center, 1975 General Social
Survey, University of Chicago, excerpted from Haberman (1978, p. 183).
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Table 8.4.1 Subjects in the 1975 General Social Survey, Cross-Classified by Attitude
Toward Women Staying Home, Sex of Respondent, and Education of Respondent

Respondent Agree Disagree
Sex Education (Years) No. Percent. No. Percent. Total
Male <8 72 60.5 47 39.5 119
9-12 110 359 196 64.1 306
=13 44 19.7 179 80.3 223
Total 226 349 422 65.1 648
Female <8 86 69.4 38 306 124
9-12 173 379 283 62.1 456
=13 28 13.0 187 870 215
Total 287 36.1 508 63.9 795
Total <8 158 65.0 85 350 243
9-12 283 371 479 629 762
>13 72 16.4 366 83.6 438
Total 513 356 930 64.4 1,443

Subjects were asked the question, “Do you agree with this statement—
Women should take care of running their homes and leave running the country
up to men?” .

This is a three-way table, with three categorical variables: sex at two levels,
education at three levels, and response at two levels. Sampling was done by
choosing independent random samples of 648 men and 795 women, then
determining their ages and responses. Let Y, be the frequency observed for
sex level i, education level j, response level k. Then the index set is .# = {1, 2} x
{1,2,3} x {1,2}. The observation vector Y = (¥;) is made up of the two
random vectors Y, = (Y, ;) for men and Y, = (1;;,) for women. A reasonable
model is: Y,, Y, are independent with Y, ~ .#(n;, p;), for i =1, 2, n, = 648,
n, = 795. Then m = E(Y) = E(Y,, Y;) = (n,p,, n2p,).

We would like to find a simple model for m. Let p = log m = (y;). As for
the three-way analysis of variance we can write y,; as the sum of its effects:

Hig =+ 5+ e; + 1 + (se)y + (sr)y + (er)y + (ser)u. (8.4.1)

As for the ANOVA, the 12-dimensional sample space ¥ can be broken into the
mutually orthogonal subspaces V,, V,, V., V,, V.., V.., V.., V..,. Because of the

er?

restriction that Z m; = n;, p cannot take all possible values in V. In fact, u
Jjk

and s, s, = 1 — s, are uniquely determined by the other parameters and these

two linear restrictions on the m;; .
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We have chosen to use symbols s;, e;, r;, etc., which remind us of the meaning
of these variables. It is common in the literature of log-linear models, to use
the symbol A;;, rather than y,, and write 4, = A+ A} + A7 + A7 + A% +
AN + A%Y + 4,33, where the meanings are the same as for the corresponding
symbols in (8.4.1).

With all terms of the representation of y;; present the model is saturated.
We would like to find a simpler model. The model with the three-way
interaction term (ser);, missing is at least a little bit simpler. This model is
often indicated in shorthand form as (1 2 3 12 13 23), corresponding to the three
main effects and the three two-way interactions. It is easy to show that the log
odds-ratios for men and for women in the saturated model are

Li(j1,j2, ki, k2) = logl(my; e, /My, )/(mljzh/mijzk;)]
= [(er)jlk‘ - (er)jlkz - (er)jzh + (er)izh]

+ [(ser);ju, — (ser)yu, — (ser)ije, + (Ser)ijzkz]-

For this example (k,, k;) may be taken to be (1, 2), since response has only two
levels. The more general notation is used so that the ideas may be generalized
to factors with more than two levels. These log-odds ratios are the same for
men and women if and only if the three-way interaction terms are all zero. If
this were the case then the interrelationship between education and response,
as measured by odds-ratios, are the same for men and women. By the symmetry
of the roles of the indices, we could also conclude that the interrelationship
between sex and response is the same for each level of education.

The difference D = D(j,, j3, ky, k3) = Li(f 152, ks k2) — La(jy,jas ks k) s
zero if and only if the two corresponding odds ratios are equal. D is the inner
product of p with the vector v of ones and minus ones corresponding to the
indices. The vector ve V,,,, the three-way interaction subspace, and the
collection of all such vectors, for all choices of subscripts, span V. Thus,
equality of the odds-ratios for men and women is equivalent to p L V.
For these data L,(1,2,1,2) =log(72 x 196)/(110 x 47) = 1.00415 and
L,(1,2,1,2) = log(86 x 283)/(173 x 38) = 1.30892, so that D(1,2,1,2) =
—0.30477. Similarly, we find D(1,3,1,2) = 1.82971 — 2.71567 = —0.88596.
We will have to decide later whether these is too far from zero for us too discard
the three-way interaction term in the model.

Both the (ser);; and the (er), terms are missing (corresponding to the
(1 2312 13) model if and only if the log odds-ratios L{j,, j,, k,, k2) are both
zero, equivalently the odds-ratios R(j,, j,, k,, k) are all one. This, in turn, is
equivalent to conditional independence of education and response, separately
for men and for women. The estimates from the data given above indicate that
this model surely would be a poor fit. The model with the terms (ser);; and
(sr); missing, called the (12312 23) model, would therefore correspond to
conditional independence of sex and response for each level of education.
Perusal of the data indicates that this model may fit well.
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Lzet Rij(kl‘ kz) = mUk’/mUkz = pUkl/pUkz be the Odds for level kl Of thc
response factor for a given combination ij of the levels of sex and education. Let

log Ri,(ku k)= Lij(kh k)

=Ty, — Ty + (SP)ik, — (57)ix, + (er), — (€N, + (ser)y, — (ser),.

The functions L;; are the same for all ij if and only if the interaction terms
(ser)iu, (er)y, and (sr), are zero for all i, j, k. But L,.;(ky, ky) = L[k, k,) for
alli, i’,j,j', ky, k, corresponds to independence of factor 3 from the combination
of factors 1, 2. For our example that would mean sex and education do not
affect the probability of agreement, obviously not the case. Similarly, absence
of the terms (ser);;, (sr)y, and (se);;, the model (123 23) corresponds to
independence of the sex factor from the combination of education and response.
Since sampling was done independently for men and women, it would be better
to say that the vectors p, (3 x 2 arrays) are identical. Had sampling been done
instead by taking one random sample of 1,443 people, with 648 turning out to
be the number of men, then p, would represent the conditional probability
vector for the categories of education and response, given level i of the sex factor.

Absence of all interaction terms is equivalent to pe V, @ V. @ V. @ V,, to
ply,. @V, @V, @V,) and to the representation of m;;, as a product fg;h;.
In the case of independent sampling for men and women this means p, = p, and
independence of the factors education and response. With respect to the one
multinomial model, the absence of any interaction terms implies independence
of all three factors.

Complete absence of a subscript, say j, in the model, implies that the
conclusions of the preceding paragraph hold, plus the equality of expectations
and probabilities with respect to the levels of j, education. The same proportion
of the population would have to belong to each of the three levels of education.

Table 8.4.1 summarizes the relationships among the terms in the log-linear
model and independence or conditional independence in a three-way table.
Suppose that the log of the expected frequency in cell ijk is

i=1,...,1
Mip=logmu =i+ + A3+ R +AF+ A2 +AR+ A2 forgj=1,...,J
k=1,...,K

This is the unique representation of y;, as the sum of terms, each of which
sums to zero over any one of its subscripts. We will use the notation [123] =0
to mean that all the terms 12> are zero. Similarly, {{123] = 0, [23] = 0} means
that all the terms 42> = 0, 13’ = 0. In Table 8.4.1 each row corresponds to a
set of model terms which are zero, as indicated in the first column. Equivalently,
each row corresponds to the statement that g lies in a certain subspace, with
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subspaces becoming smaller as additional terms become zero. These are the
same subspaces defined in Chapter 6 for the three-way analysis of variance.
The second column gives the equivalent statement in terms of odds ratios, which
hold for any selection of subscripts. We define

Ri(j,j's k k') = [myu/my 3/ [myjic/myc 3
and
Lj,j' k k') =log R{(j,j' k, k).

For all but the first row these smaller models produce representations of
m,, in terms of sums of m,; across one or more subscripts. Replacement of a
subscript by a “+” means that the subscript has been summed over. Thus,
M=y my and m, ;. =Y my,. Column 4 gives the interpretation of the

j ik

model in terms of independence or conditional independence. Equivalent
statements for models not considered in Table 8.4.2 may be found by
interchanging subscripts. Let us prove the statements of the second row of the
table. Others are left to students. [123] = 0, [23] = 0 is equivalent to y;; =
A+ A+ 27+ A2 + A7 + A3 Computation gives L(j,j', k, k') = Ay — Ayjs —
Aie + Aijxe = (1, X), where x = Cyy — €y — €. Cypp, and Cyyy is the indicator
ofcell ijk f V=V,@V,®@V,®V,®V,, ®V,, is the subspace in which p
lies under this model then such vectors x, for all choices of i, j, j', k, k' span
V+. Applying the function exp(-) on each side of L(j,j', k, k') =0, we get
R{(j,j', k, k') = 1. This establishes the equivalence between the first and second
columns. In fact, each of the statements in column 2 is simply a translation of
the statement p L V*, where Vis the subspace in which p lies under the model.

To get the representation given in the columns, write m;m;;- = mz,m; ;..
Summing across both j’ and k', we get m;, m,, . = m;; . m, ;. This representa-
tion implies the identity of column 2, so the statements of the first three
columns are equivalent. To demonstrate the interpretation of the column 4, let
Pijx = myx/m, . .. Then conditional independence of the second and third
factors, given the level of the first means that

Pm/Pn + = [pij+/pi+ +I0Pisa/Piv + 1,

equivalent to m;; m;.. . = m;;. m; ., which is the identity of column 3.

Example 8.4.5: Consider Example 8.1.5 again, which presents frequencies
of admission to graduate school for men and women for two fictitious
departments. Supposing an equal distribution of credentials for men and
women, is there discrimination against women? When the admission rates are
the same for men and women in each department, why is the admission rate
lower for women in the university? The answer of course is that women applied
in larger numbers to the department which admits a smaller percentage of
students. This tended to be the case at Berkeley, with men tending to apply to
departments which are more technical. The higher admission rates in more
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Table 84.2 Relationships Among i-Terms and Means m,, in Three-Way Contingency
Tables

Corresponding Equivalent
Model Terms Equalities for Expression for
Set to Zero for Odds Ratios mip Interpretation
'7 .'1 k, k'
[123] R_{L’.__) =1 None
R.(jij' k. K')
[123], [23] RU.j, kk)=1 [my.mi dimy, . Independence of factors
2, 3, conditionally on
levels of factor 1
[123], (23], MM e +uMije Independence of factor
[13] My joy /My e m,., ., 3 and combination of
factors 1 and 2
[123], [23], ﬂé'ﬂ’i =1 Tir+Zase Tk fndependence of factors
(133, [12] My My jry: UERR 1,2,3
’”uk/’”uk' =1
’”rﬂz'/mrj'k'
All above mi/mg =1 My ame, . Factor 3 has no effect
plus [3] M /m g “mi.. and factors 2 and 3
I =1 v are independent
igh/ Mk
[123], (23], mu/my = 1and m., . Factors 2 and 3 have
(131, [12], Mo Imip = 1 IR no effect
31 121
All terms m = i or m, .. /1JIK None of the factors
except A have an effect

mijh/mi’j’k' =1

technical departments seems either to indicate that such departments take the
view that students should have the “right to fail,” or that only students with
high ability in those subjects apply to such departments. What does this example
say about two- and three-way contingency tables?

This is an example of Simpson’s Paradox (Simpson 1951). Let M, W, A, D,
and D, be the events that a person is a man, a woman, admitted, applies to
Dept. # 1, and to Dept. #2, respectively. In our example m, = P(4|MD,) =
P(AIWD,) = w, and m;, = P(A|MD,) = P(A|WD,) = w,, but m = P(A|M) >
P(A|W)=w. Since m=m P(D,|M)+ m, P(D,|M)=w,P(D,|M) + w,P(D,| M)
and w = w, P(D,| W) + w, P(D,| W),

m—w = w,[P(D;|M) — P(D,|W)] + w,[ P(D,| W) — P(D,|M)]
= (w, — wp)[ P(D,IM) — P(D,|W)].
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The second term before the last equality follows because P(D,|M) =1 —
P(D,|M), and P(D,|W) = | — P(D,|W). Since both factors of the last term are
positive, m > w. Men simply applied to the department with the higher
admission rate.

This is also an example of the danger in collapsing tables. A table of
frequencies is collapsed across a factor F if frequencies for each category of the
other variables are added across all levels of F. The relationships among the
other variables in the collapsed table, as measured by odds-ratios may change
completely, as they did for the Berkeley admission data. A factor, say 1, in a
three-way table with factors 1, 2, and 3 is said to be collapsible with respect to
the 23 interaction term if the 23 interaction term in the collapsed two-way table
(determined by summing across factor 1) is the same as it was for the three-way
table. In general, this will hold for either of the models (1 2 3 13 23), which is
conditional independence of factors 1 and 2, given factor 3, or (123 1223),
which is conditional independence of factor 1 and 3, given factor 2. This can
be verified by computing log odds-ratios for the collapsed table for these models
(see Problem 8.4.3). For the Berkeley data, we have conditional independence
of the factors sex and admission given department, so we can collapse across
sex, while still preserving the interaction term for department with admission,
or we can collapse across admission, while preserving the interaction term for
department with sex. We cannot collapse with respect to department without
changing the interaction term for sex with admission, and it is this term in
which we are interested.

In general, the lesson is that tables are to be collapsed with great care.
Students may recall the height—reading score example used to demonstrate
the need for a partial correlation coefficient in Section 3.7. Age was said to be
a lurking variable. In this example, department is the lurking variable, and we
should study the odds-ratios for the separate departments, rather than the
odds-ratios for the collapsed table, the frequency table for the entire university.

Problem 8.4.1: Prove the implications of the third row of Table 8.4.1.

Problem 8.4.2: Make up some data for the three-way table of Example 8.4.5
so that there seems to be bias against females within each department, but,
when the tables are collapsed across departments, there seems to be bias against
men.

Problem 8.4.3: (a) Prove that a three-way table can be collapsed across
factor 3, with the interaction terms 2}? preserved, if the model of the second
line of Table 8.4.1 holds, conditional independence of factors 2 and 3, given the
levels of factor 1. Suppose that, instead, the model (1 2 3 12 23) holds (indicated
by [123] = [13] = 0). Does this also imply that the terms 1) are preserved by
collapsing across factor 3?

(b) Give an example of a 2 x 2 x 2 table which is collapsible across factor
1, but does not satisfy the model (12 31323) or the model (1231223)
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Hint: To make things easier let 4 = 4} = 27 = 4} = 0. This reduces the model
(12313 23) so that it can be expressed in terms of just two paramecters.

Problem 8.4.4: Consider four tennis players—Abe, Bob, Carl, and Dan—
numbered 1, 2, 3, 4 for simplicity. Suppose that there exist numbers 4,, 4, 43,
and 4, the strengths of these four players, so that the probability that player
i beats player j is p;;, where u;; = log[p;;/(1 — p;;)] = A; — 4; for each i and j.
Each pair of players plays one set on five different occasions, so that a total of 30
sets are played, with the outcomes of different sets being independent. Let Y
be the number of times that player i beats j, and let

Y hs K
v T h
By Yy - e
Y4l Y42 Y¢3 -

(a) Write this as a log-linear model. What is the dimension of the subspace
¥? Note that ¥;; =5 - Y.

(b) Suppose that an expert has determined that p;; = w#/(wf + w¥), for
w; = 5 — i, though the expert does not know what 8 should be. Write this as
a log-linear model. (The author has applied this model with reasonable success
to analyze the records of college basketball teams playing in the National
Collegiate Athletic Association Tournament each year. In that case w; was
17 — s;, where s; was the seed of a team. In each of four regions, one team
receives each possible seced number j = 1,..., 16. Over nine seasons and 567
games the best estimate of f§ seems to be about 1.34)

Problem 8.4.5: Consider a three-way model with three factors, 1 at two
levels, 2 at three levels, and 3 at four levels.

{a) Which model corresponds to conditional independence of factors 1 and
3, for each level of factor 2?7

{b) For which model are factors 1 and 3 jointly independent of factor 2?

(c) Give two 2 x 3 x 4 tables x, and x,, consisting only of —I’s, 0’s and !’s,
which span the interaction space V,,, corresponding to the terms A/ Express
A}%, 412 and 41} in terms of (g, x) and (g, x,).

Problem 8.4.6: Let Y be a k x k table. The following discussion is partic-
ularly useful in the situation in which row and column classifications are the
same, though that need not be the case. We might, for example, classify 1,000
father-son pairs, drawn at random from the population in which the sons
graduate from the high schools of a large city in 1980. The education of father
and son might be classified into E,, E,, E;, E,, Es, where a person in E; has
more education than a person in E; if i < j. Obviously the education of fathers
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and their sons are not independent. The saturated model has k* parameters.
We would like to find a model in which the number of parameters is smaller.
Suppose p; = logm;; = A + Al + A} + A;.

As will be evident the definitions and relationships to be demonstrated in
this problem are applicable any time the classifications of the rows and columns
and rows of a two-way table are the same. Examples: (1) The members of a
panel of people are asked their opinions on some issue at two points in time;
(2) matched pairs, say husbands and wives, each classified by religion; (3)
people, animals, or things are paired so that they might be expected to produce
similar results when treatments are applied. One member of each pair is chosen
randomly to receive treatment # 1, the other to receive treatment #2, All
pairs are then classified according to the reactions of their members, rows
corresponding to the member receiving treatment #1, columns to the
other.

(a) The table m of expected frequencies is said to be symmetric if m;; = m;
(or p;; = p;;) for all i and j. Show that m is symmetric if and only if A} = 42
and 4;; = 2;; for all i and j. Let ¥, be the collection of vectors p corresponding
to symmetric tables m.

(b) Let B, for i < j be the indicator of the pair of cells (i, j) and (j, i) and
let D; be the indicator of cell (j,j). Express a symmetric table p as a linear
combination of the Dy, and B;;.

(c) The table m is quasi-symmetric if 4;; = 4; for all i <j. Let ¥, be the
collection of all vectors p corresponding to quasi-symmetric tables m. Give an
example of a quasi-symmetric table which is not symmetric.

(d) Let R; and C; be row and column indicators. Show that

=y(Dl""'Dk’Rl"‘"Rk’Blz""’Bk—'l.k)‘

What is dim(V,,)? Hint: Let the subspace on the right be V*. First show that
a vector ve F, isin V*. To show this, show that each C; e I'*. Next, show that
ve I* lmplles ve V,. To do this let p = Zy,D +2f %R, + Y BB, and
i<j

express 4, A!, A%, and )u in terms of the y;, a,, and f§i;;.

{(e) A table m satisfies marginal homogeneity if m;, = m,; holds for each i.
Marginal homogeneity does not correspond to a log-lincar model. However, if
a table is quasi-symmetric and has marginal homogeneity then it must be
symmetric. Prove this.

(f) Give an example of a 4 x 4 table which has (1) marginal homogeneity
but does not have symmetry, and (2) 4} = A? for all i. Give another table which
satisfies (2) but not (1).

(g) A table is quasi-independent with respect to a subset § of index pairs (%, j)
if there exist constants a;, b; such that m; = a;b; for all (i,j) € S. Show that
quasi-independence with respect to the off-diagonal terms implies quasi-
symmetry.
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8.5 ESTIMATION FOR THE LOG-LINEAR MODEL

We will begin our discussion of estimation with the simplest of our models,
those for which Y satisfies the independent Poisson model, with mean m
k

satisfying p = logm = ) f,x;, where x,,...,x, are fixed known vectors of
j=1

constants, chosen by the analyst (or statistician, or student, or political scientist,
or ...). All vectors indicated in the discussion have T components, indexed by
a set .#, which is fixed throughout the discussion. Let V = #£(x,,...,x,). We
will always assume that the vector J of all ones is in V. We will not always
assume that these x; are linearly independent. They might, for example, be the
row and column indicators for a two-way table. Later we will wish to consider
various possible multinomial models, but they cause some complications. We
must learn to walk before we can run.

For convenience we will sometimes want to think of Y and the x; as
T-component column vectors. In this case we can write p = Xp, where
B=1{(B.....B). We will see that the maximum likelihood estimators (MLEs)
of B, n, and m satisfy certain geometric properties, so much of the intuitive
appeal of linear models remains.

We will confine ourselves to MLEs for which we have nice asymptotic
properties. For the Poisson model the likelihood function is L{(B;y) =
[T Ce™™m}/y;!]. The log likelihood function is
i

IB:y) = log(L(B; y)) = . [~m; + yirJ + C = —(h,m) + (v, m) + C,

where C does not depend on . The partial derivative of m with respect to §;
is x;m, where multiplication of two vectors is componentwise. That is, x,m has
ith term x;m,. Since (J, x;m) = (m, x;), and the partial derivative of (y, p) with

‘)
respect to f;is (y, x;), we find that £ IB;y) =(y —m,x;),forj=1,...,k We

ap;
seek a solution B = f to the likelihood equations:
i)
gﬁl(ﬁ;y)=(y—m,xj)=0 for j=1,...,k (8.5.1)

where m = exp(}_ §,x,). Let B=ﬁ be a solution to (8.5.1), and define m =
exp(z Bjxj). Equation (8.5.1) requires that the residual vector e =y — th be
orthogonal to the subspace V. This, of course, was the condition required of
the least squares solution for linear models. The difference is that in this case
XB = ji = log mh, rather than , must lie in V (see Figure 8.6).

We will need to demonstrate that a solution B to (8.5.1) exists (it usually
does) and that the likelihood function is maximized for this choice. We find
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FIGURE 86 The log-linear model and estimates.

35, aﬂ— IB; y) = —(x;, x;;m). If we momentarily write m and the x; as column
vecl:torfe., and let X = (x4, ..., X;), then the matrix of second partial derivatives
is —X’d(m)X, where d(m) is the T x T diagonal matrix with m on the diagonal.
X'd(m)X is nonnegative definite in general, and is positive definite if the x; are
linearly independent and each component of m is positive. Hence, if a solution
to the likelihood equation exists, it is unique.

Example 8.5.1: Consider the accident data of Example 8.4.1. For cycle
lengths of 40, 50, 60, and 70 the numbers of accidents were 149, 129, 112, 112.
Represent Y as a 4-component column vector, and suppose that Y satisfies
the mdependent Poisson model with p e V(J, x), where x = (40, 50, 60, 70)".
We seek fi = (BO,B) such that for y = (149,129, 112,112y, (y —, J) =
Y oyi— e""Ze"‘“ =0, and (y — 1, Xx)= Z XiVi — e’°z x;ef% = 0. Letting

b=§ i solvmg the first equation for ﬁo, and subsmunng in the second, we get

/
26,970 — 502[2 xieb"'] ] [Z e"] = 0. Since x = (40, 50, 60, 70), and n = ¢,
we get i i

26,970 — 502[407*° + 507°° + 60€°° + 707"°1/[1*® + 1 + 1 + n7°] = 0.

This equation cannot be solved explicitly for n, but can be solved with
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patience and a $20 calculator. We find, with the aid of a personal computer
(the author’s calculator costs $65, so that it could not be used), 7 = 0.989 82,
b=p, = —001023 and f, = 5.3884. Then ji = B,J + f,x = (49792, 48769,
4.774 6, 4.672 3, and 1h = (145.36, 131.23, 118.44, 106.95)". The residual vector

=y —m= (36395 —22262, —6.4663,5.0529)' may easily be verified to
be orthogonal to J and x. Pearson and log chi-square statistics for (4 — 2)
df, to be introduced in Section 8.6 as measures of the distance between
and y, are 0.721 and 0.723, so the fit of the model is quite good. We were a
little lucky.

The Newton-Raphson Algerithm: This algorithm provides a technique
which will almost always converge to the unique solution B. The idea is to find
a sequence of approximate solutions {B"’} which will eventually change so little
with r that we can be confident that § is close to f. For each § the function

h(B) = B I(B y) is approximated by its Taylor linear approximation about B"’

(its differential). We have already shown that A(B) = X'(y — m). Where each
vector is in column vector form, and, of course, X is the T x k design matrix.
The matrix of first partials of the vector h(B) (second partials of I(y, B), the
Hessian)is —I(§) = ——X’d(m)X We therefore approximate h(B) at the (r + 1)th
iteration by h, . ,(B) = h(B™) — I(B")(B — B). We then define B"* Y 1o be that
value of B for which h,, (B) = 0. We find p — B = 1)~ *h,(B"),

ﬁ(r+ 1 ﬁ(r) + [X'd(h"")X] "~ lxl(y _ m(r))’

where " = exp(ii”), 4 = X, and d(m™) is the corresponding diagonal
matrix. Sometimes the sequence may fail to converge because the jumps are
too big. A good algorithm can produce shorter increments by multiplying them
by constants o’ < 1. The criterion for stopping can be small changes in g7, in
A", or in m”. A good starting point $ is usually obtained by use of least
squares on log y. That is, B‘°’ =(X'X) " 'X’logy. To avoid zeros in y, replace
any zeros by 1/2.

The method produced by the Newton-Raphson procedure is often called
iterative weighted least squares. The change B”* " — B is the generalized least
squares estimate of the coeflicient vector corresponding to observation vector
(y — m), with weight matrix d(h®), design matrix X.

Example 8.5.2: Babe Ruth (“the Sultan of Swat") was probably the
most famous baseball player of all time. He began as a pitcher with the
Boston Red Sox at 19 in 1914, was traded to the New York Yankees in
1919, and, because of his home run hitting, became a full-time outfielder in
1920, at the same time that the baseball was made more “lively,” to increase
the number of home runs. His at bats (AB’s) and home runs until the end of
his career were
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Year AB HR
1920 458 54
1921 540 59
1922 406 35
1923 522 41
1924 529 46
1925 359 25
1926 495 47
1927 540 60
1928 536 54
1929 499 46
1930 518 49
1931 534 46
1932 457 41
1933 459 34
1934 365 22

It seems reasonable to suppose that the number of home runs Y, in the ith
year should have a Poisson distribution with mean m;, which is a multiple of
the number z; of AB’s. Ruth was 38 years old in 1933, and it is not surprising
that his HR production decreased in 1933 and 1934. How can we model this
to allow for some deterioration with time?

Let i be the index for year 1920 + i. If m; = z; exp(B, + B,i), for i =0,
1,..., 14, then y, = log m; = log z; + B, + B,i, so that, strictly speaking, these
m; do not obey a log-linear model. However, we can, put the model in a form
which will allow us to use the methods developed for the log-linear model. Let
X, be the vector of ones. Let x = (1,...,15), p* = foXo + f,Xx, and m* =
exp(p*). Then the log likelihood function is I(B; y) = (y, log z + p*) — (m*, z) + C,
where C does not depend on §. The ML equations are therefore (y, x;) —
(m*xj, z) = (y — zm*, x;) = 0. The matrix of second partial derivatives, the
Hessian, is — I(B) = (X'd(mz)X). The Newton—Raphson algorithm defines

ﬁ‘” 1 ﬁ(r) + [X'd(ﬁl*(')Z)X]—'X'(y — z*").

Using an APL function of the author, checked using S-Plus, we have:
B = (—2.269, —0.01841). The coefficient #, = —0.01841 can be interpreted to
mean that the model predicts that Ruth’s HR production per time at bat in
year (i + 1) could be expected to be 100e %8419/ — 98,189 of that predicted
for year i.

A commonly used statistic in baseball is the number of times at bat per HR,
or w; = z;/ Y. The smoothed w, for year i is W, = z;/m; = exp(—fBo — B,i). This
is analysed in Table 8.5.1. Pearson and log chi-square values are: 12.90 and
13.24 for (15 — 2) d.f, so the fit is quite good. The estimate of the standard error
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Table 8.5.1 Analysis of the Babe Ruth Home Run Data

Year AB HR m é w; w;

1920 458 54 47.36 6.64 8.48 9.67
1921 540 59 54.83 4.18 9.15 9.85
1922 406 35 4047 —~547 11.60 10.03
1923 522 41 51.08 10.08 12.73 10.22
1924 529 46 50.82 —482 11.50 10.41
1925 359 25 33.86 —8.86 14.36 10.60
1926 495 47 45.84 1.16 10.53 10.80
1927 540 60 49.09 1091 9.00 11.00
1928 536 54 47.84 6.16 9.93 11.20
1929 499 46 43.72 2.28 10.85 11.41
1930 518 49 44.56 4.4 10.57 11.62
1931 534 46 45.10 091 11.61 11.84
1932 457 41 37.89 3.1 1L.1s 12.06
1933 459 34 37.36 -3.36 13.50 12.28
1934 365 22 29.17 -1.17 16.59 12.51

of B, is 0.009 24, so a 95%, confidence interval on f; is B, + 1.96(0.009 24) =
—0.01841 + 0.018 11, just missing zero.

Sufficiency for the Poisson Model: For the independent Poisson model the
log likelihood function is

IB;y)=-(@m)+ (@, W)+ C=—-J,m)+ (Pyy,p) +C,

where P, is orthogonal projection onto V, since pe V. Therefore, P,y is
sufficient for B, p, and m. Since P,y is a function of the inner products (y, Xx;),
the vector of these inner products is sufficient for B, g, and m.

Example 853: Let S ={1,2,...,r} x{1,2,...,c},sothat Yisanr x ¢
table of frequencies. Let R; and C; be the indicators of the ith row and
jth column. Let x, be the vector of all ones, let V, = L(xo), Vg =
PR,...,R)n Vs, Ve=2L(C,,....CONn Vs, and V=V,® Vy ® V. Sup-
pose that p = log E(Y) € V. As noted in Example 8.4.3, pe V is equivalent to
the multiplicative model: m;; = (m;.m.;)/m.. for all i and j. The vector of inner
products of any set of spanning vectors for V is sufficient for the parameters
of this model. The inner products of the row and column indicators are the
corresponding row and column sums. If we were to suppose instead that
pe Z(R,,...,R,), then the vector of row sums would be sufficient.

For observed y = (y;;) it is easy to verify that the array (rﬁu = X’—y-l) =1
y..
is the MLE of m, and that i = Y [log ;. JR, + Y [log y ;1C; — y..J.
i i
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We have yet to prove that the MLE always exist. In fact, the MLE need not
exist if some component of Y is zero. For all the models we will consider there
is always a positive probability that the MLE does not exist. Fortunately, the
probability is usually extremely small. For a simple example, let Y = (Y}, Y,)
satisfy the independent Poisson model with p = (8,, £,). The likelihood function
isl@,y)=~-@,m)+ (y,m)+C=—[e’" + ] +y,8, +y,8,+C. 1y, =0,
then /B, y) is a decreasing function of §,, taking its maximum at —oo. We
insist that the values of estimators be real numbers. Fortunately, this is the only
kind of situation for which the MLE does not exist.

Whenever all components of m are positive, as we always assume, the vector
p exists. The vector B is not uniquely defined unless the vectors x; are linearly
independent. To avoid this assumption we will show that the MLE for p (and
therefore for m) exists whenever all components of y are positive. If the x; are
linearly independent then B = (X'X) ™ 'Xji is the MLE for B.

Theorem 8.5.1: If every component of y is positive, then the MLE of p
exists. More generally, if there exists a vector 8 L ¥, such that y + & has
components which are all positive, then the MLE for p exists.

Proof: Suppose all components of y are positive. The likelihood function
minus C is g#) = —(J, &) + (v, w) = X [—¢* + yu] = } hp,), for hfa) =

y;a — ¢°. Each h, is continuous, lim hfa) = —oc, lim hfa) = o, so that
each h; has a finite maximum (at log y;). It follows that there exists a constant
¢ such that, whenever | 4;| < ¢ for all i, g(p) < g(0) = — T, where T is the number
of components of y. Thus, F = {p|g(p) = — T, p € Ry} is closed and bounded.
It follows that G = {p|g(p) > —T,p € V'} is closed and bounded. Since g is
continuous this implies that there exists a i at which g takes its maximum on
C. Since g is smaller for all p e (V — G), this proves that g is maximized on V
by ji.

If 8LV, then gp)= —(J,m) +(y + &, w) = —(J, m) + (y,p). If all com-
ponents of y + & are positive then g has a maximum at some point j by the
first part of the theorem. Since the likelihood functions for y + & and for y are
the same, fi also is the MLE corresponding to y. O

Continuation of Example 8.53: Suppose that r =2, ¢ =3, and that we
0 - 0
observe y = 6 3 ] Let 8=[ ! l:l. Then 81 V, since it is
01 2 1 0 -t
orthogonal to the row and column indicators. Since all the components
of y + & are positive, the MLE for p and m exists. It is easy to verify that
_ 1[18 9 9
4] 6 3 3
y. A two-way table has an MLE for the multiplicative model p € V' if and only
if all row and column sums are positive. (Why?)

:l, has the same inner products with these indicators as does
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The Independent Multinomial Model: Suppose that # =9, U FH U -
w %, where these index sets ; are disjoint. Let #; have T; elements, and let
T =Y T;. For each j let .#; be the index set for Y, and let Y = (Y,,...,Y,).

J
Suppose that these Y; are independent, and that Y; ~ .45 [(n;, p;). That is, Y
satisfies the product multinomial model. Let m; = E(Y;,) =n;p; and m =
E(Y) = (my, ..., m). Let w; be the indicator of index set .#;, and suppose the
subspace V of the sample space R, of possible vectors y includes each of these
w;.

Example 8.5.4: Suppose a random sample of 400 adults is chosen from
among the residents of Lansing, Michigan, and that they are classified into
four age-groups, corresponding to the rows, and three political categories:
Republican, Democratic, and Independent, corresponding to the columns. In
this case k = 1. Then ¥ must include the vector J = x, of all ones. On the other
hand, if we sample by choosing 100 people randomly from each of the four
age-groups, k = 4, $, = {(i, 1), (i, 2), (i, 3)}, each n; is 100, and w, is the indicator
of the ith row.

If we classify by sex as well, with sex as the first factor, age-group as the
second, political party the third, then %, = {1,2}, %, ={1,2,3,4}, 4, =
1,2,3}, # = %, x .#, x #,. If we sample again by taking 100 people randomly
from the jth age-group, then w;, the indicator of the jth level of age-group,
must be included in V. If we sample by taking 50 of each sex—age-group
combination, then we must include the indicator w;; of the indices with level i
for sex and level j for age-group in V.

If p=logm =7 f,x;=Xp for the product multinomial model, the like-

lihood function is
k . ny
LaB;y) = Y [("’) X p}’."].

i=1 i/ i=1

where y; = (yj1, ..., yja,) is the vector of values taken by Y;. The log likelihood
function is

(B, y) = z z vjilog(py) + C*,

where C* does not depend on p. Since m;; = n;p;;, and Yy, = n;, this is

laB: Y) =Y vyilogimy) =33 yjlogn; + C* = (y,p) — Y. n;log n; + C*.
L2 i -

i i i

The log likelihood for the Poisson model was:

LBy =@,n—J,m+C.
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Hence

bunB, ¥) = lp(B, y+d,m)— Z"j log n;+ cr-C
i
=1,B.y) + [Z n;—y njlogn; + C* ~ C] =1,B y) + C**,
i J

where C** does not depend on P. Since the conditional distribution of Y, given
S;= ; Y; = n; is multinomial with parameters n; and p; = m;/n;, C** is the
negative of the log likelihood of (n,, . .., n,). Since p maximizes l(B.y) and C**
does not depend on B,

LB:¥) < L(B;y) + C** forall .

B must be chosen so that ) mj; = (m, w;) = n, for each j. However, since w; & V
t

for each j, (i, ;) = (y, W;) = n, for the MLE rh corresponding to f under the
Poisson model. Therefore, the Poisson solution B automatically satisfies the
restrictions of the multinomial model, and is a solution which makes the
inequality an equality. That is, the Poisson solution is also the multinomial
solution.

Though the solution f’s for the Poisson and multinomial models are the
same, B, i, and Ijl will have different distributions under different models. As
we will indicate, B, f, and th are all (in a certain sense) asymptotically unbiased.
Each will be less variable under the multinomial model than under the Poisson
model.

Example 8.5.5: Consider the rat data of Example 8.4.2:

Dosage d, d, dy d,
Log-dosage X, X X3 X4
Number of rats 15 17 19 16
Number dying 2 6 1t 13

For Y;; as defined in that example the observed Y is y = [13 I8 3].

2 6 11 13
The model states that Y,; ~ #(n, p,;), where log[p,;/(1 — p;;)] = yx;. Equi-
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the same equality holds if § and j; are substituted for y and u;. We will use
the log-linear approach rather than the logit approach to fit the model. This
means that we will fit the model with the five parameters p, ..., u,, y even
though the first four are functions of the last. In this sense the model is
overparameterized. In the logit approach we consider instead only the second
row of Y. This second row, conditionally on the column totals, has a distribution
which depends only on the parameter y. The estimators fi;, being simple
functions of §, are easily determined from 7.
The Newton—Raphson method produced the MLE

. [1198 850 587 3.22]
302 850 13.13 1278

ford, =05,d, =10,d, = 1.5, d, = 2.0, and therefore

|0 00 0
1 -06931 0 04055 06931]

A

The estimate of B was B = (2.483, 2.140, 1.770, 1.171, 1.986), and

2483 2.140 1.770 1.171]

i = J + X =
b= 2 A0+ i [1.106 2140 2575 2.548

The estimate of the probability matrix is obtained by dividing the jth column
0.799 0.500 0.309 0.201

0.201 0.500 0.691 0.799
model forces the probability of death for dosage 1.0 to be 1/2.

. R 1.023 25 2132 —-0224 | .
The residual vector e =y — i = 1s
—1.023 -25 -2132 0.224

orthogonal to the column indicators and to x. The Pearson and log chi-square
values, measures of the distance of y from rh were x> = Y (y;; — iy;))*/;; = 3.044
and G* =2Y y;; log(y,;/my;) = 3.053. We will discuss the properties of these
statistics later. Under the hypothesis that this model holds, these statistics
should each be approximately distributed as x* with (8 — 5) =3 d.f Thus,
the model fits quite well. Each of §, fi, m has an approximate multivariate
normal distribution with mean given by the corresponding parameter, and
covariance matrix given by formulas presented in Section 8.6. Estimates
0956 0 0940 1.020]

0956 0 0940 1.020
Since Y;;=n; - Y,;, Var(h,;) = Var(h;). Since x,=logd, =0, m,;, =
My = (Y2 + Y33)/2 = ny/2 = 8.5, so that Var(h,,;) = Var(m,,) = 0.
Estimates of the standard deviations of the terms of B are given by taking
the square roots of the diagonal elements of the estimate of the covariance

of m by n;, to obtain P= [ ] As noted earlier, this

of the standard deviation of the elements of v are [
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matrix: (0.2703,0.2425,0.2798,0.4031,0.5713). Only § is of real interest.
$ + 1.96 6(§) = 1.986 + 1.120 is an approximate 95% confidence interval on y.
Since this interval does not include zero, we can be quite confident that y is
greater than zero.

The model log[p,;/(1 — ps;)] = 7o + 7:x; Was also fit, resulting in B=

. 0. 27 382
(2.595,2.352, 1.984, 1.341, —0.482, 2.367), i = [13 401051 72 ],

160 649 11.73 12.18
. [0.893 0618 0404 0.239

0.107 0382 0596 0.761

values were 0.520, 0.525, certainly smaller, indicating a very good fit. The
smaller model with y, necessarily zero fits quite well and the improvement
in the fit probably does not warrant the increased complexity. The estimate
of the standard deviation of 9, is 0.3165, so that —0.482 + 0.620. If we let
g{d) be the probability of death for dosage d for model i(i = 1,2) then
Jo(d) =d'f(1 +d’) =d*°%°/(1 +d'°%%) and §,(d) = e'd"/[1 + e™d"] =
0.6176d%3¢7/(1 + 0.6176d%-3%7). These functions are graphed in Figure 8.7.

]. Pearson chi-square and Log chi-square

Sufficient Statistics for the Independent Multinomial Model: Suppose
that Y =(Y,...,Y,,) satisfies the independent multinomial model with

1 —
g 075 | A
9
5 1
z
2
g8 o0s
a
S
2
@
£ R
g o025 ¢t 9,
0 T T T T 1
0 2 4 6 8 10
d = dosage

FIGURE 8.7 Estimates of the probability of death.
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YJ = ()’1,, Ve YT,‘j) ~ ./”1‘1("1, pj) Lct

B=y. .., R = logm) =logm,,...,m,) = log(n) + log(p).

Let T=Y 7,. Y takes values in Ry. Let J; be the indicator of the cells
i
(Lj) ..., (ks j). Then z J; = J, the T-component vector of all ones.

J
Let V, = £(J,,...,d,), and suppose that pe V' = 1, @ L(Xyu 1y .- s Xi)s
where x; is not contained in ¥ forj > k. Let ¥, = V' n Vsandp, = p(u|V)) =

B —pp| Vo) =p — ) u;d;, where y; = (z pi,-)ﬂ}. Thenp =) p;J;+p,. The
I i §

kernel of the log likelihood function (the part which depends on B) for the
product multinomial model is

Imn(ﬁ) - C* = (ya ") = z /‘j(ya Jj) + (ya "J.) = Z /‘j"j + (ya "_L)

Let y, = p(y|¥,). Then (y, p,) = (¥,, 1), so that the likelihood function may
be expressed as a function of y,. Thus, we have Theorem 8.5.2.

Theorem 8.5.2: Y, = p(Y|V,) is a sufficient statistic for B. If X, 41, ..., X,
span V), then the (k — ko)-tuple ((x;, Y), j = ko + 1,..., k) is sufficient for B.

Proof: The second sentence follows from the fact that Y, is a function of
the inner products (Y, x;) for j > k,. We are supposing that V/ has dimension

—

k, so that B and $ are uniquely defined. O

The representation p = po + p,, with pg =) p;J;€ ¥, is also useful in
j

providing an understanding of the relationship among the parameters for the
multinomial model. Since

m = exp(p) = exp(py + B,) = [; ) ,]e“‘, (8.5.2)

we have n; = (m, J)) = &" z e"+4, so that u; = log n; — log[z e"“’]. Thus, the
coefficients y; of the indicators J; are determined by p_, which in turn is a

function of the parameters f, ., ..., bi, and p; = exp(p;)/ y exp(p“j)].
i

Put another way, all the vectors in .# = {mip=logmeV, (m, J;)=n,
j=1,...,k},the set of all possible m, have the same projection my = Y_ (n;/ T))J;
onto ¥,. The orthogonal part m — m, is determined uniquely by w,. Figure
8.8 may provide some intuition. In Figure 8.8, of T-space, } = log(th) € 1} is
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m = exp (p)
y-mLiVv

FIGURE 88

not pictured so as not to cause even more clutter. The case p, = 0 corresponds
to the case p = Y u;J;. In this case all the cells of the table corresponding to
the same j have the same expected value exp(y;) = n;/T,.

In the rat poison example, we considered the model p =Y B,C; + yx, for x

J
the 2 x 4 array with O's in the first row and (x,, ..., x4) = log(d,, d;,d;,d,) in
the second row. For the notation above u; = §; for 1 <j <4, and

—-X; —X; —X, —x,,]l
2

BL=PX =Y 5
X, X, Xy X4

Then u; = log n; — log[e "™ + ¢"*/].

Example 8.5.6: Reconsider Example 8.4.4. Here we will discuss only two
models, using S-Plus, rather than the procedure CATMOD in the statistical
computer language SAS, or the command LOGLINEAR in SPSS.

Usually we will wish to fit the saturated model, for which f = Y, then do
an ANOVA-type breakup of the fi;; = log iy, to obtain estimates of u, 5, e;,
etc. Estimates of the standard errors of these parameter estimators and x?
statistics can then be used to decide if these estimates are sufficiently close to
zero to omit them from the model They will require estimates of the standard
errors of these terms, and some chi-square statistics, so we postpone that until
these topics have been discussed. We first discuss the model which differs from
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the saturated model only in that the term (ser);;, is missing, the (123 1213 23)
model. The x-vectors can be taken to be

1 for age level 1
1 for men

{ 0 for age level 2

-1

Xo, the vector of all ones, s = { e, =

for women’
for age level 3

0 for age level 1
1 for response agree

e = 1 for age level 2, r={_l

-1

otherwise
for age level 3

and vectors corresponding to interaction terms, which are their componentwise
product: (se),,, (se),,, (sr),;, (er),,, (er),,. For example,

_ - _ - ) -
o i1 o1
P 0o o 0 0
o 1 -1 1 -t

Sl PR (R T D el AT

1 -1 0 0 0 0
|1 -1 L1 -1 SRR
T 0 0] T2 47]
-1 10 196
N 4“4 179
@:=1 o of ™ Y| g 3|
-1 173 283
L1 1 | 28 187

The choices of the spanning vectors are somewhat arbitrary. These have been
chosen to be linearly independent and to span the orthogonal subspaces ¥,
V,, V., V,, Vie, Vorr V... The coefficients B, ..., By are, in the usual notation of
the analysis of variance 4, s,, e,, €,, I, (5€),, (5€),2, (57),,, (er),,, and (er),,.
The other terms can be found from the additive property. For example,
(se),, + (s€);2 + (s€),3 = 0, so that (se), = —(se);; — (s€),,.

This is the only model for three categorical models with no explicit formulas
for the ri;,. We seek rir having the same inner products with these independent
vectors as does y. That is, the marginal totals for m and y across all
combinations of any two factors must be the same. For example, the 2 x 2
table of sex and response combinations determined by adding across education
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226 422

287 508
solution. The coefficient vector is B = (g, 5, €., e, r, (€)1, (5€)12, (7)1,
(er)y 1, (er)zy).

To facilitate the use of matrix algebra these 2 x 3 x 2 arrays were rewritten
as columns of 12, so that the design matrix X was 12 x 10. After the
computations for ﬁ were completed, i = Xp was determined as a column vector
of 12 components, then rewritten as a 2 x 3 x 2 array for improved under-
standing. All of this was carried out using the S-Plus function “glm.” That
function provides options (using a contrast option) which determine various
spanning vectors. The choice made here deviates in sign only from those given
by the contrast = “contr.sum” option. Other contrast choices provides the same
i, but different . The solution was

must be l: ] The Newton--Raphson method was used to find the

B = (4.550, —0.068, —0.491, —0.645, —0.256, 0.050, —0.132,
—0.006, 0.566, —0.009)".

- - p- -
4344 3736 7705 4195
4724 5.265 11264 193.36
{3592 5229 | 3631 18669
= N m= N
B=1 4394 5229 8095 4305
5138 5.655 170.36 285.64
| 3575 5.189.] | 3569 17931

and - -

—505 505

264 264

. 769 —7.69

e=y—m=

505 —505

264 —2.64

769 7.69.

For example,

A =R+8 +é +Ff + (58, + Gy, +(er),

=Po+ P+ B+ Bu+Bs+ B+ B

To verify that e V, check all the two-way marginal totals. For example,
226 422
287 179

p eV, check that p is orthogonal to each of the vectors in the three-way
interaction subspace V,,,. We can do this by showing that ji is orthogonal to the

summing r across educational levels, we get [ ], as for y. To see that
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two spanning vectors

T 1 -1 "0 0]

0 0 1 -1

I, =se;r= - : , and I, =se,r= - !
~1 t 0 0

0 0 -1 1

1 =1 . 1 -1

These vectors define contrasts, L; = (I;, p), whose estimates under the saturated
model are L, = (I,,p) = —0.3048 and L, = (I, p) = —0.8860. Estimates of
the standard errors of these L; assuming only the saturated model, are
é, = (1,,1/y)"? =0.3175, and &, = (I,, 1/y)""? = 0.3775. The z-values are
therefore z, = 0.960 and z, = 2.347, and the Pearson x? value is 5.948 for 2
d.f (32 5 = 5.991), indicating that this model may be barely believable. Still,
the fit is quite good, and we may be satisfied with it. The contrasts L, and L,
are zero for the model with three-way interactions zero. The same is therefore
true for the estimates L, and L, under this model.

Estimates of odds-ratios are obtained by taking the antilogs of these
contrast estimates f.i. Confidence limits may be obtained from the antilogs of
the endpoints of confidence intervals on the L;.

The estimate p;; for the conditional probabilities p,; = my;,/(m;;, + my;,) of
agreement for the sex—education classification ij is obtained by substituting m,;,

. 647 0. ‘
for m;;. We obtain: p = [0 647 0368 0.197
0.653 0.374 0.166

little role, and that the probability p;; is a decreasing function of j. This suggests
that we try a model with no sex-response interaction, and that we replace the
terms (er); by a covariate which is linear in k.

Consider the vector

]. Notice that sex seems to play

-1
0 0
1 -1
w=
—1 1
0 0
b —ld

This vector should serve as a good stand-in for the two vectors (er);, and (er),,.
The resulting subspace V = Z(xo,s,, €, €, T, (5¢);, (s€);,, W) is 9-dimen-
sional. We obtain, using the Newton—Raphson method, after three iterations:
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C4.339 3.746 | ™ 76.65 4235
4731 5.260 11346 192.54
) 3.581 5232 . 3589 187.11
= ) m=
B=14388 3774 8047 43.53
5.145 5.651 171.31 284.69
L3.562 5.192 L 35.22 179.78
and . -
—465 465
—346 346
X 8.11 —8.11
e:y-—m:
465 —4.65
346 —346
[ —8.11 811
ﬁ fl él éz fl
B; 4.550 -0.068 -0.488 —0.647 —0.259
é(B;) 0.034 0.030 0.050 0.039 0.029
; 1357 -228 —-985 —16.45 —8.81
(M (58)2 G B.
B, 0.049 —0.132 —0.005 —0.561
é(B,) 0.050 0.036 0.029 0.047
z, 1.00 3.65 -0.18 —12.04

The standard error estimates given here were obtained under the assumption
that the observed frequencies are independent Poisson r.v.’s. For the independent
multinomial model, the standard errors for §, is actually a bit smaller. However,
since §, is of no interest, its value being determined by the numbers of men and
women sampled, no harm is done by the inclusion of a poor estimate. This will
be discussed further in Section 8.7.

Under the null hypothesis that 8,=0, Z;= B]/é(ﬂj) is approximately
distributed as standard normal. The only Z; not significantly far from zero
corresponds to (se),,. We are not tempted to drop this term from the model
because (se),, obviously should be included. Of course, the coefficient —0.561
of w is of most interest. We estimate that the logit log(p;;/(1 — p,;)) decreases
0.561 for each step upward in educational level. That is, the odds for agreement
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are multiplied by the factor e ®3¢! = 0.571 for each step upward in educational
level. The Pearson and log chi-square values, measures of the distance from Y
to 1 for this model were 6.03 and 6.06 for (12 — 8) d.f, indicating a reasonably
good fit. Estimates of the probability of the response “Yes” are given, under
this model, by p;; = my;,/(fy;, + M) = My, /Y. . These are

Men Women
1 0.644 0.649

2 0371 0376].
3 0.161 0.164

Education
Level

Problem 8.5.1: Let Y = (Y, Y3, ¥;) have a multinomial distribution with
n = 150, p = (py, p2, p3), where log p, = py = B, + ;. log p, =y = B, + B,
log p3 = u3 = B .

(a) Give explicit expressions for the MLE’s  of B, fi of g, and m of m, p of
p. Hint: B, and B, may be expressed very simply in terms of m,, m,, m;. The
relationship between B and it must be the same. Remember that (Y, x,) = (i, x,)
and (Y, x,) = (i, x,), where p € V = L(x, x;).

{b) For Y = (80, 60, 10) find B, {i, b, p. R

(c) Use the Newton—Raphson algorithm to find B, beginning with @ = (0, 1).

Problem 8.5.2: Find the MLE of (8,, #,) in Example 84.1.

Problem 8.5.3: Find the MLE of B = (i, 5, i3, H4.7) in Example 8.4.2.
Also find the MLE of B = (u,, #2, U3, 14> Yo, ¥1)- Compare the corresponding
estimates of m.

Problem 8.5.4: Suppose the 1,000 father-son pairs of Problem 8.4.6 are
classified as follows:

E, E, E, E, Es
E, [52 4 21 9 47 131
E, | 64 87 45 13 71| 216
ff[;‘:f;‘::“ L1 32 s 83 a0 28| 24
E. | 23 19 51 8 af a7
E, Lo 12 38 s0 sad 194
181 222 238 194 165 1,000

(a) Suppose that p € V,. That is, p and m are symmetric. Find the MLE'’s of
p and m.
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(b) Suppose that p e V,,. That is, g is quasi-symmetric (see Problem 8.4.6).
Show that for this model the MLE is

5200 4556 1935 10.07 4.027
6344 8700 4625 1249 6383
3365 57.75 8300 4041 27.18
2193 1951 5059 8200 4297
L 998 1217 3882 4903 84.00.

3
]

(c) Determine the Pearson and log likelihood goodness-of-fit statistics
=Y (Y;— dy)/my; and G* =2Y Y;log(X;;/y;), for the models of (a)
ij ij

and (b). If pe ¥, these x* statistics are approximately distributed as 2
with df = (n — dim(}})) = (25 — 15) = 10. Similarly, if pe V,, then df =
(25 — 19) = 6. Would you reject either of the null hypotheses pe ¥, or pe ¥V,
at level a = 0.05?

Problem 8.5.5: The numbers of cases of a rare cancer among the residents
of a state in one year, broken down by county were as follows:

1 2 3 4 5 6
County population in 1,000 213 147 89 190 284 126
No. of cases 14 25 26 22 38 45
No. of people over 50 in 1,000's 58 49 34 56 83 49

Let ¥, be the number of cases in county i. Suppose that ¥; ~ #(m,), independent
in different counties.
(a) Suppose m; = 0z;, where z; is the number of people (in 1,000’s) in the
population. Find the MLE’s of § and m, both in symbolic and numerical form.
(b) Suppose that m; = z, exp(f, + B,p;), where p; is the proportion of people
over 50 in the population. Find the MLE’s of § = (B,, 8,) and m.

Problem 8.4.6: Consider a 2 x 4 table Y with row vectors Y,, Y, satisfying
the independent multinomial model, Y, ~ .#(p;, n;) for i =1, 2. Let R(j) =
p.;j/p2; and H(j,,j;) = R(j,)/R(j;). Let .# be the model for which
log[H{j,,j;)] = B(j; — j,) for some parameter B, and each j,, j,.

(a) Express the interaction terms 4;; in terms of § for the model .#. Use this
to write the model in vector form, using just one vector to represent interaction.
Why must row effects be included in the model? What is dim(V)?
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37 47 83 133

(b)ForY = [
62 52 68 68

will need a computer, or much patience. For those without a computer, we give
m,, = 36.833, ih,, = 46.195. Thought and a $10 calculator should be enough
now. Verify that G* = 0.176, indicating a very good fit.

(c) Why must each m under this model satisfy

] find the MLE of m under model .#. You

[myimaymyym3/Imyymyymyamy,] =1,
and
[mn1"'%2"'?3"'24]/["'21"'?2"'%3"'14] =17

(d) Let the model .#* correspond to p, = p,. Find the MLE of m for this
model. Which model, .# or .#* seems most appropriate? What is the
subspace ¥* corresponding to .#* and its dimension? Verify that G* = 24.97
for .#*, indicating a rather poor fit.

8.6 THE CHI-SQUARE STATISTICS

For linear models F-statistics were used to measure the adequacy of the fit of
a model. We always had to begin with a model, called the full model, and used
the F-statistic to help decide whether some smaller linear model was adequate.
For log-lincar models, with Poisson or multinomial sampling, we use chi-square
statistics, the general name for statistics which are asymptotically distributed
as x° under the null hypothesis. These statistics are measures of distance
between two vectors, either between Y and mh, or between ri and another
estimate of m, say M.
We will be particularly interested in two distance measures:

Pearson chi-square: x%(x,y) = 3 (y; — x.)?/x;, defined for all y, >0, x; > 0.
i
Log chi-square or deviance: GX(x,y) =2 Y y; log(y,/x/)

defined for all y,>0,x; > 0.

Let J be the vector of all ones. In most applications ) x; = (J,x) = (J,y) =

Y. v, = n. In this case these statistics can be written as inner products.
i

ey = Z‘:yf/xa —n=@/xy-d.)=(x-1y),
and
G(x,y) = 2y, log(y/x)) = 2[(y, log y) — (¥, log x)].

x(x,y) obviously takes its minimum value for x =y. To see that this
is also true for G?, use Lagrangian multipliers. For fixed y let H(x, 1) =
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(v, logy — log x) + A[(x,J) — n]. Then ; H(x, A} = —yjx + AJ. Setting this
b3

equal to the zero vector, and using the fact that (x, J) = n, we get x =y. The
matrix of second partial derivatives is diag(y/x), which is positive definite, so
that this is a minimum. Since G%(x, x) = 0, G*(x, y) > 0 whenever ) x; =Y y;.
It is easy to show that for constants c,, c;: x(c,X, c2¥) = ¢, x2(x,y) +
(cy — cz)n and G*(c,x, c,¥) = ¢, G*(x,y) + c,nlog(c,/c,). Notice that if ¢ =
¢y = ¢, then y2(cx, cy) = cx?(x, y) and G*(cx, cy) = cG(x, y).
Another useful identity:

20 Y) = 2 %) = X 0 = x) [x = Uy] =Y (0 — xiV/xp. (861)

This last term will be much smaller than either ¥? if x and y are close, so that
x2(x, y) and x*(y, x) will often be relatively close.

The distance measures G3(x, y) and x(x, y) will be close whenever x and y
are close in a sense to be discussed. By Taylor’s Theorem for || < I,
log(l — 8) = —& — (1/2)6% + 0(6*), where lim 0(8%)/62 =0. For a pair of

50
numbers (x,y) let A=(y—x)/y=1—x/y. Then log(y/x) = —log(x/y) =
—log(l — A) = A + A%/2 + o(A?).

Let A, = (y; — x;)/y;. Then G’(x y) = 2y, log(y/x)) = 2[(y. A) + (v. A%/2) +

Z o(AY)y;] = Z (y: — x;) + xX(y, x) + Z y;0(A). In most application ) y, =

Z X, =n, SO that the first term on the nght is zero, and

GHx,y) = 1%y, x) + ; y;0(A). (8.6.2)

After all this preparatory work we are ready to replace x and y by estimators.
Let p be a T-component probability vector and let {p, = rh,/n} and{p? = t¥/n}
be two sequences of estimators of p, with components summing to one for each
n. Let

Z, = (h, — np)//n = (b, — P/n. and ZF = (i} — np)/\/n = (¥ - p)/n.

Then iy, — i} = (7, — Z,f)\/n. Suppose that the sequences {Z,} and {Z*} arc
each tight. A sequence of random variables { W, } is tight if for every ¢ > 0 there
exists a constant K, such that P([|W,| > K,) < ¢ for all n. A sequence of random
vectors is tight if each component is tight. The tightness of the sequences {Z,}
and {Zy} implies that there is a cube in T-space within which all these random
vectors will lie with probability close to one. Tightness is implied by the
convergence in distribution of the sequence. For our two sequences it implies
that {,} and {p?} both converge in probability to p.
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Theorem 8.6.1

(l) Dl(ﬁln’ ﬁ]:) = [xz(mn’ ﬁl:) - Kz(m:’ mn)]
= n[x*(Ba, P¥) — x*(P%. P.)] converges in probability to zero.

(2) D,(ih,, ?*) = [G*(1h,, h}) — x*(th,, m*)] converges in
probability to zero.

(3) Dy, ) = [G*(1h,, m?) — G2(r?, m, )] converges in
probability to zero.

Proof: From (8.6.1)

Dl(mn’ ﬁ]:) = z (mm' - m:i):’/mnim:i = z (Zni - Z:“)3n3/2/[n2pnip:;],
i i

which converges in probability to zero. From (8.6.2)

Dz(ﬁ‘m ﬁl:) = Xz(li'm lﬁ:) + Dl(mn’ ﬁl:) + z mm‘('ﬁnl - 'ﬁ:.)3/'ﬁ2;

The second term converges in probability to zero by (1). The third term is
Y np(Z, — Z%)*n*?/n*p},, which also converges in probability to zero.

To prove (3) note that

Dy(sh,, @}) = [G(sh,, @}) — x*(th,, )]
+ [x*(,, mY) — x’(@y, )] + [P(hY, i) — Gy, )],

and that each of the terms within brackets converges in probability to zero by
(1) and (2). ]

For simplicity of the discussion and proof we have defined Z, = (p, — p)\ﬁz,
and Z} = (pf — p)\/;. However, p can be replaced by p, =p + d/ﬁ, for a
constant vector d with (d, J) = 0, so that p, remains a probability vector, and
the theorem still holds. The limiting distributions of x?> and G? will be depend
on d, in a way to be discussed later.

Notice that we can take M} =np, and, from (1), conclude that
p lim[x*(h,, p) — x*(p,m,)] = 0, (limit in probability) if {Z,} is tight. In

particular, if Y, ~ .#z(n, p), then, as shown in Section 8.2, y*(p, Y,) is asymp-

totically distributed as x3_,, so that x*(Y,, p) = Y, (¥,; — np,)*/¥,; differs from
i

x*p,Y,) by a random amount which converges in probability to zero as

n — ac.
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G? and y? are measures of distance, though they are not metrics because
they are not symmetric in their two arguments. Theorem 8.6.1 shows that when
{Z,} and {Z}} are tight, as will be the case if the model used to determine rh,
and m? is true, G2 and y2 are almost symmetric, and therefore “almost” metrics.

G? possesses two other useful properties. Consider the product multinomial
model, with parameter vectors p = (p;, ..., px) and n = (n,, ..., n,) as defined
earlier. Suppose that log m = p = log(n,p,, . . ., m:p;). The log likelihood func-
tion for the multinomial model is (B, y) = (y, ») — 3. n;log(n;} + C*, where
C* does not depend on f. But, G*(m, y) = 2(y, log y/m) = —2(y,p — logy) =
~2L,.B.¥) + 2y, logy)—2) n; log n; + 2C*. As a function of §, Gz(m y)
takes its minimum value when B = f, the MLE for . Thus, in this sense, (B, fi, )
is the minimum distance estimator, as well as the MLE of (8, p, m).

Another useful property of G2 is its additivity as a measure of distance. First
consider any subspace V of R, and let (ji, M) be the MLE for (p, m)
corresponding to an observation Y = y and the subspace V. Then (y —m) 1L V,
so that (th,v) = (y,v) for all ve V. If V| = V,, with corresponding MLE’s m,,
i, then for any v € V;, (i, v) = (y, v) = (fh,, v). Now consider three subspaces
V, o V, o V; of Ry of dimensions k, > k, > k4. Let (i, f;) be the maximum
likelihood estimator of (g, m) under the model which states that p; € V. (We
will shorten this to “the model ¥” and will write G} to denote G*(riy;, y;)).
Then

G}y =20y, i, — i) = 200, i, — fi;) + 20, i, — )
= G}, + 2(f,, i, — R;y) = G3, + G,.

The third equality holds because (i, — fi;) € V; and, from the previous sentence,
fir, and i, have the same inner product with all vectors in V,.

If we wish to test the hypothesis that p € V;, assuming the model V;, we can
take ¥, = Ry, so the model ¥, is saturated and mh, = y. Then G>(th,, th,) =
G*(ih,, y) — G2(hh,, y). For this reason, the “distances” G*(i,y) can be
conveniently combined to test various hypotheses as appropriate models are
sought. The same additivity does not hold for x?, though Theorem 8.6.1
indicates that when a null hypothesis p e V; holds, the additivity holds in
approximation. See Figure 8.9, where .#; = {m|m = exp(p), p e ¥ }.

Example 8.6.1: Consider the sampie space of 2 x 3 tables. Suppose that

030 0.18 0.12
th d riable Y = (¥;) ~ .#,(40, p) f = . Noti
e random variable (%) (40, p) for p [0.20 0.1 0.08] otice

that rows and columns are independent, so that pe V = #(R,,R,, C,,C,, C,),
a 4-dimensional subspace. Then m = 40p and

—-1204 —-1.715 -2.120
= log m = log 40 + .
—1609 2120 -2.526
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G2(mg, y)———/ )}Gz(ﬁn,y) \
/ o
/ﬁsez(mz. )

G2(mg, M)

]

FIGURE 89 T.space.

—~
_
_ e,

Notice that p has additivity. That is, u;; — ;- = pp; — gy, which is equivalent
to the corresponding odds-ratios being one.

One thousand observations were taken on Y, then x* = y*(i, Y) and
G? = G*(, Y) were determined for each. Figure 8.10 contains a histogram of
the x? values obtained and a scatterplot of the pairs (x2, G?). These pairs had
mean (2.009, 2.147), variances 3.480 and 4.503, and correlation 0.987. The
limiting distribution has 90th and 95th percentiles 4.605 and 5.991. The
x*-statistic exceeded these values 93 and 44 times, while the G2-statistic exceeded
them 111 and 65 times.

. ) .12
Continuing with the example, suppose that we let p = [O 35013 0 ]

0.15 0.17 0.08
Independence of row and columns no longer holds. In fact, p = log 40 +
[—1.050 —2040 -2.120

—1.897 —1772 -2526
[ 0.260 —-0.298 0.039

—-0260 0298 —0.039
determine x* = y*(ih, Y) and G? = G*(mh, Y) for 1,000 observations on Y. As
shown in Figure 8.11, y? and G? are still close. The histogram for y* has moved
to the right. We will indicate later than both x* and G? are asymptotically
distributed as noncentral x> under certain conditions. x> and G? had means
4.288 and 4.482, variances 11.85 and 13.97, and correlation 0.995. They exceeded
1240 =4.61 by 365 and 377 times among the 1,000 Y's, and exceeded
X245 = 5.99 by 262 and 275 times, indicating that the power for each test is
approximately 0.37 for the a = 0.10 test and 0.27 for the o = 0.05 test. As

]. The vector of interaction terms is p, =

]. Again we fit the independence model and
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FIGURE 8.10 Histogram of Pearson chi-squares and scatterplot of (Pearson, log) chi-squares
for 1.000 experiments for the case of independence.

will be shown later, the power may be determined in approximation from the
Pearson-Hartley charts for the noncentrality parameter § = G*(m,, m) = 2.222,
where m, is the MLE of m corresponding to the observation m = 40p, and
v, = 2, v, = infinity.

The Wald Statistic:  Still another goodness-of-fit statistic is sometimes used.
Let Y satisfy a log-linear model with p = log m = X§, where X is T x k, of
rank k. Let ¥ be the column space of X. Let ¥, and ¥, be subspaces of V of
dimensions k, and k,, ¥, < V;, where ky, < k; < k. Let g and th, be the MLE’s
of m corresponding to ¥, and V;. Let ria be a consistent estimator of m. f could
be the MLE of m corresponding to V, or thy, or th, as long as rh is consistent.
Define I(sh) = X'd(fh)X, the estimator of information matrix for the model
m e V. Define W(u, v) = w'I(v) " 'u. Then

W = Wik, — i, ) = (i, — ) XIGh) ' X'(h, —p)  (8.6.3)

is called Wald’s statistic. In more generality, Wald’s statistic W is of the form
W@ =31 'y, where ¢ is the vector of first partial derivatives of the log
likelihood, and ¥ s a consistent estimator of the information matrix, the negative
of the matrix of the expectations of second partial derivatives of the likelihood
function. If ¥ is asymptotically multivariate normal with mean vector 7,
covariance matrix C, then W is asymptotically noncentral x> with k degrees of
freedom and noncentrality parameter y'Cy. It can be shown that W(ih, — th,, )
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FIGURE 811 Histogram of Pearson chi-squares and scatterplot of (Pearson, log) chi-squares
for 1,000 experiments for a case of dependence.

is close to G*(rhy, h,) and y*(ih,, t,) if h, — i is reasonably close to 0, and
that W(h, — ,, h) has the same asymptotic distribution as do G*(ih,, ;)
and y’(ih,, ,) under the conditions given in Theorem 8.6.1. Notice that
when i = Y, W(h, — th,, th) = y*(th,, ;). Note also that if ¥ = ¥, then
W, — sy, m) = Wi, — Y, m). We omit proofs.

The Power Divergence Statistic: Read and Cressie (1988), in their book on
goodness-of-fit statistics, discuss a statistic they introduced in 1984, the power
divergence statistic:

P(x, y) = [2/i(1 + H1(y, (¢/x)* = 1).

1* is defined for all real A by assigning the values [°=lim[* and
A=0
I"'= lim I* Then, I°=G? and I™! = x* (sec Problem 8.6.6). 1 /2 =
PR
4y (y'* — x}')? = K(x,y) is called the Freeman-Tukey statistic. Read and
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Cressie show that I* behaves asymptotically as do G2 and x2. They recommend
use of I3 as a test against general alternatives.

Problem 8.6.1: Let y, =(2520,15,10), y, =(225,225,15,10), y, =
(20, 20, 20, 10).

(a) Verify that G%(y;, ¥;) = G*(y,, ¥:) + G3(y3, ¥,). Is this true for any three
vectors y,, ¥,, ¥37 If not, why is it true in this case?

(b) Determine whether the equality of (a) holds when G? is replaced by 2.

Problem 8.6.2: Lety, = (358,245,417), y, = (367, 233, 420). Compare the
vatues of GX(y,, ¥2), G*(¥2, Y1), X2(¥1, ¥2), X2(¥2, Y1), K(¥2, Y1), K(¥4, ¥2)-

Problem 8.6.3: Consider Problem 8.5.6. Let ih be the MLE of m under
model .#, and let m* be the MLE of m under .#* (equivalently, B = 0).

(a) Why should G3(m*, Y) = G*(rh, Y) + G*(h*, m)?

(b) Verify this equality for Y =y, m, m* as determined in Problem 8.5.6.

Problem 8.6.4: Prove that x2(x, y) = ((y/x — J), y) = Y. y?/x; — n whenever

Zx.-=Zy,-=n-

Problem 8.6.5: Prove the statements concerning the Wald statistic  made
in the next to last sentence and the previous sentence of the paragraph preceding
the discussion of the power divergence statistics.

Problem 8.6.6: Show that lim I*(x,y) = G*(x,y), lim I*x,y) = xX(x,y)

A0 A=—1

I72(x,y) = x%(y, x), and 1" V3(x, y) = K(x, y).

87 THE ASYMPTOTIC DISTRIBUTIONS OF §, ji, AND

Under suitable conditions each of the parameter vectors fl, fi, and m are
asymptotically distributed as multivariate normal with mean vectors B, p, and
m, and covariance matrices which depend on the space ¥V, and on the subspace
V, of V corresponding to the probability model chosen: Poisson, multinomial,
or product multinomial. We will present the results of this asymptotic theory
with only a hint of the proofs. In general, the proofs depend on the asymptotic
normality of the multinomial distribution plus the delta method, which exploits
the fact that for large n smooth functions are almost linear. With the exception
of a few exact probability statements (the packages StatXact and LogXact are
exceptions), all probability statements found in computer software packages for
the analysis of frequency data use the approximations given by this asymptotic
theory.

Let {Y™,n=1,2,...} be a sequence of T-component random vectors with
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respective mean vectors m™ and log means p™ = log m™. We suppose that
lies in a subspace V of the space of all T-component vectors and that the vector
J lies in V. To get asymptotic results for multinomial and Poisson models, we
suppose that m™/n — m* as n — . Thus, log m™ —logn = p™ — logn -
logm*=p*e V.

For multinomial models we have the following. Let #,,..., %, be a
partitioning of the index set .# of the vector Y™. Let wy,...,w, be the
indicators of .#,, . . ., %, and suppose that these k, vectors are contained in V.
Let Y™ be the vector of components of Y™ corresponding to .#; and suppose
Y™ ~ 4, (n;, p;), where k; is the number of elements of .#;. Then E(Y{™) = n{™p,,
so that m™ = (n{"p,, ..., n{¥p,,). The sequence m™/n converges to a constant
vector m* if and only if n{”/n converges to a constant for each i. The
approximations given by the asymptotic theory to be discussed here will be
best when all n, are large. The index n in the superscript can usually be
considered to be the total sample size, though this cannot be the case for the
Poisson model. If n is the total sample size, then m* = (p,,...,p;,), 50
that the components of m* add to k,. We suppose also that Y{",..., Y{? are
independent.

In the following let cach vector be written as a T-component column vector,
so that we can use matrix algebra. Suppose that X =(x,,...,X;), and
Xy = (wy,..., W), and suppose that both matrices have full column rank.
Often, but not necessarily, w, =x; for i=1,...,k,. We do suppose that
Vo= 2L(wy,....w ) c L(Xy,...,x) = V.

Define D* = diag(m*) = d(m*), the T x T diagonal matrix with diagonal
elements m*. We will not in general know m*, but will be able to estimate
it. Let

H=[XD*X]"! and H,=[X,D*X,] "
P, =XHX'D* and P, =X,H,X;D*

H is the negative inverse of the Hessian matrix of the Poisson likelihood
function I(y, p). P, and P, are orthogonal projections onto V and onto ¥,
with respect to the inner product ((x, y)) = x'D*y. For example, if x € V, then
x = Xb for some b, so that ((x, P, y)) = PX'D*XHX'D*y = bX'D*y = x'D*y =
((x, y)). We use the subscripts ¥ and ¥, because these projections depend on the
subspaces and not upon the spanning vectors for these subspaces. To sce this,
replace X by XA for A a k x k nonsingular matrix.

In the case that X, = J, it follows that P, = Jp*, where p* = m*/J'm* is
a probability vector. In the case of 3 x 4 tables with row sums fixed, the product
multinomial model, the columns of X, span the row space, Py is the 3-block
diagonal matrix with ith block Jp?, where p; = m}/J'm¥, a 4-component
probability vector. For the Poisson model V; = #(0) and X, is the T x 1 0
matrix.

In the following 0‘;’(1) for n=1, 2,... is a sequence of random vectors
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converging to zero in probability. Then ®™/n — m* in probability implies
that

1 A® — ™ — 0 in probability,

@

;;; (Yw — m™) 5 NAO, D*(1; —- Py)),
n

3
B — B) = — - COY* — m®) + 000,
n
where
C = (X'X)"'X'(P, — P,,)D*,
so that
(@™ = B) 3 NO,H - Q),
for

Q=M"XP, D* XM}, M =XX

Q reduces to
[“° g] if X = (Xo, X,).

0
@ ) |
@ — ) = i P, )D* (Y™ — m®) + opX1),
n
so that
JE? — ™) 3 N0, (P, — P, )D* 1),
(5) (™ - m®) = L D*P, — P, )D* Y™ — m®) + o),
Jn Jn
so that
L@ — m®) 2 N0, D*P, — P,,)),
\/ n
©) 1 1
- (Y - M) = — (I — Py)(Y® — m™) + o(1),
vV n \/ n
so that

1
— (Y — ) 3 N(0, D*[I; — Py ),
n
1 1 . .
(N e (Y — ™) and — (@™ — m"™) are asymptotically independent.
v n n
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These results are proved in Haberman (1974, Ch. 4) and a less abstract proof
is given in Cox (1984); the original result in a less general form is due to Birch
(1964).

Part (2) follows from the multivariate central limit theorem. Part (3) can be
credited to Birch, though it follows from general results on MLEs (Cox 1984).
The other results follow from (3) through the relations g™ = Xp™, m® =
exp(), and the multivariate 6-method. Notice from (3) that the variances of
the Bj are _proportional to the diagonal elements of H — Q. If X = (X,, X,),

H, 0 , . .
then Q = [ 00 0]’ so that the coefficients corresponding to the vectors making

up the columns of X, have variances which become smaller as the sampling is
confined to smaller subsets of the populations. If the model is independent
Poisson, then Hj is the zero matrix, so there is no reduction. Under the single
multinomial model, Hy is the 1 x 1 matrix 1/trace(D*) = 1/} p¥ = 1.

The coefficients corresponding to the columns of X,, those for which the
inner products with m are not fixed by the sampling, have distributions which
are asymptotically unaffected by the sampling scheme. That is, their asymptotic
variances are the same whether or not sampling is Poisson, or single multi-
nomial, or even product multinomial. Since we are usually interested in these
coefficients, we can in a sense be a bit careless in specifying X, so long as the
vectors corresponding to these coefficients are not included in X,. In fact, some
software packages ignore the restrictions implied by multinomial models and
present estimates of standard errors which are those given by the Poisson model.
These estimates are therefore too large in the case that sampling is multinomial
for the coefficients corresponding to X, but are the correct estimates for other
coefficients.

Example 8.7.1: Let Y, ~ .#,(100, p) and Y, ~ .#,(200, p) be independent,

Y 20
with p=(0.2,0.3,0.5). Let Y = ‘], a2 x 3 table. Then m = [ 30 50],

Y, 40 60 80
= [2'996 3401 3'912], and in the usual notation for log-linear models,
3.689 4.094 4.605

A=3.783, ij = —0346, A3 = —0441, A} = —0.035. For example, y,, =

A+ A + A2 =3.783 + 0.346 — 0.035 = 4.094. These are the coefficients of x,,
1 1 1 0 -1

the table of ones, r= [ ! ], ¢ = [ ], and ¢, =

o 1 o1 —1 -1 -1 10 —1

o 1 | in the representation of p. That is, p = Axo + Alr + ¢, + Alc,.

Let X be the 6 x 4 matrix obtained by writing these vectors as columns. The
second column of X becomes (1,1,1, —1, —1, —1). Since n =300, m* =
20 30 50

/300, and D* is the diagonal matrix with diagonal
|40 60 100
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(20, 30, 50, 40, 60, 100)/300. Then

1.273 0375 0.519 -—0.037

0375 1125 O 0
1 0519 0 2815 —1.630
—0037 0 ~1.630 2259

Since row totals are fixed by the multinomial sampling, X, = (x¢, ), written
. 1 131t 8/9 3/8 )
as a 6 x 2 matrix. Then H,, = = , and Q is the 4 by
173 1 3/8 8/9
4 matrix with H, in the upper-left corner, zeros elsewhere. The asymptotic
covariance matrix for § is

000049 0 000173 —0.00012

0 0 0 0
UROH-QD=| 106173 0 000938 —0.00543

—000012 0 —000543  0.00753

Y was observed independently 500 times. The observed sample variances were
0.00051, 3.6 x 107'5, 0.009 04, 0.008 21, in close approximation to that given
by the theory. The observe mean vector was (3.780, —0.347, — 0.440, —0.033),
indicating that the estimators are almost unbiased. The variances for A and 1}
are considerably smaller than those given by (1/300)H, the asymptotic
covariance matrix for Poisson sampling. The asymptotic variances for 42 and
A2 are the same for Poisson and multinomial sampling. The asymptotic
variances for the components of i, the diagonal elements of 300 D*(P, — P, ),
are considerably smaller for the multinomial model.

The asymptotic distribution of the G2 and x? statistics are easy to deter-
mine from parts (6) and (7). Let W, = D*~ V%X, — m"'))/\/r—z. Then by (6)
W, 3 N0, I, — P,), where B = D*'2X, and P, = B(B'B) " 'B is projection
onto the column space ¥, of B. Theorem 2.5.2 then implies that |W,|2 =
x*(m™, Y™) converges in distribution to x*, where v=dim(V3)=T— k.
Applying Theorem 8.6.1 with m, = Y™ and m* = m®, we conclude from (2)
that G*(m™, Y™) has the same limiting distribution.

Similarly from (4), we conclude that x> (m™, ™) and G*(m™, m™) are each
asymptotically distributed as x> with (k — k) degrees of freedom.

From (7) we conclude that the statistics in this and the previous paragraph
are asymptotically independent. Further, under the notation of Theorem 8.6.1,
with ¥, o V, o V;, the statistics x2(ta{", Y™), ¥> (0", mY"), and x*(m§, m§)
are asymptotically independent, and the same result holds if G? is substituted
for x2. Even more generally, we can consider a sequence of nested subspaces



378 ANALYSIS OF FREQUENCY DATA

Vo=Rr=> ¥, > - >V, and the resulting x*-statistics @\ = y*(h{", th{?,)
are asymptotically independent, with @, asymptotically x* with
dim(¥)) — dim(¥;_,) d.f. if m* € ¥,_,. Of course, the same result holds if G2
replaces y2.

In applications the covariance matrices given by (1) to (7) are unknown. For
example, we will suppose that f)—l} is approximately distributed as
N0, (1/nYH — Q). H and Q depend on m* = lim m"/n. However, a, =

n—@

m'"/n is consistent for m*, so that we can replace (1 /n)(H — Q) by (1/n}H — Q),
where H and Q are obtained by replacing m* by a, in the definition of D*.
H/n is obtamcd in the last step of the Newton- Raphson algorithm used to
compute |3 The constant (1/n) may be absorbed into H — Q, if we replace
D = d(m*) by d(mh). Similarly, for large n, we can approximate the distribution
of (™ — m™) by the Ny(0,nD*(P, — P, )) distribution, and replace each
occurrence of D* = d(m*) by d(m), to get estimators Py and Pyo of P,
and P,,. Then the distribution of m™ —m"™ is approximated by
Ng(0, d(m)(Py _Pyo)) In estimating the covariance matrix of any of the
estimators ™, i, or m" the rule is therefore simple: replace D* whenever it
occurs by d(m) and don’t worry about the factor n.

Proportional Iterated Fitting (The Stephan—-Deming Method: Consider the
four-way table indexed by iy, iz, i3, ig, With 1 < i, < T}, T, =2, T, =3, T; =4,
T, = 5. The model (12341213 124). The model (12341213 124) may be
written in the reduced form [13], [124], since, assuming the model is heier-
archical, the presence of the terms 1, 2, 3, 4, 12 is implied by the presence of 13
and 124. Similarly, the saturated model may be written as [1234], and the model
(1234122334124 234) may be written as [124], [234]. The reduced form
makes it easy to determine a set of sufficient statistics. From Theorem 8.7.1 for
the model [13], [124] the collection of sums {Y;.,., Y.} is sufficient. For
the model [124], [234] the collection {Y;.,; Y.} is sufficient. For the
saturated model { Y;;,,} is sufficient, as it is for all smaller models. If a collection
of statistics is sufficient for a model V, then it is sufficient for a smaller model
het.

In general, consider a d-dimensional table indexed by i,,i,,...,i;, with
I<i;<sTforj=1,...,d Let By,..., B, be subsets of the integers {1, ..., d}
correspondmg to the reduced form of the model under consideration. For
the four-way table with the model [13], (124] above r =2, B, = {1,3}, B, =
{1,2,4}.

Let # = {A;,j=1,...,d;} be the partitioning of the cells defined by the
indices in B;. All cells in any A;; have the same levels for all indices in B,. B,
defines a partitioning 4, of the 120 cells into d, =2 x 4 = 8 subsets, each
of 3 x 5 =15 cells. B, defines a partitioning %, of the 120 cells into d, =
2 x 3 x 5 = 30 subsets, each of 4 cells. 4,, is the collection of cells for which
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iy =2, and iy = 3. Let x,; be the indicator of A,;. In general, d; = [] 7}, and
JeR,
The likelihood equations (also called the normal equations) are

m;, =@, x;)=(Y,x)=Y;, (condition C,))

for all i and j. Proportional iterated fitting adjusts each m;;, in turn by
multiplication so that condition C;; is satisfied. These adjustments continue
until all conditions are at least approximately satisfied.

Suppose m has been chosen as a starting point. This means that ji =
log rh € V, the space spanned by the x;;. If J € V' then one choice is J or any
multiple. Suppose also that m does not satisfy C;;. Consider a new approxi-
mation v, = rhe®™. v, differs from s only in the cells in A;;. For the cells in
A, the components of rh have been multiplied by e®. But log v, = log i + bx;;,
so that v, is still contained in V. Thus v, remains a possible solution to the
likelihood equations.

Proportional iterated fitting chooses b = b;;, so that condition Cj;is
satisfied. To determine the value of b;; let ¢ =¢® In order that v, satisfy
condition C;; we need (v, x;;) = (Y, x;) = Y;,. But the first inner product is
c(m, x;;) = ey, . Thus, we should take ¢;; = ¢ = (Y, x;))/(, x;)) = ¥, /my;., .
That is, multiply all components of s in the cells in 4;; by ¥;./;;,. Con-
tinue across all combinations of i and j. Later adjustments, as i changes, will
in general cause conditions C; to fail. If so, perform another round of
adjustments.

If the MLE has a closed form, then one round of adjustments will suffice.
Otherwise, several round will be necessary. In general, however, proportional
iterated fitting will converge relatively quickly, with the procedure stopping
whenever the likelihood equations hold in good approximation.

In terms of i, the adjustment is one of addition, as indicated by v, above.
v, is adjusted in one of the fixed directions given by the x;;. This is the idea
behind the proportional iterated fitting, which, considered as a technique in
numerical analysis, is called the Deming—Stephan algorithm.

Example 8.7.2: Considera2 x 2 x 2 table, and themodel (1 23121323) =
({12, [13], [23)). Then B, = {1,2}, B, = {1,3}, By ={2,3}, and d, =d, =
d; = 4. Written in their table form, with the first factor corresponding to layers,
the second to rows, and the third to columns, some of the twelve x;; are

1 17 0 07 [0 07
00 1 1 11
Xy = ) X2 = ' Xiq4 = ,
00
2 A L A L1 1




X3 =

Suppose, we observe Y =y =

After adjustments for x,;, j =1,...,4, we get

for x,;, j=1,...,4, we get

- 8.397
8.897
we get
7.603
L 15.103

0-!

22.6577
9.952

7.343
6.048_

X23 =

- 10
8

6
L 16

10.8
7.2

88/9
L. 110/9

OF FREQUENCY DATA

-0
00

l-!

. Begin with r the vector of all ones.

. After adjustments

. After adjusting for x;,,..

ANALYSIS
-0 o
0 0
’ X3 =
1 0
L1 0l
207
12
10
=15 15T
4]
10 10
8 8
19.27
L 10 10
12.8
56/9
70/9..

.y X34

. Notice that after the third cycle of adjustments,

inner products which had previously been adjusted to be the same as for y, no
longer have this property. For example, 8.397 + 22.657 = 31.053 # 30, and
8.397 + 8.897 = 17.294 # 18. After another complete round of adjustments, the

™ 8.163

9.806
vector is
7.837
. 14.194

21.811?
10.216

8.189
5.734]

. After still another round it is

- 8.187 21.8057
9.813 10.195

7.813
L 14.187

8.195
5.805.
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Notice that all 12 inner products are almost the same as for y. After seven
rounds the change from one round to another is less than 107° in any
component of m. The final solution, to three decimal places, is

™ 8.191 21.8097
9.809 10.191

. The extra rounds after the first or second were hardly worth
8.809 8.191
_ 14.191  5.809.]

the effort. The chi-square values were G? = 2.872 and x? = 2.816, roughly the
58th percentile for 1 d.f, indicating a reasonably good fit.

Example 8.7.3: Suppose a study is conducled to determine the opinions of
men and of women on a proposed abortion law, which would limit the freedom
of women to choose abortion. Random samples of 300 women and 200 men
were chosen. Each person was then asked to choose one of the options. (1)
strongly favor, (2) slightly favor, (3) slightly against, (4) strongly against. Let
Y;; be the number choosing response j, i = 1 for women, and i = 2 for men. Let
Y = (¥;). let x, be the identity vector, let

1 1 i 1 1 0 0 -1 010 —1
r= N cl= . c2= N
-1 -1 -1 -1 1 0 0 -1 010 -1

0 01 -1 3 1 -1 -3

C3= ’ W= .

001 -1 -3 -1 1 3

The vector w has been chosen in order to model the different opinions of men
and women. Suppose that p = uxy + s;r + f,¢, + f,¢, + By¢; + yw, where
f,=-028,=02,8,=0.1,7y=0.10 Let u = 4080378 and 5, = 0.206 254 be
chosen so that the 2 x 4 matrix m = exp(p) has row sums 300 and 200.

80.37 98.16 7272 4875
29.20 5320 58.80 58.80

vectars obtained by dividing the first and second rows of m by 300 and 200,
respectively. Let Y, ~ .4,(p,, 300) and Y, ~ .#,(p,. 200) be independent. Then
Y, the 2 x 4 table formed by Y, and Y, as the first and second row, has the
product multinomial distribution, and E(Y) = m. The coefficients g, s;, §,, 85,
B3, Bs = — (B, + B, + B3) may be determined from the usual ANOVA expan-
sion of p — yw.

Then m = [ ] Let p, and p, be the probability
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Since py; — pp;=2s, —2y(4 — j), log odds-ratios are L(j;,j,) =
log[(m,;,/m, ;,)/(my;/my; )] = paj, — Byjy = Hyj, + tay, = 2¥(j2 — jy)- Since
y > 0, men are more likely to favor such a law.

An observation was simulated on a computer, producing Y=y =

[95 91 66 48
29 57 59 55

by summing independent generalized Bernoulli random vectors (GBRVs).
Thus, the first row of Y is the sum of 300 such GBRVs, with, for example
(0, 0, 1, 0) being taken with probability 72.72/300. The author used S-Plus to
do this.

Using the S-Plus function “glm™ the model pe V = #(x,,1,¢,, €5, €3)
(equivalent to p, = p,) was fit, providing the chi-square statistics G = 25.62,
2 = 24.80, for (8 — 5) = 3df, indicating a rather poor fit, as should be
expected.

The model p € £(x,.1, ¢y, €5, €3, W), the correct model, was then fit, giving
G* = 1.657, x> = 1.651, for (8 — 6) = 2d.f, indicating a good fit, as should be
expected. S-Plus provided Table 8.7.1.

The matrix X corresponding to this model is the 8 x 6 matrix formed by
writing spanning vectors X, I, €;, €;, €3, W as columns. We can estimate H =
X'D*X by H = X'D*X, where D* = d(m/500). Similarly, let X, consxst of the
first two columns of X, corresponding to x, and r. Let H, = X;D*X,. By
replacing H and H, by H and H, in the definitions of P, and Py, we get
estimates P, and l’,,0 of these projection matrices. The estimate of Q is Q
formed by placing the 2 x 2 matrix H, in the upper left corner, zeros in the
other 32 places. The estimate of the covariance matrix of I} is D[p] =
(1/300)(H — Q). The square roots of the diagonal of ﬁ[ﬁ], estimates of the
standard errors, as well as components of f) are given in Table 8.7.2. Notice
that the estimates of the standard errors of ji and §, are considerably smaller
than those given by S-Plus as shown in Table 8.7.1. This is because the S-Plus
routine used assumes Poisson, rather than muitinomial sampling, and the

]. Such multinomial random vectors may be generated

Table 8.7.1

Coef. Est. Est. of Std. Error z = (Est./(Est. of Std. Error)
I 4081 0.0472 86.471

5y 0.194 0.0468 4.155

B, ~0.080 0.0816 ~0.985

B, 0.178 00739 2411

B 0.050 0.0789 0.632

¥ 0.106 0.0221 4.795
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Table 8.7.2

i $ B, B, B, 9
4.081 0.194 —-0.084 0.178 0.050 0.106
0012 0.011 0.082 0.074 0.079 0.022

matrix Q is therefore omitted in the computation of covariance matrices. The
estimates of other standard errors are the same.

Estimates of the covariance matrices of iy, fi, and e are given by D[] = 300
D*P, — P, ), D[ii] = (1/300)(P, — P, )D* !, and D[e] = 300 D*(I, — P,).
All these estimates were close to those obtained using D* = d(m)/300 rather
than D*.

An approximate 95% confidence interval on y is given by [} + 1.96 ¢(})] =
[0.106 + 1.96(0.022)] = [0.063, 0.149]. Since we know 7 = 0.10, we were correct
this time. Since the log odds—ratios are multiples of y, confidence intervals on
these or on odds-ratios are easy to determine. Individual 95%, confidence
intervals on a contrastn = Y. ¢;B; among B,, f,, Bs,and By = —(B, + B, + B3)
are determined by [# + 1.96¢(7})], where é(f) = ¢'D[B]¢, where ¢ is the vector
of coefficients. For example, for n = 8, — B3, ¢=(0,0,1,0, —1,0, 0y, we find
[—0.130 1 (1.96)(0.132)] = [—0.391,0.131]. To get a confidence interval on
B: — Ba, we can either express f, in terms of the other f’s or we can determine
the covariance matrix of all four §s by using the fact that row and column
sums must be zero.

Table 8.7.3 gives some of the estimates, together with estimates of their
standard errors, obtained from the estimates of the covariance matrices. The
Pearson chi-square statistic is x> = ) e}/m;; = 1.651.

ij

Table 8.7.3

v Y My a0y €ij Ai; (i) dey)  ey/d(e)
1 1 95  91.27 7.40 373 451 00047 295 1.2637)
1 2 91 95.59 6.60 —459 456 00040 4.64 —0.989

1 3 66  68.00 5.64 —200 422 00048 4.55 —0.438

1 4 48  45.14 547 286 381 0.0070 291 0.985
2 1 29 3273 432 -373 349 00076 295 —1.263
2 2 57 5241 4.14 459 396 00046 464 0.989
2 3 59 57.00 447 200 404 00045 455 0.438
2 4 | 55 57.86 5.72 —286 406 00057 291 —0.985 ]
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Confidence Intervals: We should be particularly interested in estimating odds
and log-odds. Since log-odds are of the form n=cu, + -+ + crptr = (¢, p),
with ¢ L x,, so that n is a contrast, we can first determine a confidence interval
(L. U) on n, then determine an interval (e%, e¥) on the corresponding odds. We
are usually interested in cocflicient vectors ¢ for which ¢ is orthogonal to the
columns of X,. For example, for two-way tables and an independent multi-
nomial model for row vectors Y,, the columns of X, are the row indicators,
and we will want the rows of ¢ to add to zero. Since the row totals of m are
fixed, the row effects 4} are nuisance parameters, there to adjust the rows of m
so that the row totals are correct. We therefore do not want comparisons
among the row effects 4}.

In the case that ¢ is orthogonal to the columns of X, the second term of D[ji]
disappears, and we get in approximation: 4 — n = (¢, it — p) ~ N(0, a*(#)) for
6%(7) = ¢'Mc, and M = X(X'd(m)X) " 'X". Therefore,

N2y -5260h) @71

is an approximate 100(1 — x)%; confidence interval on # = (¢, p), in the case
that ¢ L ¥}, the subspace spanned by the columns of X,. The Scheffé method
may be used to provide simultaneous confidence intervals on n = 5, for all
¢ € C, where C is a subspace orthogonal to ¥:

A, + Ké), forall ceC, (8.7.2)

where K = \/)gf.‘l_,, and v = dim(C). The proof is only outlined here. Sec

Haberman (1974, 131). Let Z, = (. — n.)/6(#.) = (¢, ft — p)/[c’'Mc]}/2. Now

apply Theorem 3.8.2, with b =ji — p, M = M. We conclude that sup Z? =
ceC

(f — p)M (@i — p). By Theorem 3.8.1 and Slutsky's Theorem this last r.v. is

asymptotically distributed as y* with ¢ = dim(C) d.f.

In the case that only a few confidence intervals are desired, they will be
shorter if the Bonferroni inequality is exploited. If, for example, we wish intervals
on #; = (¢, pn), ..., Hs = (cs, p) then we use (8.7.1) on each for » = 0.01, and
then have 95% confidence that all are correct.

In the case that the model is saturated, so that ¥ =R", X =1, m=Y,
M =d(Y)"}, and &%) = ¢d(Y) ‘e = ¥ ¢?/¥,. This is an upper bound on

&), which will be smaller when nonsaturated models are considered. Of
course, when non-saturated models are considered, the risk is always present
that # is biased for n.

Example 8.7.4: Consider 13,832 homicides in 1970, as reported by the
National Center for Health Statistics (Table 8.7.4), in which the victim was
classified by race (white or black), sex, and by the methoed (firearms and
explosives, or cutting and piercing instruments).



THE ASYMPTOTIC DISTRIBUTIONS OF B, i, i 385

Table 8.7.4 Reported Homicides in 1970, Classified by Race of Victim, Sex, and Type
of Assault

Type of Assault

Firearms and Cutting and
Race Sex Explosives Piercing Instruments Total
White Male 3910 808 4,718
Female 1,050 234 1,284
Black Male 5218 1,385 6,603
Female 929 298 1,227
Total 11,107 2,725 13,832

Within each of the races let us estimate the log-odds for use of these two
methods for males and females. Index race by i, sex by j, method by k. The
independent Poisson model seems to be appropriate. Let ;= A + 4} + A7 +
A+ AP+ A + AR + 413, where each of the terms add to zero across any
subscript. Define R; = (m;y /myy 2)/(miy s /Myaz) = (myyymiz,)/(myyamyy ) and i, =
log R, = iy = iy — Miay + Hizy = 442} + 2)3}). The estimate of n, under the
saturated model is #, =log[(3,910)(234)}/{(1,050)808)] = 0.0755. Similarly,
1, =0.189 4. Under the saturated model 4(3,) = (1/ Y, )+ (1/ Y1)+ 1/ Y, )+
(1/Y;,,) = 000672 so that a 959, confidence interval on #, is 0.0755 +
(1.96)(0.00672)!2 = 00755 + 0.1607. A 95% confidence interval of n, is
0.1894 + (1.96)(0.00535)!2 = 0.1894 + 0.143 31. Since this confidence interval
is to the right of zero, we can conclude with 95% confidence that when blacks
were the victims, males were more likely than were females to have been killed
by fircarms and cxplosives. For whites, though the estimate 4, = 0.0755
indicates a slight tendency in that direction, the interval covers zero, so that it
is possible that n, is negative.

We should compare the log-odds ratios by estimating 4 = n, — 5, = 841%3.
We get i} = #; — i}, = —0.1139. Since the vectors (Y; ;) and (Y,;,) are indepen-
dent, we get ¢2() =Y (1/Y;) = 0.006 72 + 0.00535 = 0.01207, so that the

ijk
95% confidence interval on n is —0.1139 + (1.96)(0.01207)"/2 = —0.1139 +
0.215 3. The fact that this interval includes zero suggests that we fit the model
(123121323), equivalently 2}2{ =0, or R, = R,. A more formal test of
Hy: R, =R, <> 212} =0 rejects H, at level 0.05 for Z = 7j/d(7}), when | Z| > 1.96.
In this case we get Z = 1.037, so we do not reject H,. The corresponding x>
test statistic is Z2 = 1.076, for one d.f. 39195  798.57

1,040.5 2435
For the model (123121323) we find = . The
5.208.5 1,394.5
L 9385 288.5J
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corresponding goodness-of-fit statistics are G*> = 1.077, and x* = 1.075, as was
promised in the last paragraph above. The log-odds ratio for blacks and for
whites is #* = 5, = log R; = 4423, which is the same for i = 1, 2. The estimate
i A* = fiiy; — 12 — i1 + Rz = 0.138 6, which is the same for each i (why?).
M was used to determine 6(A*) = [C'Mc]” 2 =0.0439, so that a 95%, confidence
interval on n* is 0.138 6 + (1.96)(0.0439) = 0.138 6 + 0.086 1.

The z-statistic for Hy: n* = 0<> 13} =0, is Z = 0.1386/0.0439 = 3.16, so
that it does not seem reasonable to drop the 23 interaction term from the model,
equivalently to suppose independence of method and sex, conditionally on race.
Similar tests on other log-odds provided Z-statistics even further from zero, so
no smaller model than (1 23 12 13 23) seems appropriate.

Power: For given parameter values, we can determine the approximate
power for any hypothesis of the form H,: p € V5, as follows. Consider the model
p € ¥, with dim(}]) = d,, and let V; be a subspace of ¥, with dim(V,) =d, <d,.
Let m, and m, be the MLEs corresponding to the observation m for the models
¥, and V,. Then G? = G%(th,,1h,) and y? = x*(th,, m,) are approximately
distributed as noncentral chi-square with d, — d, degrees of freedom, and
noncentrality parameter § = G%(m,, m,). A more precise statement of the
limit theory justifying the approximation is contained in Bishop, Fienberg,
and Holland (1975, Ch. 14) and Haberman (1974, 103). The asymptotic
theory requires that as sample sizes increase the probability vectors converge
to ¥, at the rate proportional to the square roots of sample sizes. If the
logs of the probability vectors remain fixed, not contained in V,, then the
powers of the xy? and G? tests converge to one. That is, the tests are
consistent.

Pearson-Hartley charts, or computer packages producing noncentral x’
cumulative probability values may be used to evaluate power. Consider the
example concerning opinion on an abortion law, Example 8.7.2. Let V, =
ZL(xo, 1, €3, €5, €3), the subspace corresponding to equality of the probability
vectors for men and women of dimension d, = 5. Let V| = V* ® Z(w), which
has dimension d = 6. If me ¥}, the MLE of m corresponding to observation
m and subspace V¥, is m. The MLE corresponding to m and V, is m, =
65.74 90.82 7891 64.53

43.82 60.54 5261 43.02
m = m, may be measured by G*(m,,m,) = 20.69. We conclude that the
statistic G*(rh,, ,) has an approximate noncentral y* distribution with one
d.f. and noncentrality parameter 20.69, indicating that the power of the test
Hy: y = 0 is approximately 0.9952. The experiment was repeated using S-Plus
500 times, each time with 300 men and 200 women, resulting in estimates $
with mean 0.100 1, variance 0.00086, indicating no or very little bias, and
that the estimate of the variance provided by the asymptotic theory (0.000497)
is quite good. The 500 trials resulted in 496 rejections for the x = 0.05
level test, indicating approximately the same power as that given by the theory.

m.m,;/m,, =[ ] The “distance” of m, from
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The 500 trials were repeated with y set equal to 0.05. The 500 ¥ values
averaged 0.051, with variance 0.000480, again very close to that given by the
theory. The noncentral y2-statistic for the test of H,: y = 0 was 3.851, indicating
power of 0.501 for the a = 0.05 level test. The test rejected 323 times among
the 500, indicating somewhat larger power than that suggested by the theory.
The & = 0.05 level tests of the correct model rejected 30 and 35 times for y = 0.10
and y = 0.05, indicated that the significance levels are reasonably close to those
claimed.

Whenever the number of degrees of freedom is one, the chi-square statistic
is the square of a N(0, 1) r.v,, (of the form (Z + 8)*) with 8> = § at least in
approximation. In this case the r.v. is U = $/8(}), and 6 = y/0($). Thus, in the
case y = 0.10, the test is equivalent to rejection for |U} > 1.96, and the power
is approximately P(|U{>1.96)=1— P(—1.96 — y/a(}) < (F — y)/o(}) < 1.96 —
v/o() = 1 — ®(1.96 — y/o(f)) — O(—1.96 — y/o(})) = (—1.96 + y/a(})) =
®(2.527) = 0.994. However, since E(7) seems to be approximately 0.0886,
computations with that value replacing y, give power approximately 0.978 1,
close to the power achieved. Results for y = 0.05 were similar.

If one were to first test for the adequacy of the model corresponding to ¥,
at level a = 0.05, then test H,: y = 0, the correct decision, nonrejection, then
rejection, occurs with probability approximately 0.95(0.995 2) = 0.945, since the
statistics GX(Y, ;) and G*(rh,, th,) are asymptotically independent. The 500
trials with y = 0.10 resulted n 466 correct decisions. In general, if a sequence
of nested models .#, « #, c --- c .# is chosen for consideration, with
corresponding subspaces ¥, c V, < - - - W, of dimensions d,; >d, > - - - > d,,
and differences v, = d,,, — d;, if H;: 4, is rejected for G; = G*(rh, ;) >
x5, .. the probability of choosing the correct model can be determined in
approximation because the statistics G; are asymptotically independent (see
Scction 4.5).

Example 8.7.5: Consider a three-way table with three factors of 2, 3, and
4 levels. Suppose the model (1 2 3 12 13), independence of factors 2 and 3, given
the level of factor 1, and that the parameter values are as follows:

A=-05  il=05  it=-02, ii=0, i2=02
id=-02, A=-01 13

and

(P%_[—on -004 004 ou]
ik J ™ .

0.12 004 -004 -0.12

Then p = 4 + A} + A2 + A2 + A} + 433, with 1 chosen to be 3.598 29 so that
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Y m;; = 1,000. Then
i
C11.81 14.14 1871 22407
1594 19.08 2525 30.23
21.52 25.76 3409 40381
m = exp(p) =
4984 50.85 5733 58.49
5508 56.20 63.36 64.64
| 6088 6211 7003 7144 |

Suppose that Y has the .#(p, 1,000) distribution with p = m/1,000. If we observe
Y we could, not knowing m, or any of the parameters, proceed by performing
sequential 2 tests on the models .#, = (1 23 12 13 23), then My =(1231213),
then .4, = (123 12), then .#, = (1 2 3). For simplicity we will suppose that we
would not proceed further. Let .# be the saturated model. We could, then,
decide upon any of the five models .4, ..., .#,. Let m; be the MLE corre-
sponding to the observation m, and model .#,. Since m satisfies models .4,
My, Ms, it follows that m; = m for i = 3, 4, 5. The vectors m, and m, were
computed using proportional iterated fitting, though a hand calculator can be
used for models .#, and .#, since, m;, = (m;.m,,,/1,000), and m, =
(m;y om, ;. m, ,,/1,000%). Let y, = G*(m;, m), and &; = y; — y,, . Similarly, let
1h; be the MLE corresponding to observation Y and model .#;, G; = G*(in,, Y),
and D, = G, — G;.,. Then, asymptotically G, ~ x2(y,), and D, ~ x3 (5;), where
ve=0,v,=6,vy=12, v, =15 v, =17, and d; = v; — v;, ;. Of course, y, =
74 = 73 = 0 and computation determined v, = 6.29,y, = 11.53. Thus 6, = 3, =
0, 3, =629, and 5, =524, d, =dy =6, d, =3, d;, = 2. These d;s are the
degrees of frecdom in the usual three-way analysis of variance, and the D;
correspond to the sums of squares. If V] is the subspace corresponding to the
model .#, and W, = V,n Vi ,, then d;, = dim(W). The vectors m; may be
considered as (nonlinear) “projections” of m on the spaces V.. Similarly for the
my; relative to Y. In this sense m; — mh,,, is the projection of Y on W, and
m; — ., is the projection of m on W,. Asymptotically the measures D; of the
“lengths™ of these projections are independent.

The hypothesis H;: (m satisfies .#,) <> (log m) € ¥} is rejected when D, > ¢; =
X3.1-q,- We choose a; = 0.10 for each i, so that ¢, = ¢; = 10.64, ¢, = 6.25, and
¢; = 4.61. The sequential procedure chooses model .#; if H; is accepted for j > i,
but H;_, is rejected. For example, the correct model .#, is chosen only if
D, < 10.64, D, < 10.64, and D, > 6.25. Computer computations showed that
P(x3(6.29) > 6.25) = 0.6623, and P(x3(5.24) > 4.61) = 0.715 3. Thus, the prob-
ability that .#, is chosen is (0.9)%(0.662 3) = 0.536. Similarly, P(.#, chosen)
=010, P(#, chosen)=(0.90)0.10)=0.09, P(4, chosen)= (0.9)2
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(0.3377)0.7153) = 0.1957, P(.#, chosen) = (0.9)%(0.337 7)(0.284 7) = 0.0779.

The experiment was simulated 500 times using Manugistics APL-Plus, of
which 257 resulted in the choice of the correct model .#,, the sample propottion
0.514, close to 0.536. Similarly, the proportions of choices other models were
0.092 for .#,. 0.206 for .#,, 0.086 for .#,, 0.102 for .#,. The asymptotic theory
seems to provide very good approximations, at least for n = 1,000.

Problem 8.7.1: Let Y =(Y,, 3, 13), where Y ~ .#,(p,n) and logm =
log(np) = (B, By — B2. By + B2).

(a) Suppose that , = 0.8 and n = 2,000. Find §,, m,gnd P.

(b) What are the asymptotic covariance matrices for §, and m, p?

(c) Suppose we observe Y = § = (514, 255, 123 1). Give 95% confidence
intervals on 8, and on m,, supposing f3, to be unknown. Hint: , = 541,742 4.

(d) Estimate P(|8, — B} < 0:05) for f, = 0.8.

(e) Suppose that Y satisfies the independent Poisson model rather than the
multinomial model. How is the asymptotic distribution of B affected?

Problem 8.7.2: Consider the 2 x 2 x 2 table

j— | 2

k-1 2 12
Y=y:il[zoo 300 500 SOO_I

21300 400 300 400

(a) Find a 95% confidence interval on 4!77, assuming the saturated
independent Poisson model.

(b) Use proportional iterated fitting until m does not change in any
component by more than 0.5 to fit the model (1 2312 13 23).

(c) Find a 95%, confidence interval on £}2. For simplicity use t as found in
(b) and d(m) as for the saturated model.

Problem 8.7.3: (a) For the homicide data of Table 8.7.1 find a 95%
confidence interval on 4}, assuming the saturated model.
(b) Verify that ih as given is the MLE of m under the model (1 23 12 13 23).

Problem 8.7.4: Suppose that Y is 2 x 2 and has the .#, (p, 500) distribution,

036 024 .
with p = 02 . Find an approximation of the power of the 0.05 level
020 0.20

x>-test for independence.

Problem 8.7.5: Suppose that you wanted 95% simultaneous confidence
intervals on all odds-ratios R(i,, iz, jy. j2) = (Pi,j,Pi,j.)/(Pi,joPisjy) for a 4 xS
table. Describe how you could do this. Would it be better to use the Bonferroni
or the Scheffé method?
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Problem 8.7.6: Consider a stationary Markov chain W={W()|t=0,1,...}
having just two states 0 and 1. W is said to be a Markov chain of order & if,
conditionally on W(t — 1), W(t—2),..., W(0), the distribution of W(r)
depends only on W(t —1),..., W(r — k). Let W(t) have order 2, and p,;, =
PIW)=k|\W({-2)=i, Wit—1)=j), for i, j, k=0 or 1. Suppose we
observe W(t)fort =0, 1, 2,...,200. We would like to decide whether W is of
order one.

(a) Show that W is of order one if and only if p(k}i, j) is the same for i = 0
and 1.

(b) Show that W is of order one if and only if W(t — 1) and W(t + 1) are
conditionally independent given W(t) for each ¢.

(¢) Classify a 3-tuple (W(t — 2), W(t — 1), W())incell (i, j, k) if W{t — 2) =i,
Wi —1)=j, W)=k fort=23,...,200 If ¥, is the number of 3-tuples
classified into cell (i, j, k), then Y = (Y;) satisfies the independent binomial
model with parameters p;; = p;;, and n;; = Y;;, for every ij pair, conditionally
on ¥;, = n;. See Bishop, Fienberg, and Holland (1975), page 267. The result
of (b) implies that W is of order 1 if and only if the log-linear model for m = 200
pis (1 23 1223). The following table was produced by simulating the process
for the case that

k=0 k=1

- 02 087,j=0
03 07 |j=1
P=(pp)=
03 07 |j=0
. 05 05 Jj=1

Thus, for example, p,o, = 0.7, and pye; = 0.8, so that ¥ is not of order one.

This can also be verified through odds ratios. R; = —— — is one for each j
Pijo/Prj1

if W has order one. In this case R, = 7/12, and R, = 3/7. The stationary

probabilities that (W(t— 1), W(t)) = (i, j) are

i=0  j=1
i=0[0.0993 026497 _
i=1,02649 03709] '?

Beginning with W(0) =0 and W(1) = 0, the first 26 observations on W were
00110011110 1101011101 1110, The frequencies of consecutive
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3-tuples (i, j, k) were

4 197
15 39

17 37
L 39 294

Test at level o = 0.05 the null hypothesis H, that W is of order one.

(d) Find m, p, and the A-terms: 4, 2}, A2, 23, 412, 113, 423, 4133 supposing
that the stationary probabilities were used to determine W(0) and W(1).

(e) Find the noncentrality parameter and an approximation of the power of
the test used in (c). (In 500 simulations H, was rejected 293 times, indicating
that the power is approximately 0.586.)

88 LOGISTIC REGRESSION

As in multiple regression we often wish to study the effects of one or more
explanatory variables x,,...,x, on a dependent variable Y, which takes
only two values. Suppose that for i =1,..., T, we independently observe
Y, ~ #(n,, p;), where p; depends on %; = (x;,,...,X;), in the following way.
Recall that the logit of any p, 0 < p < 1, is L(p) = log[ p/(1 — p)]. It has the
inverse L™ '(u) = ¢“/(1 + €*). The logistic regression model supposes that
Lip)=n= Z B;xi;. Let Y, be the column vector (Y,, ..., 7Y, n=(ny, ..., ny),

X; = (xy;,...,xy;). Since log E(Y)) = log n; + log p; = log n; + log L™ '(n) is
not linear in the #’s, Y, does not satisfy a log—linear model. However, the T x 2
array Y = (Y,, n — Y;) does, and we wiil show how that fact can be exploited.

As usual let m=E(Y) and p=logm. Write p,=e¢"/(1 + ") =
e”/(e” + e~ ), where w;,=n;/2. Then p,, =logn,+ w;,—h, and p;; =
log n; — w; — h;, where h;, = log[e® + ¢~ “*]. Letting o; = logn, — h;, we get
My =, + w; and p;; = o — ;. Define x; = (x,;,..., xr;), and let x} be the
T x 2 array with x; in the first column, —x; in the second column. Let R, be
the indicator of the ith row. Then p = Z o; R + Z B;x¥, and (Y,R) =Y, +

Y, = n, = m;; + my,. Therefore, Y satlsﬁes the log-lmear model. Let V=

ZLR,,....Rp x¥, ..., xP)
The only difficulty caused by the consideration of Y, rather than Y, is that
we introduced T additional parameters a,, . . ., ay. In many applications 7" may

be quite large. We will show that we can avoid use of numerical algorithms
which solve for all T + k parameters. First notice that a; = log n; + h;, so that
a; 1s determined by w;, which depends only on B, ..., B; and n;,. We seek the
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T x 2 array ra with ith row (i, m;,;), such that 4 =logme ¥V, and
(Y-, x¥)=0 for each j. Let m, be the first column of m. Then
m=(h,,n—n,), and Y=(Y,,n-Y,). It follows that (Y —m, x}) =
(Y, -, x)+(@—Y -, +n0,x)=2Y, —rh,x). Weseek p=(B,....,4)
so that m, = nexp(}§)/[1 + exp(})], /i = Z /?jxj, makes this last inner product
zero. !

We can apply the Newton-Raphson method to find f. Let G(B) =
X'(Y, — m,), the vector of inner products. The matrix of partial derivatives
H(B) has j, j element

)
h; = (x,‘, amB“l) = (x;, x;m(n — m)/n),

’
J

so that H(f) = X'DX, where D = D(B) is the T x T diagonal matrix with ith
term n;p;(1 — p;), where p; = m;/n;. The Newton—-Raphson algorithm therefore
starts with some initial estimate B‘”, and iteratively takes

B(r+ | ¥ B(r) _ (xlD(B(r))x) - 1(Y1 — m(ﬂ(r)))’

where m(B) = exp(XB)/[1 + exp(Xp)]. When B**V — g is small, iterations
stop and § = B“* "), fj = XB, and rh = exp(R)/[1 + exp(f)].

Example 8.8.1: In an experiment designed to determine the affect of poison
on rats, male and female rats were fed various levels x of poison, and the
numbers dying and surviving observed.

Males Females

x Die Live Die Live
0.5 3 17 1 18
1.0} 4 20 3 22
20] 11 18 12 18
30L 20 2 14 9

Let Y, =(Y,,,..., Y;3) be the 8-component column vector numbers of rats
dying, the first 4 components corresponding to the males. Suppose that these
8 components are independent, with corresponding parameters which are the
components of n = (20, 24,29, 22,19, 25,30, 23), and p = (p,,....pg). Let
Xo = (1,..., 1), let x, be the indicator for males, and let x, be the vector of
poison dosages. Suppose also that L(p) = log(p/(1 — p)) = q = foXe + B1%, +
B,x,. The vector Y was generated on a computer for n as given, f, = —3, 8, =
0.5, #, = 1.2, so that p = (0.130, 0.214, 0.475, 0.750, 0.083, 0.142, 0.354, 0.646)'.
The Newton-Raphson algorithm was used to find p = (—3.457, 0.0579, 1.405),
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with corresponding estimates

m, = (2.045,4.487, 14.031, 17.437, 1.139, 2.853, 10.330, 15.678),
and
p = rin,;/n = (0.102, 0.187, 0.484, 0.793, 0.060, 0.114, 0.344, 0.682).

As before, let d(u) be the diagonal matrix with diagonal u and let X =(x,, x,, Xx,).
Note that D[W], with square brackets, indicates the covariance matrix of a
random vector W. Then the asymptotic covariance matrices were D[] =
[X'd(ap(1 — p))X1™*, D[] = XD[BIX', D[1h] = d(np) D[#1d (np), and D[p] =
d(p)D[ik]d(p). The corresponding estimates are obtained by substituting p for
p. For these data we find

02683 —0.0874 —0.0988
D[f]=| —0.0874 01287 0.0109].
—0.0988  0.0109 00481

The estimates of the standard errors of the components of § were (0.0367,
0.038 6, 0.0422, 0.062 1, 0.0308, 0.0339, 0.0399, 0.0604).

An approximate 95% confidence interval on £, is given by (L, U) =
(14054 + (1.96)(0.048 1)V/?) = (0.9755, 1.9355). If p,(x) is the probability of
death of a male rat for dosage x, then p,(x) = G(A(x)), where G(u) =
exp(u)/[1 + exp(u)], and 7 = B, + B, + Px. The asymptotic variance of A(x) is
Var(sj(x)) = d'D[ﬁ]d, where d = (1, I, x). Using the d-method, we find that
the asymptotic variance of f,(x) is Var(p,(x)) = h(x) = [p.(x)(1 — pn(x)]
Var(#(x)). To determine a confidence interval (L(x), U(x)) on p,(x) for any x,
first determine one on n(x). Since the transformation n(x) = G(1(x)) = pn.(x)
is monotone, (G(L(x)), G(U(x)) is then a confidence interval on p,(x).
(‘orrespondmg confidence intervals on the probability p(x) of a female dying
are given by considering n(x) = fi, + B,x, and f(x) = /?0 + ﬂzx For these data
and six choices of x, 95%, individual confidence intervals were found on p,(x)
and p,(x) as presented in Table 8.8.1. Simultaneous Scheffé 959, confidence
intervals on p_(x) and p,(x) for all six choices of x were also found by replacing

Zo.975 = 1.96 by \/Xz 0.95 = /5 99 = 2.447. If the Bonferroni method were used
we would instead substxtute Z=2)_9.0524 = Z0.09792 = 2.86, so Scheffé inter-
vals are shorter. We were lucky; all the intervals covered the corresponding
parameters. The goodness-of-fit statistics were G2 = 2.004, the residual deviance,
and x? = 1.996 for 2 d.f, so that the fit was good, as we should expect.

The limit theory we have described has required that T be held fixed, while
n or a vector of sample sizes approach infinity. In many applications we observe
(x;, Y}), fori=1,..., 7, where x; = (x;;,..., xy) is a vector of constants, and
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Table 8.8.1 Estimates and 95%;, Confidence Intervals on p,,(x) and PAx)

Upper Lower Upper
Individual Simultaneous  Simultaneous
Lower Confidence Confidence Confidence
X P(x) fm(x)  Individual Limit Limit Limit
Males
0.5 0.130 0.110 0.056 0.205 0.047 0.236
10 0.214 0.188 0.113 0.295 0.100 0.326
2.0 0.475 0.448 0.335 0.567 0.309 0.596
3.0 0.750 0.740 0.594 0.847 0.554 0.867
40 0.909 0.787 0.787 0.964 0.742 0.972
5.0 0.970 0972 0.899 0933 0.864 0.995
Females
0.5 0.083 0.075 0.035 0.151 0.029 0.178
1.0 0.142 0.131 0.073 0.223 0.063 0.252
2.0 0.354 0.346 0.245 0.462 0.223 0.493
30 0.646 0.649 0.497 0.777 0.458 0.803
4.0 0.858 0.867 0.717 0.943 0.667 0.955
5.0 0.953 0953 0.860 0.988 0.816 0.991

a reasonable model, as before, states that Y, ~ #(p,,n,), independently
for differing i, and that log(p;/(1 — p;)) = x;p. However, the asymptotic
theory would not seem appropriate in cases for which n; is small for most i,
particularly, as is often the case, all n; are one. This will occur when some of
the components of x; take values on a continuous scale. Fortunately, theory
has been developed over the last 20 years which shows that even in the case,
if T becomes large, while the individual x; are not too far from the others and
the matrix X'd(pq)X not too close to singularity. The conditions are similar to
those for linear models, as stated in Eicher's Theorem 4.8.1. See Santner
and Duffy (1989, Section 5.3) and the paper by Fahrmeir and Kaufmann
(1985).

Example 8.8.2: Reconsider Examples 8.4.4, and 8.5.7. As before let p;; be
the probability that a subject of sex i (1 for men, 2 for women), and educational
level j(j = 1,2,3) would respond “Yes.” Suppose that Y;; ~ %#(n;;, p;;) for
n; = Yy, + Y;;, are independent for the six combinations of i and j. Corre-
sponding to the model of (8.44) the model (123121323), p,;=
exp(u;j )/ [expluij) + expluy;p)] = exp(ny)/[1 + exp(n;)), where n;; = p;; —
Mij2 = 2[ry + {s57)iy + (er);;]. In terms of the f; defined in Example 8.5.7, we
can write n; = B4 + B0, + Byd; + Byd;,, where 4, 1s 1 if u=uv, zero
otherwise. Therefore the design matrix for the logistic model is
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"1 1 1 01
110 1
1100

X = ,
1010
1001
|1 0 0 0]

and the vector B* of the model (we use the symbol * to distinguish it from the
p of the log-linear form of the model in Example 8.5.7) is (s, -, Bs, Bo)-

B; &8 z;
—1.614 0.142 §1.36
—0.0235 0.118 0.20

2.245 0.150 15.00
1.097 0.150 7.33

OO0 W,

The z-statistics indicate that a model without the sex variable might be
adequate. We found G*(rh, Y) = 6.22, and »?(, Y) = 5.95 for 6 — 4 = 24df,
with corresponding p-values 0.045 and 0.051. We fit the model with the last
two columns of X replaced by the single column x5 = (0, 1, 2,0, 1, 2)/, allowing
for the log-linear effect of education, getting G2 = 6.27, x* = 6.02 for 3df,
indicating a reasonably good fit. A z-value of —0.0179 again suggested that
the sex variable might be omitted. We then fit the model with J, and x, only,
getting G? = 6.30 and x* = 6.05 for 4 d.f. This resuited in the estimates 0.647,
0.373, 0.162 for the probabilities of the “Yes™ answer for educational levels 1,
2, 3. These are, of course, the same as those obtained under the log-linear model
discussed in Example 8.5.7. Responses seemed to be little affected by the sex of
the subject.

Example 8.8.3: This example is taken from Lee (1974) and from SAS (1990,
1101-1108). The data (Table 8.8.2) consist of 27 vectors (Y, x,,...,Xx¢) of
observations on 27 cancer patients, where Y is the indicator of remission, and
X, - - -, Xg are patient characteristics. The same example is discussed by Santner
and Duffy (1989, 230). For the purposes of this example, we will confine the
analysis to the explanatory variables Li, Temp., and Cell, which we call x,, x,,
and x;, respectively. Actually, these variables were the first three chosen in
applying stepwise regression from among six explanatory variables, including
these threce. We will discuss the fits produced using these three variables only,
ignoring the fact they were obtained by stepwise procedures.

We consider four models .#, for k = 0, 1, 2, 3. For each model ¥, ~ %(1, p,),
independent for i = 1,...,27. Let n, = log(p,/(1 — p)). For .#,, n; = B,. For
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Table 8.8.2
Patient i Remiss Y; Li x;, Temp. x;, Cell x;,
1 1 1.9 0.996 0.80
2 1 14 0.992 0.90
3 0 0.8 0.982 0.80
4 0 0.7 0.986 1.00
5 1 1.3 0.980 0.90
6 0 0.6 0.982 1.00
7 1 1.0 0.982 0.95
8 0 1.9 1.020 095
9 0 0.8 0.999 1.00
10 0 0.5 1.038 0.95
11 0 0.7 0.988 0.85
12 0 1.2 0982 0.70
13 0 0.4 1.006 0.80
14 0 0.8 0.990 0.20
15 0 1.1 0.990 1.00
16 1 1.9 1.020 1.00
17 0 0.5 1.014 0.65
18 0 1.0 1.004 1.00
19 0 0.6 0.990 0.55
20 1 11 0.986 1.00
21 0 04 1.010 1.00
22 0 0.6 1.020 0.90
23 1 1.0 1.002 1.00
24 0 1.6 0.988 095
25 1 1.7 0.990 1.00
26 1 0.9 0.986 1.00
27 0 0.7 0.986 1.00

k
M k=1,...,6,7,=po+ Y B;x;;. Table 88.3 contains estimates of these
j=1
parameters, and Wald’s goodness-of-fit statistic W, = W(ih, — g, m,) as given
in the SAS manual. iy, is the MLE of m for the model .#,. The §'s given here
have the opposite sign than those given in the SAS manual because the Y-values
were coded as I's and 2’s there rather than as 1's and 0's, as they are here.

If we accept the model .#,, the Wald statistics provide measures of the
adequacy of these smaller models. It is tempting to use W(m, — Y,Y) or
W, — Y, fy,) as measures of the adequacy of the model .#,. However, when
Y is a vector of ones and zeros, or even when Y is a vector of binomial r.v.’s
with very small n-values, the statistics x*(i,, Y), G2(mh,, Y), W(i, — Y, Y), and
W (i, — Y, i1, are not approximately distributed as x2 under the model .#,.
The asymptotic theory discussed earlier applies only for the case n large, T
fixed. The statistic W; = 0.183 indicates that relative to the model .#(, the model
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Table 8.8.3
j B, (B) z, 8
Model #,:n, = B,
0 0.692 0.408 ~1.6946 0.09
W, = 9.46 for 6 df.
Model #,:n; = Bo + Bixiy
0 -3.77 1.38 2.74 0.006 1
1 290 1.19 244 00146

W, =3.1174 for 5df.
Model .#4,: 5, = Bo + Bixiy + Baxia

0 47.86 46.44 1.03 0.303
1 330 1.359 243 0015
2 —5243 47.49 110 0.270
W, = 2.1431 for 4 d.f.
Model #;: 0, = Bo + Bixiy + Briaxiz + B3xis
0 —-67.63 56.89 1.19 0.234
1 —-9.65 1.75 1.25 0.213
2 -387 1.78 2.17 0.030
3 2,07 61.71 1.33 0.184

W, = 0.183 1 for 3d.f.

M, fits almost as well. The statistic W, — W, is (in approximation) independent
of W, and is approximately distributed as xZ if me F;. This statistic can
therefore be used to test B, = 0. In approximation (W — W) = Z2, where
Z, = P4/6(B,), another possible test statistic. In this case the model .#,
seems to be quite adequate, with the resulting estimate f(x,) =
exp(3.7771 + 2.897 3x,)/[1 + exp(3.771 + 2.897 3x,)] of the probability of re-
mission. The positive coefficient for x; indicates that increasing amounts of Li
tend to increase the probability of remission.

The Case of a Multinomial Response Variable: We have been studying the
case in which the response variable ¥; has a binomial distribution. The response
variable may instead take r > 2 values. The rats in Example 8.8.1 might be
classified as dead, sick, and well. As with the case r = 2 we can again reduce
the dimensionality from the full log-linear model with T + 75, parameters to
(r — 1)k parameters by using a logistic approach. Let Y; ~ .4,(p;, n;), indepen-
dentfori=1,..., T, withp, = (p/,..., p}). Suppose that log(p}/p}) = Y Bix,;.

J

The rth response category has been chosen as a baseline. As for the case r = 2,
this model can again be shown to be log-linear. Another response category
could be chosen as the baseline. The log likelihood is a function (r — 1)k
parameters, and can be fit using the Newton-Raphson method. The
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corresponding vector space is spanned by the vectors x}, h=1,...,r — 1,
defined to take the value x;; in cell (i, h), —x,; in cell (i, r), zero elsewhere. For
a full discussion of this and other models see Agresti (1990 Ch. 9).

Problem 8.8.1: [In his first four years as a major league baseball player,
Hank Aaron, the leading home run hitter of all time, had the following record:

Year No. of At Bats No. of Home Runs
1954 468 13
1955 602 27
1956 609 26
1957 615 44

(a) State an appropriate model, using only two parameters to model the
probability p; of a home run in a time at bat in year j, j =1, 2, 3, 4. One
x-variable should reflect experience.

(b) Fit the model, and determine the goodness-of-fit statistics G*(th, y) and
xX(mh, y). Estimate the covariance matrix of ﬁ for the model of (a) and use the
estimate to test the null hypothesis that p; was the same every year. Also test
the hypothesis using the G2-statistic.

Problem 8.8.2: Inan experiment to determine the effectiveness of insecticide
XXX, 60 cockroaches were divided randomly into three sets of 100. The sets
of 100 were cxposed to three different doses: d; = 1.0, d, = 1.5, and d; = 2.0.
The numbers of deaths were 15, 36, and 79. Let p(d) be the probability of death
with dosage d. Suppose that the log-odds for death at dosage d is o + f,d.

(a) Find the MLE of B = (B, 8,) and estimate its covariance matrix.

(b) Sketch your estimate f(d) of p(d) as a function of d.

(c) Give a 95%, confidence interval on p(3.0).

(d) Estimate the dosage d, s for which p(d) = 1/2 and give an approximate
95% confidence interval.

Problem 88.3: Let Y, ~ #(n;, p,) independently fori=1[,...,T. Let .# be
a log-linear model for the table Y = (¥;,i=1,...,T, and j = 1,2), where
Y, =Y and Y;; =n, — Y.. Let m be the MLE of m = E(Y) under model .#.
Let p; = m,;/n; and pf¥ = Y,/n,. Show that

(a) x’(ﬁl, Y) = Z n(Y, — 'ﬁn)z/['ﬁu("i —My)]
=Y m(pF — /LB — P,

and
(b) G*(h, Y) = Y Y log[(Yi(n; — )/(n, — YY)
=Y n;p¥ log[p*(1 — p)/(1 — p)B.].
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Problem 8.8.4: The experiment described in Problem 8.8.2 was also con-
ducted for the insecticide Super-XXX, using 93, 97, and 95 cockroaches with
the results that 18, 43, and 83 cockroaches died. Give an appropriate model,
then use it to give a confidence interval on a parameter which measures the
difference in effectiveness in the two insecticides.

Problem 8.8.5: Questions concerning Example 8.8.1:

(a) Use the results to give 95% confidence intervals on the dosages x,, and
x, for which 50% of rats will die for males and for females.

(b) Find a 959 confidence interval on §,, the “male effect.” Do males and
females seem to respond in the same way?

(c) How could you test the null hypothesis that the regression effect of the
dosage is the same for females as for males?

(d) Give 959 confidence intervals on the dosages d,, and d, necessary to kill
999 of all male and female rats.

Problem 8.8.6: (See Problem 8.4.4.) The following table contains the results
of the games played among four teams in a basketball league. Each team played
16 games against each of the opponent, 8 on their home court and 8 at the
other team’s court. The table below presents the number of games won by the
home team. For example, team #2 won 3 games over team # 3 while playing
on team #2’s court, and team # > won 5 games over team # 2 when the games
were played on # 3’s court.

Away Team

1 2 3 4

1 7 1 4

Home 2 3 3 1

Team 3 5 4
4 6 7 8

Thus, Team # 1 won 20 games, #2 won 12, #3 won 28, and #4 won 36.
(a) Let p;; be the probability that team i wins over team j in games played
on team i's court. Let g;; =1 — p;;. One possible model .#* assumes the
existence of strength parameters 4, A,, 4, 44 such that log(p;;/q;;) = 4; — 4;.
Define the vector Y and matrix X corresponding to this model.
(b) Show that the matrix X has rank 3, so that one of the strength parameters,
say 4,, can be arbitrarily set to zero, so that X becomes a 12 x 3 matrix.
(c) Fit the model in (a), comment on how well it fits, and draw conclusions.
(d) Actually the data presented were generated on a computer for the case
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that u;; = Bo + A; — 4;, so that f, is the “home field effect.” The parameters
chosen were fo = 0.6, A, = —0.5, i; = 0.5, i, = 1.0. Determine p = (p;;), m (a
12 x 2 matrix), and D[B] (in 500 simulations the standard deviations of the
components of p were 0.254, 0.420, 0.418, 0.433; the means were 0.623, —0.543,
0.536, 1.034). X

(e) Fit the model .4 actually used to determine the data. Present g =
(Bo» 42, A3, A) and G2(si, y), the residual deviance.

(f) Assuming the model .#, test the null hypothesis that .#* holds (¢ = 0.05,
as usual).

(g) Find an approximation for the power of the test in (f). For 500 simulations
the test rejected 371 times.
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Table 2.1
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Student's-t y-Quantiles for
v =0.05/(2k), v d.f.

Kk
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2.639 2775 2878 2963 3.034 3.095 3.149 3.197
2.625 2759 2861 2944 3.014 3.074 3.127 3.174
2613 2744 2.845 2.927 2,996 3.055 3.107 3.153

2.601 2.732 2.831 2912 2,980 3.038 3.090 3.135
2,591 2.720 2819 2.899 2.968 3.023 3.074 3119
2.582 2.710 2.807 26886 2.953 3.010 3.060 3.104
2574 2.700 2797 2875 2.941 2.997 3.047 3.091
2.566 2,692 2787 2.865 2.930 2.986 3.035 3.078

2.559 2.684 2779 2.856 2.920 2975 3.024 3.067
2553 2,676 2171 2.847 2911 2.966 3.014 3.057
2.547 2670 2.763 2839 2.902 2957 3.005 3.047
2.541 2663 2.756 2.832 2895 2.949 2.996 3.038
2.536 2.657 2.750 2825 2.887 2.941 2.988 3.030

2515 2633 2724 2.797 2.858 2,910 2955 2996
2499 2616 2.705 2.776 2.836 2.887 2931 29N
2477 2591 2.678 2.747 2.805 2.855 2898 2.937
2.463 2.575 2.660 2.728 2.786 2.834 2.877 2915
2,440 2549 2632 2.698 2.753 2.800 2.841 2.878
2428 2.536 2.617 2.683 2.737 2.784 2.824 2.860)




Student's-t y-QuantiIés for
v=1-0.05Tk(k - 1)}, vd.f.

k
3 4 5 6 7 8

1 38.189 76.390 127.321 190.984 267.379 356.508
2 7.649 10.886 14.089 17.277 20.457 23.633
3 4.857 6.232 7.453 8.575 9.624 10.617
4 3.961 4.851 5.508 6.254 6.847 7.392
5 3.534 4.219 4.773 5.247 5.667 6.045
6 3.288 3.863 4.317 4.698 5.030 5.326
7 3.128 3.636 4.029 4.355 4.636 4.884
8 3.016 3.479 3.833 4122 4.370 4.587
9 2.933 3.364 3.690 3.954 4.179 4.374
10 2.870 3.277 3.581 3.827 4.035 4.215
b 2.820 3.208 3.497 3.728 3.923 4.091
12 2.780 3.153 3.428 3.649 3.833 3.993
13 2.746 3.107 3.373 3.584 3.760 3.912
14 2718 3.069 3.326 3.530 3.699 3.845
15 2694 3.036 3.286 3.484 3.648 3.788

v

16 2673 3.008 3.252 3.444 3.604 3.740
17 2.655 2.984 3.222 3.410 3.565 3.698
18 2.639 2983 3.197 3.380 3.532 3.661
19 2.625 2.944 3174 3.354 3.503 3.629
20 2613 2.927 3.153 3.331 3477 3.601
21 2.601 2912 3.1356 3.310 3.453 3.575
22 2.591 2.899 3.119 3.291 3.432 3.552
23 2.582 2.886 3.104 3274 3.413 3.531
24 2.574 2.875 3.091 3.258 3.396 3.513
25 2.566 2865 3.078 3.244 3.380 3.496
26 2.550 2.856 3.067 3.231 3.366 3.480
27 2.553 2.847 3.057 3.219 3.353 3.465
28| 2.547 2.839 3.047 3.208 3.340 3.452
29 2.541 2.832 3.038 3.198 3.329 3.440
30 2.536 2.825 3.030 3.188 3.319 3.428
35 2515 2797 2.996 3.150 3.276 3.382
40 2.499 2.776 2.971 3122 3.244 3.347
50 2.477 2.747 2.937 3.083 3.201 3.300
60 2463 2.729 2.915 3.057 3.173 3270
90, 2.440 2.698 2.878 3.016 31427 3.220
120 2.428 2.683 2.860 2.995 3.104 3.195
Infinity 2.394 2.638 2.807 2.935 3.038 3.124
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416 APPENDIX

Table 4.1 0.90 - Quantiles of the F-Distribution

N & WA -

© O N O

10

1
12
13
14
15
Va2
16
17
18
19
20

21
22
23
24
25

30
40
60
120
Inf.

Vi
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 Inf
39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.7 61.2 61.7 62.0 62.3 62.5 62.8 63.1 63.3
8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
5.54 546 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13
454 4.32 4.19 4,11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76
406 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.11

3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47
|3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 242 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.18
3.29 2.92 2.73 2.61 252 246 2.41 2.38 2.35 2.32 2.28 2.24 220 2.18 2.16 2.13 2,11 2.08 206

3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97
3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.80
F3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 201 1.98 1.96 1.93 1.90 1.88 1.85
3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80|
3.07 2.70 2.49 2.38 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.890 1.87 1.85 1.82 1.79 1.76

3.05 2.67 246 2.33 2.24 2.18 213 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 181 1.78 1.75 1.72
3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69
3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
2.99 2.61 2,40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63
2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 183 1.78 1.75 1.72 169 1.66 1.62 1.59
2.95 2,56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.80 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
12.94 2,55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
293 254 2.33 2.19 2.10 204 1.98 1.94 1.91 1,88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53
2.92 253 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46
2.84 2.44 2.23 2.08 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
2.79 239 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 148 1.44 140 1.35 1.29
2,75 2.35 213 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19
2.71 2.30 2.09 1.95 1.85 1.78 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.39 1.34 1.30 1.24 1.17 1.00
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Table 4.2

1

2

3

4

5

417

0.95 - Quantiles of the F-Distribution

Vi
8 7 8 9 10 12 15 20 24 30 40 60 120 |Inf.

D S W -

W D N

1
12
13
14
15
vz
16
17
18
19

BRY

162 200 216

18.5
10.1
n
6.61

5.99
559
5.32
5.12
4.96

484
4.75
467
460
4.54

449
445
441
4.38
4.35

4.32
4.30
4.28
4.26

251 4.24

288

120]
Inf.

417
4.08
4.00
392
3.64

19.0
9.55
6.94
579

5.14
4.74
4.46
4.26
4.10

3.98
3.89
3.81
3.74
3.68

3.63
3.59
3.55
3.52
3.49

3.47
344
342
3.40
3.39

3.32
323
3.15
3.07
3.00

19.2
9.28
6.59
5.41

4.7¢
435
4.07
3.86
3N

3.59
3.49
3.41
3.34
3.29

3.24
3.20
3.18
3.13
3.10

3.07
3.0
3.03
3.01
299

292
2.64
2.76
2.68
2.60

193
9.12
8.39
5.19

4.53
4.12
3.64
3.63
348

3.36
3.26
3.18
3.11
3.06

3.01
296
293
2.90
287

2.84
2.82
2.60
278
2.76

2.69
2.61
253
245
2.37

193
9.01
8.26
5.06

4.39
3.97
3.69
348
3.33

3.20
3.1
3.03
2.96
2.90

2.85
2.81
2.77
274
27

2.88
2.88
264
2.62
2.60

253
245
2.37
229
221

234 237 239 241 242 244 246 248 249 250 251 252 253 254
193 19.4 194 194 194 194 194 195 195 195 195 1956 195 195
8.94 889 885 8.81 879 874 8.70 866 8.64 8.62 859 857 855 853
6.16 6.09 6.04 6.00 596 591 586 580 577 575 5.72 569 566 563
495 468 482 4.77 474 488 462 4.56 453 450 448 443 440 4.7

428 421 415 410 4.06 400 394 3.87 3.64 381 3.77 3.74 3.70 367
3.87 3.79 3.73 3.68 3.64 3.57 351 344 341 3.38 3.34 3.30 327 3.23
3.58 350 3.44 3.39 3.35 328 322 3.15 3.12 3.08 3.04 3.01 297 293
3.37 3.28 323 3.18 3.14 3.07 3.01 294 290 286 283 2.79 275 2.7
3.22 3.14 3.07 3.02 298 2.91 285 2.77 2.74 2.70 2,66 2.62 258 254

3.09 3.01 295 290 285 279 2.72 2.85 2.61 2.57 253 249 245 240
3.00 291 285 280 275 269 262 254 251 2.47 243 238 234 2.30
292 283 2.77 271 2.67 260 253 2.46 242 2.38 234 230 225 221
2.85 276 2.70 285 260 253 246 239 235 2.31 227 222 2.18 2.13
279 271 2.84 259 254 248 240 233 229 225 220 2.16 2.11 2.07

274 266 2.59 2.54 249 242 236 228 2.24 2.19 215 2.11 2.06 2.01
270 261 255 249 245 238 231 223 219 2.15 2.10 206 201 1.96
266 258 251 246 241 2.34 227 2.19 215 2.11 206 202 197 1.92
263 254 248 242 238 231 223 2.16 2.11 2.07 203 198 193 188
2.60 2.51 245 239 235 228 220 2.12 208 204 1.99 195 1.90 184

257 249 242 237 232 225 2.18 2.10 2.05 2.01 196 1.92 1.87 181
255 246 240 234 230 223 2.15 207 2.03 1.98 1.94 1.89 184 1.78
253 244 237 232 227 220 2.13 2.05 201 196 191 186 181 1.76
251 242 2.36 230 225 2.18 2.11 203 1.98 1.94 189 1.84 179 1.73
249 240 234 228 224 2.16 209 201 196 192 187 182 177 1.71

2.42 233 227 221 216 2.09 201 193 189 184 1.79 1.74 168 1.62
234 225 218 212 2.08 2.00 192 1684 1.79 1.74 169 164 158 151
225 2.17 210 2.04 199 192 184 1.75 1.70 185 1.59 153 147 1.39
218 2.09 202 196 191 183 1.75 188 161 155 1.50 1.43 1.35 1.25
210 201 194 188 183 1.75 1.67 1.57 1.52 146 1.39 1.32 122 1.00
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Table 4.3

N & W N -

@w O N

1
12

14

15
V2

18

17

19
20

21

23
24
25

40
60
120

1

2

3

4

0.975 - Quantiles of the F-Distribution

5

7

9

vt

10

12

16

20

24

APPENDIX

30 40 60

120

Inf.

lah

385
17.4
122
10.0

8.81
8.07
7.57
7.1
6.94

6.72
6.55
6.41
6.30
6.20

6.12
6.04
5.98
5.92
5.87

5.83
5.79
5.75
5.72
5.69

5.57
5.42
5.29
5.15
5.02

800 864 900

39.0
16.0
10.7
8.43

7.26
6.54
6.06
5.7
5.46

5.26
5.10
4.97
4.86
4.77

4.69
4.62
4.58
451
4.46

4.42
438
4.35
4.32

4.18
4.05
3.93
3.80
3.69

39.2
15.4
9.98
7.76

6.60
5.89
5.42
5.08
483

463
4.47
4.35
4.24
4.15

4.08
4.01
3.95
3.90
3.86

3.82
3.78
3.75
3.72
3.69

3.59
3.46
3.34
323
3.12

393
161
9.60
7.39

6.23
§.52
5.05
472
447

428
4.12
4.00
3.89
3.80

3.73
3.66
3.61
3.56
3.51

348
3.44
3N
3.38
3.35

325
313
3.01
2.89
2.79

922
39.3
14.9
9.36
715

5.99
5.29
482
448
424

4.04
3.89
3.77
3.66
358

3.50
344
338
333
329

3.25
3.22
3.18
3.15
3.13

3.03
2.90
279
2.67
2.57

937
39.3
14.7
9.20
8.98

5.82
§.12
4.85
4.32
4.07

388
3.73
3.60
3.50
34

3.34
3.28
3.22
3.17
313

3.09
3.08
3.02
2.99
297

2.87
274
2.83
2.52
2.41

948
39.4
148
9.07
6.85

§.70
499
4.53
4.20
395

3.76
3.61
3.48
3.38
3.29

3.22
3.16
3.10
3.05
3.01

297
293
2.90
2.87
2.85

275
2.62
251
2.39
2.29

957
394
145
8.98
6.76

5.60
4.90
4.43
4.10
3.85

3.66
3.51
339
3.29
3.20

3.12
3.06
3.01
2.96
291

287
2.84
281
278
2.75

265
253
24

2.30
2.19

963
39.4
14.5
8.90
6.68

5.52
482
4.36
403
378

3.59
3.4
33
321
3.12

3.05
298
293
2.88
284

2.80
2.76
273
2.70
2.68

2.57
245
2.33
222
2.11

969
39.4
144
8.84
6.82

5.46
476
4.30
3.98
3.72

3.53
3.37
3.25
3.15
3.06

299
2.92
2.87
2.82
2.77

2,73
270
267
2.64
261

251
239
227
2.16
2.05

977
39.4
14.3
8.75
6.52

§.37
4.67
420
3.87
3.62

343
3.28
3.15
3.05
2.96

2.89
2.82
277
272
2.68

2.64
2.60
257
2.54
251

241
229
217
2.06
1.94

885
39.4
143
8.66
6.43

5.27
457
4.10
3.77
3.52

333
3.18
3.0
295
2.86

279
272
2.67
2.82
2.57

253
2.50
2.47
2.4
241

2.3

2.18
2.06
1.94
1.83

993
39.5
14.2
8.56
6.33

517
4.47
4.00
367
3.42

323
3.07
295
2.84
2.76

2.68
2.62
2.56
2.51
2.46

2.42
2.39
2.36
2,33
2.30

207
1.94
1.82
1.71

249
19.5
8.64
.77
453

384
341
312
290
274

2.81
251
2.42
235
2,29

2.24
2.19
218
2.1
208

2.05
2.03
2,01
1.98
1.96

1.89
1.79
1.70
1.61
1.52

250
19.5
8.62
5.75
4.50

3.81
3.38
3.08
2.86
2.70

2.57
247
2,38
2.3
225

2.19
215
2.1
2.07
2.04

2.01
1.98
1.96
1.94
1.92

1.84
1.74
1.65
1.5
1.48

251
19.5
8.59
5.72
446

3.77
3.34
3.04
2.83
2.66

2.53
243
2.34
227
220

2,15
2.10
2.06
203
1.99

1.96
1.94
1.91
1.89
1.87

1.79
1.69
1.59
1.50
1.39

252 253 254

195
8.57
5.69
443

3.74
3.30
3.01
2.79
2.62

2.49
2.38
2.30
2.22
2.16

2.1
2.06
2.02
1.98
1.95

1.92
1.89
1.86
1.84
1.82

1.74
1.64
1.63
1.43
1.32

19.5
8.85
5.66
4.40

3.70
327
297
2.75
2.58

245
2.34
225
2.18
2.11

2.06
2.01
1.97
1.93
1.90

1.87
1.84
1.81
1.79
177

1.68
1.58
1.47
1.35
1.22

19.5
8.53
5.83
4.37

3.67
3.23
293
2.7
254

2,40
2,30
221
213
2.07

2.01
1.96
1.92
1.88
1.84

1.81
1.78
1.78|
1.73
1.7

1.62
1.61
1.39]
1.25
1.00




APPENDIX

Table 4.4

N & W =

W D N D

1
12
13|
14
15
V2
16
17
18|
19

1

2

3

4

5

0.99 - Quantiles of the F-Distribution

6

7

2]

Vi
10

12

15

20

24

30 40 60

120

419

Inf.

4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366l

98.5
34.1
21.2
16.3

138
123
1.3
106
10.0

9.65
9.33
9.07
8.86
8.88

8.53
8.40
8.29
8.18
8.10

8.02
7.95
7.88
7.82
7.77

7.56
7.3
7.08
6.85

.1 6.64

99.0
30.8
18.0
13.3

10.9
9.55
8.65
8.02
7.56

7.21
6.93
6.70
6.51
6.36

6.23
6.11
6.01
5.93
5.85

5.78
5.72
5.66
5.61
5.57

5.39
5.18
4.98
4.79
4.61

99.2
29.5
16.7
121

9.78
8.45
759
6.99
6.55

8.22
5.95
5.74
5.56
5.42

5.29
5.18
5.09
5.01
4.94

4.87
4.82
4.76
4.72
4.88

4.51
4.31
413
395
3.78

99.3
28.7
16.0
11.4

9.15
7.85
7.0t
6.42
5.99

5.67
5.41
5.21
5.04
4.89

4.77
4.67
4.58
4.50
443

4.37
4.31
426
422
4.18

4.02
383
3.65
348
3.32

99.3
28.2
15.5
11.0

875
7.46
6.63
6.06
5.64

5.32
5.08
4.86
4.69
456

444
4.34
4.25
4.17
4.10

4.04
3.99
3.94
3.90
3.85

370
3.51
334
317
3.02

99.3
279
15.2
10.7

8.47
7.18
6.37
5.80
5.39

5.07
4.82
4.62
4.46
4.32

4.20
4.10
4.01
3.94
387

3.81
3.76
an
3.67
3.63

347
3.29
3.12
2.96
2.80

99.4
277
15.0
10.5

8.26
6.99
6.18
5.61
5.20

4.89
464
444
4.28
4.14

403
393
3.84
3.77
3.70

3.64
3.59
3.54
3.50
3.46

3.30
312
295
2.79
2.64

99.4
27.5
14.8
10.3

8.10
6.84
6.03
547
5.06

4.74
4.50
4.30
4.14
4.00

3.89
379
an
363
3.56

3.51
3.45
kX))
3.36
3.32

317
2.99
282
2.66
2.51

99.4
27.4
14,7
10.2

7.98
6.72
5.91
5.35
4.94

463
4.39
4.19
4.03
3.89

3.78
3.68
3.60
3.52
346

3.40
3.35
3.30
3.26
3.22

3.07
2.89
272
2.56
2.41

99.4
272
14.8
10.1

787
6.82
5.81
526
4.85

4.54
4.30
4.10
3.94
3.80

3.69
3.59
3.51
3.43
337

3
3.26
3.21
317
313

298
2.80
2.63
2.47
2.32

99.4
271
144
9.89

7.72
6.47
5.67
511
47

4.40
4.18
3.96
3.80
3.67

3.55
3.46
337
3.30
323

317
3.12
3.07
3.03
2.99

284
2.66
2.50
2.34
2.19

99.4
26.9
14.2
9.72

7.56
6.31
5.52
4.96
4.56

425
4.01
3.82
3.66
3.82

34
3.3t
323
3.15
3.08

3.03
2.98
2.93
2.89
2.85

270
2,52
235
2.19
2.04

99.5
26.7
14.0
9.55

7.40
6.18
5.36
4.81
4.41

4.10
3.86
3.66
3.51
337

3.26
3.16
3.08
3.00
2.94

288
2.83
2.78
274
2.70

2.55
2.37
2.20
203
1.88

99.5
26.6
139
9.47

.3
8.07
5.28
4.73
4.33

4.02
3.78
359
3.43
329

3.18
3.08
3.00
2.92
2.86

2.80
2.75
2.70
2.66
2.62

2.47
229
212
1.95
1.79

99.5
26.5
13.8
9.38

723
5.99
5.20
465
425

3.94
3.70
3.51
335
321

3.10
3.00
292
284
2.78

2.72
2.67
262
258
2.54

2.39
2.20
2.03
1.86
1.70

99.5
26.4
13.8
9.29

7.14
5.91
5.12
4.57
417

3.86
3.62
3.43
327
3.13

3.02
292
2.84
276
2.69

2.64
2.58
2.54
249
245

2.30
2.1
1.94
1.76
1.58

99.5
263
13.7
9.20

7.0
5.82
5.03
4.48
4.08

3.78
3.54
334
3.18
3.05

2.93
2.83
2.75
2,67
2.61

255
250
245
2.40
2.36

221
202
1.84
1.66
1.48

99.5
26.2
136
an

6.97
5.74
4.95
440
4.00

3.69
345
3.25
3.09
2.96

2.84
2.75
266
2.58
2.52

2.46
2.40
235
2.3
227

2.1
1.92
1.73
1.53
1.33

99.5
26.1
13.5
9.46

6.88;
5.65
4.86
4.31
3.91

3.60
3.36
317
3.00
287

275
265
257
2.49
2.42

2.36
2.3
226
221
217

2.01
1.80,
1.60
1.38
1.00
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Table 6
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0.95 and 0.99 Quantiles of the
Studentized Range Distribution for Parameters k, v

5

6

7

k
8

9

10

11

12

13

APPENDIX

14

15

e ————————— T ————————————————————————
18.00 27.00 32.80 37.10 40.40 43.10 45.40 47.40 49.10 50.60 52.00 53.20 54.30 55.40

90.0 135.0 164.0 186.0 202.0 216.0 227.0 237.0 248.0 253.0 260.0 266.0 272.0 277.0

6.09 8.30 9.80 10.90 11.70 12.40 13.00 13.50 14.00 14.40 14.70 15.10 1540 15.70
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4.50
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6.25

475
6.10

4.69

4.64
5.88

5.89
8.32

5.61
7.68

5.40
7.24

5.24
6.91

5.12
8.67

5.03
6.48

495
6.32

4.88
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8.61

5.82
7.94

5.60
747

5.43
7.13

5.30
6.87

5.20
6.67

5.12
6.51

5.05
6.37

4.99
6.26

632 649 665 6.79 692

8.87

6.00
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Table 6 (contd)
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0.99
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0.99

0.95
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0.95
0.99

0.85
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