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Preface 

The first seven chapters of this book were developed over a period of about 20 
years for the course Linear Statistical Models at Michigan State University. 
They were first distributed in longhand (those former students may still be 
suffering the consequences), then typed using a word processor some eight or 
nine years ago. The last chapter, on frequency data, is the result of a summer 
course, offered every three or four years since 1980. 

Linear statistical models are mathematical models which are linear in the 
unknown parameters, and which include a random error term. I t  is this error 
term which makes the models statistical. These models lead to the methodology 
usually called multiple regression or analysis of variance, and have wide 
applicability to the physical, biological, and social sciences, to agriculture and 
business, and to engineering. 

The linearity makes it possible to study these models from a vector space 
point of view. The vectors Y of observations are represented as arrays written 
in a form convenient for intuition, rather than necessarily as column or row 
vectors. The geometry of these vector spaces has been emphasized because the 
author has found that the intuition it provides is vital to the understanding of 
the theory. Pictures of the vectors spaces have been added for their intuitive 
value. In the author’s opinion this geometric viewpoint has not been sufficiently 
exploited in current textbooks, though it is well understood by those doing 
research in the field. For a brief discussion of the history of these ideas see Herr 
( 1980). 

Bold print is used to denote vectors, as well as linear transformations. The 
author has found it useful for classroom boardwork to use an arrow notation 
above the symbol to distinguish vectors, and to encourage students to do the 
same, at least in the earlier part of the course. 

Students studying these notes should have had a one-year course in 
probability and statistics at the post-calculus level, plus one course on linear 
algebra. The author has found that most such students can handle the matrix 
algebra used here, but need the material on inner products and orthogonal 
projections introduced in Chapter 1. 

xi 



xii PREFACE 

Chapter 1 provides examples and introduces the linear algebra necessary for 
later chapters. One section is devoted to a brief history of the early development 
of least squares theory, much of it written by Stephen Stigler (1986). 

Chapter 2 is devoted to methods of study of random vectors. The multi- 
variate normal, chi-square, t and F distributions, central and noncentral, are 
introduced. 

Chapter 3 then discusses the linear model, and presents the basic theory 
necessary to regression analysis and the analysis of variance, including con- 
fidence intervals, the Gauss-Markov Theorem, power, and multiple and partial 
correlation coefficients. I t  concludes with a study of a SAS multiple regression 
printout. 

Chapter 4 is devoted to a more detailed study of multiple regression methods, 
including sections on transformations, analysis of residuals, and on asymptotic 
theory. The last two sections are devoted to robust methods and to the 
bootstrap. Much of this methodology has been developed over the last 15 years 
and is a very active topic of research. 

Chapter 5 discusses simultaneous confidence intervals: Bonferroni, Scheffk, 
Tukey, and Bechhofer. 

Chapter 6 turns to the analysis of variance, with two- and three-way analyses 
of variance. The geometric point of view is emphasized. 

Chapter 7 considers some miscellaneous topics, including random component 
models, nested designs, and partially balanced incomplete block designs. 

Chapter 8, the longest, discusses the analysis of frequency, or categorical 
data. Though these methods differ significantly in the distributional assumptions 
of the models, it depends strongly on the linear representations, common to 
the theory of the first seven chapters. 

Computations illustrating the theory were done using APL*Plus (Magnugis- 
tics, Inc.), S-Plus (Statistical Sciences, Inc.). and SAS (SAS Institute, Inc.). 
Graphics were done using S-Plus.). To perform simulations, and to produce 
graphical displays, the author recommends that the reader use a mathematical 
language which makes it easy to manipulate vectors and matrices. 

For the linear models course the author teaches at Michigan State University 
only Section 2.3, Projections of Random Variables, and Section 3.9, Further 
Decomposition of Subspaces, are omitted from Chapters 1, 2, and 3. From 
Chapter 4 only Section 4. I ,  Linearizing Transformations, and one or two other 
sections are usually discussed. From Chapter 5 the Bonferroni, Tukey, and 
Scheffe simultaneous confidence interval methods are covered. From Chapter 
6 only the material on the analysis of covariance (Section 6.6) is omitted, though 
relatively little time is devoted to three-way analysis of variance (Section 6.5). 
One or two sections of Chapter 7, Miscellaneous Other Models, are usually 
chosen for discussion. Students are introduced to S-Plus early in the semester, 
then use it for the remainder of the semester for numerical work. 

A course on the analysis of frequency data could be built on Sections 1.1, 
1.2, 1.3, 2.1, 2.2, 2.3, 2.4 (if students have not already studied these topics), and, 
of course, Chapter 8. 
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C H A P T E R  1 

Linear Algebra, Projections 

1.1 INTRODUCTION 

Suppose that each element of a population possesses a numerical characteristic 
x, and another numerical characteristic y .  It is often desirable to study the 
relationship between two such variables x and y in order to better understand 
how values of x affect y, or to predict y, given the value of x. For example, we 
may wish to know the effect of amount x of fertilizer per square meter on the 
yield y of a crop in pounds per square meter. Or we might like to know the 
relationship between a man's height y and that of his father x. 

For each value of the independent variable x, the dependent variable Y may 
be supposed to have a probability distribution with mean g(x). Thus, for 
example, g(0.9) is the expected yield of a crop using fertilizer level x = 0.9 
(k g m s h  ). 

For each x E D suppose Y is a random variable with 
distribution depending on x. Then 

Definition 1.1.1: 

y(x) = E( Ylx) for x E D 

is the regression function for Y on x 

Often the domain D will be a subset of the real line, or even the whole real 
line. However, D could also be a finite set, say { 1,2,3}, or a countably infinite 
set (1,2, . . .}. The experimenter or statistician would like to determine the 
function g, using sample data consisting of pairs (x i ,  y i )  for i = 1,. . . , n. 
Unfortunately, the number of possible functions g(x) is so large that in order 
to make headway certain simplifying models for the form of g(x) must be 
adopted. If it is supposed that g(x) is of the form g(x) = A + Bx + Cx2 or 
g(x) = A2" + B or &) = A log x + B, etc., then the problem is reduced to one 
of identifying a few parameters, here labeled as A, B, C. In each of the three 
forms for g(x) given above, g is linear in these parameters. 

In one of the simplest cases we might consider a model for which g(x) = 
C + Dx, where C and D are unknown parameters. The problem of estimating 

1 
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FIGURE 1.1 Regression of yield on fertilizer level. 

g(x) then becomes the simpler one of estimating the two parameters C and D. 
This model may not be a good approximation of the true regression function, 
and, if possible, should be checked for validity. The crop yield as a function of 
fertilizer level may well have the form in Figure 1.1. 

The regression function g would be better approximated by a second degree 
polynomial y(x) = A + Bx + Cx2. However, if attention is confined to the 0.7 
to 1.3 range, the regrcssion function is approximately linear, and the simplifying 
model y(x) = C + D.u, called the simple linear regression model, may be used. 

In attempting to understand the relationship between a person's height Y 
and the heights of hisiher father (xl) and mother (xZ) and the person's sex (xJ. 
we might suppose 

where .x3 is 1 for males, 0 for females, and Po, PI .  p2, ps are unknown 
parameters. Thus a brother would be expected to be P3 taller than his sister. 
Again, this model, called a multiple regression model, can only be an approxi- 
mation of the true regression function, valid over a limited range of values of 
x l ,  x2. A more complex model might suppose 
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Table 1.1.1 Height Data 

Indiv. Y X I  x2 x 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

68.5 
72.5 
70.0 
71.0 
65.0 
64.5 
67.5 
61.5 
63.5 
63.5 

70 
73 
68 
72 
66 
71 
74 
65 
70 
69 

62 
66 
67 
64 
60 
63 
68 
65 
64 
65 

1 
1 
1 
1 
1 
0 
0 
0 
0 
0 

This model is nonlinear in (xl, x2, x3), but linear in the Fs. It is the linearity 
in the p's which makes this model a linear statistical model. 

Consider the model ( l . l . l ) ,  and suppose we have data of Table 1.1.1 on 
( Y , x , , x z , x 3 )  for 10 individuals. These data were collected in a class taught 
by the author. Perhaps the student can collect similar data in his or her class 
and compare results. 

The statistical problem is to determine estimates b0, b,, &, b, so that the 
resulting function d(x,, x2, x3) = Po + B,x, + B2x2 + B,x3 is in some sense a 
good approximation of g(x,, x2, x3). For this purpose it is convenient to write 
the model in vector form: 

where xo is the vector of all ones, and y and xlr  x2, x3 are the column vectors 
in Table 1.1.1. 

This formulation of the model suggests that linear algebra may be an 
important tool in the analysis of linear statistical models. We will therefore 
review such material in the next section, emphasizing geometric aspects. 

1.2 VECTORS, INNER PRODUCI'S, LENGTHS 

Let R be the collection of all n-tuples of real numbers for a positive integer n. 
In applications R will be the sample space of all possible values of the 
observation vector y. Though $2 will be in one-to-one correspondence to 
Euclidean n-space, it will be convenient to consider elements of Q as arrays all 
of the same configuration, not necessarily column or row vectors. For example, 
in application to what is usually called one-way analysis of variance, we might 
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have 3,4 and 2 observations on three different levels of some treatment effect. 
Then we might take 

Y l Z  

Yzz 

Y32 

)14 Z 

and 0 the collection of all such y- While we could easily reform y into a column 
vector, it is often convenient to preserve the form of y. The term "n-tuple" 
means that the elements of a vector y f R  are ordered. A vector y may be 
considered to be a real-valued function on { 1,. . . , n} .  

R becomes a linear space if we define ay for any y E R and any real number 
a to be the element of R given by multiplying each component of R by a, and 
if for any two elements yl, yz E R we define yl + yz to be the vector in R whose 
ith component is the sum of the ith components of y, and y2, for i = 1, . . . , n. 

R becomes an inner product space if for each x, y E R we define the function 

where x = (x l , .  . . , x n )  and y = { y , , .  . . , y . ) .  If R is the collection of n- 
dimensional column vectors then h(x, y) = x'y, in matrix notation. The inner 
product h(x, y) is usually written simply as (x, y), and we will use this notation. 
The inner product is often called the dot product, written in the form x-y .  Since 
there is a small danger of confusion with the pair (x, y), we will use bold 
parentheses to emphasize that we mean the inner product. Since bold symbols 
are not easily indicated on a chalkboard or in student notes, it is important 
that the meaning will almost always be clear from the context. The inner 
product has the properties: 

for all vectors, and real numbers a. 

x = (3,4, 12) has length 13. 

y are said to be orthogonal if (x, y) = 0. We write x I y. 

We define \lx\\' = (x, x) and call llxll the {Euclidean) length of x. Thus 

The distance between vectors x and y is the length of x - y. Vectors x and 
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For example, if the sample space is the collection of arrays mentioned above, 
then 

are orthogonal, with squared lengths 14 and 36. For R the collection of 3-tuples, 

The following theorem is perhaps the most important of the entire book. 
We credit it to Pythagorus (sixth century B.c.), though he would not, of course, 
have recognized it in this form. 

(2,3, 1) I (- I ,  1, - 1). 

Pythagorean Tbeorem: Let v,,  . . . , vk be mutually orthogonal vectors in R 
Then 

Debition 1.21: The projection of a vector y on a vector x is the vector 9 
such that 

1. 9 = bx for some constant b 
2. (y - 5 )  I x (equivalently, (9, x) = (y, x)) 

Equivalently, 3 is the projection of y on the subspace of all vectors of the form 
ax, the subspace spanned by x (Figure 1.2). To be more precise, these properties 
define othogonal projection. We will use the word projection to mean ortho- 
gonal projection. We write p(ylx) to denote this projection. Students should 
not confuse this will conditional probability. 

Let us try to find the constant b. We need (9, x) = (bx, x) = b(x, x) = (y, x). 
Hence, if x = 0, any b will do. Otherwise, b = (y, x)/[lxl12. Thus, 

for x = 0 

[(y, X)/IIXI(~]X, otherwise 

Here 0 is the vector of all zeros. Note that if x is replaced by a multiple ax of 
x, for a # 0 then 9 remains the same though the coefficient 6 is replaced by 6/a 
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A 

Y 
FIGURE 1.2 

X 

Theorem 1.2.1: Among all multiples ux of x, the projection 9 of y on x is 
the closest vector to y. 

Proof: Since (y - 9 )  I ( 9  - ax) and (y - ax) = (y - 9 )  + (9  - ax), it 
follows that 

11y - ax112 = !(y - $11’ + iI$ - uxI12. 

This is obviously minimum for ux = 9. I1 

Since 3 I (y - 9)  and y = 9 + (y - 9), the Pythagorean Theorem implies 
that IIyilz = 11911’ + I/y - 9112. Since [19iI2 = b211xIIZ = (y, X ) ~ / I I X I I ~ ,  this implies 
that !Iyilz 2 (y, ~ ) ~ / l l x l \ ~ ,  with equality if and only if Ily - 911 = 0, i.e., y is a 
multiple of x. This is the famous Cauchy-Schwurz Inequality, usually written 
as (y, x ) ~  I lly112/1x112. The inequality is best understood as the result of the 
equality implied by the Pythagorean Theorem. 

Definition 1.2.2: Let A be a subset of the indices of the components of a 
vector space R. The indicator of A is the vector I, E !2, with components which 
are 1 for indices in A, and 0 otherwise. 

The projection 9, of y on the vector I, is therefore hl, for b = (y. I , ) / ~ l l k ~ ~ 2  = 

(2 y[)/N(A), where N ( A )  is the number of indices in A. Thus, h = j A ,  the 
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mean of the y-values with components in A. For example, if R is the space of 
4-component row vectors, y = (3,7,8,13), and A is the indicator of the second 
and fourth components, p(yl1,) = (0, 10, 0,lO). 

Problem 1.2.1: Let R be the collection of all 5-tuples of the form 
y=(‘” ”21 ) . L e t x = (  1 0  ) . y = ( ’  ) 

Y l Z  Y 2 2  y.31 2 1 3  9 4 11 
(a) Find (x, y), I I X ~ ~ ~ ,  Ilyl12, 9 = p(yIx), and y - 9. Show that x I (y - j ) ,  and 

(b) Let w = ( ) and z = 3x + 2n. Show that (w, x) = 0 and that 

(c) Let x,, x‘, x3 be the indicators of the first, second and third columns. 

IIYII’ = 119112 + IIY - 911’. 
- 2  1 

0 2 0  
1!z)1’ = 911x)j’ + 4[1wl12. (Why must this be true?) 

Find p(y)x,) for i = 1, 2, 3. 

Problem 12.2: Is projection a linear transformation in the sense that 
p(cyIx) = cp(ylx) for any real number c? Prove or disprove. What is the 
relationship between p(y(x) and p(yicx) for c # O? 

Problem 1.23: Let l1x11’ > 0. Use calculus to prove that I/y - hxII’ is 
minimiim for b = (y, x)/IIxlI’. 

Problem 134: Prove the converse of the Pythagorean Theorem. That is, 
IIx + yi12 = llxll’ i- llyll’ implies that x 1 y. 

Problem 1.2.5: Sketch a picture and provc the parallelogram law: 

1.3 SUBSPACES, PROJECTIONS 

We begin the discussion of subspaces and projections with a number of 
definitions of great importance to our subsequent discussion of linear models. 
Almost all of the definitions and the theorems which follow are usually included 
in a first course in matrix or linear algebra. Such courses do not always include 
discussion of orthogonal projection, so this material may be new to the student. 

Defioition 1.3.1: A subspuce of R is a subset of R which is closed under 

That is, V c R is a subspace if for every x E V and every scalar a, ax E V 
addition and scalar multiplication. 

and if for every vl, v2 E V, vI  + v2 E V. 
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Definition 1.3.2: Let xl, .  . . , x k  be k vectors in an n-dimensional vector 
space. The subspace spanned by x , ,  . . . , x k  is the collection of all vectors 

for all real numbers b, ,  . . . , bk. We denote this subspace by Y ( x , ,  . . . , x k ) .  

t 
Definition 133: Vectors x , ,  . . . , x k  are linearly independent if 1 bixi = O 

I implies b, = 0 for i = 1,. . . , k. 

Definition 13.4: A busis for a subspace V of f2 is  a set of linearly 

The proofs of Theorems 1.3.1 and 1.3.2 are omitted. Readers are referred to 
independent vectors which span V.  

any introductory book on linear algebra. 

Tbeorem 1.3.1: Every basis for a subspace V on $2 has the same number 
of elements. 

Definition 13.5: The dimension of a subspace Y of Q is the number of 
elements in each basis. 

Theorem 13.2: Let v,, . . . , vk be linearly independent vectors in a subspace 
V of dimension J .  Then d 2 k. 

Comment: Theorem 1.3.2 implies that if dim( V) = d then any collection of 
d + 1 or more vectors in V must be linearly dependent. In particular, any 
collection of n + 1 vectors in the n-component space R are linearly dependent. 

Definition 13.6: A vector y is orthogonal to a subspace V of Q if y is 
orthogonal to all vectors in V. We write y _L V. 

Problem 1.3.1: Let Q be the space of all 4component row vectors. 
Let x 1 = ( 1, 1, 1, 1 ), X I ;  = ( 1, 1 , 0, O), ~3 = ( 1 , 0, 1 , 0), ~4 = (7,4,9,6). Let Vz = 
V ( x 1 ,  XA Vs = Y(x,, ~ 2 ,  x j )  and V, = Y ( x 1 ,  ~ 2 r  ~ 3 9  ~ 4 ) .  

(a) Find the dimensions of Vz and V,. 
(b) Find bases for V2 and 

(c) Give a vector z # 0 which is orthogonal to all vectors in V,. 
(d) Since x l ,  x2, xg, z are linearly independent, x4 is expressible in the form 

b,xi + cz. Show that c = 0 and hence that x4 E V,, by determining ( x 4 ,  2). 

(e) Give a simple verbal description of V3. 

which contain vectors with as many zeros as 
possible. 

3 

1 

What is dim( V,)? 
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Problem 13.2: Consider the space R of arrays y , 2  y,, and define 

C,, C2. C3 to be the indicators of the columns. Let V = Y ( C , ,  Cz, C3). 
(a) What properties must y satisfy in order that y E M In order that y I M 
(b) Find a vector y which is orthogonal to V. 

The following definition is perhaps the most important in the entire book. 
It serves as the foundation of all the least squares theory to be discussed in 
Chapters 1, 2, and 3. 

Definition 1.3.7: The projection of a vector y on a subspace Y of R is the 
vector 9 E V such that (y - 9 )  I V. The vector y - 9 = e will be called the 
residual vector for y relative to V. 

Comment: The condition (y - 9 )  1 V is equivalent to (y - f ,  x) = 0 for all 
x E V.  Therefore, in seeking the projection f of y on a subspace V we seek a 
vector 9 in V which has the same inner products as y with all vectors in V 
(Figure 1.3). 

If vectors x,. . . . , x k  span a subspace V then a vector z E V is the projection 

of y on V if (z, x i )  = (y. x i )  for all i, since for any vector x = c b j x l  E V, this 
k 

implies that j -  1 

It is tempting to attempt to compute the projection f of y on V by simply 
summing the projections f i  = p(yIx,) .  As we shall see, this is only possible in 
some very special cases. 

FIGURE 13 
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At this point we have not established the legitimacy of Definition 1.3.7. Does 
such a vector 9 always exist and, if so, is it  unique? We do know that the 
projection onto a one-dimensional subspace, say onto V = 9(x), for x # 0, 
does exist and is unique. In fact 

Example 13.1: Consider the 6-component space Q of the problem above, 

and let V =  2(Cl,C2,C3). Let y = 10 8 . It is easy to show that the i6 7\ 
\ s  J 

vector 9 = Ep(yJC,)  = 7C1 + 6C2 + 7C3 satisfies the conditions for a pro- 
jection onto V. As will soon be shown the representation of f as the sum of 
projections on linearly independent vectors spanning the space is possible 
because C,, C,, and C3 are mutually othogonal. 

We will first show uniqueness of the projection. Existence is more difficult. 
Suppose 9 ,  and g2 are two such projections of y onto V. Then f 1  - 9, E V and 
(9 ,  - 9,)  = (y - 9,) - (y - fl) is orthogonal to all vectors in V ,  in particular 
to itself. Thus l l f ,  - 9,112 = (PI - y,, 9, - j l , )  = 0, implying - f2 = 0, i.e., 

We have yet to show that 4 always exists. In the case that it does exist (we 
will show that it always exists) we will write 9 = p(yl Vj. 

If  we are fortunate enough to have an orthogonal basis (a basis of mutually 
orthogonal vectors) for a given subspace V, it is easy to find the projection. 
Students are warned that that method applies only for an orthogonal basis. We 
will later show that all subspaces possess such orthogonal bases, so that the 
projection 9 = p(yl V) always exists. 

9 ,  = 9 2 .  

Theorem 133: Let v,, . . . , vk be an orthogonal basis for V, subspace of R. 
Then 

k 

POI v) = C P(YIvi) 
i =  1 

Proof: Let fi = p(ylv,) = hivi for hi = (y, vi)/Ilvi112. Since 3,- is a scalar 
multiple of vi, it is orthogonal to vj forj # i. From the comment on the previous 
page, we need only show that cfi and y, have the same inner product with 
each vj, since this implies that they have the same inner product with all x E V. 
But 



SUBSPACES, PROJECTIONS 11 

Example 13.2: Let 

Then v1  I v2 and 

Then (y, v l )  = 9, (y, v2) = 12, (9, v l )  = 9, and (9, v,)  = 12. The residual vector is 

/ o\ 
y - 9 = - which is orthogonal to V. 

Would this same procedure have worked if we replaced this orthogonal basis 
v!, v1 for Y by a nonorthogonal basis? To experiment, let us leave v, in the 
new basis, but replace v2 by v3 = 2v, - v2. Note that lip(vl, v3) = 9 ( v I ,  v2) = V, 

and that (v,, v2) # 0. f I  remains the same. v3 = 2v, - v2 = 

, which has inner products 11 and 24 with v1 and v3. 

is not orthogonal to V. Therefore, 9,  + j 3  is not the 

projection of y on V = Y ( v l ,  v3). 
Since (y - 9)  I 9, we have, by the Pythagorean Theorem, 

l!Y!I2 = IKY - 9 )  + HI2 = IlY - 9112 + 1191r’ 

2 9 2  123 
llyllz = 53, 1 1 f 1 1 2  = + - 6 = 51, IIy - j1I2 = II( -‘)i = 2. 

1 

Warning: We have shown that when v l , .  . . , vk are mutually orthogonal 
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k 

the projection 3 of y on the subspace spanned by vl, . . . , vk is p(y(vj). This 

is true for all y only if vI, . . . , vk are mutually orthogonal. Students are asked 
to prove the “only” part in Problem 1.3.5. 

/=  1 

Every subspace V of R of dimension r > 0 has an orthogonal basis (actually 
an infinity of such bases). We will show that such a basis exists by using 
Gram-Schmidt orthogonalization. 

Let xl,. . . , xk be a basis for a subspace V, a kdimensional subspace of Q. 
For 1 5 i 5 k let 6 = U(xl, . . . , xi) so that V, c 6 t * * c 5 are properly 
nested subspaces. Let 

v1 = Xl, v2 = x2 - p(X,lV,). 

Then vl and v2 span 6 and are othogonal. Thus p(x3( V,) = p(x,lv,) + p(x31v2) 
and we can define v3 = x3 - p(x3J Vz). Continuing in this way, suppose we have 
defined vl, ..., vi to be mutually orthogonal vectors spanning 6. Define 
vi+l = xi+, - ~ ( X ~ + ~ I  Jo. Then vi+l 1 < and hence v,, . . . , vi+ I are mutually 
orthogonal and span c+l. Since we can do this for each i I k - 1 we get the 
orthogonal basis vl,. . . , vk for V. 

If {vl,. . . , vk}  is an orthogonal basis for a subspace V then, since f = 
k 

P(yl V )  = 2 p(ylv,) and p(ylvj) = bjvj, with b, = [(y, v,)/IIvjl12], it follows by 
j -  1 

the Pythagorean Theorem that 

k k k 

Of course, the basis {vl,. . . , vk) can be made into an orthonormal basis (all 
vectors of length one) by dividing each by its own length. If {v:, . . . , v:) is such 

an orthonormal basis then 3 = p(yl V )  = p(ylv’) = C (y. vf)vf and 11911’ = 
k k 

k 1 1 c ( Y N 2 .  
i =  1 

Example  1.3.3: Consider R,, the space of Ccomponent column vectors. 
Let us apply Gram--Schmidt orthogonalization to the columns of X = [ \ ,: ’~ ] ,  a matrix chosen carefully by the author to keep the 

5 8 10 
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arithmetic simple. Let the four columns be xlr.. . , x4. Define v 1  = xl. Let 

, v 3 = x 3 - [ r * , + * 6 v 2 ] = ~  32 - 2  

2 

L -2 .  

and 

We can multiply these vI by arbitrary constants to simplify them without losing 
their orthogonality. For example, we can define ui = vi/l~vil12, so that u,, u2, 
u3, u, are unit length orthogonal vectors spanning R. Then U = (ul, u2, u3, u4) 
is an orthogonal matrix. U is expressible in the form U = XR, where R has 
zeros below the diagonal. Since I = U'U = U'XR, R- ' = U'X, and X = UR- ', 
where R-' has zeros below the diagonal (see Section 1.7). 

As we consider linear models we will often begin with a model which 
supposes that Y has expectation 8 which lies in a subspace b, and will wish 
to decide whether this vector lies in a smaller subspace V,. The orthogonal 
bases provided by the following theorem will be useful in the development of 
convenient formulas and in the investigation of the distributional properties of 
estimators. 

Theorem 1.3.4: Let V, c V, c R be subspaces of Q of dimensions 
1 5 n, c n, c n. Then there exist mutually orthogonal vectors vl, . . . , v, such 
that vI,. . . , v,, span F, i = 1, 2. 

Proof: Let {xl,. . .,x,,} be a basis for V,. Then by Gram-Schmidt 
orthogonalization there exists an orthogonal basis (vl,. . . , v,,} for V,. Let 
x,, + l , .  . . , xnZ be chosen consecutively from V2 so that vI, . . . , v,,,, x,,, + . . , x,, 
are linearly independent. (If this could not be done, V2 would have dimension 
less than n2.)  Then applying Gram-Schmidt orthogonalization to x,, + ,, . . . , x,, 
we have an orthogonal basis for V,. Repeating this for V2 replaced by R and 
vl,. . . , v,, by vl , .  . . , v,, we get the theorem. n 

For a nested sequence of subspaces we can repeat this theorem consecutively 
to get Theorem 1.3.5. 
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Theorem 1.3.5: Let Vl c c . . .  c V, c R = Q + l  be subspaces of R of 
dimensions 1 5 n ,  € n2 € . . . < n k  < n = n k +  1. Then there exists an orthogonal 
basis vI, . . . , v, for R such that v l r  . . . , v,, is a basis for 4 for i = 1, , . . , k + 1. 

We can therefore write for any y E Q, 

and 
II’ (y v.)2 

I =  1 I l V j f i  
11p(yIv/1)11~ = 1 -‘_I-- for i = 1,. . . , k + 1. 

2 

The vj can be chosen to have length one, so these last formulas simplify still 
further. 

Thus, the definition of the projection p ( y f  V) has been justified. Fortunately, 
it is not necessary to find an orthogonal basis in order to find the projection 
in the general case that the basis vectors ( x ~ ,  . . . , x,) are not orthogonal. The 
Gram-Schmidt method is useful in the development of nonmatnx formulas for 
regression coefficients. 

In order for 5 = b,xl + * * + h,x, to be the projection of y on V =  
9 ( x , ,  . . . , X k )  we need (y, xi) = (9, xi) for a11 i. This leads to the so-called nonnal 
equutions: 

k 

0, xi) = b,4xj, xi) = (y, xi) for i = 1,. . . , k 
1 

I t  is convenient to write these k simultaneous linear equations in matrix form: 

M b = U ,  
k x k  k x  1 

where M is the matrix of inner products among the xi vectors, b is the column 
vector of bj’s, and U is the k x 1 column vector of inner products of y with the 
xi. If R is taken to be the space of n-component column vectors, then we can 
write X = (x,, . . . , x k ) ,  and we get M = X’X, U = X’y, so the normal equations 
are: 

M b  = (X‘X)b = X’y = U 

Of course, if M = ( ( x i ,  xi)) has an inverse we will have an explicit solution 

b = M-’U 

of the normal equations. It will be shown in Section 1.6 that M has rank k if 
and only if x,, . . . , xk are linearly independent. Thus b = M-’U if and only if 
xl, . . . , xk are linearly independent. 
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In the case that the elements of R are not column vectors, we can always 
rewrite its elements as column vectors, and the matrix M will remain unchanged. 
Thus, in the general case M possesses an inverse if and only if the vectors 
x,. . . . , xk are linearly independent. Of course, even in this case with $2 = R,, 
the space of n-component column vectors, X = (xl,. . . , xk) ,  being n x k, does 
not have an inverse unless n = k. In applications we always have n > k. 

In the computation of M = X’X it makes little sense to write X on its side 
as X’, then X, and then to carry out the computation as the multiplication of 
two matrices, unless the computer software being used requires this. M is the 
matrix of inner products, and U is a vector of inner products, and this viewpoint 
should be emphasized. 

Example 13.4: Let y, v1 and v2 be as in Example 1.3.2. Let x1  = v1 and 
x2 = 2v, + v2. Then 

y =  [ 0 3. i]. xz=[;]. 

and V = -Lp(v,, v2) = Y(xl ,  x2). We compute 

and 3=p(yly)= -x l  + 2x2 = 1 , as before. [:I 
It is easy to compute lengths of y and of y - 3. First, 

By the Pythagorean Theorem, 

IIY - 911’ = HYi12 - 11911’. 

For Example 1.3.2, 11j1I2 = b,(y, xi) + b2Q, x2) = (- 1)(9) + 2(30) = 51, as 
shown in Example 1.3.2. 
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FIGURE 1.4 

The projection 9 = p(yJ V) is the closest vector in V to y, since for any other 
vector w E V, 

IIY - wl12 = INY - 9)  + (9 - W)Ilf = IIY - 91r2 + I15 - wl12 

by the Pythagorean Theorem and the facts that (9 - w) E V, and (y - 3) I V. 
Thus IIy - wllz is minimized for w E Y by taking w = 9 (Figure 1.4). 

For this reason the vectors b and 9 are said to have been obtained by the 
principle of least squares. 

Problem 13.3: Let a. C,. C2, C3 be defined as in problem 1.3.2. Let 

(a) For Y = 1; 7 1 find 3. = P(YlV), Y - 5, liYl12, 115112, IIY - 5112. 

(b) Give a general nonmatrix formula for 9 = p(yJ V )  for any y. 

Problem 13.4: Let x, = (1, I ,  1, l)’, x2 = (4, 1,3,4)’, y = (1,9,5,5)’ (so 

(a) Find 9 = p(yl V) and e = y - 9. 
(b) Find 9 ,  = p(ylx,) and Q2 = p(yIx,) and show that 5 # 9 ,  + f2. 
(c) Verify that e I V. 
(d) Find lly1I2, l13.112, Ily - fl12, and verify that the Pythagorean Theorem 

holds. Compute 1J911’ directly from 9 and also by using the formula 11$-JJ2 = U’b. 
(e) Use Gram-Schmidt orthogonalization to find four mutually orthogonal 

vectors v,, v2, v3, vq such that V = Y(v,, v2). Hint: You can choose x3 and xq 
arbitrarily, as long as x,, x2, x,, xg are linearly independent. 

these are column vectors). Let V = Y(x, ,  x2). 

(f) Express y and 9 in terms of the v,. 
(g) Let w = (2,8,4,2)’. Show that w G V and verify that IJy - w1I2 = 

IIy - 3112 + 119 - w1I2. (Why must this equality hold?) 
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(h) Does p(p[xl) = 9,? Is this true for any y? That is, do we obtain the same 
vector by (1) first projecting y on V,  then projecting this vector on x1 as by (2) 
projecting y directly on x,? More generally, if V is a subspace, and V, a subspace 
of v, does P M Y  I V)I 4)  = P(Y I V,)? 

Problem 13.5: Let y = (y, , .  . . ,yJ, x = ( x , , .  . . , X J ,  J = ( I , .  . . , I)’, and 
V = Y(J, x). 

(a) Use Gram-Schmidt orthogonalization on the vectors J, x (in this order) 
to find orthogonal vectors J, x* spanning V. Express x* in terms of J and x, 
then find b,, 61 such that 9 = b,J + b,x. To simplify the notation, let 
y* = y - p(ylJ) = y - j J ,  

s,, = (x*, y*) = (x*, y) = c (Xi - * ) ( y ,  - I;) = c (Xi - 2)yr = 1 xiy,  - Zjn,  

s,, = (x*, x*) = c (XI - 2 ) Z  = c ( X i  - 2)f  = c x: - f f n ,  

(h) Suppose 9 = p(y( V )  = u,J + ulx*. Find formulas for a, and uo in terms 

(c) Express x* in terms of J and x, and use this to determine formulas for 

(d) Express 11$’112 and IIy - $[Iz in terms of Sly,  S,,, and Spy. 
(e) Use the formula b = M-’U for b = (b,,, b,)’ and verify that they are the 

of I;, S,,, and S,,. 

b, and b, so that 9 = b,J + b,x. 

same as those found in (c). 

that 119112 = bo(y, J) + bl(y, x) and that (y - 9 )  I V.  

Problem 13.6: Let R be the collection of 2 x 3 arrays of the form 

Let R,, R,, C,, C,, C3 be indicators of the 2 rows and 3 columns. For example, 

Cz = [o 0 1 0  O]. For = Y(R,, R2,  C,, C2, Cd, Y = [i :]find j , e =  

y - 9, 119112, Ilell’. Verify that e I V.  Hint:  Find four mutually orthogonal vectors 
which span V. It is easier to begin with the column indicators. 
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Problem 13.7: Let xl,. . . . xk be a basis of a subspace V. Suppose that 

p(yl V )  = 1 p(ylxj) for every vector y E R Prove that xl,. . . , x, are mutually 

orthogonal. Hint: Consider the vector y = x i  for each i. 

k 

j -  1 

Problem 13.8: Consider the collection X' of all real-valued functions on 

the unit interval U = [0, 11 having the property f2(x)dx < a. Define the 

inner product (f, g) = f(x)y(x) dx. Such an inner product space, with the 

correct definition of the integral, and a more subtle property called completeness, 
is called a Hilbert space after the great German mathematician, David Hilbert, 
of the late nineteenth and early twentieth centuries. X is not finite dimensional, 
but our projection theory still applies because we will be interested in 
projections on finite dimensional subspaces. Consider the function h(x)  = \/x 
for X E  U.  For each nonnegative integer k define pk(x) = xk. The functions h, 
p o ,  p, ,  p 2  determine yrresponding points h, *pa. p,, p2 in X'. Define 6 = 
2'(po, pl,. . . , pk), and h, = p(hl 6). The point hk corresponds to a polynomial 
h, of degree k on [O, 13. Though there is a subtle diiTerFnce between the point 
functions h, pk, hk and the corresponding points h, pk, hk in X ,  we will ignore 
this difference. Let E,  = Ilh - h,ll2 be the measure of error when the function 
hk is used to approximate h. 

(a) Find the functions h, for k = 0, 1, 2. Plot h and these three functions on 
the same axes. Hint: Thc inner products (pi, pi) and (pi, h) are easy to determine 
as functions of i andj, so that the matrices M and U are easy to determine. If 
possible use exact arithmetic. 

ld l' 

(b) Evaluate Ek for k = 0, 1, 2. 
(c) Find the Taylor approximation h* of h, using constant, linear, and 

quadratic terms, and expanding about x = 1/2. Show that the error Ilh - k2112 
is smaller than the error llh - h*1I2. 

(d) Repeat (a) and (b) for h(x) = 1/(1 + x). Hint: Let ck = (h, p,) = Iol h(x)p,(x) dx. Then ck = xk-'[I  - h(x) ]  dx = ( l /k)  - Ck-1. 

1.4 EXAMPLES 

In this section we discuss four real data examples, formulate them in terms of 
vector spaces, and carry out some of the computations. At this point we 
consider only ways of describing observed vectors y in terms of a few other 
vectors x,, . . . , xk. 

Example 1.4.1: In their classic book Statistical Methods fir Research 
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Table 1.4.1 Regressioo of Perceotage of Wormy Fruit 011 Size of Apple Crop 

Size of Crop on Percentage of Deviation from 
Tree Tree, X (Hund- Wormy Fruits Extimate of P Regression . 

Number reds of Fruits) Y E( YlX) Y - Y = d..* 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

8 
6 

1 1  
22 
14 
17 
18 
24 
19 
23 
26 
40 

59 
58 
56 
53 
50 
45 
43 
42 
39 
38 
30 
27 

56.14 
58.17 
53.10 
4 I .96 
50.06 
47.03 
46.0 I 
39.94 
45.00 
40.95 
37.91 
23.73 

2.86 
-0.17 

2.90 
11.04 
- 0.06 
- 2.03 
- 3.01 

2.06 
- 6.00 
- 2.95 
- 7.9 I 

3.27 

X = 228 c Y = 540 

g =  19 P = 45 

X 2  = 5.256 

(1 X ) ’ / n  = 4,332 

C Y z  = 25,522 

(c Y)*,/n = 24,300 

1 X Y = 9.324 

(c X ) ( c  Y) /n  = 10,260 

Workers. Snedecor and Cochran (1980, p. 162) present the data of Table 1.4.1 
accompanied by this commentary: 

6.6 -Regression of injured fruit on crop size. It is rather generally thought that the 
intensity of the injury by codling moth larvae is greater on apple trces bearing a 
small crop. Apparently the density of the flying moths is unrelated to the size of the 
crop on a tree so that the chance of attack for any particular fruit is augmented if 
there are few fruits in the tree. The data in table 6.5 are adapted from the results of 
an experiment (9) containing evidence about this phenomenon. The 12 trees were all 
given a calyx spray of lead arsenate followed by fine cover sprays made up of 3 
pounds of managanese arsenate and 1 quart of fish oil per 100 gallons. There is a 
decided tendency for the percentage of wormy fruits to dccreaw as the number of 
apples in the tree increases. 

- - 
xi = xi - x y . =  x- y 

1 X’ = 924 C y ’ =  1222 C x y =  -926 

h = 1 . K J ’ / ~  xz = -936/924 = - 1.013 percent per wormy apple 

P = F + b(X - 2) = 45 - 1.013(X - 19) = 64.247 - 1.103X 

C di, ,  = 1.222 - ( - 936)2/924 = 273.88 

s,:,~ = C df,,/(n - 2) = 273.88/10 = 27.388 
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FIGURE 1.5 Regression of percentage of wormy apples on size of apple crop. From Stotistical 
Merln-dqfor Resewch Workers. by G. W. S & w r  (1976). Iowa Stale Press. 

The line on the scatter diagram of Figure 1.5 was obtained as follows. 
Suppose we try to approximate y by a linear function y(x) = bo + b,x.  One 
possible criterion for the choice of the pair (bo, 6,) is to choose that pair for 
which 

R 

Q = Q(b0, b , )  = C [Yi - (b,  + b,xi)I2 
i =  1 

is minimum. If we define y and x, as 12-component column vectors of y and 
x values, and xo as the 12-component vector of all ones, then 

so that Q is minimized for boxo + b,x, = 9, the projection of y onto Y ( x o ,  xi). 
Thus, for X = (xo, x,), M = X'X, U = X'y, 

X is the 12 x 2 matrix whose first column elements are all ones, and whose 
second column is the column labeled X in Table I .4.1. The column vector y 
was labeled Y by Snedecor. 9 and e = y - 9 were labeled f and d,,.=. 

0.474030 -0.0205631 U =  [ 5401 
- 0.020 563 0.001 082 9,324 
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Notice that lly112 = 11f1I2 + 1Iy - $112, as should be the case, by the Pythagorean 
Theorem. Simple computations verify that e = y - 3 is orthogonal to x, and 
x,, that is, C e, = 0 and 

We have chosen here to use the more general matrix formulas in order to 
determine b, and b ,  even though nonmatrix formulas were developed in 
Problem 1.2.3. A complete discussion of the simple linear regression model will 
be included later. 

eixi = 0. 

Example 1.4.2: Consider now the height data of Table 1.1.1. Let us 
try to approximate the 10-component vector y with a vector 3 contained in 
.9'(xo, x,, x2, x3), where x,, is the 10-component column vector of ones and xl, 
x2, x3 are as given in Table 1.1.1. The approximation vectors are given in 
Table 1.4.2. 

Table 1.4.2 

X Y 3 e 

I 70 62 1 
1 73 66 1 
1 68 67 I 
I 7 2 6 4 1  
1 6 6 6 0 1  
I 71 63 0 
1 74 61) 0 
I 65 65 0 
I 7 0 6 4 0  
I 69 65 0 

68.5 
72.5 
70.0 
71.0 
65.0 
64.5 
67.5 
61.5 
63.5 
63.5 

68.66 
72.32 
69.87 
70.78 
65.37 
63.85 
67.99 
61.29 
63.74 
63.63 

-0.16 
0.18 
0.13 
0.22 

-0.37 
0.65 

0.29 
- 0.49 

- 0.25 
-0.13 

698 48,796 44,977 349 

644 44,977 41,524 319 
M =  

L 5 349 319 5J 
10,927,530 - 55,341 - 108,380 - 150,056 

- 55,341 1,629 -898 - 1,077 ] 10-5 
- 108,380 - 898 2,63 1 3,158 

150,056 1,077 3,158 43,789 

M - '  = 
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667.5 - 7.702 

LJ=X‘Y[ 46’u8‘0] 43,008.5 .=[ 0.5851 0.477 C e , Z =  lle112=0.08575 

347.0 5.872 

The height y seems to be predicted very nicely by x1 (father’s height), x2 
(mother’s height) and x3 (sex). We must be cautious, however, in interpreting 
such an analysis based on 10 observations with 4 independent variables. 
Predictions of heights for other people, based on the coefficients determined 
for these data, should not be expected to be as good. 

Example 1.4.3 (Snedecor, 1967, p. 278): 

EXAMPLE 10.12.1- The numbers of days survived by mice inoculated with 
three strains of typhoid organisms are summarized in the following frequency 
distributions. Thus, with strains 9D, 6 mice survived for 2 days, etc. We have 
n, = 31, n, = 60, n, = 133, N = 224. The purpose of the analysis is to estimate and 
compare the mean numbers of days to death for the three strains. 

Since the variance for strain 9D looks much smaller than for the other strains, 
it seems wise to calculate sf separately fro each strain, rather than use a pooled s2 
from the analysis of variance. 

The calculations are given under Table 1.4.3. Again from Snedecor (1967) 
consider the variable days to death for three strains of typhoid organism. Let 
y be the table with three columns, having the days to death for 31 mice on 9D 
in column I ,  for 60 mice on I1C in column 2, and 133 mice on DSCl in column 
3. Thus y has 224 components. Let yi j  be the jth component in the ith column 
of y. Let xlr x2, x3 be the indicators of columns 1,2,3. The best approximation 
to y by vectors in Y ( x , ,  x2, x3) = V in the least squares sense is 

3 3 

j .  = P(Y I V = C p(yIxi) = C Yixi 
i = 1  i =  1 

The second equality follows by the orthogonality of xl, x2, x3. ji is the mean 
of the values of y in the ith column. Thus 9 is the array with 31 jl’s in column 1, 
60 j 2 ’ s  in column 2, I 33j3’s in column 3. Easy computation (remembering, for 
example, that 4 occurs nine times in column 1) shows that 

We find j1 = 4.032, j 2  = 7.367, j 3  = 7.797, and the error sum of squares llel12 = 
y$ = 13,124. (y i i  - j i) ’  = 1,278.42, I I j . l 1 2  = C n,,?; = 11,845.58,and lly112 = 

i i  i i j  
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Table 1.4.3 

Numbers of Mice Inoculated 
with Indicated Strain 

Days to Death 9D 11c DSCl Total 

2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 

Total 

6 1 
4 3 
9 3 
8 6 
3 6 
1 14 

I I  
4 
6 
2 
3 
1 

3 
5 
5 
8 

19 
23 
22 
14 
14 
7 
8 
4 
1 

10 
12 
17 
22 
28 
38 
33 
18 
20 
9 

1 1  
5 
1 

31 60 I33 224 

125 442 1,037 1,604 
56 I 3,602 X,96 1 13,124 

E x  r: x 2  

Example 1.4.4: The following data were given in a problem in Dixon and 
Massey (1957, p. 185): 

The drained weight in ounces of frozen apricots was measured for various types of 
syrups and various concentrations of syrup. The original weights of the apricots were 
the same. Differences in drained weights would be attributable to differences in 
concentrations or type of syrups. 

Syrup Composition 

All 113 Corn 2/3 Corn Corn 
2/3 Sucrose 1/3 Sucrose All 

Sucrose Syrup Syrup Syrup Y,. 
28.2 1 29.28 29.12 28.853 

28.64 29. I2 30.24 29.280 

30.40 29. I2 28.32 ] 29.400 

29.221 29.083 29.173 29.227 y., = 29.178 

Cone. 

j . j  

Let y be the 3 x 4 matrix of drained weights. Let us approximate y by a 
linear combination of indicator vectors for rows and columns. Define R, 
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to be the indicator of row i and Cj to be the indicator of column j. Thus, for 
example, 

0 0 0 0  0 0 1 0  

Take V = Y(R,, R,, R,, C,, . . . , C4). Define xo to be the 3 x 4 vector of all 
ones. Then xo = Ri = 1 C,. Let ji., j .  and j . .  be the mean of the ith row, 

the j th column, and the overall mean, respectively. It is not difficult to show 
that V has dimension 4 + 3 - 1 = 6, and that f = f0 + f R  + $=, where 

i I 

1 29.178 29.178 29.178 29.178 

$0 = p ( y I ~ 0 )  = j . .  XO = 29.178 29.178 29.178 29.178 , 

29.178 29.178 29.178 29.178 

9 R  = C (ji. - j .  . )R i  
i 

-0.325 - 0.325 - 0.325 - 0.325 

0.102 0.102 0.102 0.102 

0.222 0.222 0.222 0.222 

9c = C 0 . j  - y .  .)Cj 
i 

0.049 -0.095 -0.005 0.049 . 

0.049 -0.095 -0.005 0.049 

0.049 -0.095 -0.005 0.049 1 
, 

Notice that f,,, $R, and fC are orthogonal and that the ij element of 9 is 
j i j  = y . .  + (ji. - j .  .) + ( j . ,  - j .  .). Therefore 

1 
i 

28.902 28.758 28.848 28.902 

9 = 29.329 29.186 29.276 29.329 , 

29.449 29.306 29.396 29.449 

-0.102 -0.548 0.432 0.218 

-0.209 -0.546 -0.156 0.911 

0.311 1.094 -0.276 -1.129 

[ 
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Further computation gives 

lly112 = 1 y; = 10,221 

1I9I!’ = I190iIz + IIhII’ + I & I I 2  
i j  

= F?.( 12) + 4 c (ji. - j . .  )Z + 3 c ( j .  - 1.. )’ 
i i 

= 10,215.92 + 0.66 + 0.04 = 10,216.62 

showing again that the Pythagorean Theorem holds. 
Later, after we formulate probability models, and discuss their properties, 

we will be able to draw further conclusions about the contributions of 
concentration and composition to variation in drainage weight. 

15 SOME HlSTORY 

In his scholarly and fascinating history of the development of statistics before 
1900, Stephen Stigler (1986) begins his first chapter, entitled “Least Squares 
and the Combination of Observations,” with the following: 

The method of least squares was the dominant theme-the leitmotif-af nineteenth- 
century statistics. In several respects it was to statistics what the calculus had been 
to mathematics a century earlier. “Proofs” of the method gave direction to the 
development of statistical theory, handbooks explaining its use guided the application 
of the higher methods, and disputes on the priority of its discovery signaled the 
intellectual community’s recognition of the method’s value. Like the calculus of 
mathematics, this “calculus of observations” did not spring into existence without 
antecedents, and the exploration of its subtleties and potential took over a century. 
Throughout much of this time statistical methods were referred to as “the combina- 
tion of observations.” This phrase captures a key ingredient of the method of 
least squares and describes a concept whose evolution paced the method‘s develop 
ment. The method itself first appeared in print in 1805. 

Stigler refers to Adrien-Marie Legendre (1752-.1833), who in 1805 wrote an 
eight-page book Nouvelles mithudes pour le dttermination des orbites des comktes 
(New methods for the determination of the orbit of the planets), with a 
nine-page appendix, “Sur la methode des maindres quarres” (On the method 
of least squares). Legendre began the appendix with a statement of his objective; 
here is Stigler’s translation: 
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In most investigations where the object is to deduce the most accurate possiblc results 
from observational measurements. we are led to a system of equations of the form 

E = a  + bx + cy + /z + - . . ,  

in which a, b, c, I,. . . are known coefficients, varying from one equation to 
the other, and x, y, 2,. . . are known quantities, to be determined by the condition 
that each value of E is reduced either to zero, or to a very simple quantity. 

In today's notation we might make the substitutions E = - c i ,  - a  = x, 
h = xl i ,  x = PI,  c = x2,, y = &, etc., and write the model as -u = bx + 
cy + * .  . - E or = fl lxli  + . . . + &xki + ci or even as Y = plxl + . . . + 
P k X k  f & = xp + &. 

Again in Stigler's translation, Legendre wrote 

Of all the principles that can be proposed for this purpose, 1 think there is none 
more general, more exact, or more easy to apply, than that which we have used in 
this work; it consists of making the sum of squares of the errors a minimum. By this 
method, a kind of equilibrium is established among the errors which, since it prevents 
the extremes from dominating. is appropriate for revealing the state of the system 
which most nearly approaches the truth. 

Legendre gave an example using data from the 1795 survey of the French 
meridian arc, in which there were P I  = 5 observations and k = 3 unknown 
parameters. 

Though Carl Friedrich Gauss claimed in 1809 that he had used the method 
of least squares as early as 1795, it seems clear from published writings that 
Legendre should be given credit for the first development of least squares. 

'The statistical problcm solved by Legendre had been faced earlier by 
astronomer Johann Tobias Mayer ( 1  723- 62), mathematician Leonhard Euler 
(1707-83) and scientist and mathematician Pierre-Simon Laplace ( I  749 1827) 
in considering astronomic data. We will illustrate their earlier solutions on some 
data concerning the motion of Saturn studied by Laplace in 1787. Table 1.5.1 
is taken from Stigler's book. 

Using Legendre's notation, these eighteenth century scientists considered the 
problem of solving the "equations" 

Ei = a, + w + h,x + ciy + diz  ( i  = 1 , .  . . ,24)  (1.5.1) 

given by setting the E,'s all equal to zero. Observations were made on 24 
occasions when Saturn, the moon, and earth were aligned over 200 years. The 
dependent variable ai was the difference between the observed longitude of 
Saturn and that predicted by Laplace's theory. The measurements b,, c,, d, 
were simple functions of observations made on the orbit of Saturn at those 
times. 
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They knew (or would have known) that those 24 equations in four unknowns 
(w,  x, y, z )  had no single solutions and that therefore all the E;s could not be 
made zero. Mayer’s idea was to reduce his collection of equations to a number 
equal to the number of unknowns by adding across equations. In Mayer’s case 
he had 27 equations with three unknowns, so he grouped the 27 equations into 
three groups of 9 each, and simply added coefficients to get 3 equations in three 
unknowns. As applied to the data of the Table 1.5.1 we could add the first 6. 
next 6, etc. to get 4 equations in four unknowns. Mayer chose the subset of 
equations to add according to the sizes of the coefficients, grouping large a,’s 
together, etc. 

Euler had available observations on Saturn and Jupiter for the years 
1582-1745 (n = 75) and had k = 6 unknowns. He did not combine observations 
as did Mayer but instead tried to solve for his unknowns by using some 
periodicity of the coefficients to reduce the number of unknowns and by 
considering small sets of observations, trying to verify solutions on other small 
sets. He was largely unsuccessful, and wrote (Stigler’s translation) 

Now, from these equations we can conclude nothing; and the reason, perhaps, is that 
I have tried to satisfy several observations exactly, whereas 1 should have only 
satisfied then approximately; and this error has then multiplied itself. 

Thus, the most prolific of mathematicians, perhaps the greatest of analysts, 
failed even to proceed as far as Mayer. 

In 1787 Laplace, eulogized by Poisson in 1827 as “the Newton of France” 
(Stigler 1986, p. 311, and perhaps the greatest contributor to probability and 
statistics before 1900, considered the Saturn data ofTable 1.5.1. Lapiace reduced 
the 24 equations in four unknowns to 4 equations. The first new equation was 
the sum of all equations. The second was the difference between the sum of the 
first 12 and the sum of the second 12. The third was the sum of equations 3, 
4, 10, 11, 17, 18,23. 24 minus the sum of equations 1,7, 14.20, the fourth was 
the sum of equations 2, 8,9, 15, 16,21, 22 minus the sum of equations 5,6,  13, 
19. Stigler describes some of Laplace’s motivation, which now seems quite valid: 
Laplace obtained his j t h  equation by multiplying the original ith equation by 
a constant k,, and then adding over i. Hisjth equation was therefore 

0 = kija,  + x c k,bi + y 1 kijci  + z c k,di 
i i i i 

( 1  5 2 )  

Laplace’s kij  were all 1, - I or 0. Mayer’s had all been 0 or 1. Legendre showed 
that the method of least squares leads to taking k i ,  = 1, ki ,  = bi, ki3 = ci, 
k i ,  = d i .  

The column in Table 1.5.1 “Halley Residual” had been derived by Edmund 
Halley in 1676 using a dicerent theory. Details are omitted. 

In 1809 Gauss showed the connections among normally distributed errors, 
most probable parameter values (maximum likelihood estimates) and least 
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squares. In 1810 Laplace published his central limit theorem and argued that 
this could justify the assumption of normally distributed errors, hence least 
squares. Laplace showed in 181 1 that, at least, asymptotically, least squares 
estimators are normally distributed, and they are less variable than other linear 
estimators, i.e., solutions of (1.5.1). Normality of the errors was not needed. 

In 1823 Gauss showed that the asymptotic argument was unnecessary, that 
the variability of the solutions to (1.5.1) could be studied algebraically, and that 
least squares estimators had least variability. We will make this precise in 
Sections 3.3 and 3.4 with a discussion of the famous Gauss-Markov Theorem. 
The least squares theory and applications developed by Legendre, Gauss and 
Laplace were widely published. Stigler cites a compilation by Mansfield 
Merriman in 1877 of “writings related to the method of least squares,” including 
70 titles between 1805 and 1834, and 179 between 1835 and 1864. 

1.6 PROJECTION OPERATORS 

The purpose of this section is to study the transformation Pv: y 3 9 which 
transforms a vector y E 0 into its projection 9 on a subspace V. 

In applications a vector y will be observed. The model under consideration 
will specify that y = 8 + E, for 8 E V, a known subspace of $2, with E a random 
vector, both 8 and E unknown. We will usually estimate 8 by the projection of 
y onto V.  We should therefore understand the properties of this projection as 
well as possible. 

The transformation P: y -+ p(y 1 V) for a subspace V is linear, since p(ayl V) = 
ap(yI V )  and p(yI + y21 V )  = p(yll V )  + p(y21 V). (The student should check 
this.) 

Since 9 = p(y1 Y )  implies that p(g( V )  = 3, the projection operator P is 
idempotent, i.e., P = P. In addition, P is self-adjoint, since for each x, y E Q 

If R is the space of n-component column vectors, this means P may be 
represented as a symmetric matrix, a projection matrix. Thus, for this case the 
projection operator onto V is an n x n matrix Py such that 

PL = Py and P: = Py. 

For V = Y(x, ,  . . . , x k )  with x , ,  . . . , xk linearly independent column vectors, 
we have 

p(yl  V) = Xb = X(X‘X)-’X‘y, 

where X = (xl,. . . , x k ) ,  so that 

Py = x(x’x)- lX’. 
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It is easy to check that Pv is symmetric and idempotent. 

Example 1.6.1: For simplicity we will refer to a projection operator as 
projection. 

spanned 

0 0  

0 0  * O I  

by [kl 
= projection 

and [ %]- 
onto the linear su bspace of vectors [ ;] 

1 

n 
2. P = J,J: = projection onto J,, the column vector fo n 1’s. Then 

Px = .fJn, where i = (x, J,); !I J,l12 = (1 xJn.  
1 
n 

3. P = 1, - - JJ, = projection onto the subspace of column vectors whose 

components add to zero, i.e., are orthogonal to J,. P adjusts y by 
subtracting j from all components. Py is the vector of deviations yi - j .  

4. P = vv’/(Iv(12 = projection onto the one-dirncnsional subspace Y ( v j .  
112 1;2 0 

= projection onto the subspace spanned by 

(Y1 + Y d / Q  

Problem 1.6.1: Show that for W = X B with B nonsingular, X(X‘X)-’X’ 

remains unchanged if X is replaced by W. Thus, P is a function of the subspace 
spanned by the columns of X, not of the particular basis chosen for this 
su bspace. 

n x k  n x k k x k  

Theorem 1.6.1: Let A be a linear operator on 51 which is idempotent and 
self-adjoint. Then A is the projection operator onto the range of A. 

Proof: We must show that for all Y E  R, and x E R EE Range of A, 
(Ay. x) = (y, x). If x E R then x = Az for some z E R. But (Ay, x )  = (y, Ax)  by 
self-adjointness (symmetry) and Ax = AAz = Az = x because A is idempotent. 

0 
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Problem 1.6.2: Prove that the projection operator onto V', the collection 
of vectors in R orthogonal to V,  is I - Py. (I is the identity transformation.) 

Subspace V,, c Y: Let V be a subspace of R and let Vo be a subspace of V. 
Let P and Po be the corresponding projection operators. Then 

(1)  PPo = Po and (2) POP = Po. 

Equivalently, if 9 = P(yl V )  and 9o = P(yl V,) then (1) p(Qo( V )  = j 0  and (2) 
~ ( $ 1  Vo) = yo. It is easy to check these equalities by merely noting in ( I )  that 
3, E Vand (v, fo) = (v, y) for all v E 6 .  and in (2) that yo E Vo and (v, Yo) = (v, 9 )  
for all V E  V,. 

Direct Sums: In regression analysis and, in particular, in the analysis of 
variance, it will often be possible to decompose the space R or a subspace C' 
into smaller subspaces, and therefore to increase understanding of the variation 
in the observed variable. If these smaller subspaces are mutually orthogonal, 
simple computational formulas and useful intepretations often result. 

For any linear model it will be convenient to decompose R into the subspace 
V,  and the error space V', so that every observation vector y is the sum of a 
vector in V and a vector in V'. 

In Example 1.4.4 V may be decomposed into the spaces Vo = U(xo), 

V, = {i a,Ril x ai = 0 V, = 1 bjCjIx bj = 0 , so that every vector in V is 

the sum of its projections onto these three orthogonal subspaces. It follows that 
every vector y in R is the sum of four orthogonal vectors, each being the 
projection of y onto one of the four orthogonal subspaces 6,  VR. Vc, V'. These 
subspaces were chosen for their simplicity. As will be seen in later chapters, 
Chapter 6 in particular, the decomposition of V into orthogonal subspaces, 
each of a relatively simple structure, provides increased understanding of the 
variation in the components of y. 

1 I I> i: I 3 

Definition 1.6.1 : Subspaces 6 ,  . . . , V, of LZ are linearly independent if xl E 6 
k 

for i = 1 , .  . . . k and x xi = 0 implies that x i  = 0 for i = 1,. . . , k. 
j =  1 

Let ,.Hij denote the property: & n Vj = (0). For i # j  linear independence of 
and 5 is equivalent to .Mij, so that linear independence of V,,  . . . , V, implies 

.A': [.4..j for all i # j ] .  However, ,jY does not imply linear independence of 
C',, . . . , C i .  Students are asked to prove these statements in Problem 1.6.12. 
Thus, linear independence of subspaces is analogous to independence of 
events. Pairwise independence does not imply independence of more than two 
events. 
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Definition 1.6.2: Let V,, . . , , V, be subspaces of t2. Then 

,..., k 

is called the direct sum of 5,. . . , V,, and is denoted by 

If these subspaces are linearly independent we will write 

The use of the @ symbol rather than the + symbol implies that the 
corresponding subspaces are linearly independent. 

k 

Theorem 1.6.2: The representation x = xi for xi E of elements x E Y = 

V, + & + + . + 5 is unique if and only if the subspaces Vl, . . . , & are linearly 
independent. 

1 

Proof: Suppose that these subspaces are linearly independent. Let 
k k k 

x = C x i  = 1 wi for xi, wi E &, i = I , .  . . , k. Then C (xi - wi) = 0 implying, 
1 1 1=1 

by the linear independence of the c, that x i  - wi = 0 for each i. 

1 vi  = 0. Since 0 E 

Suppose that the representation is unique, let vi E r/l for i = 1,. . . , k ,  and let 

for each i, and 0 = 0 + . . . + 0, it follows that vi  = 0 
k 

j; 1 

for each i ,  implying the independence of V,, . . . , 4. 

Theorem 1.6.3: If { v i j l j  = 1,.  . . , n i l  is a basis for I/; for i = 1,. . . , k  and 
Vl,.  . . , V, arc linearly independent, then {uijlj = 1 , .  . . , ni, i = 1,. . . , k )  is a 
basis for V = V, 0 * . 0 4. 

k ni 

Proof: For any x = xi  for x i €  K, suppose xi = xb i i v i j .  Thus, x = 
1 1 

1 h i j v i j ,  so the vij span Y. It is enough then to show that the vij are linearly 

independent. Suppose cijvij = 0 for some qis. By the independence of 

V,, . . . , V,, 1 cijvii = 0 for each i .  The independence of vl , ,  . . . , vin, then implies 

i j  

i j  

i 
ci j  = 0 for all j and i. L7 



PROJECTION OPERATORS 33 

Corollary: If V = V, 6 V, @ . . * 0 Vp then 

dim( V )  = dim( Vl) + . . . + dim( b). 

Definition 1.6.3: For any subspace V of Q the collection of all vectors in 
R which are orthogonal to V is called the orthogonal complement of V.  This 
orthogonal complement will be denoted by V', read "vee-perp". 

I t  is easy to verify that V' is a subspace, and that PvL = I - Pv. Since 
V' n Y = (01, V' and V are linearly independent. 

Theorem 1.6.4: Let V, and 5 be subspaces of R. Then 

(V,  + V2)* = Vf n V i  and ( V ,  n 5)l = V :  + V i  

Proof: We prove only the first equality. The second is proved similarly. 
Suppose v E ( V, + b)*. Then for each element x E V, + b, it follows that v l x. 
In particular, v lx,, for each x1 E V, and vlx, for each x, E 5.  Thus 
V E  V f  n V i  and (V, + V2)' t V f  n V i .  

If v E V: n V i ,  then v I x,, v l x2 for all x1 E V,, x2 E V2. It follows that 
v 1 (h,x, + b,x,)  for all scalars b , ,  b,, and all xi E V,, X, E 5,  hence that 
v E ( V, + V')'. Thus, (V,  + V')' =) V f  n V f  . c! 

Theorem 1.6.4 is the linear space version of De Morgan's Laws for sets: 

( A  u B)' = A' n B' and ( A  n B)' = A' u B'. 

Theorem 1.65: For any subspace V and any x E& there exist unique 
elements x,, x2 such that x = x1  + x 2 ,  x, = p(xl V )  and x2 = p(xl V'). 

Proof: For existence take x 1  = p(xJ V ) ,  X, = x - xl. Uniqueness follows 
from the linear independence of V' and V.  0 

Example 1.6.2: Let i2 be the space of 4-component row vectors. Let 

Y(x,). Then V, and V, are linearly independent, so that V = Vl 0 Vz = 
{(a + b + c, u + b, a + c, a)lu, b, c real numbers) has dimension 3. 

X I  = ( I ,  1, 1, l ) ,  x2 = ( I ,  1,0,0), x 3  = (LO, l ,O),  V, = Y(X,,X,),  V, = 

V f  = ( (a ,  --a, b, -b)la, b real) 

V f  = {(a,  b, -a ,  c)la, b, c real) 

V -  = {(a, --a, -a, a)la real} 
so that 
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In general, Pv = Pv, + Pv,  only if Vl and Vz are orthogonal. They are nor 
orthogonal in this example. Verify this by projecting y = (1 1,4, 3,s) onto each 
of V,, Vz,  and V. 

Theorem 1.6.6: Let V be a subspace of R and let be a proper subspace 
of V. Let V, = V ;  n V. Then (1) Vo and Vl are mutually orthogonal subspaces, 
(2) V =  V,@ V, ,  and (3) fv, = Pv - f v , .  

Proof: Part (1) is obvious. To prove (2) let y E V, and let 9 ,  = p(yI Vo). 
Then y = f o  + (y - i,,), 9 0 ~  K,, y - j O c  V n  V ; .  Thus V c  Vo 8 F:. Since 
V D  Vo and V D  &, V x  Vo@ V,, implying that I / =  V,S  V,. 

To prove (3) note that, since Vl 1 Vo, p(yl V )  = p(yl Vo) + p(yl V, )  for all y. 
Thus Pv = Pv, + Pv, and f v ,  = Pv - fv,,. C J  

In fact, this theorem shows that R may be decomposed into three mutually 
orthogonal subspaces Vo, V ;  n V,  and V', whose direct sum is 0. 

Problem 1.63: Let iz be Euclidean 4-space (column vectors). Let 

and let 1% -1 U(x,) for x4 = 3x, - 2x2, V = 9 ( x 1 ,  x2, x3). Find Pv,,, Pv and 

Pv, for Vl = V& n V. For y = find P(Y I V) ,  P(Y I VA P(Y I V). 

Theorem 1.6.7: Let Vl , ,  . . , V, be mutually orthogonal subspaces of iz. Let 
k 

V = Vl 83 . . . @ 5. Then p(y) V )  = 1 p(y( v.) for all y E SZ. 
1 

Proof: Let f i  = p(y( V,). We must show that for each x E V,  (y, x) = 
k 

. Since x E V, x = xi for some xi E 5 for j = 1, . . . , k.  Thus 
j =  I 
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The third equality follows from the orthogonality of the subspaces. The fourth 
follows from the definition of Yi .  c3 

k 

k 1 
Comment: In the case that V = Q we see that y = p(yl V )  = c p(yl5).  and 

by the Pythagorean Theorem, lly1I2 = c IIp(y1 F)1l2. In applying this to the 

analysis of variance we will frequently make such a decomposition of the 
squared length of the observation vector y. In fact, the analysis of variance may 
bc viewed as the decomposition of the squared length of a vector into the sum 
of the squared lengths of several vectors, using the Pythagorean Theorem. 

1 

Example 1.63: Let R be the space of 2 x 3 matrices. Let R,,  R, be the row 
indicators and let C,, C,, C,, be the column indicators. Let xo = 1 R, = 1 Cj 

be the matrix of all ones. Define Vo = U(x,), VR = .LY(R,,Rz) n V k ,  Vc = 
. Y ( C , ,  Cz, C,) n V k .  It is easy to show that VR = ( v l v  = a,R,, uI  + Q, = 0} 

and Vc = ( v  = c h,Cjlc hi = 0 ) .  For example, [: 1; :]E Vc. The sub- 

spaces V,, V,, Vc are linearly independent and mutually orthogonal. Let 
V = Vo @ VR @ 4. Then p(y1 I/) = 4, + gR + Ec, where j 0  = p(yl Vo) = I.. x0, 
9 ,  = p(y( VR) = c (ji. - y .  . ) R i ,  and 9c = p(yI vf)  = C (j.j - j.. )Cj. Then, 

since R = V, @ VR @ Vc @ V L  is the decomposition of R into four mutually 
orthogonal subspaces, y = go + $R + gC + e, where e = y - 9 = p(y1 V l ) ,  and 

i j 

i i 

Definition 1.6.4: The null space of an m x n matrix A is the collection of 
vectors x E R ,  such that Ax = 0. We denote this null space by N(A) .  The column 
(or range) space of A is C(A) = f x l x  = Ab for some b}. 

Theorem 1.6.8: Let A be an rn x n matrix. Then 

N(A)  = C(A')' and N(A)* = C(A') (1.6.1) 

Proof: w E N ( A )  o w 1 (row space of A) o w I (column space of A') o 
w E C(A')'. The second statement of (1.6.1) follows by taking complements on 
both sides. -. -. 

: I  

Theorem 1.6.9: Let X be an n x k matrix. The C(X'X) = C(X'). 
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Proof: w E C(X’X) implies the existence of b such that (X’X)b = w = 

X‘(Xb), which implies w E C(X’). Thus C(X’X) c C(X‘).  
w E C(X’) implies that w = X’b for some b E R,. Let 6 = p(bIC(X)). Then 

X’b = X’b and, since 6 E C(X), there exists v such that Xv = b. Then X’Xv = 
X’b = X’b = W, SO w E C(X’X). Thus C(X’X) XI C(X’). cl 

It is shown in most introductory courses in linear algebra that the dimensions 
of the row and column spaces of any matrix X are equal, and this common 
dimension is called the rank of X. We therefore conclude that X, X’, X’X, and 
XX’ all have the same rank. In particular, X’X = M has full rank (is nonsingular) 
if and only if X has full column rank, i.e., has linearly independent columns. 

Problem 1.6.4: Let R = R,. For each subspace give the corresponding 

(a)Y(x)forx=(l ,O.  -1)’. 
(b) 9 ( x 1 ,  x,) for X,  = (1, 1, l)’, x2 = (1,0, 1)’. 

projection matrix P. For each verify that P is idempotent and symmetric. 

Problem 1.65: For the subspace V = Y(J, x) of Problem 1.3.5, what is P,? 
(Note that Y(J, x*) = V). What is P,,? Let V, = Y(J) and V, = V n V k .  
What is Pv,? 

Problem 1.6.6: Let V, and V, be subspaces of R and let Vo = Vl n V2. 
Under what conditions does Pv, = Pv, Pv,? Always? Never? 

Problem 1.6.7: Let V,, V,, V, be subspaces. Does V, n (V, + V,) = 
(V, n V,) + (Vl n V,) in general? If not, does this hold if V, and V, are linearly 
independent? 

Problem 1.6.8: (a) For Example 1.6.3 find six mutually orthogonal vectors 
v, for i = 1,. . . , 6  such that 

Vo = Y(vl), VR = .4p(v,), v, = Y(v3, v4), v1 = Y ( V 5 ,  vg) 

12 7 11 

verify that the Pythagorean Theorem holds. 

(b) For y = [ 7] find go, j R ,  jc ,  9, e, compute their lengths, and 

Problem 1.6.9: Let A = 

(a) Find a basis for the null space of A (see Theorem 1.6.8). 
(b) Verify Theorem 1.6.9 for X = A‘. 
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Problem 1.6.10: 
(a) Prove Parseval's Identity: For every x, y E R 

Let v , ,  . . . , v, be an orthogonal basis for R. 

(b) Verify (a) for R = R3,  v 1  = (1 ,  1 ,  1)', vz = ( 1 ,  - l,O)', v3 = ( 1 ,  1, -2)', 
x = (3, 5, S)', y = (2, 1,4)'. 

Problem 1.6.11: Let V, and V2 be subspaces of 0. Let V = Vl @ V2. Let 
Pv,, Pv, and P' be the corresponding projection operators. Suppose that 
Pv = Pv, + Pv,. (This means that Pvy = Pv,y + Pv,y for every y E ZX) Prove 
that Vl 1 Vz. Hint: Consider Pvvl for v 1  E V, and recall that (vl - Pv2vI) 1 V,. 

Problem 1.6.12: Prove the statements made in the paragraph following 
Definition 1.6.1. To prove the last statement construct an example. 

Problem 1.6.13: Let h, V,, . . . , V, be mutually orthogonal subspaces, none 
equal to Y(0) .  Prove that they are linearly independent. 

1.7 EIGENVALUES A N D  EIGENVECTORS 

In this section we summarize results concerning eigentheory. Though this 
material will not be heavily used in this course, it will be useful. Most proofs 
will be omitted. 

( 1 )  Let A be an n x n matrix. A real number A and column vectors v satisfying 
the equation Av = Lv will be called an eigenpair, with 1 an eigenvalue, and v 
the corresponding eigenvector. The words characteristic and latent are often 
used instead of rigen. Thus, an eigenvector v is transformed into a vector whose 
direction remains the same, but whose length is multiplied by the corresponding 
eigenvalue 1. 

(2) A symmetric matrix A has n real eigenvalues, though these may not all 

be distinct. Eigenvectors corresponding to different eigenvalues are orthogonal. 
If there exist k, but not more than k, independent vectors v l , .  . . , vk correspond- 
ing to the same eigenvalue %, then I is said to have multiplicity k, and the 
equation det(L1 - A) = 0 has root I of multiplicity k. In this case all vectors in 
Y(v,, . . . , vk) are eigenvectors corresponding to 2, and k such vectors, say 
w l , .  . . , wk, which are mutually orthogonal, may be chosen. 

I f  such mutually orthogonal eigenvectors are chosen for each different 
eigenvalue, then the entire collection ul, . . . , u, of mutually orthogonal eigen- 
vectors corresponding to eigenvalues L,, . . . , An, where an eigenvalue is repeated 
k times if its multiplicity is k, span n-space. 

n x n  
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Let A = diag(l,, . . . ,in). the matrix with (ii) element offdiagonal terms 
0, and U = (q, . . . , u,,). Then AU = UA, and if the ui are chosen to have length 
one, 

U’U = I,,, U‘AU = U’UA = A, A = UAU’. 

The representation A = UAU’ is called the spectral representation of A. 
Recall that the trace of a square matrix A is the sum of its diagonal elements. 

It is easy to show that trace(BC) = trace(CB) whenever the matrix pro- 
duct makes sense. It follows therefore that whenever A has spectral representa- 
tion A = UAU’. trace(A) = trace(AU‘U) = trace(A) = Ai. Similarly, det(A) = 
det(U) det(A) det(U‘) = ( f 1) det(A) (f I )  = n 

Since, for any r x s matrix C = (cl, . . . , c,) and s x t matrix 

we may express A in the form 

Thc matrices uiuf = Pi are projections onto the one-dimensional subspaces 
U(ui).  I f  there are r different eigenvalues with multiplicities k,, . . . , k, then the 
Pi corresponding to the same eigenvalue may be summed to get the represent- 
ation of A, 

A = i,Pf. 
1 

where Pf is the projection onto the kj-dimensional subspace spanned by the 
cigenvectors corresponding to A,. 

(3) By definition a square matrix A is positive definite if the quadratic 
function Q(x) = x‘Ax > 0 for all x # 0. I t  is nonnegative definite if Q(x) 2 0 
for all x. 

Example 1.7.1: Let v ,  = (1, I ,  1, l)‘, v2 = (1, - 1,0,0)’, v j  = (1, 1, -TO)’, 
v4 = ( I ,  1, 1, -3)’. These vi are mutually orthogonal. Let Pi be projection onto 
Y(vi). Thus, 

Pi = v,v;iIlvii12. 
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Let 

39 

8 0 - 2  2 

A = 8 P l + 8 P 2 + 1 2 P 3 = [  -2  1 -2  8 -2 10 .]. 

Working backwards from A, the roots of the fourth degree polynomial 
det(l21, - A) = 0 are 1 = 8, 8, 12, 0 with corresponding eigenvectors wl, w2, 
w3. w,. The vectors wl, w 2  may be arbitrarily chosen vectors in 5?(vl, v2), the 
subspace onto which P, + P, projects. They may be chosen to be orthogonal, 
and could be chosen to be v 1  and v,; w 2  and w4 are nonzero vectors in Y(v,) 
and Y(v,), respectively. The lengths of eigenvectors are arbitrary. Since one 
eigenvalue is 0, A has rank 3. The determinant of A is the product of its 
cigenvalues, 0 in this case. The trace of A is the sum of its eigenvalues, 28 in 
this example. 

Let ui = v i / l~v , l~ ,  so these ui have length one. Let U = (ul, u2, u3, u,) 
and A = diag(8,8,12,0). Then AU = UA, U is an orthogonal matrix, and 
A = UAU’. Here 

r 0.5 0.707 107 0.400 248 0.288 675- 

0.5 -0.707 107 0.400 248 0.288 675 

0.5 0 - 0.8 I6 497 0.288 675 
U =  

L0.5 0 0 - 0.866 025, 

4 5.65685 4.89898 0 

A U = U A = [  -r9’ -9.79796 :,,98 :1 0 

8 

0 

-2 

2 

UAU’ = 

0 

8 

-2 

2 

-2  

-2 

10 

2 

2 :].. 
2 
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Consider the quadratic form 

Since 

where .2i = Pix = [(v;, X ) / ~ ~ V ~ \ ~ ~ ] V ~ ,  and therefore 11.21112 = (v;, ~ ) ~ / l l v ~ l l ~ .  Since 
one eigenvalue is zero, the others positive, A is nonnegative definite and 
Q(x) 2 0 for all x. A is not positive definite since Q(v4) = 0. 

Using the representation A = 1 Riuiu; above it is easy to show that a square 

symmetric matrix A is positive definite if and only if its eigenvalues are all 
positive, nonnegative definite if and only if its eigenvalues are all nonnegative. 

If A is nonnegative definite we can write Ati2 = diag(A:/2,. . . , A,!iz), so 
A = UAU' = UA1~2A1~2U' = (UA1'2)(UA1'2)' = BB' for B = UA'/2. The &- 
composition A = BB' is quite useful. It is not unique, since if C is any 
orthonormal matrix (satisfying CC' = I), then (BC)(BC)' = BCC'B' = B B  = A. 

Letting C = UA1/ZU' = 1 A,!'2Pi. we get C' = C, with A = C'C = C2. The 
matrix C is the unique symmetric square root of A. 

Letting y = U ' x  for U as defined above, we get 

II 

1 

k 

Q(x) = x'Ax = (Uy)'A(Uy) = y'U'AUy = y'Ay = i.,y: 
1 

(4) Let Py be the projection operator onto a subspace V of 0. Then for 
x E V, P,x = x so that all vectors in V are eigenvectors of Py with eigenvalues 
1. For x E V*, Pyx = 0, so that all vectors in V' are eigenvectors of Pv with 
eigenvalue 0. The eigenvalue 1 has multiplicity equal to the dimension of V, 
while the eigenvalue 0 has multiplicity equal to dim( VL) = n - dim( V). Since 
from (2) trace(A) = Ai, the trace of a projection matrix is the dimension of 
the subspace onto which it projects. 

Partitioned Matrices (Seber, 1977): 
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Singular Value Decomposition (Seber, 1977, p. 392): For X an n x k matrix 
of rank r, n 2 k 2 r, let the r positive eigenvalues of XX' be of 2 u$ 2 * * 2 
uf > 0. Let D be the diagonal matrix with diagonal (ul , .  . . , or). Let the 
length-one eigenvector of XX' corresponding to uf be pi for each i, 1 5 i I r, 
and let qi = X'D-lp,. Then qi is an eigenvector of X'X corresponding to 
eigenvalue u:. These vectors pi may be chosen to be mutually orthonormal. It 
follows that the qi are also orthogonal. Define 

Then X = PDQ = uipjqj. Thus, the linear transformation Xx = y, taking 
vectors x E R, into C = column space of X, proceeds as follows. Q takes a vector 
x E R,  with (x, qi) = ci into (c,, . . . , cp)). 1 then multiplies each ci by oi. 
P(DQ)x = Xx is then cjojpj, a vector in the column space of X. 

I 

Moore-Parose or Pseudo-Inverse 

The Moore-Penrose inverse or pseudo-inverse of the n x k matrix X is the 
k x n unique matrix X' having the four properties: (1) X 'XX'  = Xc, 
(2) XX'X = X, (3) X 'X is symmetric, (4) XX' is symmetric. For any vector 
y E R,, b = X'y is the unique vector in the row space of X such that Xb is the 
projection of y on the column space of X. If X is nonsingular then X' = X-  '. 
The matrix X'X is the projection onto the row space of X. The matrix XX' 
is the projection onto the column space of X. If X has full column rank 
then X ' = (X'X)- 'X'. If V is the column space of X, and p(yl V )  = XS, then 

The Moore-Penrose inverse may be used to find solutions to the linear 
equation Xb = c. If this equation has a solution then c is in the column space 
of X. That is, there exists some w such that Xw = c. Let b = X 'c. Then 
Xb = XX'Xw = Xw = c. The general solution to the equation Xb = c is given 
by b = X'c + (I, - X'X)d, for d any vector in R,. Taking d to be any vector 
orthogonal to the row space of X, we get the unique solution X'c in the row 
space of X. 

The pseudo-inverse is related to the singular value decomposition of X in 
that X'  = Q'D-'P'. 

For a full discussion see Regression and the Moore Penrose Pseudoinverse 
by Arthur Albert (1972). 

fi = x + y .  

Triangular Decomposition 

Let A be a symmetric nonnegative definite matrix. There exist an infinite 
number of n x n matrices B such that B B  = A. Perhaps the easiest such matrix 
to find is one of the form (lower triangular) 



42 LINEAR ALGEBRA, PROJECTIONS 

0 

b22 

bn2 

. . .  

. . .  

. . .  

7 
Then b:, = u l , ,  so b,,  = t ia l l .  Then, since h i l b l l  = uil we have 

hi, = a i l / b l l  for i = 2, .  . . , n 

Suppose bij has already been found for j = 1 , .  . . , k - 1 and i = 1, .  . . , tz for 
k 2 1. Then we can find bi,k inductively. 

k k- 1 

k 

Since bijb,  = aik for i > k, it follows that 
j =  1 

Repeating for each k produces B. 
To summarizc: 
( I )  Compute b , ,  = ( Q , ~ ) ~ ~ ~ ,  let bi, = n , , i b , , ,  and let k = 2. 

(2) Let h,, = (ukk - 
k - 1  1;2 

j =  1 
hi j )  . (A is nonnegative definite if and only if the 

term in parentheses is nonnegative for each k.) 

(4) Replace k by k + 1 and repeat (2) and (3) until k > n. 
( 5 )  Let b, = 0 for i c j. 
If any bkk = 0 in step (3) then set bik = 0 for i 2 k. 

Problem 1.7.1: Let A = (:; ;:). 
(a) Find the eigenvalues A,, EL2 and corresponding length-one eigenvectors 

uI, ~2 for A. 
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(b) Define C and A as in Section 1.7 and show that A = UAU' and UU' = I,. 
(c) Give the projections P: and Pf of Section 1.7 and show that A = 

(d) Is A positive definite? Why? 
i,P? + A,Pf. 

Problem 1.7.2: What are the eigenvalues and eigenvectors of the projection 
matrices P of examples 1, 2, 3, 4, 5 of Example 1.6.1? 

Problem 1.7.3: For n x k matrix X of rank k, what are the eigenvalues and 
vectors for P = X(X'X)-'X'? What is trace(P)? What is det(P) if n > k? If n = k? 

Problem 1.7.4: Let n x n matrix A have nonzero eigenvalue I and cor- 

(a) A - '  has an eigenvalue L-', eigenvector v. 
(b) 1 - A has an eigenvalue 1 - A, eigenvector v. 
(c) For A = BC. CB has eigenvalue I., eigenvector Cv. 

responding eigenvector v. Show that 

Problem 1.7.5: Give 2 x 2 matrices which satisfy the following: 
(a) Positive definite. 
(b) Nonnegative definite, but not positive definite. 
(c) Not nonnegative definite. 

Problem 1.7.6: Let A be positive definite and let v E R,. Prove that 
(A + v v ' ) ' '  = A - ' ( I  - cvv'A-')  for c = 1/(1 + v'A- 'v). 

Problem 1.7.7: Determine whether the quadratic form Q(xI, x,, x3) = 
2 . ~ :  + 2xz + 11x3 + 16x1x2 - 2xlx3 - ~x,x ,  is nonnegative definite. Hint: 
What is the matrix corresponding to Q? One of its eigenvalues is 12. 

Problem 1.7.8: For A = [ -: A:] tind a matrix B such that A = BB. 

Problem 1.7.9: Let G = 1 -:I. Find G -  by using the formula 

1-1 0 41 
for partitioned matrices with A the 1 x 1 matrix (2). 

Problem 1.7.10: Let X = . Find the singular value decom- 

position of X. Also find the Moore-Penrose inverse X' and verify its four 
defining properties. 
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Problem 1.7.11: Let A = UDV be the singular value decomposition of A. 

(a) A'A 
(b) AA' 
(c) A- (assuming A is aonsingular) 
(d) A" = AA.  * * A  (n products), assuming A is square. In the case that 

the singular values are ol > c2 2 o3 2 . . . 2 6, > 0, show that lim A"/cr; = 

Express the following matrices in terms of U, D, and V. 

n-.m 

PIP;. 
(e) Projection onto the column space of A. 
(f) Projection onto the row space of A. 
(g) What are U, D, and V for the case that A = a is an n x 1 matrix? What 

is A'? 

Problem 1.7.12: Let A be a symmetric n x n matrix of rank one. 
(a) Show that A can be expressed in the form A = cvv', for a real number c, 

(b) Prove that either A or - A  is nonnegative definite. 
(c) Give the spectral decomposition for A in terms of c and v. 

vector v. 
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Random Vectors 

In this chapter we discuss random vectors, n-tuples of random variables, all 
defined on the sample space. A random vector will usually be denoted as a 
capital letter from the end of the alphabet, taking values in a linear space R 
of arrays defined as in Chapter I ,  e.g., 

Y=[ ::: ::: :::I 
yl 3 y3 3 

We will suppose that the components of B random vector Y have been 
ordered. The particular order chosen is not important, so long as the same 
order is used consistently. 

2.1 COVARIANCE MATRICES 

Definitioa 2.1.1: Let Y be a random vector taking values in a linear space 
R. Then E(Y) is the element in R whose ith component is E ( I ; ) ,  where I; is 
the ith component of Y for each i .  E(Y) is also called the mean vector. 

Example 2.1.1: Suppose E(  Y , )  = 3,  E( Y2) = 7, E( Y3) = 5 .  Then 

Of course, the definition requires that each E( I;) exists. 

Definition 2.1.2: Let Y be a random vector taking values in Q with mean 
vector p E R. Then the covariance matrix for Y, denoted by D [ Y j  or Cy, is 

(cov(y,, &>), 

the n x n matrix whose (ij) component is cov( 4, &). 

45 
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Example 2.1.2: Let R be the space of arrays (%: J73) with elements 

ordered as the subscripts are. Then the covariance matrix of a random vector 
Y taking values in R is 

I Var( Y,) cov( Y,, Y2) cov( Y,, Y,) 

cov( Yl, Y,) Var( Y,) cov( Y,, Y3) 

cov(5,  Y3) cov(Y2, Y’) Var(Y,) 

Of course, Dry] is symmetric for any random vector Y. The configuration 
in which Y is written does not affect D r y ] ,  but the order in which the 
elements are written does. Thus, if the vector Y of Example 2.1.2 is written 
instead as a column, the covariance matrix remains the same. 

We will often wish to consider random vectors W = AY + b, where Y is 
a random vector taking values in an n-component space Q,, A is a linear 
transformation from R, into an m-component space R,, and b a fixed element 
in 0,. Thus W takes values in R,. It will be convenient to consider R, and 
R, to be the spaces of column vectors R, and R,, so that we can use matrix 
algebra. A may then be written as an m x n matrix. The results will generalize 
to the case that the elements of R are not written as columns simply by 
setting up a one-to-one correspondence between 0, and R,, 0, and R,. 

Therefore, let 

Y be a random vector taking values in R,, 
A be an m x n matrix of constants, and 
b be a constant vector in R,. Then, 

Tbeorem 2.1.1: Let W = AY + b. Then E(W) = AE(Y) + b. 

Proof: Let (ai1,. . .,a,,) be the ith row of A and let bi be the ith 
component of b. Then 

and E( ct;) = aij E( 5)  + bi. This proves the theorem. 3 
i 

This theorem generalizes to random matrices as follows: 

Theorem 2.1.2: Let Y be a random 11, x n3 matrix (an n2 x n3 matrix of 
random variables). Let A and B be n, x n2 and n3 x n4 matrices of constants. , 

Then 

E[AYB] = AE(Y)B 



SOVARIANSE MATRICES 47 

Proof: Let A = (aij), Y = (&), B = (&), pjk = E( Y. ). Then the (i, 1)th 

ui jp jkbLI .  But 
n3 nz n l  

element of AYB is c a ,  qhbk,.  whose expectation is c 
I = &  h = l  k = l  ] = I  

this is the (i1)th element of AE(Y)B. a 

In particular, for any linear space SZ, random vector Y, constant vector a E $2, 
the linear product (a, Y) is a linear combination of the components of Y, so that 

For a random vector U taking values in R,, let E(U) = pu. Then U - pu 
is the vector of deciutions. 

Definition t1.3: Let U and W be random vectors taking values in R ,  and 
R, respectively. Then the cotwiance matrix of U and W is the rn x n matrix 

The covariance matrix for a single random vector U is DCU] = CCU, U]. 

Thus, we speak of the covariance matrix of a pair of random vectors, and 

For example, for m = 2, n = 3, ui, = cov(U,, W,) we have 
also the covariance matrix of a single random vector. 

r 

The correlation coefficient of the ith component 

Letting 

of U and thejth of W is 

bU = diag(\/'Var(U,), . . . , ,J'Var(U,)), ow = diag(vkar( W,), . . . , J'w) 
we define the correlurion matrix for U and W to be 

R[U, W] = (Pi/) = u;'C[u, W-JaW' 

In particular, the correlation matrix for a random vector Y is 

R [ Y l  R[Y, Y] = 0; 'D[Ylo,  ', 
/ -  

where by = diag(JVar( &), . . . , \firm). 
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4 3 6  2 0 0  

Example2.13: SupposeDCYJ = 

R[Y, Y] = o;’D[Y]oG’ = 1 1 0.5 0.75 

0.5 1 0.25 . 

0.75 0.25 1 

Theorem 2.13: Let X and Y be random vectors taking values in R ,  and 
R,, respectively. Then for any matrices of constants A and B of dimensions 
r x m and s x n, 

C[AX, B V  = AC[X, YJB‘. 

Proof: 

C[AX, BY] = E[(AX - AE(X))(BY - BE(Y))’] 

= AE[(X - E(X))(Y - E(Y))’]B’ 

= AC[X, YIB’. n 

Taking Y = X, we get C[AX, BX] = AD[X]B’, and for B = A, 

D[AX] = C[AX, AX] = AD[X]A’ 

Of course, the covariance matrix is unaffected by addition of constant vectors 
(translations) : 

C[X + a, Y + b] = E[(X + a - E(X) - a)(Y + b - E(Y) - b)‘] 

= E[(X - E(X))(Y - E(Y))’] = C[X, Y]. 

The covariance “operator” on pairs of random vectors is linear in both 
arguments, in that Theorem 2.1.3 holds, C[X, + X,, Y] = C[X,, yl + CCX,, Y), 
and C p ,  Y, + Y2] = C[X, Y + C[X, Y2]. 

Summary 

(1) C[X, Y] is linear in both arguments (‘bilinear’). 

(3) C[X + a, Y + b] = C[X, yl for constant vectors a, b. 
(4) C[AX, BY] = AC[X, Y]B‘ 
(5) D[X + a] = D[X] 

(2) C[X, Y] = cry, XI‘  
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(6) "1 + X,l = ccx, + x,, x, + X2l 
= "11 + ccx,, XZI + CCX,, X , I  + "23. 

Note that the second and third terms need not be equal. 
(7) D[AX] = AD[X]A' 

If X, and X, are independent then C[X,, X,] = 0, so that D[X, + X,] = 
r i  

O F , ]  + OF2] .  More generally, if X,, . . . , X, are independent, then D 1 Xi = li J 
r i  

D[Xi]. If these X, have the same covariance matrix C, then DLT Xi] = nC, 

Xi has covariance matrix D[%] = 
1 

and the sample mean vector X = - 
n i  

( : y n Z  = Z, a familiar formula in the univariate case. 

i 

1 

Let A =  

Problem 2.1.1: Let X = 

3 1  2],and .-[: -:I. Find 

0 - 1  

Problem 2.1.2: Let X,, X,, . . . , X, be independent random variables, all 
= XI + . . + X, for k = 1,. . . , n. Find DCY] for with variance (1'. Define 

Y' = (Y,,  . . . , x) .  Also find R[Y], the correlation matrix. 

Problem 2.13: Give an example of a joint discrete distribution of two r.v.'s 
X and Y such that X and Y have covariance 0, but are not independent. 

Problem 2.1.4: Let X and Y be two random variables, each taking only 
two possible values. Show that cov(X, Y) = 0 implies X and Yare independent. 
Hint: Show that this is true if both X and Y take only the values 0 and 1. Then 
show that the general case follows from this. 

Problem 2.15: Let Y = (Y,, Y,, YJ' be the vector of weights of three pigs 
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of the same litter at 3 months of age. A reasonable model states that = G + cI, 
for i = I ,  2, 3, where G, ti1, c 2 ,  c3 are independent random variables, with 
E(G)  = p, Var(G) = ~ 2 ,  E ( E ~ )  = 0, Var(ci) = a:. G i s  the gcnetic effect, while 
cl, c2,  c3 are random deviations from G. Find D[Y], R[U, and Var(Y, + Y2 + 
= DCJ'Y]. where J '  = (1, 1, 1). 

2.2 EXPECTED VALUES OF Q U A D R A T I C  F O R M S  

In the study of regression analysis and analysis of variance we will often be 
intcrestcd in statistics which are quadratic functions of the observations. That 
is, the statistic is the sum of terms of the form aijXiXj. For example, for 
X = (XI, X , , X 3 )  we may be interested in the statistic Q ( X , ,  X,, X3j = 
2x: - x: + 3x: - 6X1XZ + 2x,x, - 4Xzx3. 

Definition 2.2.1: A quadraticform is  a function Q(x) defined on R ,  for some 
n of the form 

Q(x) = X'AX, 

where A is an n x n symmetric matrix. 

Comment: The requirement that A be symmetric is not a restriction on Q, 
since otherwise we could replace A by B = (A + A')/2, so that B is symmetric, 
and, since x'Ax = (x'Ax)' = x'A'x, 

X'BX = x'(A + A'jx/2 = X'AX = Q(x) 

For the example above we could take A = 0 - 1 -4 . However, it is [" -6  
Lo 0 3J 

'1 r 2 - 3  

more convenient to work with B = - 3  - 1 - 2  , because it is symmetric 

and x'Ax = x'Bx for all x.  1 1 - 2  3 
Let A = C i iuiu; ,  where . . . , in are eigenvalues and u l . .  . . , u, a cor- 

responding system of mutually orthogonal length-one eigenvectors for A. Then 
1 

i =  1 i =  1 i =  1 

each quadratic form may be considered to be a weighted sum of squares. It 
follows that if all di are positive (nonnegative) A is positive definite (nonnegative 
definite). 

We will be concerned with the random variable Q(X) = X'AX for X a 
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random vector. First we consider a more general random variable Q(,X. Y) = 
X‘AY for X m x 1, Y n x 1, and A an m x n constant matrix. Let CD, Y] = 
(aij) = C, E(X) = px, E(Y) = pu. Q(X, Y) is a bilinearform, since it is linear in 
both arguments. 

Theorem 2.2.1: Let E(X) = p, E(Y) = v. C = C[X, YJ = (aij). Then 

E(X’AY) = 1 ai,aij + p’Av = trace(AC’) + p’Av. 
ii 

Comment: 1 ui,oil is the sum of the products of corresponding components 

of A and C (not the sum of elements of AC, which is not even defined unless 
m = n). The second term is p’Av = Q(p, v), where Q(X, Y) = X’AY. 

i j  

Proof: Let the ith component of p be p i .  Let the j t h  component of v 
m n  

be \ti. Then X‘AY = c 1 a i jX i  Y,, and E(Xi  q) = cov(Xi, q) + p i v j .  Thus 
r = l  j = l  

m n  m n  

i = 1  j = l  i - 1  1-1 

E(X’AY) = c aijaij + 1 1 u i j p i p j .  The first terms may be written in 

the form trace(AC’), since the ii term of AC‘ is c aijaij. C J  
i 

Letting Y = X, we get 

Theorem 2.2.2: Let Q(X) = X‘AX, DCX] = C, and E(X) = p. Then 

Comment: trace(AZ) is the sum of the products of corresponding com- 
ponents of A and I;. Some special cases are of interest: 

(I) Z = 1,d. Then E[Q(X)] = o2 trace(A) + Q(p) 
(2) p = 0. Then E[Q(X)] = trace(AC). 

Example 2.2.1: Let X,, . . . , X , ,  be independent r.v.’s, each with mean p, 

variance 02. Then E(X) = pJ,, D[X] = 0~1,. Consider Q(X) = 1 ( X i  - x)2  = 

IIP,,X!12 = X‘( In  - Py)X, where V = 9 ( J n ) ,  and P, = (I/n)J,Jb. Then we 
may apply Theorem 2.2.2 with A = I, - Py and C = 1,~’. We get AX = 
a’&, - Pv) and trace(AZ) = 02(n - I ) ,  since the trace of Pv may be determined 
to be one, either directly or from the general theory which states that the trace 
of a projection matrix is the dimension of the subspace onto which it projects. 

Since Q(&) = 1 (p, - p ) 2  = 0, we find that E[Q(X)J = 0 2 ( n  - 1). For 

n 

i =  I 

n 

r = 1  
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estimator of a'. 
If we let & = Xi - g ,  then, from (7) of the summary to section 2.1 Y = PyLX 

has covariance matrix PyL(o2I , )P~ ,  = uzPyl ,  and C (Xi - 2)' = IIY112 = 
Y'1,Y. Applying Theorem 2.2.2, we have E(Y)  = 0, AC = c2PYl = ~'(1, - Py) 
as before. 

Problem 2.2.1: Let X = (XI, X , ,  XJ, E(X) = 8 = (2, 3, 4)', Z = D[X] = 

3 

and Q(X) = 1 (Xi - R)'. Find E[Q(X)]. 
1 

Problem 2.2.2: Let D[XJ = a21, and E ( X )  = pJ,. Define Q,(X) = c (Xi - Xj>*.  
i < j  

(a) Find ECQ2(x)l. 
(b) How is Q2(X) related to Qr(X) = 

corresponding to these quadratic forms.) 
(c) Find a constant c, such that c,,Q2(X) is an unbiased estimator of 8. 

( X i  - x)'? (Compare the matrices 
i 

Problem 2.2.3: Let X,, . . . , X, be uncorrelated random variable with equal 

(a) For 8 = - 1 X i ,  what is  Var(x)? Use Theorem 2.1.3. 

(b) Find a constant K, such that Q = K, 

means p and Var(Xi) = u,?. 
I "  

n l  n 

( X i  - x)' is an unbiased 

estimator of Var(X). Thus, even though the Xi have unequal variances, Q is 
still an unbiased estimator of Var(X). is not the linear unbiased estimator 
with the smallest variance, however. To see this, take n = 2 and find the 
unbiased linear estimator with the smallest variance. This is really not an 
estimator unless the 0; (or their ratios) are known. 

1 

Problem 2.2.4: Let X,, . . . , X,, be random variables with equal means p, 

(a) Find a constant K = K(n, y )  such that K 1 (Xi - x ) 2  is an unbiased 

(b) Construct an unbiased estimator of Var(x). 
(c) What is the smallest possible value for p for each n? Hint: Express Var(x) 

in terms of n and p. To show that p can take this smallest possible value, 
suppose that W,, . . . , W, have equal variances and covariances. Let X, = 
Ni - W, so that X is the vector of deviations for W. Determine D[X] .  

variances a', and covariances pa2 (correlation p). Assume p known. 

estimator of 0'. 

n 

1 
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Problem 2.2.5: Consider a finite population of N elements with measure- 
ments x,, . . . , xN. A simple random sample of n of these elements is a selection 
of II elements taken without replacement in such a way that all permutations 
have the same probability. Let  XI,. . . , X, be the corresponding measure- 

l N  
ments for the units selected. Let p = - 1 xi and u2 = [C (xi - p ) , ] / N .  Then 

N i = 1  

E ( X j )  = p, Var(Xj) = u2, and, for j # k, cov(Xj, X,) = - 0 2 / ( N  - 1). To show 

this consider yi  = xi - p. Then u2 = (7 y: ) /N,  and, for j # k,  cov(Xj, X,)  = 

(a) Show that D[X] = [aZ/(N - l)][NI, - J.J;] for J, = ( I , .  . . , I)’ .  

(b) For 8 = (1 X j ) / n  = (J;X)/n, show that Var(8) = 
N - l  
N 

(c) For S2 = (X i  - d)2/(n - l), show that E ( S 2 )  = u2 - -- 
(N  - I ) *  

In Sampling Techniques, a classic by William Cochran (l977), u2 is replaced 

by S2 = 1 y? ( N  - I) ,  and S2, as defined above is replaced by the symbol 

s2. Then, for Cochran’s notation, used for much of the sampling literature. s2 
is an unbiased estimator of “the population variance” S2. 

[: 1; 

2.3 PROJECTIONS OF RANDOM VARIABLES 

This section is not required for understanding the remainder of the book, 
though it should be useful for those interested in multivariate analysis, the study 
of the joint behavior of two or more random variables. 

The linear space projcction theory discussed in Chapter 1 may be extended 
to spaces of random variables. Let R be the collection of all random variables 
defined on some probability space with mean 0, finite variance. We will refer 
to elements of R as random variables and also as vectors. For X, Y E R define 
the inner product (X, Y) = E(XY), llX112 = E(X2) = Var(X). 0 is infinite dimen- 
sional if the probability space is infinite. However, many of the ideas developed 
in Chapter 1 still hold. R is a Hilbert Space, usually called L,. 

A (finite dimensional) subspace Y(X,, . . . , X,) is again the collection of 
linear combinations biXi. The projection of an element Y on a subspace V 
is the vector 9 (random variable) in V such that (Y - 9, X) = 0 for all X E V. 
That is, E[X(Y - f)] = cov(X, Y - 9) = 0 for all X E V.  

Taking X = (XI,. . . , X,) and using the same arguments as were used in 
Chapter I ,  this projection is ? = Xb, where b = Z i  ’ U, Zx = DCX], U = CCX, YJ 
whenever Zx is nonsingular. Since Var( f i  = II PI1 ’. Var( P) = b + b = U’& ’ U. 
The residual vector is e = Y - f .  Since Y = Y - f + f = e + Y, cov(u, e) = 0 
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for all u E V ,  and E V ,  i t  follows that cov($,e) = 0. Thus, Var(Y) = 
Var(e) + Var(f) = (a: - U’CX’ U) + U’Z~’U. 

? is the best linear predictor of Y in the sense that, among all linear 
combinations b j X i ,  Y - %! = e has the smallest possible variance. This 
follows from the fact that for any W E  C;, IIY - W11’ = Var(Y - W) 2 
Var(Y - 9 )  = IIY - *I/’. See the proof in Chapter 1. 

Now suppose E(Y) = py, E ( X )  = px. Then the best linear predictor of 
Y - p v  as a function of X - px is (X - px)b, where b = C, U. It follows that 
the best (affine) linear predictor of Y is 

The error is e = Y - 9 = (Y - py) - (X - p x ) b ,  which has variance u: - 
U’ZX’U. The multiple correlation coefficient of Y and the set {XI,. . . , X,} is 
a measure of the precision of the approximation of Y by q, relative to that 
provided by py. 

Definition 2.3.1 : The multiple correlation coefficient of Y with the random 
vector X is 

All of our discussion so far has concerned the approximation of Y by linear 
combinations W = 1 b j X ,  with the closeness of the approximation measured 
by E(Y - W)z. It is possible to do better if approximations are not limited to 
linear combinations of XI, .  . . , Xk. Let g ( 2 )  = E(Y IX = 2) for E Rk. g is the 
regression function. Then for any real-valued function h on R,, 

so that cov(Y - g(X), h(X)) = 0. Thus, for any predictor h(X) of Y, 

E(Y - h(X))Z = E[Y - g(X)]’ + E[g(X) - h(X)]* 

It follows that y(X) is the best predictor for Y in this least squares sense. If h 
must be chosen to be linear then, as already shown, we take 

which is the linear least squares predictor of Y. 
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In the case that k = 1, the linear least squares predictor of Y is 

Equivalently, writing Zy and Z, for the standardized versions of X and Y, the 
linear predictor of Z, is p Z x .  Since - I I p I + 1, and €(Z,(X = x )  = p Z ,  it 
follows that IE(ZylX = x)l 5 lZ,l with equality only if IpI = 1. This inequality 
is often described as regression toward the mean. Note that the linear predictor 
P is the least squares estimator among linear predictors of Y, but is not the 
least squares estimator in general unless g(X) = E(YIX) is linear in X. The 
tendency to use Zx as the predictor of Z,,  rather than pZ,, is called the 
regression fallacy. 

Consider a population of father-son pairs with heights (x, y). Suppose the 
fathers have mean height 69 inches, standard deviation 2.5 inches, and sons 
have mean height 70 inches, standard deviation 2.8 inches. Under the regression 
fallacy a father with height 74 inches (2 s.d.‘s above average) would be predicted 
to produce a son with height 2 s.d.’s above average, or 75.6 inches. The best 
linear predictor should be just 2p s.d.’s above average, so that for p = 1/2, for 
example, the prediction is 72.8 inches. Similarly, for p = lj2, a father below 
average in height should be expected to produce a son only one-half as far 
below average in standard units. 

In this paper “Kinship and Correlation,” which appeared in the North 
Anterican Reoiew in 1890, Francis Galton first defined the correlation coefficient 
as the slope of the standardized regression line for the case of “quasi-normal” 
data (approximate bivariate normal, so that the regression function is approxi- 
mately linear). Stigler (1989) describes this paper and the circumstances under 
which it was written. In one of Galton’s examples two clerks leave an office at 
the same time, and (X, Y) is the pair of times they take until they arrive at their 
homes. Since they ride the same omnibus together each day, but walk further, 
each at his own pace, X and Y are correlated so that the regression line 
(assuming linear regression) is described by the line 

In another example Galton considers a population of people with X = length 
at thigh bone, Y = height. 

In baseball the batting averages for players in their first and second years 
of major league play have distributions roughly approximated by the bivariate 
normal distribution (so that regression is linear) with mean 0.265, standard 
deviations 0.30, correlation 0.40. A player who hits well the first year, say 0.310, 
should be expected to hit about 0.283 the second year. Instead players whose 
average drops this much are said to have had a sophomore slump, with all 
sorts of psychological reasons given. Similar deep meaning is found in the 
tendency for students with G.P.A.’s above 3.8 as freshmen to have lower average 
G.P.A.’s as sophomores. 
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Galton’s clerk example and the baseball example may be modeled as follows. 
Let W be an r.v. denoting the common part of X and Y, the bus ride time or 
the ability of a player, and let cX. cy be independent r.v.’s, the error parts of X 
and Y, having equal variances 0;. Suppose also that W and the pair (cX, E ~ )  

are independent. Suppose X = W + cX, Y = W + cy. 
Then p = - Ow 2 .  The best linear predictor of Y is 17 = pu + p(X - px), 

2 

&I + 0, 

which is closer to ply than X is to px .  

Problem 2.3.1: Let X = (X,, X,, X,) have zero mean vector, covariance 

r 4  1 2 1  
matrix Z= 1 3 - I  

1 2  - 1  2 1  
(a) Find the best linear prediction XI of X, as a function of X2 and X,. 
(b) Find Var(X,), Var(X, - X,) and the multiple correlation coefficient of 

X, with X,, XJ. 

Problem 2.3.2: Show that the multiple correlation coefficient, R ,  of Y with 
(X,,. . . , Xp) is the ordinary correlation coefficient of Y with the best linear 
predictor Y. 

Problem 2.3.3: Let (X,, . . . , Xk)’ have the equicovariance matrix Z = 

a2[(1 - P ) I , + ~  + pjk+lJi+l], and mean vector 0. 
(a) Show that the best linear predictor of X, as a function of X = (XI,. . . . X,) 

is R, = Xb for b = dJ, and d = p/[1 + ( k  - I)p]. Hint: See Problem 1.6.6. 
(b) Show that the multiple correlation coefficient of X, with X is g( p, k )  = 

[dpk]”2. Also show that 0 5 g ( p ,  k) I 1, y is monotone in p and k, and 
iim g(p, k )  = p1I2. 

k - z  

Problem 23.4: Let k = 1 and let (X, Y) have the joint discrete distribu- 
tion with probability mass function f ( x ,  y) given by the following table: 

x 
0 1 2  

0 0 0.1 0.2 

y [ 1 0.2 0.5 0 
1. Find the least squares predictor g(X) = E(Y IX), and the 

linearleast squares predictor h(X) = 17. Show that g(X) and h(X) are unbiased 
estimators of E( Y) .  Also find Var(g(X)), E[Y - g(X)]’, Var(9) and E[Y - q]’. 

Problem 23.5: In his book Natural Inheritance, Galton (1  889) published 
the data of Table 2.3.1 and Figure 2.1 on the midheights of parents (x) and 
that of an adult child (y). For ui = midpoint of ith midparent interval 
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Height of Midparent 

62 64 66 68 70 72 74 

FIGURE 2.1 Galton’s height data. From Narrrral Inheriranca (1889). Macmillan. London 

i = I , .  . . , 11 ,  v j  = midpoint of j t h  adult child interval, j = 1, .  . . , 14, Lj = 
frequency in ij cell, we find 1 J j u i  = 63,385. 1 j;,vj = 63,190.6, J j u :  = 

4,332.418 1 jljt.‘f = 4,308,850, f i j u i u j  = 4,318,061, n = 928. Let (X, Y) take 

each of the values (xi, yi) with probability 1/928. That is, P(X = xi, Y = y j )  = 
jij/928. 

(a) Determine the parameters p x .  py, ox. qy, p = r, and the equation of the 
simple linear regression line 9 = py +  pa,(^ - px)/ux. 

(b) For tall parents (say 2 72) what proportion have shorter children, in the 
sense that Zy < Zx’? For short parents (say I 64) what proportion have taller 
children, in the sense that 2, > Z,? 

i j  i j  1 J‘ 

i j  i j  

2.4 THE MULTIVARIATE NORMAL DISTRIBUTION 

Definition 2.4.1: A random vector Y (taking values in R,) is said to have 
a multivariate normal distribution if Y has the same distribution as 

where, for some p ,  Z is a vector of independent N(0, 1) r.v.’s, A is an n x p 
matrix of constants, and p is an n-vector of constants. More generally, a random 
vector X, taking values in an n-component linear space a, has a multivariate 
normal distribution if its column vector “version” in R,  does. 

We will suppose in this section that R = R,, so that we can use matrix 
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notation. Any property of the multivariate normal distribution which holds for 
this special case will have an obvious translation to the general case. 

Since Y and X have the same distribution, we can exploit the representation 
of X to determine the density of the multivariate normal distribution. X does 
not have a density function on R, unless A has rank n. In general AZ takes 
values in the subspace C[A]. In the special case that A is n x n and has rank 
n, and therefore AA' has rank n, we can find the density as follows: 

Let X = A Z  + p = y(Z). Then for A n x n of rank ny(z) is a 1-1 function 
from R, onto Rn so that 

fx(x) =fz(g-*(x)) det =f,(A-'(x - p))ldet A-' l  I (dya:(xI)I 
Since 

n 

we get 
&(x) = (2Il)," ldet A J - '  exp[-(x - p)'(AA')- '(x -. p)/2] 

Let D [ X ]  be denoted by X. Since E(X)  = p and X = D[X] = AI,A' = AA', we 
have det(I;) = det(AA') = [det A]', so 

fx(x) = (211)-";2(det C)-"' exp[-(x - p)' C-'(x - p)/2J for all x E R,. 

C and its inverse are positive definite so that 

Q(x) = (x - p)' C-' (x - p) > 0 unless x = p. 

The contours of Q(x) (points x of equal value for Q) are ellipsoids in R,. 

generating function (or the characteristic function). We have 
The representation X = AZ + p makes it easy to compute the moment- 

Recall that the moment-generating function of a standard normal r.v. is e'z"2 
so that 

It follo\vs that mx(t) = et'p e(A't)'~A'"'''2 = et'*e't'zt'zJ. Here A is n x p ofany rank, 
so we have shown that the distribution of X depends on its mean vector p and 
covariance matrix I; only. 
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Thus, if 
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X, = A,Z, + p, and X2 = A2Z2 + p,, 
n x l  n x p l p , x l  n x l  n x l  n x p l p l x l  n u 1  

where Z,, 2, are independent, and each is a vector of independent standard 
normal r.v.*s, then X, and X, have the same distribution iff their mean vectors 
and covariance matrices are the same, i.e., p, = p2 and A,A; = A,A;. 

Theorem 2.4.1: Let p be an element of R,  and C an n x n nonnegative 
definite matrix. Then there exists a multivariate normal distribution with mean 
vector p, covariance matrix C. 

Comment: We will denote this distribution by A!&, Z). 

Proof: Since Z is symmetric, there exists a matrix B such that BB‘ = X 
(see triangular decomposition, towards the end of section 1.7). Let Z be an 
n-vector of standard normal independent r.v.3. Let 

X = B Z + p .  

Then E( ,X)  = p and D[X]  = BI,B’ = I;, and by definition X has a multivariate 
normal distribution. n 

The proof of this theorem suggests a method for generating multivariate 
normal vectors on a computer, given p and Z;. Find B such that BB‘ = X. 
Suppose a method is available for generating independent standard normal 
r.v.’s, so that values of 2 may be generated. Then X = BZ + p has the desired 
distribution. 

Theorem 2.4.2: Let X - N,(p, Z). Let Y = C X + d for C and d 
n x  1 r x l  r x n n x l  r x l  

constant matrices. Then Y - N,(Cp + 6 CZC’). 

Proof: By definition X = AZ + p for some A such that AA‘ = Z, with 
2 - NJO, Ip)  for some p .  Then Y = CAZ + Cp + d = (CA)Z + (Cp + d), and 
by definition Y has a multivariate normal distribution with mean Cp + d, 
covariance matrix (CA)(CA)‘ = m C ’ .  u 

Theorem 2.4.3: Let Y have a multivariate normal distribution. Let Y = 

[t:] with Y, p x 1 for 1 I p < n. Then Y, and Y, are independent if and only 

i f C [ Y , , Y 2 ] =  0 . 
P x (n - P) 

n x  1 
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Proof: Suppose Y1, Y, independent with mean vectors B,, ez. Then 

Now suppose CCY,, Y,] = 0 . We will use the fact that two random 

vectors are independent if their joint moment-generating function is the product 

of their marginal m.g.f.'s. Let t = [ for t, p x 1. Then Y has m.g.f. 

p x (n - P) 

m x  1 

mu(t) = exp[t;e, + tie, + 4t'ctJ 
But 

since C,, = 0 . Thus, 
p * n - p  

Theorem 2.4.4: Let X have a multivariate normal distribution. Let X = 
n x  1 (i:) with X, p x 1 for 1 s p -= n, with mean vector p = 

matrix C = (E;: El:) for p ,  p x 1, El ,  p x p. suppose e2, is nonsingular. 
Then 

(1) XI - NP(Pl? & 1 )  

(2) The conditional distribution of XI, given X, = x, is Np(pl + A(x, - p2), 
XI,,)  for A = Z 1 2 C i i ,  El , ,  = E l l  - ClzC;;X>,. 

Proof: (1)  follows directly from the representation X = A Z  + p. 
To prove (2) let Y, = X I  - p,, Y, = X, - p,. Then, from Section 2.3, Y, = 

3, + (Y, - B,), where Y, = AY, for A = Z12&', with C@,, Y, - q,) = 
0 . Since the pair o,, Y, - 3, has a joint multivariate normal distribution, 

this implies independence of these two random vectors. Therefore, the distribu- 
tion of the residual vector Y, - 9, does not depend upon Y2 = X, - p, = 
x2 - p,. It follows that conditionally upon X, = x2, 

P x (n - PI 

Since X, = Y, + p,, this implies (2). u 
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Problem 2.4.1 : 

(a) Show that the density of X is 

Let X = (XI. X,) have a bivariate normal distribution with 
parameters ( p , ,  p2.  a:, a:, p)  for - I  -= p c + 1. 

for Q(x) = z: + Z$ - 2pz1z2, z1 = (x, - p1)/u,, Z, = (x2 - p2)/02. (This is the 
bivariate normal density.) 

(b) Show that the conditional distribution of X,, given X, = x,, is 

N( p2 + p0,(5;"), o$(I - p') ) .  Thus, for example, if the heights in inches 

of fathers (XI) and sons (X,) have a bivariate normal distribution with means 
p,  = 69, p z  = 70, O ,  = 2, a, = 3, p = 0.4, then the conditional distribution of 
a son's height for a father 73 inches tall (2 s.d.'s above average) is N(72.4, 7.56) 
(0.8 s.d.'s above average, variance 0.840;). 

Problem 2.4.2: Let X = (XI, X,, X,) be as in problem 2.3.1. What is the 
conditional distribution of XI, given X, = I ,  X ,  = - l'? 

X , )  have covariance matrix ?2 = 

0 so that ?2 has rank two. If p, = 

1 

30 
and X has a multivariate normal distribution, describe the range of X. That is, 
what is the subset of R ,  in which X takes its values? 

Problem 2.4.4: Let Z , ,  Z ,  and B be independent r.v.'s, with Z,, Z 2  standard 
nornial and B taking the values - 1, + 1 with probabilities 1/2, 1/2. Let Yl = 
BlZ,l and Y, = BIZ,!. (a) Argue that Y, and Y, each have the standard normal 
distribution, but the pair ( Yi, Y2) does not have a bivariate normal distribution. 
(b) Show that p(  Y,, Y,) = 2/n. 

Problem 2.45: Suppose that a population of married couples have heights 
in inches, X for the wife, and Y for the husband. Suppose that (X, Y) has a 
bivariate normal distribution with parameters px = 65, pFcu = 70, ox = 2.5, 
uy = 2.7, and p = 0.4. What is the probability that the husband is taller than 
his wife? Does the probability increase or decrease with p? 

2 5  TheX2* F, AND t DISTRIBBUTIONS 

In this section we study the distributions of certain functions of random 
variables which are normally distributed. Students will probably be somewhat 
familiar with the central ,y2, F, and t distributions, but may not have studied 
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their noncentral counterparts. In each case these distributions are defined in 
terms of normally distributed random variables or. in the case of F and t, in 
terms of X2-random variables. Tests of hypotheses and confidence intervals will 
depend upon these central distributions. Determination of power for these tests 
(t and F tests) will depend upon these noncentral distributions. 

Definition 25.1: Let X,, . . . , X,, be independent N(pi, 1) random variables 

for i = I ,  ..., n, then Y = ZX,? is said to have a noncentral chi-square 

distribution with n degrees of freedom and noncentrality parameter 6 = 1 p:. 

Comment: We will denote this distribution by xi(&. This is a legal 
definition only if we show that Y has a distribution which depends only on n 

and 6 = 1 p;. 

n 

1 n 

1 

n 

1 

Define X = [ x'] and p = [ y ]  = E(X) ,  a, = p/JIpIJ, and let a2, .  . . ,a, be 

Xn Pll 
orthogonal vectors of length one, all orthogonal to a,. Thus a,, . . . , a,, form an 
orthonormal basis for R,.  Since these ai form a basis for Rn, X = ?aj for 

random variables Wj, and (X, a&) = ~llarl12 = W,. Thus, X = c (X, ai)ai. (See 
I 

immediately after Theorem 1.3.5.) 1 

Let A = ( a l , .  . . , an). Then 

and 

Thus, since W has a multivariate normal distribution, W,, . . . , Wn are inde- 
pendent with 

Wl - N(llplI, l), 4- N(0 ,  1) for i = 2 , . .  . , n  
n ll 

a n d x  X: = IlX(12 = JIAWI12 = W'A'AW = W'W = IIWJ12 = 

bution of 1 W: depends only on n and 6 = 1 p: = IJpI12. 

W:. Thedistri- 
1 n  m 1 

1 1 
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Comment: Using the notation above and letting Z, = Wl - 6’/2, and 

Zi = 4 fori = 2,.  . . , n weget EX: = E w;Z = ( Z ,  + 61/2)2 + IZFfor Z,, . . . , 

2, standard normal independent r.v.3. Thus, a noncentral x 2  r.v. is the sum of 
a noncentral x2  r.v. with one degree of freedom (d.f.) and an independent central 
x2 r.v. with (n - 1) d.f. 

R n n 

1 1 2 

The central x2 density for n degrees of freedom is 

This is a gamma density for power parameter n/2, scale parameter 1/2. The 
noncentral x2 density is a Poisson mixture of central x 2  densities: 

where p ( k ;  S) = [e -6‘2(6 /2)k] /k! .  Thus, the noncentral x z  distribution is a 
weighted average of central x Z  distributions, with Poisson weights. We will write 
x,’ to denote the central x 2  distribution with n d.f. 

R 

For any 6, the representation Y = W: above gives 
1 

In addition, 
n 

Var(Y) = C V a r ( c )  = (2 + 4b) + 2(n - 1) = 2n + 46 
1 

As n -+ sc for fixed S with Y, .- &6), (‘ - (m + Jiri 4- ;i by the Central Limit Theorem. 

cube-root transformation. If Un has a x.’ distribution then, as n -+ m, 

is asymptotically N(o,1) 

For the central x 2  distribution a better approximation is given by the 

for a, = I - 2/(9n), 6, = (2/(9~1))”~ converges in distribution to N(0, 1) (Fabian 
and Hannan, 1985, p. 125). Thus, the IOqtth percentile is given approximately by 

u7 = n[an + Z y h n ] 3 ,  
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where z ,  is the 100lth percentile of the standard normal distribution. For 

18.307 0, while ~ 0 . 9 5  = 10c0.977 78 + ( I  .645)(0.149 031 = 18.2928. The approxi- 
mation is even better for larger n. 

example, for n = 10, from Table 3 in the back of the book we find ~:0 ,0 ,95  - - 

Definitioo of a Quadratic Fonn: Let Z be a nonsingular, positive definite 
n x n matrix. Suppose Y - N(0, C) and let A be a nonnegative definite matrix. 

Consider the random variable Q = YAY. We will be primarily concerned with 
the special cases that A is a projection matrix, or that Z is a multiple of the 
identity matrix, and for simplicity will consider these later in this Wion. Those 
looking for a respite from the heavy emphasis on matrix manipulation necessary 
for the general case may therefore wish to skip to the definition of the noncentral 
F distribution, promising, of course, not to leave forever. 

n x n  

Let Z”’ be the unique symmetric square root of X ,  and let X-1:2 be its 
inverse. We can write Q = ~ ’ Z - 1 ’ 2 ) ~ 1 ; 2 ~ ’ ~ 2 ~ ~ - 1 ‘ z ~  = ZBZ, where B and 
Z are the second and third terms in parentheses. Then D[Z] = Z’”’z12Z-1~2 = 
I,,, so that Z - Nn(O. I,,). 

Let B = TAT’ be the spectral decomposition of B. That is, A is the diagonal 
matrix of eigenvalues of B, T is the n x n matrix whose columns are the 
corresponding eigenvectors of B, and T is an orthogonal matrix, is., IT‘ = 
T’T = 1”. 

Thus, Q = Z’TAT’Z = (T’Z)’A(T’Z) = W‘AW for W = T‘Z. Since Ow] = 
T’I,T = I,, W - N,,(O, I,,). Denoting the eigenvalues of B by A, ,  . . . ,A,, so 
A = diag(j.,, . . . , ,In), we find that 

where W’ = (W,,  . . . , Wn). Thus, Q is a linear combination with coefficients 
11, . . . ,A, of independent x i  random variables. The coefficients il,. . . An are 
the eigenvalues of Z’1i2AZ1‘27 and therefore also the eigenvalues of AI: and of 
ZA . 

Often, in applications, C = 021, for some o2 > 0, so the Ai are a2 multiples 
of the eigenvalues of A. If, in addition, A is a projection matrix, so that the 
eigenvalues are all 0s  and l’s, with (number of 1’s) = rank(A), then Q/u2 has 
a central x 2  distribution with d.f. = rank A. In more generality, Q has a central 
x 2  distribution if AI: is a projection matrix. 

We can extend these results a bit by instead supposing only that Y - N,,(B, Z). 
Define matrices B, T, A as before and 

n 

Then W - NJT’Z-’/’B, I,) and Q = Y‘AY = W‘AW = 1 ,Ii W:. In this case 
1 
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the %are independent. normally distribution, with standard deviations 1. Thus, 
each W f  - x:(S,), where S, is the square of the ith component of T'Z "'8 and 
we have expressed Q as a linear combination with coefficients A,,  . . . , i., of 
independent x;(di) random variables. 

in the special case that C = 021,. and Q = Y'PY/a2, for P a projection 
matrix onto a ddimensional subspace V of R,, we have A = P/o', B = 
(aIn)(P/a2)(uI,,) = P. The eigenvalues of P are 1, with multiplicity d, and 0, 
with multiplicity (n - d ) .  Without loss of generality suppose 1, = . . . = i d -  - 1 
and i,d + , = . . . = .I, = 0. Then the columns t,, . . . , t, of T are orthogonal, of 

length one, and the first d span V. Thus, W - Nm(T-'8/o, I,,), Q = W:, with 

the W f  independent xI(6,) and 6,  the square of the ith component of T- ' O / 0 2 .  
Since T- = T', the ith component of T- %/a is (ti, @/a. Since the sum of 
independent noncentral chi-square r.v.'s is noncentral x', we conclude that 

d 

1 

Note that Q = Y'PY;o2 = I\p(Y I V)i(z/(r2 - x:(Ilp(O)l V)I(2ja2).  
The result that Q has a noncentral x 2  distribution when A = C-' is very 

useful in statistics, important enough to dignify with the name Theorem, for 
later reference. 

Theorem 2.5.1: Let Y - N,(0, X). Let Q = (Y - C)'Z '(Y - C), where C 

Biometriku Tuahies fbr Sturisticians by Pearson and Hartley (1966) gives 
is a vector of constants. Then Q - x i ( S ) ,  for 6 = (8 - C)T-  '(0 - C). 

percentile values of the x:(S) and x." distributions. 

Definition 25.2.: (Noncentral F). Let U ,  - xz , (S )  and U2 - xi2 (central) be 
U,ln, . 

U2h2 

independent. Then V = IS said to have a noncentral F distribution with 

noncentrality parameter 6 and n ,  and n2 degrees of freedom. For 6 = 0, V is 
said to have a central F distribution (or simply, an F distribution) with 11 ,  and 
nz degrees of freedom. 

We will denote the noncentral F by F,,,Jd) and the central F by F,,,,, or 
F ( n , ,  nz). The 100jth percentile of the central F distribution will be denoted 

For completeness we give the central and noncentral F-densities. The 
noncentral F distribution with noncentrality parameter 6, and n,, n,  degrees 
of freedom has density 

N o ;  6, n, ,  n 2 )  = 1 p ( k ;  6 ) W  n,, n2), 

by C 1 , n z . y  or by Fy(n1, n ~ ) .  

S 

k = O  
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where p ( k ;  6) = [e-”’(S/2)‘]/k!,  the Poisson probability function with mean 
6j2.  and 

h(o;  n, ,  n 2 )  = h(t:; 0, n , ,  n,) is the central F-density. 
(Students are warned not to memorize this; the effort required has been 

known to debilitate them for weeks.) The mean and variance for the noncentral 
F are 

for n2 2 2 and n2 2 4 respectively, undefined otherwise. 

The Noncentral t Distribution 

Definition 2.5.3: Let W - N(0 ,  I )  and Y - be independent random 
variables. Then 

T = W/J.YJm 

is said to have (Student’s) t distribution with noncentrality parameter fl and m 
degrees of freedom. 

We will denote this distribution by t,(d). The t,(O) distribution is called 
Student’s t distribution or simply the t distribution. The 1W;th percentile of 
the central t distribution will be denoted by t m T Y .  Notice that T2 - F,,,(8’). 
Student’s t distribution was first found by William Gosset (1907) while he was 
on leave from his position as a brewer from the Guinness Brewery of Dublin 
to study with Karl Pearson at University College in London. Upon request of 
Guinness, Gosset published “On the probable error of the mean,” in Biometrika 
in 1908 undcr the name “Student.” A discussion is given by Ronald A. Fisher’s 
daughter, Joan Fisher Box (1987). 

Example 2.5.1: Let XI,. . . , X,, be a random sample from a N ( p ,  a2) 

distribution. We will prove soon that k - N - x : - ,  for 

S2 = z-(zi 13:, and that X and S2 are independent. Taking, m = n - I ,  

constant a, 

( n  - 1)s’ 

n - 1  

W = x - u  y=-- ( n  - i)S2 - - P - U  

a/,/; ’ g2 ’ a/& ’ 
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we find that 
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X - l l  

has a t,,- 1(0) distribution, central t if a = p. 
The t , ,(B) density is 

for all r. 
This simplifies for the case B = 0 to the central t-density 

Problem 2.5.1: Use Stirling's Formula: f (n  + l)/[e-"n"&J -+ 1 as 
n -+ m to show that f ( t ;  m) --* ( 1/,,/'2~)e-t*!2, the standard normal density, as 
m -+ m. 

Problem 2.5.2: Let X , ,  X 2  be independent, each N(p, a2). Prove that 

W =  x2 has a noncentral t distribution. What are the parameters? (I t  
1x1 - &I 

may be helpful to read the next theorem first). 

Theorem 2.5.2: Let E(Y) = 8, DCY] = din. Then 

(1) For any a, E(a, Y) = (a, 8) 
(2) For any a, b, cov((a, Y), (b, Y)) = oz(a, b), so that Var((a Y)) = d11alI'. 
(3) Let Y have a multivariate normal distribution, let al,. . . , a, be vectors 

= (ai, Y). Then (W,, . . . , W , )  has a multivariate of constants, and 
normal distribution. 

Proof: (1) E(a, Y) = (a, 0) follows by the linearity of expectation. For 
(2), compute cov((a, Y), (b. Y)) = a'D[Y]b = u2a'b = oz(a, b). (3) follows directly 
from Theorem 2.4.2 by taking the ith row of C to be a;. n 

The linear models we will consider will have the form Y - Nn(8, at I,,), where 
8 is supposed to lie in a subspace V spanned by vectors x l r .  . . , xk of constants, 
and 0' is an unknown parameter. For this reason we will be interested in the 
statistical properties of projections 9,  = p(YI V )  and functions of 9,  and 
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Y - 8,. Expectations of linear functions of Y (3, is an example) are determined 
by 0 alone. Expectations of quadratic functions of Y (lig,llz is an example) are 
determined by 0 and DCY]. The distributional form of functions of Y (such 
as q,) are determined by the distributional form of Y. We will prove, for 
example, that Y - N,(0, 0’1,) implies that ll~,1i2/a2 has a noncentral x z  
distribution. 

Tbeorern 2.53: Let V be a k-dimensional subspace of R, and let Y be a 
random vector taking values in R,. Let E(Y) = 0, 8, = pCyl V )  and 0, = p(6l V) .  
Then 

(1) ~ ( 8 , )  = e,, 
(2) D[Y] = d l ,  implies that D[P, J = a2PY and E[II8, 112] = 0 2 k  + li0,Il’. 
(3) Y - N(0,021,) implies that P, - A!,(@,, ozP,) and ~18v~~2/a2 - x f ( d )  

for 6 = llevliz/a2. 

Proof: (1) follows by the linearity of expectation and the fact that 
p(Y 1 V )  is a linear function of Y. To prove (2) note that D@,] = a’P,P; = 
aZP, and 118,112 = Y’PvY. By Theorem 2.2.1 Ell?,JIZ = trace(a21,P,) + 
wP,e = at trace(P,) + e ’ P p , e  = 0% + llOvIl2. 

The first conclusion of (3) follows from (1) and (2) and the normality of Y. 
To prove the second conclusion let al, . . . , a&, ak+ . . , a, be an orthonormal 

basis for R ,  with a,, . . . , a& spanning I/. Then Y = (Y, ai)ai. Let 4 = (Y, ai) 
for each i. Then 

W 

1 

k 

and from Theorem 2.5.1, W,, . . . , W ,  are independent N(q, ,  a’) random variables, 

where qi = (0, ai). Then 119, lI2/n2 = (si/a)’ = 
k k 

( &/a)2 5- &S) for 6 = 
1 1 lie, 11 2 / 0 2 .  i7 

We will be interested in the joint distributions of projections qi = p(YI c )  
onto different subspaces &. For example, for a subspace V,  we shall be interested 
in 8, and the residual vector Y - Y, = p(Y I V l ) .  In the case that the subspaces 
under consideration are mutually orthogonal, the resulting projections are, 
under suitable conditions, independent random vectors. Their squared lengths, 
the sums of squares of the analysis of variance, are therefore independent 
random variables. 

Theorem 25d: Let Vl, . . . , be mutually orthogonal subspaces of R, and 
let Y be a random vector taking values in R,. Let Pi be the projection 
matrix onto 5. Let E(Y) = 0, 9, = P,Y and Oi = P,0 for i = 1,. . . , k. 
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Then 

(1) D[Y] = aZIn implies that C(qi, qi,) = 0 for i z i ' .  
(2) Y - N,(& a21,) implies that ?,, . . . , $k, are independent, with qi - 

N(O,,  dPi). 

Proof: Let Pi be the projection matrix onto K. C(qi, *,,.) = 

If Y has a multivariate normal distribution, it follows that the linear functions 
qi = P,Y are jointly multivariate normal and are independent if and only 
if each C(qi, qt,) = 0 for i # i ' .  (3) of Theorem 2.5.2 then implies (2) 
above. U 

C(P,Y, Pi, Y) = P,C(Y, Y)Pi = 02PiPi, = 0. 

The following important theorem, first given by William Gosset (Student) 
in 1908 and proved rigorously using n-space geometry by R. A. Fisher, is an 
easy consequence of Theorems 2.5.3 and 2.5.4. This theorem justifies the 
statements of Example 2.5.1. 

Tbeorem 255: Let Y,, . . . , U, be a random sample from a normal distribu- 

= -- (Y, + . . . + U , )  and 
1 

n 
tion with mean p, variance d .  Let 

1 "  

n - 1  1 
s2 = -- C ( &  - F ) 2 .  

? - N(p, a2/n) 

and S' are independent 

?!' r has a noncentral t distribution with (n - 1) d.f., noncentrality 
- 

parameter 

Proof: Y = ( Y ] , .  . . , K)' - Nn(pJn, d I , ) ,  where J: = (1,. . . , 1). Let V = 
(Y J 1 

= p(Y( V )  = . 2 J2 J, = FJn. 
It Jn II 

has mean 11 and variance [J~D[Y]J,]/~[Jn~14 = 02/IIJ,I12 = --, and of 

course is normally distributed. This proves (1). 
Y - 9 = p(Y I V')  = ( Y ,  - y, . . . , Y, - f)', the vector of deviations, is in- 

dependent of ?, hence of r. Thus, S2, a function of Y - *, and ? are 

Y(J,), a I-dimensional subspace of R,. Let 

fJ2 

n 
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- - S2(n - 1) 

a’ 
independent. By (3) ofTheorem 2.5.2 and the fact that 8 = pJ, I V, 

!’--?’’: is distributed as xi- This proves (2) and (3). 
n 2  

1 ”  
N(’ - !*, 1) and V = C ( 8  - y)’ - X Z - ~ .  U and V are independent by 

(3). Thus, by the definition of the noncentral t distribution, - - 7 - P o  

s!,,/. 

alJn 0 1  

t n - *  til>:), proving (4). n 

Example 2.5.2: Let Y,, Yz, Y,, Y, be independent N(p, 0’). Find a constant 
K such that 

P - /lo 
. - - - . W = K  __II __ __ -- 

di( Yl - Y,)’ + ( Yl + Y, - 2y3)’j3 + ( Y ,  + Y2 + Y3 - 3YJ2/6’ 

has one of the distributions noncentral x 2 ,  noncentral F, or noncentral t. Identify 
the parameters. K must be a constant. 

Solution 
T - P o  -- - N (  P - r ,  Po I ) .  F - Po “ P  - PO), 0214) so 
.lJ? alv n 

The r.v.‘s 

u, = Yl - Y,, u2 = Y, + Y, - 2Y3, u3 = Y, + Y, + Y3 - 3 5  

are each normally distribution, with zero means, and with variances 2a2, 6a2, 
and 12a2. Moreover, U,. U2,  U,  are independent of ? and of each other since 
their coefficient vectors are mutually orthogonal. Thus, 

and is independent of the numerator - plo. Therefore, 

P - kt0 

a/$ 
- -  

,’60 w P - P o  

1 1  d,, ,f= 4 K t3(a)* - _  - - - - - - 

,,/6ai / 
a!Ji I We therefore need - K = 1 or K = 24’6. 
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Theorem 2.5.6: Let Y = 8 + E, for 8 E V,  and E - N,,(O, a21,). Let V, be a 
subspdce of V. Suppose dim( V,)  = k, < k = dim( V). Let Q = p(Y I V ) ,  Pl E 
p(Y( V,),  and 8, = p(8l Vl). Then 

has a noncentral F distribution with k, and n - k degrees of freedom and 
noncentrality parameter 6 = lie, 112/a2. 

Proof: Since Y - d = p(YI V') it follows from (2) of Theorem 2.5.3 that 
the squared lengths Q ,  and Q2 in the numerator and denominator are 
independent random variables. By (3) of Theorem 2.5.2 Q ,  -~: , (6)  and 
Q2 - x f - k .  The definition of the noncentral x 2  distribution then implies the 
theorem. rJ 

For completeness we present the following more general theorems. Their 
proofs are given in Srivastava and Khatri (1979, p. 66- 67). These theorems will 
not be needed for the statistical applications to follow. 

Theorem 25.7: Let Y - N,,(B, E), with Z positive definite. Let A, A,, . . . , Ak 
be symmetric matrices of ranks r, r l , .  . . , r,,, and define Q = Y'AY, and 
Q j  = Y'AjY for j = 1,. . . , k. Let I = O'A0, and 1, = WAjB for eachj. Consider 
the statements: 

(0 QI - xf,<kj), j = 1, . . . , k. 
(ii) Q1,, . . , Qk are independent random variables. 

(iii) Q - xf(A.). 
(iv) r = C r j .  

Then (a) any two of (i). (ii), (iii) imply all four statements, and (b) (iii) and (iv) 
imply (i) and (ii). 

Cochran's Theorem follows as a corollary of Theorem 2.5.6: 

Cochran's Theorem: Let Y, A, A,, . . . , Ak, Q, Q,,  . . . , Qk be as defined in 
Theorem 2.5.7. Then Q1,. . . , Qk are independently distributed as noncentral xz 
random variables if and only if Rank(Aj) = n. 

Problem 253: The following questions are designed to acquaint students 
with the central and noncentral x2,  F and t distributions. For each question 
give the distribution name, and parameters. 

Let X , ,  . . . , X,,, and let q , .  . . , Y,, be independent random samples from 
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N ( p l ,  a:) and N(y,, ci), respectively. Find the distributions of 

( p o  an arbitrary constant) XI - P1 Xl - P o  (a) ----, -- 
61 61 

I 1 Ill 

U l  1 6 1  i = l  
(c) 7 1 (Xi - p1I2, (Xi - C,)‘ for arbitrary constants C, ,  . . . , C,. 

(m) [(X - F) - 6]/ S, - + -  Kl 
For the remainder find a constant K, so that the resulting random variable has 
one of the distributions: normal, x2,  t, or F (central or noncentral). Give the 
degrees of freedom and noncentrality parameters. 
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Problem 25.4: Let (XI, Yl), . . . , (&, 5 )  be a random sample from the 
bivariate normal distribution with parameters pl,  p 2 ,  of, G$. and p. Find a 
constant K so that 

Express m and t? as a function of the parameters and the constant 6. Hint: Let 
Di = Xi - x .  Express T as a function of the Di. 

Problem 2.55: Let xI = ( I .  I ,  1, I ,  I) ' ,  x 2  = (1, 1,0,0,0)', 8 = ( 6 , 6 , 2 , 2 , 2 ) '  
and suppose that I: - N5(8, 915). Let V = Y ( x , .  x,). Find a constant K such 
that K IIY I12/IIY - Y ) I2  has a noncentral F distribution. Identify the parameters 
n I ,  n 2 ,  6. 

Problem 2.5.6: The gamma distribution T(m, 0) with power parameter m, 
scale parameter 8, has density f ( y ;  m, 8) = [r(m)8"] l y m - - l e - y ' e  for y > 0. 
Thus, the x,' and r ( n / 2 .  l j 2 )  distributions are identical. If V - T(m, 1) then 
V0 - T(m, 0). 

Suppose that V,, V2 are independent I-(ml,O) and T(m,,O). Let W, = 
C', + V,, W, = V,/k>. Use a density transformation theorem to show that (1) 
W,, W, are independent, (2) W, - T(m, + m,,  81, (3) W,(m,/m,) - F,,.,,. 
Hence conclude that U , ,  U, independent x:,, x i2  implies that 

and that these r.v.3 are independent. (4) Let Y,, . . . , V, be independent with 
& - T(nzi, 8). Let Si = Y, + .  . . + q, and let W, = Y,/Y,, W, = Y,/S2, . . . , 
M i -  I = x/S,,- ,, W, = S,,. Use (3) and induction to argue that W,, . . . , W, are 
independent. What arc the distributions of W,, . . . , W,? 
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The Linear Model 

3.1 THE LlNEAR HYPOTHESIS 

Suppose we observe Y, an n-component vector, and our model states that 
Y = f i lxl  + ‘ * . + &Xk + E, where x,, . . . , x k  are known vectors of constants, 
and E - N,(O, 021,), for p,, . . . , flk unknown parameters. 

This model, called the linear hypothesis, or the multiple linear regression 
model, includes a great variety of statistical models, including simple linear 
regression, one-way, two-way and higher order analysis of variance, and 
analysis of covariance. The assumptions on E are not all necessary in order 
to make useful statements, and we will point out which can be dropped 
under certain circumstances. 

The inner product space Q in which the vectors Y, xl,. . . , xk  take their 
values will usually be R,, the space of column vectors. In this case we can 
definc the n x k matrix X = (x,, ... , xk ) ,  and the column vector 
p =  (p , ,  . . . , pk)’ and write the linear model in the briefer form Y = Xg + E. 

This briefer form makes it possible to use matrix algebra to investigate the 
properties of the estimators of fi and of a’. However, other configurations 
for thcse vectors sometimes have an intuitive value which will make it 
worthwhile to give up the column form. 

Example 3.1.1: We observe pairs (xi, for i = 1,. . . , n and suppose 
= ( Ix i  + ci .  Then in vector form Y = fix+&. This model, about the simplest 

of interest, is called regression through the origin. Taking x = J, the vector 
of all ones, and p = p, we get the one sample model with Y, - N ( p ,  0’). 

Example 3.1.2: (Two regression lines with equal slopes) Suppose the 
yields on one-acre plots of land of varying fertility levels are recorded for 
two experimental conditions. Let Kj = yield of corn under condition i on 
j th  plot, and 

x i j  = fertility of plot j for condition i, for j = 1,. . . , n,, i = 1,  2. 

75 
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Y l l  YZl 

Define R to be the collection of vectors ( i 1, Y a random element 

\ Y l n g  ~ 2 n J  
of Q x the corresponding vector of x i is ,  w1 the indicator of the first column, 
wz the indicator of the second column. Then Y = p l w l  + p2wz + &x + E is 
a commonly used model. f l ,  > fl, could be interpreted to mean that experi- 
mental condition # 1 provides higher average yields, given the same fertility 
levels, than does #2. jl, is the additional yield of corn for one unit more of 
fertility. Generalizing to k experimental conditions we get the analysis of 

cooariance model Y = 1 p,wj + jl,x + E. 

k 

1 

Example 3.13: (Two-way analysis of variance) Suppose yield of corn x j  is 
observed on rc plots of land for seed levels 1,2,. . . , r and fertilizer levels, 
I ,  2,. . . , c. Let Y = ( Kj) be the r x c rectangular array, R the sample space, 
J E R the vector of all 1’s Ri the indicator of row i, and Cj the indicator of 
column j .  Then the additioe e e c t s  model states that 

r C 

Y = pJ + CaiRi  + C a j C j  + E = 8 + E 
1 1 

We will be interested in deciding whether row (seed) effects are zero, i.e., that 
the mean vector is 8 = pJ + Picj. 

j 

Example 3.1.4: (Polynomial regression) Suppose we observe pairs (x i ,  0 
for i = 1,2,. . . , n and that it is reasonable to suppose that 

with e l , .  . . , G, independent N ( 0 ,  uz). By defining wOi = 1, wli = x i ,  w2i = xt, 

wJi = x: we get the model & = Cfl ,wj i  + E ~ ,  or in vector form, Y = 

Pjwj + E. We could replace 1, x:, x f .  xz by any other four functions of x i .  

The model remains linear in the pi’s. Or, we might have reason to expect the 
regression function y(x) = E (  Ylx) to have the form of Figure 3.1. 

We might then consider the model & = @Oe@tXIEi. Taking logs (all logs are 
base e), we get log & = log Po + PIXi + log ci and, defining Zi = log 5, 
yo = log Po, qi = log ci, we get Zi = yo + p i x i  + qi. so that for xo the vector 
of all ones, Z = yoxo + fllx + q. If we suppose q - N,(O, 0~1,) then the eI 
are independent with log-normal distributions. 

3 

3 0 

0 
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X 

FIGURE 3.1 Y = g(x) = floeBtx. 

We can fit the model with g(x) = E( Ylx)  = flax@' and = POxflci by again 
log xi + log ti. taking logs to get the linear model Zi = log = log B0 + 

Some Philosophy for Statisticians 

The linear models we discuss make statements about (1) 6 = E ( Y ) ,  (2) DCY), 
and (3) the distribution of E = Y - 6, and therefore of Y (almost always multi- 
variate normal). In practice we rarely know whether these models hold. In fact, 
models should be viewed as idealizations, oversimplifications of a very complex 
real world. Models should be thought of as approximations, guidelines which 
enable us to understand relationships among variables better than we would 
without them. Since the statement of the model will hold only in approximation, 
the probability statements, and statements about means, variances, covariances, 
and correlation coefficients should be expected to hold only in reasonable 
approximation. In general it is difficult to make precise statements about the 
precision of these approximations. 

In Chapter 4 we will discuss some techniques which allow us to investigate 
the appropriateness of the models we adopt. Fortunately, it will turn out that 
the procedures we use are often robust in the sense that they almost have the 
properties claimed for them, even though the models justifying them are satisfied 
in only rough approximation. Much of the reason for studying the theory and 
applications of linear models, rather than the applications alone, is that we 
must have a reasonable understanding of the effects of deviations from the 
models studied, and must be able to convey these effects to users of statistics, 
who usually do not have a strong understanding of the theory. 

We end this excursion into philosophy with a quotation of John von 
Neumann, the great mathematician, taken from Statistics and Truth, the fine 
book of C. R. Rao (1989): 
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The sciences do not try to explain, they hardly even try to interpret, they mainly 
make models. By a model is meant a mathematical construct which, with the addition 
of certain verbal interpretations, describes observed phenomena. The justification of 
such a mathematical construct is solely and precisely that it is expected to work. 

In general, the representation of 0 as a linear combination of given vectors 
x,, . . . , x, is the most crucial part of the selection of a model. Second most 
crucial is the choice of a model for DCY]. Certainly, the model which supposes 
DCY] is a multiple of the identity matrix is often inappropriate in econometrics, 
particularly if the the observations on Y are time series data (ordered by time). 
Fortunately, normality is often not crucial, particularly if the sample size n is 
large. Statisticians are always on safe grounds when recommending sample 
sizes of 10,OOO or more. But they must be prepared for looks of horror, and 
perhaps early dismissal. 

Estimation Theory 

The linear hypothesis may be written in the equivalent form, depicted in 
Figure 3.2: 

Y = 6 + E for f ) E  V = Ip(xl,. . . , x,) and E - N(0 ,  a21,) 

Sometimes is is enough to estimate 6, and the representation of 6 in the form 

C s i x j  is not important. On other occasions the coefficients P I , .  . . , Bk are 

themselves of interest. So that we can use matrix notation, let us write all vectors 
as columns, and let X = (x',. . . , xc). The matrix X is often called the design 
matrix, particularly when the experimenter has control over the choice of the 
x-vectors. Then 6 = XP. and if x,, . - . , xk  are linearly independent, (X'X)- 'X' 

k 

1 

6 = p. 

FIGURE 3.2 
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The principle of least squares leads to estimation of 8 by 6, where 8 = 6 
minimizes I/Y - 8112 = Q(8), subject to 8 E V.  Thus, the principle of least squares 
leads to the estimator 8 = p(Y I V) = q. 

In the case that X has full column rank (the xi the linearly independent) 

6 = X(X'X)- 'X'Y, and 1 = (X'X)- 'X'Y. 

Then 6 = (X'X)-'X' CXp + E )  = + (X'X) - 'X' E. The coefficient matrix 
(XX)-'X' is the Moore-Penrose inverse X +  of X discussed in Section 1.7. If 
the column vectors of X are orthogonal, then = Cp(Y Ix)) = Cbjx,, where 
bj = (Y, xj)/IIxjI12 = P j  + (8, xi)/IIxjI12* 

Thus, each component of p is equal to the corresponding component of 
plus a linear combination of the components of E. In fact, 

( I )  E ( 1 )  = p -I- (X'X)-'X'E(E) = p 
(2) D[B] = D[(x'x)-lx'&J = (x'x)-'x'(o~I,)[(x'x)- LX']' = (x 'x)-  '6' 
(3) B has a multivariate normal distribution (if E does) 

Of course, (1) requires only that Y = Xp + E with E(E)  = 0. (2) requires only 
that D [ E ]  = c2In. (3) requires only that E has a multivariate normal distribution. 
In applications it is often unrealistic to suppose that E has a multivariate normal 
distribution. However, a form of the Central Limit Theorem suggests that 
for large n, k different linear combinations of independent components of E 

should have an approximate multivariate normal distribution even when E 

does not. 

Maximum Likelihood: The likelihood function is for each observed Y = y 

for 8 E Y = 9 ( x I , .  . . , x k )  and 0' > 0. The maximum likelihood principle leads 
to thc estimator of the pair ( 8 , ~ ' )  which maximizes L for each Y = y, or, 
equivalently, maximizes 

n n 1 

2 2 2 
log L = - log(2~) - log d - - IIY - 8112/02 

For each fixed a', log L is maximized by taking 8 = p(8l y) = 6. For this choice 
of 8 we get 

n n I 
2 2 2 

log L = log(2n) - - log c2 - - IIy - 61I2/o2 
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Replacing a2 by w and taking the derivative w.r.t. w we find 

4b! L )  - n / 2  + (1/2)llY - ~- - ~ u z  -. - _ _ _  =--- 
dw W W2 

a 2  log L 
< 0, so which is zero for w = 82 = - - - -  . It is easy to verify that ___ 

IIY - 611’ 
n dw’ 

that 8’ = Ily - 61I2/n does maximize log L for each 9. Thus, the pair (6, d2) 
maximizes L, i.e., this pair is the maximum likelihood estimator of (0, a’). 

Estimation of 2: The maximum likelihood estimator of a’ is e2 = 
IIY - 6112/n. We can employ Theorem 2.5.2 to determine the expectation of I ? ~ .  
Since Y - 6 = Pyl Y, D[Y] = a’I,,, we get E[llPYl  Y1I2] = a2 dirn(V1) + 
llpYl ell2. For 8 6 V ,  p Y L  8 = 0, SO that 

a2 a2 

n n 
E(S’) = -~ dim( V’) = - [n - dim( V)]. 

Thus, unless dim( V )  = 0, i.e. V = Y(O), 82 is a biased estimator of a2. For this 
reason the most commonly used estimator of a2 is 

S2 = IIY - 611Z/[n - dim(V)J (3. I .  1) 

In the special case that 8 = pJ,, so that V = YtJ,), we get 6 = FJ,,, 

dim(V) = 1, so that Sz = I/Y - TJJ2/[n - I ]  = ( q  - b2/(n - 1). Students 

should remember, however, that this is only a special case, and Sz will, in general, 
be as defined in (3.1.1). 

n 

i =  1 

If E has a multivariate normal distribution then by Theorem 2.5.2 

Since the central x 2  distribution with rn degrees freedom has variance 2m, we 
have 

Var(Sz) = 2a4[n - dim(V)][n - dim(V)J-’ = 2a4/[n - dim( V)] 

for E multivariate normal. 

Properties of 6 and S2: Since 6 = p(Y1 V) and Y - 6 = p(Y( V l ) ,  with V 
and V’- orthogonal subspaces, 9 and Y - 8 are uncorre1ated:andom vectors, 
independent under normality. It follows that 6 and S2 = IIY - 81I2/(n - dim( V ) )  
are independeqt, and, in the case that the columns of X are a basis for V, 

= (X’X)-’X’8 = (XX) - ’XY  and the residual vector e = Y - 6 are uncor- 
related random vectors, independent if Y is multivariate normal. 
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To summarize, under the model Y = 8 + E for 8tz V, E - NJO, 0~1,) it 
follows that 

( 1 )  6 - Nn(e, P,,& 
(2) e = Y - 6 - N,(o, (I, - P,)o’). 
(3) 6 and Y - 6 are independent random vectors. 
(4) IIY - 61I2/cr2 + ~t-,,~,,,(,,, so that S2 = (IY - 6ll’/(n - dim(I/)) is an un- 

biased estimator of 0’. 

(5) If the columns of X form a basis for V and 6 = Xfi, then 1 = (X’X)- ‘XY 
and S2 are independent, with 6 - A!,@, (X‘X)-’02). If, in addition, the 
columns of X are mutually orthogonal, the estimators Bj  are uncor- 
related, and therefore independent. 

Problem 3.1.1: A scale has two pans. The measurement given by the scale 
is the difference between the weights in pan # 1  and pan 1 2  plus a random 
error. Thus, if a weight p, is put in pan # 1, a weight p2 is put in pan #2, then 
the measurement is Y = p1 - p2 + E. Suppose that E(E) = 0, Var(e) = u2, and 
that in repeated uses of the scale, observations .I; are independent. 

Suppose that two objects, # 1 and #2, have weights /I1 and / I2 .  Measure- 
ments are then taken as follows: 

(1) Object # 1 is put on pan # 1, nothing on pan #2. 
(2) Object # 2 is put on pan # 2, nothing on pan # 1. 
(3) Object # 1 is put on pan # 1, object # 2  on pan #2. 
(4) Objects # l  and # 2  are both put on pan #l. 

(a) Let Y = (Y, ,  Y,, Y,, Y,)’ be the vector of observations. Formulate this as a 

(b) Find vectors a,, a, such that 8, = (a,, Y) and 8, = (a2, Y) are the least 

(c) Find the covariance matrix for 6 = (b,, b,)’. 
(d) Find a matrix A such that Sz = Y’AY. 
(e) For the observation Y = (7,3, 1,7)’ find S2, and estimate the covariance 

matrix of fi. 
(f) Show that four such weighings can be made in such a way that the least 

squares estimators of PI and /Iz have smaller variances than for the experiment 
above. 

linear model. 

squares estimators of /?, and f 1 2 .  

Problem 3.1.2: The following model has been used to predict the yield Y 
of the valuable chemical “gloxil” as a function of the temperature T. The 
expected yield is continuous function y(T) of T. There is no yield for 
T c To = 20 (degrees Celsius). For temperatures between To and T, = 100, the 
expected yield is a linear function of T. For temperatures above 100 the expected 
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yield is also linear, though the slope changes at T = 100. Suppose measurements 
on the yield are made for T = 40,80, 120, 180 and 240. 

(a) Formulate this as a linear model. 
(b) Suppose that the measurements at the five temperatures were: 57, 176, 

223, 161, 99. Estimate the parameters of your model and plot your estimate of 
the regression function of yield on 7: Determine the residual vector e and use 
it to determine S2.  

Problem 3.1.3: A chemist wishes to determine the percentages of impurities 
and p2 in two 100 gram containers (1 and 2) of potassium chloride (KCl). 

The process she uses is able to measure the weight in grams of the impurities 
in any 2 g a m  sample of KCI with mean equal to the true weight of the 
impurities and standard deviation 0.006 gram. She makes three measurements. 
Measurement # 1 is on a 2 gram sample from container 1. Measurement # 2 
is on a 2 gram sample from container 2. Measurement # 3  is on a mixture of 
a 1 gram sample from container 1 and a I gram sample from container 2. 

(a) Formulate this as a linear model. 
(b) Give formulas for unbiased estimators ,8 and 1, of p, and p2.  
(c) Determine the covariance matrix of (b, ,  b2). 
(d) Estimate (p,,  &) for the three measurements 0.036, 0.056. 0.058. Also 

determine S2. and compare it to the true variance, which we know to be 
0’ = 0.0062. 

Problem 3.1.4: Chemical processes A, B, and C have yields Y which have 
expcctations which are each linearly alTected by the amount x of a catalyst used. 
That is, y(x, p) = E (  Ylx ,  p ) ,  where p = A, B, or C, is a linear function of x for 
each p ,  with slope which may depend on p. Suppose also that the expected 
yields for x = 50 are the same for A, B, and C. Two independent observations 
Y were taken for each combination of values of x and the three processes. Their 
values were 

x =. 20 x = 80 

A 69 63 120 132 
B 34 44 151 167 
C 18 12 204 186 

(a) Let p = A, B, C index the three processes, let j = 1, 2 index the the two 
levels of x, and let k = 1, 2 index the two measurements made for the same 
proccss, x-level combination. Let q k i  be the yield for the pki  combination. 
Define a linear model. That is, define vectors x l , .  . . , xk, so that Y = D j x j  + E. 

-30 -30 30 30 

0 0 0  
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(b) Find the least squares estimate of the vector fl of regression coefficients. 
(c) Find P, e = Y - ?, SSE (Sum of Squares for Error) = jlY - ? 1 1 2 ,  and S2. 

(d) Suppose that the assumption that the expected yield is the same for each 
Also estimate the covariance matrix for p. 

p is dropped. What are q, e, and SSE? 

Problem 3.15: Consider the model of Example 3.1.2 for two experimental 
conditions with n = 4, n, = 3. Give explicit nonmatrix formulas for the 
estimators fll, f12,  a,. Hint: Orthogonalize x with respect to w1 and w2.  

3.2 CONFIDENCE INTERVALS AND TESTS ON 
q = c,& + ‘ + C / J k  

We are often interested in giving confidence intervals or testing hypotheses on 
the Pj or on differences /3, - &. More generally, we may be interested in a lineiir 
combination q = (c, p) = c l b l  + 0 ;  . + c k $ ,  for c i s  chosen by the statistician. 
A natural estimator of q is 4 = cl  p1 + * . . + C k j k .  BY the linearity of expecta- 
tion f i  IS an unbiased estimator of q. Its variance is Var(4) = c‘M-’co2 = do2, 
where M is the inner product matrix. The corresponding estimator of Var($) 
is SX = dSL.  In the special case that q = pi, c is thc j t h  unit vector, and d is the 
j j  term of M - I .  If, for example. q = p2 - Bz, then c = (0, I ,  - I ,  0,. . . , O)’, 
and if M - ‘  = ( j J  then d = f r 2  + .f& - 2.f2 and Var(4) = do2 = 1;202 + 
fj30’ - 2f2,0z = var(b2) + var(b3) - 2 covtdi, b3>. 

4 - r t  4 - v  Thus, 4 - N ( q ,  do2), - - - N ( 0 ,  I),  and -- - t n - k ,  so that, for 
f i r 2  ,/dS2 

Thus, t # - k , ,  -av/iS’~ is a 100(1 - a)% confidence interval on q. 

Exrmple3.2.1: Let x l = ( l , l , l , l ) ’ , x , = ( l , l , 0 , 0 ) ’ , x 3 = ( l , - l , l , - l ) ’  
3 

and suppose Y = Pixj + E for E - N4(0, 0’1~). Then 
I 

2 1 0  2 -2 0 

-2 4 0 

0 0 2  0 0 I ,  

M = X ‘ X = 2 [  I 1 01 and 

Thus, for q = /I, - /I2, c = (1, -1,O)’ and d = c‘M-’c = 
[2 + 4 + 2( - I ) (  -2)]!4 = 10/4, so that a 95% confidence interval on rt is 
f i  - 8, k t , . O  97s,,~S2(10/4). The 95% confidence interval on f12 is 
[), & c l , o  975S], since d = 1. 
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Tests of Hypothesis on q = c cj,!lj: Suppose we wish to test H,: q 5 qo vs. 
H, : q > qo, where qo is a known constant, often chosen to be 0. Since 

9 - 'lo 

t /szd 
which becomes central r when q = qo, the test which rejects Ho for I = - > 

I ,_  k, , - p  is an a-level test. The two-sided hypotheses No: q = qo vs. HI : q # qo 
is rejected for [ [ I  2 l m - k , ,  -z i2 .  

In the applications of multiple regression it is very common to take q = Bj 
and qo = 0 for some j, so statistical software packages print the corresponding 
r-statistics ti = flj/Sb,, where Sf, = hjS2, and Tij is the j j  term of M -  '. Usually 
they present dj-values as well (p-values, the probabilities under the null 
hypothesis that l t j l  would be as large or larger than the value observed). 

There is a one-to-one correspondence between a family of tests of hypotheses 
on q and confidence intervals in the following sense. If C(Y) is a 100 (1 - a)"/:, 
confidence interval on q, then A(qo) = (y I qo E C(y)) is the acceptance region 
(the part of R for which Ho is to be accepted) for an a-level test of Ho: q = qo. 
and C(y) = (9 I y E A(9)) .  For example, if [35,47] is a 95% confidence interval 
on q,  then we should accept H,: q = qo vs. Ha: q # qo at level r = 0.05 for any 
qo E [35,47], reject otherwise. The one-sided 95% confidence interval 
(4 - fo.9,t/szd, + co) on q corresponds to the 0.05-level t-test of Ifo: q 5 qo 
vs. Ha: q > tio. 

2 

Example 3.2.2: (Simple linear regression) Let F = Po + j?,xi + E~ for 
i = 1, .  . . , n. That is, Y = B0J + /3,x -I- E, where 

J =  [ :], x = [ x:], Y(J, x) = Y ( J ,  x*), 

X" 

and since x* = x - ZJ. J 1 x*. Thus 

where 
n 

s,, = (Y, x*) = 2 ?(Xi - 2) = c ( K  - F)(Xi - 2) = 1 Xi( & - F) 

sx, = (x*, x*) = c (.Xi - 2)' = c Xi(Xi - .?) = c x; - ni'  

1 i i 

= c xi q - ni F 
ll 

1 



Since x* = x - ZJ, we get q = BoJ0 + /?,x = FJ + SXY (x - ZJ), so that 

/!I, = s.l., /?, = F -  j 1 X .  
sxx 

sxx 
The variance of the estimator 8, of the slope p1 in simple linear regression is 

Alternatively, we could have found the covariance matrix of 6 = (j,, ),,I 
from 

We now want to find S2 = IIY - C'l12/(n - 2). Since error sum of squares = 
IIY - qli2 = llY1I2 - liC'1I2, we first determine 11q112. 

and S2 = [-!-I [S,, - B,S,,]. Since Var(/?,) = u2/S,,, an unbiased estimator 
n - 2  

of Var(b,>is S2(J,) = S2/Sx,. It follows that a lOo(1 - a)% confidence interval 
on PI is given by 8, +_ 

We sometimes want a confidence interval on g(xo) = Po + J1x0, the mean 
Y for x = xo, where xo is a specified value for x. Since &xo) = fi0 + blx0 = 
F + ),(.Y, - .C) is an unbiased estimator of g(xo), with 

, -a,2S(b,). 

+ (x, - x)~&, = 02h(x,) 1 
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and is normally distributed, it follows that B(xo)_yO - t n - 2 ,  so that a 
J'S2 h( xo) 

( 1  - a)100% confidence interval on y(xo) = Po + /llxo is given by 

This means that this random interval I ( x , )  satisfies 

P ( y ( x , )  E I ( x , ) )  = I - z for all xo. (*I 

This is not the Same as P ( y ( x o )  E I (xo) for ull xo), which is smaller. (See the 
difference?). We will later develop methods for finding random intervals I s ( x 0 )  
(s for "simuiataneous") so that P ( g ( x , )  E IJx,,)  for all x,) = 1 - z. 

Problem 3.2.1: (a) For Y as in Problem 3.1.1, (a) Find a 952, confidence 
interval on /II - / l z .  

(b) Consider instead the four weighings in part (0. What is the ratio of the 
expected lengths of the confidence interval found in (a) to that found for these 
four weighings? 

Problem 3.2.2: The following model is often used for the scores achieved 
on a standardized exam taken by students, such as a S.A.T. or A.C.T. exam 
required for entrance to colleges or universities. Let 6 denote the student's "true 
score", the theoretical long-term average score that student would achieve on 
repetitions of the exam (assuming no learning effect). Let Y denote the student's 
score on the exam, and suppose that Y = 0 + E for E ( E )  = 0, Var( Y) = c:. 
Suppose that C J ~  is the same for all t9 (this may not be realistic). Suppose also 
that I: is normally distributed. 

(a) Suppose u, is known and Y is observed. Give a formula for a 95% 
confidence interval on 0. 

(b) Now suppose u, is unknown but n students have been given different 
versions of the exam twice, with scores ( yl, K,) for i = 1, . . . , n. Suppose that 
wj = Oi + ci, for j = 1 , 2  and i = 1 , .  . . , n, where the 6* are any fixed unknown 
parameters, and the cij are all independent, each with variance 0:. Find an 
unbiased estimator Sf of u: and prove that nSf/uf - x.2. 

(c) Now suppose another student takes the exam and achieves a score of Yo. 
Let 8, be her (unknown) true score. Find a function of Yo, 8, and S, which has 
a I distribution and use this function as a "pivot" to find a 95% confidence 
interval on 0,. 

Problem 3.2.3: Let xi  > 0 for i = I , .  . . , n. Suppose that Y;. = Bxi + ci, for 

(a) For x, > 0 give a formula for a lOOf%, confidence interval on g(x,) = fixo. 
(b) Apply the formula for the observed pairs ( x i .  q): (2,3), (3, 1 l),  (4, 12), 

i = 1, .  . . , n with the E~ independent N ( 0 , d )  

x ~ ,  = 5, and 7 = 0.95. Repeat for xo = 10. 
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Problem 3.2.4: For the wormy fruit data of Example 1.4.1 find 95?<, 
confidence intervals on y(x,) = /lo + plx0 for x,, = 6, 18, and 50. 

Problem 3.25 For the simple linear regression model H,: PI = 0 or 11,: 
b1 5; 0 or H,: P1 2 0 may be tested using the test statistic t = ),iSp, = 
) , jJS’/S, , .  Show that t = [ r d  n - 211,. 1 - r , where r = Sx,/v~SxxSy, is the 

r-- 7 r- 2 

correlation coefficient. 

Problem 3.2.6: (a) Consider any collection of n pairs ( x i ,  yd) .  Define uii = 
urjviii = nS, and that x i  - xi and oil = yi - y j .  Show that c uiiuij = 2 

therefore S,, = c u$n. 

(xl, yi) to (xi, y j ) .  Let Dii = ( x i  - .xi)’ = det(XijXij), where X i j  = [: 

i ,  i i <  j 

i j  

(b) Let bij = ui j /vI j  for i # j .  Then bii is the slope of the straight line from 

Show 
/ \ !  

that f i ,  = c Dijbij 1 Dij. Thus, 8, is the weighted average of the two-at- 
( i < j  ) i i < j  

a-time slopes. C. F. J. Wu (1986) shows that this result holds more generally. 
If s is a subset of the integers 1,. . . , n of size r 2 k, and is the least squares 
estimator of j? based on those observations with i E  s only, then ) = 

[Z det(X~XS)/?,]/[ det(X:X,)], where X, is the submatrix of X consisting of 

the rows with index in s. In the case r = k, as in the simple linear regression 
case, take fis = (XL)-*Y, if the inverse exists, zero otherwise. 

(c) Check the formulas of (a) and (b) for the three pairs ( I ,  9), (3,2), (5,3). 

r I 

3.3 THE GAUSMARKOV THEOREM 

Each least squares estimator /!l, of /lj and 4 = cijj  of q = 1 cj/ l j  is linear 
and unbiased, where “linear” refers to linearity in the components of Y. In 
fact, for the full rank case with column vectors xl,. . . , xk, X = (x l , .  . . , xk ) ,  
M = X’X, and c = (c , ,  . . . , c,)’, it follows that q = c’p = c’M- ‘X’O = (a, 0) and 
q = (a, Y) for a = X(X‘X)- ‘c. The vector a is an element of V, the column space 
o f  X, satisfying the condition 

(a, 0) = a’0 = a’XS = c‘p for all p, ie., 

a’X = c‘ or X a  = c. We have shown that a is the vector in V which has 
inner product cj with xi for j = 1. .  . ., k. Are there other vectors d such 
that (d, Y) is an unbiased estimator of q, and has smaller variance than 
(a, Y)? The answer is no, as shown by the famous Gauss .Markov Theorem 
(Figure 3.3). 
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Rk R" 
7 f 

J L 

FIGURE 33 Illustration of the Gauss-Markov Theorem: Full-rank case. 

k 

Gauss-Markov Theorem: (Full-rank case) Suppose that Y = p i x j  + E, 

where x,, . .. , x k  are linearly independent, E ( E )  = 0, D [ E ]  = u21,. Let q = 
1 cjp j ,  and let q* be any linear unbiased estimator of q. Then Var(q*) 2 Var(4) 
with equality only if q* = rj for all Y. 

1 

hoof: First note that p = (X'X)-'X'O and = c'p = c'(XX)-'X'B = (a, 0) 
for a = X(X'X)-'c. Similarly, 4 = c$ = c'(X'X)-'X'Y = (a, Y). These repre- 
sentations of q and fl as inner products facilitate the computation of variances 
and provide an intuitive justification for the conclusion. 

Consider any linear estimator q* = (d, Y) of q. Then E(q*)  = (d, 0). q* is 
unbiased for q if (d. 0) = (a, 8) for all 8 E V, i.e., if (d - a, 0) = 0 for all 0 E V, 
equivalently if (d - a)  I V. Then 

q* = (d, Y) = (a, Y) + (d - a, Y) = t j  + (d - a, 8 + E )  = 4 + (d - a, E). 

The r.v.'s rj and (d - a, E) are uncorrelated since a I (d - a). It follows that 

Var(f) = Var(#) + Ild - a11'02, 

so that Var(q*) 2 Var(4) with equality only if d = a, i.e., q* = 4 for all Y. 
0 

Comments 

(1) The estimator t j  is often called the best linear unbiased estimator (BLUE). 
It is also called the least squares or the Gauss-Markov estimator. 

(2) Var(f) = !lal12u2 = [c'(X'X)-'c]a2. 
(3) Figure 3.3 illustrates the proof: 

Every vector d for which (d, Y) is an unbiased estimator of q is of the form 
d = a + b for b I V. The vector a of coefficients of the & in 4 lies in V. The set 
{d I E(d, Y) = q )  = a 0 VL, the hyperplane of vectors of the form d = a + b for 
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b e  V1. The variance of q* is Var(q) plus aZllbl12 = a211a - d1I2, which is 
minimum for b = d - a = 0. Since q* = 4 + (b, Y), the part @, Y) of q* is 
wasteful in the sense that E(b, Y) = 0 for all 8 E V, but (b, Y) increases the 
variance by 11 bll ’6,. 

Let uj be thejth &-component unit vector, having one in tkejth component, 
0 otherwise. Then /Ij = ujfl has least squares estimator u $ l =  jj = ujAY for 
A = (X‘X)- ‘X’. I t  follows that for all linear unbiased estimators fl* = BY of fl, 
fl* = AY + (B  - A)Y, and D[fl*J = [AA’ + (B - A)(B - A)’la2, which has 
minimum diagonal elements (minimum variances) for B = A, i.e., fl* = 0. It 
may not always make sense to insist that the estimators we consider be 
unbiased. For a discussion of this see Sections 4.2 and 4.7. For an example of 
a silly unbiased estimator, consider the unbiased estimator of e-‘ for a single 
observation X from the Poisson distribution with mean 1. 

Example 3.3.1: Let x, = (1,0, 1, I)’, x2 = (0, 1, 1, 1)’ and suppose Y = 

[-:I. Pix, + p2x2 + E. Suppose we wish to estimate q = p1 - &. Then c = 

A linear unbiased estimator q* = (d, Y) must satisfy (a, Xfl) = dXfl = c’fl for all 
fl. Thus d‘X = c’, equivalently, X’d = c. That is, d must have the “correct” inner 
products with the xis, with (a, xI) = cj for j = 1, 2. In this case d must satisfy 

(Xl,d) = d ,  + d3 + d ,  = I 

(x,,d)=J,+d,+d,= - 1  

One such vector is d = 2(3, I ,  - I ,  - I)’. for example. The estimator (d, Y) has 
variance lldl12a2 = 1202. The BLUE for q is 6 = c’(X’X)-’X’Y = (a, Y) for 

so that 13, - 13, = Y, - Y,, which has variance (laJl2u2 = 20’. 
Note that d - a = (2,2, - 1, - I)’ is orthogonal to V. All unbiased estimators 

of q have the form ti + (b, Y) for b 1 V. 
The vector a is p(d I V) for V = Y(xl, x,) for any d such that (d, Y) is an 

unbiased estimator of q = p1 - &. To see this note that P,d = X(X’X)-’X‘d = 
X(X’X)-’c = a. 

Example 3.3.2: Consider the enrollment totals in Table 3.3.1 and Figure 
3.4 for minority students at Michigan State for the years 1981 to 1990: 
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Table 3.3.1 

W 
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m m  

m 
m 
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1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 

8.0 a 

7.8 . E = 7.6 z g 7.4 
8 
A 7.2 ' 

7.0 ' 

Men 1,357 1,393 1,493 1,477 1,528 1,539 1,661 1,793 1,919 2,012 
Women 1,867 1,930 1.937 2,038 2,117 2,199 2,212 2,464 2,625 2,798 

w w w  
w W W W  

m m  w w w  m 

m m m m  
m m  

m 

, 

Let Yli and Yzi be the logs of enrollments for men and women in year (1980 + i )  
for i = 1 , .  . . , 10. We have chosen to make a log transformation because the 
following model seems more appropriate for logs than for enrollments them- 
selves. Let sl i  = sZi  = (year - 1980) = i. 

Suppose Y,, = PI + & x l i  + tili for i = I , .  . . , ti1 = 10 and YZi = P2 + 
ajsZi + c2, for i = I , .  . . , nz = 10. That is, we suppose that the qi satisfy one 

0 2 4 6 8 1 0  

year-1 980 

0 2 4 6 8 10 

year-1980 

FIGURE 3.4 Minonty enrollments of men and women. 1981-1990. 
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linear regression model and the YZi another, with the slopes being the same. 
By defining Y to be the 2-row array with qi in the ith place in the j th row 
( j  = I ,  2), x and c similarly, and J, and J2 the indicators of the rows, we can 
write 

Y = BIJl  + P2J2 + P3x + E 

We suppose that the components of E are uncorrelated random variables with 
equal variances. It seems doubtful that correlations are zero, since students 
enrolled one year have a tendency to be enrolled the next, causing positive 
correlations, but Ict us proceed as if the model is at least a reasonable 
approximation. 

Suppose we wish to estimate q = b,,  the intercept of the first regression line. 
It might seem that we should use the Y1;s only. However, the Gauss- Markov 
(G--M) Theorem states that we should use 8, = rl - /$XI, which depends on 
the Y2is as well. Similarly, the common slope B3 of the two regression lines 
could be estimated unbiasedly using only the Y,;s. However, assuming the 
model holds, so that the regression slopes are the same, the G-M estimator /?, 
has smaller variance. 

Example 3.33: For the model Y = Px + E (regression through the origin) 
linear unbiased estimators of #3 have the form P* = (d, Y) for d = a + h, where 
a = x/IIxlJz, b I x. 

Problem 33.1: Let R = R,, xI = ( 1 ,  1,0,0)’, x2  = (O,O, 1, l)’, Y =  

(a) Find a so that (a, Y) is the BLUE. 
(b) Find d so that v* = (d, Y) is another unbiased linear estimator of 11. Show 

4o(x,, x2), and 9 = 28, - Pz. 

that p(d 1 I/) = a, find Var(q*). and show that Var(q*) .- Var(4) > 0. 

Y11 Y12 Y13 

Problem 3.3.2: Let R be the space of arrays y 2 ,  yZ2  ~ 2 3  . Let Cj be 

the indicator of column j ,  let Y = y,C, + p2C2 + p 3 C 3  + E, where E ( E )  = 0, 
Y 3 2  I 

D[&] = 021, .  
(a) Find the BLUE for 9 = 2y, - p2 - y3, and determine its variance. 
(b) Suggest another unbiased linear estimator of q, and show that it has larger 

variance. 

Problem 3.33: In testing the “bounce factor” in baseballs, balls are 
dropped onto concrete from a height of x feet. The height Y in feet to which 
the ball bounces is then recorded by taking a picture against a linear scale. The 
following model seems appropriate: 

Suppose that for each x, E (  Y I x) = Fx and Var( Y I x )  = 02y(x) for #3 and u2 
unknown parameters, and g(x) a known function of x. Suppose that (xi, are 
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observed independently for i = 1,2,. . . , n. Consider the x, to be constants, all 
nonzero. Define Y = (Y,, . . . , U,)’. 

(a) Consider estimators (a, Y) = fi, of y. What condition must a satisfy in 
order that 8, be an unbiased estimator of p‘? 

(b) Show that has minimum variance among all linear unbiased estimators 
when a is a multiple of the vector C- lx ,  where G = diag(g(x,), . . . , g(x,)). 
Hint: Let Zi = q / c i ,  where cI is chosen so that the resulting vector Z satisfies 
the hypothesis of the Gauss-Markov Theorem. What is the optimum choice 
for a? 

(c) Let /3 be the estimator corresponding to this optimum a. Find Var()). 
(d) Give formulas for p for the cases (1) y(x) = 1, (2) g(x) iz x, (3) y(x) = x2. 
(e) For each of the cases in (d) find Var()). 
(f) How would you estimate 02? Hint: Use the 2,. 
(g) Find fl for each of the cases in (d), and estimate Var()) for the following 

( x , y )  pairs (3, 2.2). 5,3.2), (10, 7.3), (15, 10.0). 

Problem 33.4: Let Y,, . . . , Y, be a random sample from the double 

0, > 0. (mean 8, variance 2 ~ ~ ) .  For the case n = 3 this might be a reasonable 
model for the distribution of the times recorded on three hand watches in the 
timing of swimmers or runners. 

(a) Show that the vector of Ys satisfies a linear model. 
(b) What is the BLUE b for O? 
(c) Find the maximum likelihood estimator 8, of 0. Hint: G(c) = Ixi - CI  

is minimized by c = median@,, . . . , xn). 
(d) Since 4 is symmetrically distributed about 0, it is an unbiased estimator 

of 8. Though it is not possible to write a simple expression for the variance 8,, 
we can give an approximation for lar e n :  Var(8,) - 1/[4nf2(8; O)]. Show that 
this is smaller than the variance of 1. Why is 4 not a better estimator of 0 in 
this case? Has the Gauss-Markov Theorem failed to hold? 

n 

j =  1 

M 

3.4 THE GAUSS-MARKOV THEOREM FOR THE GENERAL CASE 

For simplicity we have supposed that the vectors xl , .  . . , xk spanning V are 
linearly independent. For purposes of estimation of 0 this is not really a 
restriction in the model, since enough x is  may always be dropped so that this 
is the case, and any 8 E Vmay then be expressed as a unique linear combination 
of the remaining x-vectors. There are occasions, however, when interpretations 
may be more easily made if the x-vectors are linearly dependent. 

For example, consider the usual one-way layout with observation x j  for 

i = 1,. . . , nj and j = 1,. . . , k, 5, - N b j ,  02), n = 
& 

nj. l$‘s independent. 
1 
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1 '  
Define p = - p i ,  aj = p j  - p, e i j  = x j  - p i .  Then xi = p + z j  + E i j .  

k i  k 

Writing this in vector form with k columns, we have Y = pJ + c aiCj + E, 
where C, is the indicator of column j, and J = c C j .  Thus, 8 = 

1 pjCj = pJ + a,Ci lies in V = Y(C,,  . . . , Ck), which has dimension k, but 
j j 

has been expressed as a linear combination of (k + 1) linearly dependent 
vectors. 

In general, suppose X has rank r < k, so that the columns of X span an 
r-dimensional subspace. In this case the null space of X (the collection of vectors 
6 such that Xb = 0) has dimension k - r > 0, and the set We = {fl I Xfl = 0) for 
fixed 0 E We is a hyperplane in k-space. In order to have a unique representation 
of 8, p is often required to satisfy some additional linear restriction of the form 

Hfl = 0, where H is ( k  - r) x k and the matrix X, = has rank k. We could, 

for example, require that fl lie in the row space of X, in which case H could be 
any collection of k - r linearly independent vectors such that X, bas rank k. 
The same linear restrictions placed on fl may also beAplaced on fl. Wjthout 
these restrictions fi is not defined uniquely, since any fl E Wq implkes Xp = q. 
A least squares estimator of fl is any function of Y satisfying Xp = Y (any 

If, in this non-full-rank case, fl is allowed to range over all of Rk, then not 
all components of fl may be estimated unbiasedly (and linearly). Consider the 
one-way layout example above. Can we find an unbiased linear estimator 

1 

i 

(3 

B E  Wq). 

- -  
T = aijxj of a,? E(T,  = I aijpj = a . p j  = pa.. + c a. ja j ,  where the dot 

ii  ii i j 

subscript indicates summation over the subscript replaced. This is E ( 7 )  = (xl 

for all parameter values only if a , ,  = 1, a .  , = 0 for j > 1 and a.  . = 0, which is 
impossible. Thus, a1 has no unbiased linear estimator if the parameter vector 

is unrestricted. If the parameter vector is restricted so that c aj = 0, then a, 
does have the unbiased linear estimator 

k 

j =  I - F.. . 

Definition 3.4.1 : Let c = (c~, . . . , Ck)' be a vector of constants. The parameter 
q = (c, fl) = C c jP j  is estimuble if there exists a vector a in n-space such that 

E(a, Y) = (c, fl) for all fl E Rk. 
j 

Thus. q = (c, p) is estimable if there exists a such that E(a, Y) = (a, 0) = 
a'XS = c'fl for all fl E R,. This is true if and only if there exists a such that 
X'a = c. i.e., c lies in the row space of X. 

If X'a = c and V is the column space of X, then for a, = p(a I V), Xa, = c, 
so that we can always take a E Vif q = (c, p) is estimable, and (av, Y) has smaller 
variance lla,ll *cr2 than any other linear unbiased estimator. 
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Example 3.4.1: Let xi = ( I ,  I ,  1, I)’, x2  = ( I ,  1, 1, 1)’. x, = 3x, - 2x2 = 

( I ,  I ,  1. 3)’. Then X = (xl, x,, x,) has rank 2, and for c = X‘ [ ~]-[:]~ 
2 

(c, fl) = S P ,  + 3& + 98, is estimable. The parameters PI and PI - jj2 are not 
estimable. since 3c, - 2c, must equal c, (why’?). 

The Gauss-Markov Theorem (General Case): Let Y = fl + E for 8 = 

pixj = Xfl = and E ( E )  = 0. DEE] = ~ ’ 1 ” .  Let q = c’fl be estimable. Let V = 

sP(xL,. . . , x,) and 9 = p(Y I V). Let fi be any least squares estimator of fl. That 
is, Xfl = 9 for every Y. Then 

k 

1 

(1) t j  = c’b is a linear unbiased estimator of 11. 

(2) For any other linear unbiased estimator q* of q, Var(tj) I Var(q*) with 
equality only if t j  = q* for all Y. 

Comment: An estimator fi is called a least squar:s estimator if X I  = e for 
every Y. The estimator fi need not be linear. In fact, fl  is a function of Y which 
chooscs one member of Wq = {hlXb = 9) .  This choice need not be Linear. In 
the case of one-way analysis of variance we might, for example, choose f l  = f?, , 
di = z. - r .  whe?ever all components of Y exceed 7, but p = 0, di = E,, 
otherwise. Clearly fl = ($, d , ,  . . . , d,)’is not linear in Y, but does satisfy Xfl = g. 

Proof: Since q = c‘p = is estimable, there exists a vector a such that 
E(a, Y) = (a, 9) = a’Xfl = c‘fl for all fl. Since a and p(a I V) have the same inner 
products with the columns of X we may take a E V. Sipce the equality holds 
for all p, we conclude that c = X’a. Thus, tj = c’fi = a’Xfl = a’Y = a’Y, a linear 
function of Y. 

Let q* = (4 Y) = d‘Y. Since E ( q * )  = d9 = dXfl = c’b = q for all fl  only if 
c = X‘d, q* is unbiased for r] only if c = X‘d. Then d and a have the same inner 
products with all vectors in V. Since a E V,  a = p(d I V). Therefore q* = (a, Y) + 
(d - a, Y) = t j  + (d - a, Y) and tj and (d - a, Y) have covariance 0. Thus, 

0 Var(q*) = Var(tj) + d i l d  - all2, which is minimum for d = a. 

Problem 3.4.1: Let x, = (1, 1, 1, 1)’. x2 = (1,O. l ,O)’ ,  x3 = 3x, - x2. 
(a) Find conditions on c’ = (cl, c 2 ,  c3) so that q = clPl + c2p2 + c3P3 is 

estimable for the linear model Y = Plxl + & x 2  + f13x3 + E. 

(b) Show that r] = 3fil - f i2  - 8, is estimable, find a such that tj = (a, Y) is 
the BLUE for q, and find another unbiased estimator q* of r]. Show that 
Var(4) < Var(q*). 
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Problem 3.4.2: For the one-way layout example above, find conditions on 
co, c , ,  . . . , ck such that c o p  + c ,%,  + . ' . + c,%, = q is estimable. 

Problem 3.4.3: For the one-way layout with k = 1, n, = 2. n, = 3, n3 = 1, 
find two vectors a1 and a, such that Tl = (a1, Y) and T, = (a2, Y) are both 
unbiased estimators of q = u1 - r z ,  Tl is the Gauss-Markov estimator, and 
Var(T2) > Var(Tl). Also show that a1 = p ( a r }  V), where V is the subspace 
spanned by the indicators of the columns. 

Problem 3.4.4: Let R be the collection of 2 x 3 tables with elements 
y = ( y J .  Suppose that Y = ( xi), with x j  = p + ui + pj + cijr for cij - "0, d). 

(a) Write the model in vector form. 
(b) Find conditions on cl ,  c2, c3 such that q = clpl + c2p2 + cJ3 is 

estimable. Show that /I1 is not estimable, but p ,  - /jz is. Give two unbiased 
estimators of Bl  - p2,  one of which is the Gauss Markov estimator. 

3 5  INTERPRETATION OF REGRESSION COEFFICIENTS 

k 

Let Y = P,x, f & with xl,. . . , xk linearly independent. Define K -  = 
j =  1 

Y ( X , ,  . . . , Xk- 1). %k = p(X,l vk- 4- 1, and 
lIX,"l!' = (X;, X:) = (X,', xk) - (X:, 3,) = ( X t ,  Xk). X," iS the part of xk which iS 

and X,' = XL - i k .  Then X: 

orthogonal to the other xi, or in more intuitive language, the part of x k  which 
measures something different (in a linear sense) than the other xj. x," is 
sometimes called the signal part of xk. In the case of simple linear regression 
with Y = &J + Blx, xL = x - p(x( J) is the vector of deviations, with ith 
component x, - 2. We have called this x* in the past. 

Similarly, for Q = P(Y I 19, ~ y ,  x,") = (P, x,") = C /sj(xj, x,") = &(x,, x,") = 

~ k ~ ~ x , " l ~ z ,  so that ), = (Y, x,">ill~:11~. Thus, j?k is determined solely by the 
relationship between 8 and x,". Similarly, pk is determined solely by the 
relationship between Y and x i .  Thus, for example, in any multiple regression 
analysis which includes the vector J of all ones as an x-vector, the f s  and /?'s 
corresponding to other vectors are not affected by adding the same constant 
to all elements of those vectors. 

Define 8, = p(el  G .  ,). Then 8 = e k  + pkx,' and 11e112 = 11ek112_ + f l z ~ ~ ~ ~ 1 1 2  = 
;I~,II* + (e, x:)z/ilxil12. Similarly, for ?k = p ( ~  I b- 3 = Y, + j,x: and 
liYIIz = IIY~II' + , 4 1 1 x k i i ~  = Ilqkii,(12 w , x , ~ ' ) ~ / I I x ~ I I ~ .  

We can express the variance of /Ik in terms of x,". 

j =  1 
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This is a useful formula in that it provides insight into the effects that 
“collinearity”, the “near” linear relationship among the independent variables, 
has on the precision of the estimators of the regression coefficients. I t  provides 
a warning: independent variables which are “almost” linear combinations of 
other independent variables will have coefficient estimators with large variances. 

More generally, if for any j ,  xf is the part of x, orthogonal to the other xi, 
then 

Since we already knew that the covariance matrix for 8 is aZ(X’X)-’, we 

The cosine of the angle w between two vectors u and v is defined by cos w = 
have discovered that the i j  element of (X’X)-’ is (xi’, x / ) i l l ~ t I l ~ l l x f11~ .  

(u v)/(ilull Ilvll). Thus, 

where wij is the angle between XI and xf.  The correlation between ), and B j  
is therefore p(& B j )  = cos oij. 

Example 3.5.1: Let R = R,, x1 = ( I ,  I ,  1, I ,  x2 = (1, 0, 1,0, 1 )’, and x3 = 
(1, 1. 1.0,O)l. Let V = 9(xI, x2, x3) and V2 = 9(x, ,  x2). V,  is spanned 
by x2 and w = x1 - x2, and x2 I w. Thus, x3 = p(x3 I V,) = (2/3) x2 + ( l j 2 )  w = 
(1/6)(3x, + ~~)=(1/6)(4,3,4,3,4)’ ,sox: = x3-n3=(1/6)(2,3,2, -3, -4)’. 
Notice that x i  1 V, and ~ ~ X ~ J 2  = 7j6. 

0‘/l/x:11~ = 602/7. 
More generally, suppose instead x3 = 5i3 + r(2,3,2, - 3, -4)’. Then x f  = 

a(2,3,2,  -3, -4)’, 8, = (Y. x ~ ) / ~ ~ x ~ ~ l z  = - 1/(2a), and Var(b3) = 02/(42a2), 
so that for small z (“short xi”),  Var(),) is large. 

Problem 3.5.2: Consider Example 3.1.2, with Y = B l w l  + B2wz + B,x + E. 

(a) Find XI, and use this to find nonmatrix expressions for bc and Var(jc). 
(b) Use flC to give simple expressions for 8, and b,. 
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(c) Give a simple formula for the variance of the predicted yield g( I ,  x) on a 

(d) For Y = y = [ lo' and x = [ /. j], find B1, b2, Bc, q, e, S2, 

one-acre plot with fertility level x, under experimental condition 1. 
91 107 

124 115 

132 119 
and Spc. 

Problem 3.5.3: Let V = Y ( x , .  . . . , x,J have dimension k.  Find simple 
formulae for the coefficients uj in p(yl V) = z u i x f  and prove that 
u(x;. . . . , x:) = Y. i 

Problem 35.4: Let xl, x2, x, be linearly independent vectors in R,, with 
x1  = J, the vector of all ones. Suppose that Y = plxl + p2xZ + p,x, + E, with 
E(E)  = 0 and D[cJ = din. Define xr = xi - p(xj I x,) for 1 = 2, 3. Then r 2 3  = 
(xt,  xf)/[llx:ll 11xf11] is the correlation between x2 and x,. Show that 

(a) x i  = x r  - p(xf 1 x!) and x i  = x j  - p ( x j  1 xr). Hint:  Y ( x , ,  xr) = 

(b) Var@.) = 02/[llx~l12(l - r:,)]  for j = 2, 3. 
( c )  p ( j 2 ,  b3) = -rZ3. 

a x , ,  x2). 

3.6 THE MULTIPLE CORRELATION COEFFICIENT 

Definition 3.6.1: Let y. x,, . . . , xk be elements in R,. Let V = 
Y(J. xl,. . . , x k )  and let 3 = p(y I V). Let f0 = p(y I J) = jJ. Then the multiple 

113 - $011 
ilY - 9011 

correlation coefficient of y with xl.. . . , x, is R = R,., , . , . ,  = -- . 

Comments: ( 1 )  From Figure 3.5, since (y - 9)  I Y and (9 - go)  E V, 
Ily - $ o l 1 2  = 119 - f o i l 2  + IIy - 911' by the Pythagorean Theorem. 

Total SSqs. = Regression SSqs. + Error SSqs. 
(about mean) 

Thus 

Regression SSqs. Error SSqs. 
Total SSqs. Total SSqs. 

R Z =  I _ _ _ I _  _I_ = I - -  

so that R 2  may be interpreted as the proportion of variation in Y which is 
explained by linear regression on xI, . . . , xk. 
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FIGURE 3.5 The multiple regression coefficient R,  where R' = 1;) - )oi12iily - jell*. 

(2) Let w = cy + dJ so that wi = C J J ~  + d for i = 1,. . . , n, c # 0. Then wo E 
p(W I J) = cy, + dJ and * 3 p(w 1 V) = c9 + dJ. Thus, 

fi - fi0 = c(9 - fO), w - * = c(y - 9)  

and Rn.12...k = Ry.12 . . .k*  

In addition, note that R is a function of y and the subspace V,  not of the 
particular xi vectors spanning L'. For J E Y it follows that R remains unchanged 
when scale and location changes are made in the xj vectors, more generally 
when X is replaced by XC for C ( k  + 1 )  x ( k  + 1) nonsingular. 

(Y - 90.9 - Yo) 

IlY - 3011 113 - Y O I I '  

(3) The ordinary correlation coefficient of y with 9 is ry3 = ~ - .  

But y - 9o = (y - 9 )  + (9  - 9") and ( 9  - 9,) 1 (y - 9). Thus, (y - go,  9 - 9,) = 
(9  - . fo ,  j r  - fro) = 119 - j-01/2 and r,,? = ~ 119 -__- - 9oIl2 - - - II ___- 9 - 90 II = R. The 

IIY - 9011 119 - YOII  IIY - 9011 
multiple correlation coefficient is the ordinary correlation cocfficient between 
y and 9. It must be nonnegative. 

Contribution of x k  to tbe Reduction of Error Sum of *uares 

Let x,, . . . , x k  be linearly independent, h- l  = 3'(x,, . . . , x ~ - ~ )  and V, = 
Y(x, ,  , , , , xk) .  Let qk = p(Y I 5)  and qk-, = p(Y I The error sum of 
squares when the independent vectors are x l , .  . . , X k -  I is I IY  - +k- 11' = 
ilYl12 - iI2 = E S S k -  ,. The error sum of squares when 4 - is replaced 

the difference is fi~1ix:ll2 = (Y, x,+)2/llx~ilz. That is, ESSk = ESSk-1 - 
(V, x,')':l\x: 112. 

by h is ESSk = IIY - q k l l 2  = !IYl12 - l / q k l 1 2 .  Since ll?kl12 = l l q k - ~ l 1 2  + ):IIx:112, 
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Thus, 

-- - - 1 - ( 1  - R ; - i ) /  
ESSk- 1 

R : = l -  
TSS(1 + tz/(n - k)) 

+ (1  - R t - l ) (  for d = t 2 / ( n  - k). 
I + d  

It follows that 

is the proportion of possible improvement in the explanation or the variability 
of Y which xk gives beyond that provided by x,, . . . , X I -  1. The possible 
improvement in the multiple correlation coeficient beyond that given by the 
first k - 1 variables is 1 - R : - , .  From Figure 3.6 the actual improvement 
provided by using x k  as well is Rf  - RE.. The proportion of actual improve- 
ment to possible improvement is d/(l + d). 

Problem 3.6.1: Show that for the case of the simple linear regression. R , , ,  
the multiple regression coefficient with one x-vector x, is the absolute value of 
the simple correlation coefficient ryx. 

Problem 3.6.2: For the data of Example 3.5.1 find R,,,+, and R,,X2 and 
d 

show that R;.,,,, = R;,,, + (1  - R&,) - - for d as defined above. 
I + d  
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Problem 3.6.3: Let y = [ 4 1 ‘i ”] and let Cj be the indicator of column 

(a) Find the multiple correlation coefficient R of y with C,, C,, C,. 
(b) Let ESS, and ESS, be the error SSqs. corresponding to V, = Y ( C , ,  C,) 

and .Lp(C,, C1, C3). Verify that ESS, = ESS, - ) $ I I X : ~ ~ ~  and ESS, = ESSJ 

j for j = 1,2, 3. 

( I  + ‘j) for these data. 

(c) For the general one-way layout with three columns, ni observations in 
the j th column, give a formula for R. 

3.7 THE PARTIAL CORRELATION COEFFICIENT 

Suppose an educational psychologist studied the relationship between the 
height u ,  and reading ability o, of children as measured by the score on a 
standardized test. For 200 children in the third, fourth, and fifth grades of an 
elementary school she measured u ,  and ti,, then found that the correlation 

L 
I I 1 I 1 

0 20 40 60 80 100 

Arithmetic Score 

FIGURE 3.7 
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VI v2 

0 
0 

X 

FlGURE 3.8 d ,  and d ,  for child # 17. 

between u l  and u2 was 0.56. Would she be correct in deciding that taller children 
read better, perhaps because they can more easily see over their classmate’s 
heads? (The author, being fairly tall, is often tempted by such conclusions. Some 
of his students have disagreed vigorously.) 

A little thought suggests that the data for the third, fourth, and fifth graders 
might be graphed as in Figure 3.7. Thus, the “spurious” correlation could be 
caused by differences in grades, or ages of the children, since both v1 and uz 
would tend to increase with age. For this reason age is called a “lurking 
variable”. Somehow the experimenter would like to confine her study to 
children of the same age. Even children in the same grade differ somewhat in age, 
however, so that confining the study to one grade might not suffice. Confining 
the study to children within a few months in age could result in too small a 
group. 

The partial correlation coefficient is a measure of linear relationship between 
two variables, with the linear effects of one or more other variables, in this case 
age x ,  removed. In this example, we could fit the simple linear regression lines 
of Figure 3.8 to u1 vs. x and to 0, vs. x. For each child the deviations d ,  and 
d ,  from the fitted lines could be determined. Then the partial correlation 
coefficient of u ,  and u2 with the effect of age removed is the ordinary correlation 
coefficient among the (dl, d,) pairs for all children. 

More generally, the partial correlation coefficient is defined as follows: 

Definition 3.7.1: Let v,, v2, x,, . . , , x k  E R,. Let Y =  U(x,,. . . ,xJ, C, = 
p ( v ,  1 V), 8 ,  = p(v2 1 V). Then the partial correlation coeflcient of v I  and v2 with 
the effects of xl,. . . , x k  (equivalently V) removed is 

(Undefined if v1 E V or v, E V). 
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Comments 
(1) In practice it is usually thc case that J E C', so that the additive effect of 

a constant on vI  and vz is removed. We will always suppose this unless stated 
otherwise, so that it will be unnecessary to include J among the independent 
variables listed. 

(2) The ordinary correlation coefficient is the special case k = 1, x1 = J. 
(3) r is unchanged by scale changes in any of the variables, or, in the usual 

case that J E  V,  changes in location (addition of a constant) for any of the 
variables. More generally, r is a function of the subspace V, not of the specific 
vectors spanning I/, so that X = (xl,. . . , xI) may be replaced by XA for A 
nonsingular. For example, if a vector w E V is added to v l  then v l  - 0 ,  remains 
the same. r is unchanged. 

(4) Consider multiple regression of Y on xl.. . . , xk-!, xk._ Let q-  = 
Y(X, ...., x , - , ) a n d & = Y ( x ,  ,..., xk).LetYk-, =p(YlV,- , ) ,yk=~(yIV,) ,  
x t  = xk - p(x, I &-  = xk - k,, e = Y - Yk. Then 

are decompositions of Y and xk into orthogonal vectors. The partial correlation 
coefficient of Y with xk with the effects of xl.. . . , xk-, removed is 

L n - k J  

is the t-statistic used to test H ~ :  @k = o in the 
k 

model Y = pjxi + E. 
1 

(5) Let x,, . . . , xk be k > 3 vectors and let f = {3 , .  . . , k } ,  J = {4,. . ., k). 
Let rI2.,  and r12.J be the partial correlation coefficients of x1  and xt with 
the effects respectively of the vectors (xi I j E I f  and {xj  l j  E J }  removed. We will 
try to develop a formula relating r12.1 to partial correlations r lz .J ,  r13.5, and 

= Y(x4 , .  . . , xk) and 6 = 2 ( x 3 , .  . . , xk)- Let xi' = xI - p(xl 1 b), 
x i  = x2 - p ( x ,  I V,), x3 = x3 + xf for 8 ,  = p(x, I b). Then p(xil V,) = 
p(xi I 15) + p(xi 1 x t j ,  so that wi = xi - p(xi I b) = XI - p(xi I x:j = xi - 
p(x/ I x f )  = XI - [ (xl ,  xf)/ilx$li']xjL for i = I ,  2. Thus, r12.1 is a function of 
the vectors xi', x i ,  x i  and by (3) is unaffected by scale changes in these vectors. 
We therefore may take their lengths each to be one. The vectors wl, w2 therefore 
have inner product (xi', x i )  - (xi', xfxx;, x i )  = r12.J - r13.Jr23.J  and lengths 

r23.J. 

Let 

I 
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IIXiLiJ’  - ( x i ,  = 1 - rf3,J for i = 1, 2. Therefore, 

1 03 

In practice the vector J of all ones is included in Y ( x , ,  . . . , Xk). Of course, the 
choice of subscripts 1, 2, 3 here was only a notational convenience. Change of 
notation leads, for example, to the formula 

(6) Let R ,  and R k - l  be the multiple correlation coefficient of Y with 
respectively x,, . . . , xA and x , . .  . . , X I -  I .  Suppose x 1  = J. Then we showed in 

Section 3.6 that R i  = R i - ,  + ~ _ _  (1 - R i - , ) ,  where d = t 2 / ( n  - k).  From 

(4) above the partial correlation coetficient of Y and xk with the effects of 

x,, . . . , x k - l  removed is r = 

d 

I + d  

[g d ] l i 2  
(sign 8,). Therefore, 

We conclude that r 2  is the proportion of improvement in the explanation 
of the variation of Y caused by adding xk to the collection of explanatory 
variables, as compared to the possible improvement I - R i -  

(7) To see that the pair ( r 1 2 , r 1 2 . 3 )  may take arbitrary values in the square 
A = ( -  1, + 1 )  x [- 1, + 13 let wl, w2, x 3  be length one vectors with com- 
ponents adding to zero, (wl, w2) = r.  x 3  I w,, x3 I w2. Let x 1  = c 1 x 3  + w, 

cIc2 + r 
and x 2  = ~ 2 x 3  + w2. Then r 1 2 . 3  = r and r , 2  = - for real 

JT+ c:j(i + c ; )  
numbers c,, c 2 .  As ( r ,  c lr  c 2 )  ranges over ( -  1, 1) x R ,  x R , .  ( r 1 2 ,  T , ? . ~ )  ranges 
over A. 

( 8 )  Here we summarize some results on the distribution of the sample 
correlation coefficients. Proofs are omitted. Under the bivariate normal model 
the sample correlation coefficient r is asymptotically normally distributed with 
mean p and asymptotic variance ( 1  - p’)’/n. However, the convergence is 
rather slow, particularly for p near - 1 or + 1. The transformed variable 

1 l + r  

2 I - r  
y ( r )  = In converges much more rapidly in distribution to the normal, 

with approximate mean y(p) + p / 2 ( n  - 1) and approximate variance l/(n - 3). 
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3 -  

2 -  

r 

-2 - 
-3 

FIGURE 3.9 The functions u = g(r) and r = g- ' (u) .  

This leads to a confidence interval [a, 61 = [ g ( t )  k z ,  -mj2/,,63J on g ( p )  and 

tanh u (Figure 3.9). 
Under the multivariate normal model the distribution of a partial correlation 

coeficient is the same as that of a simple correlation coefficient, with n reduced 
by the number of conditioning variables (not counting J). 

e" - e-" - - a corresponding interval [g-'(a),y-'(b)] on p, where g - ' ( u )  = - 
e" + e-" 

Problem 3.7.1: For v ,  = (5 ,  l , O ,  3, 5)', v2 = (5,3, 7,6, 10)' find the partial 
correlation coefficient of v1 and v2 with the effects of J = (1, 1, 1, 1, 1)' and 
v3 = (0, 0, 0, 1, I )' removed. Verify the formula derived under ( 5 )  among the 
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preceding comments for this case 

Problem 3.7.2: Give an explicit test of H,,: PL = 0 in the general linear 
= r. model with x, = J, in terms of the partial correlation coefficient RYxh.xl., .xr 

Problem 3.73: Find vectors xl, x2 ,  x3 E R ,  such that r I 2  = 1/2, while 
r ,  2 . 3  = - 1 /2. In rl  2.3 suppose the effects of both x3 and J are removed. What 
is the multiple correlation coefficient of v ,  with respect to v2 and v,? 

Problem 3.7.4: Referring to (7) among the preceding comments, show that 
lr121 = I implies that r l , . )  = r 1 2  (whenever r12.3 is defined). 

Problem 3.75: The reliability of an examination is the correlation p of pairs 
(XI ,  X,) of scores obtained on repetitions of the same (or very similar) 
examinations given to the same individual in the population of individuals to 
be given the exam. Since the learning effect may preclude giving the same or 
even similar exams to the same individual the following technique may be useful. 
Split the exam into two equivalent halves and record the scores ( Y,, Y,) on each 
half. Record the pair (6 ,  5) for each of a number of individuals and use the 
sample correlation coefficient r to estimate pr = p( U,, &). 

Suppose equivalent forms of the exam are given with scores on the two 
halves: ( Yll,  Y,,j and (Yzl, q2j and total scores X, = Y,, -k &, and X, = 
U,, + Y,, on the two exams. Suppose x j  = A + Hi/ for i = 1, 2 and j = 1, 2, 
with A, ti,,, H,,, H, , ,  H , ,  uncorrelated r.v.'s with Var(A) = u i ,  Var(Hi,) = c$, 
for all i and j .  A may be considered to be the ability of the individual, while 
the H i j  are random deviations from ability. 

(a) Express p x  as a function of pr. 
(b) Suppose 100 independent observations are made on (&, Y,), with 

observed sample correlation coefficient ry = 0.31. Suppose these pairs have a 
bivariate normal distribution. Give a 95% confidence interval on py, then on p x .  

3.8 TESTING &:Be V, c V 

Consider the one-way analysis of variance model 
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where Jj is the array which indicates the j t h  column. It is often of interest 
to test H, : p ,  = . . . = pk. Then Ho is equivalent to the statement that E(Y) = 

8 = pl 1 Jj = p ,  J for some p , .  That is, under H,: 8 E IP(J). 

Similarly, we might fit a regression model in which Y is college G.P.A., 
x, is  high school G.P.A., x2 is S.A.T. score, x3 is # of years of father’s 
education, and x4 is # of years of mother’s education. The full model 
might then be Y = B0J + P,x, + ..  . + b4x4 + E. We might like to test 
H ,  : /I3 = #I4 = 0 (Mother’s and father’s education are valueless, in predicting 
college G.P.A., as additional information beyond x1  and x2, in a linear 
sense). Then, under f f o  : E(Y) = 8 E Y(x,, xl, x2) = &, a subspace of V = 

Thus, we need a procedure which will allow us to test Ho : 6 E Yo. where V, 
is  a proper subspace of V of dimension k, c k = dim( V). The alternative is 
then H,:9$ V,. 

Intuitively we should select a test statistic which tends to be large for 
8 $  V,, small for 8 E  y0 .  We wiU suggest such a statistic, and show that it  has 
desirable properties. Later we will show that the test which rejects H, for large 
values of this test statistic is the likelihood ratio test. 

k 

j =  1 

wx, ,  X I , .  * - 9 x4). 

Refer to Figure 3. t0  and let ? = p(Y I V) and go = p(Y I Vo), and 

By Theorem 2.5.3: 

Y 

\ v /  I 
FIGURE 3.10 Illustration for the F-test of H,: 0 E V,. 
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It follows that the F-statistic has a noncentral F-distribution with ( k  - k,) and 
(n - k) d.f., and noncentrality parameter S = 110 - 80112/oz. 

Since /lo is equivalent to 6 = 0, F has a central F distribution under Ho.  
Therefore, the test which rejects H, for F 2 Fk-kn,e-.k, - e  E F, --o has level a. I t  
has power y(6) = Y(F 2 F, -e), which depends on k - k,, n - k, 6, and a. 

Comments 
(1) The numerator of F can be written in various ways by taking advantage 

of the Pythagorean Theorem. Under the full model the error sum of squares 
and regression sum of squares are ESSFM = IIY - *Il2 and RSSFM = 11~Il2. 
Under Ho the error sum of squares and regression sum of squares are 
ESSH, = IIY - qOI!’ and RSSH, = 11 ~ , l 1 2 .  Then, by the Pythagorean Theorem, 

- 1  

IIY - Y,II~ = IIY - qoIi2 - IIY - P1i2 = ESS,, - E S S ~ ~  = R S S ~ ~  - RSS,, 

Thus, to find the numerator of the F-statistic, we need to tit both the full model 
and the model under H,, determining the error sum of squares in both cases. 
Of course, in order to determine the denominator S2, we need only fit the full 
model. 

(2) Letting $ = Xb and $, = Xbo we get $ - qO =?(@ - so) and 
IIT qo1!’ = (b -Afio)’(XX)(B - Po), and IIY - qll’ = llY112 - (Y. Y) = llY112 - 

(3) Once a computational method for IIq - qol12 is determined, the non- 
centrality parameter 6 for the F-statistic may be obtained by substituting 8 for 
Y (and dividing by 0’). Of course, 6 is a function of 8 and d, which are 
unknown. 

(Y, Y) = IIYII? - B’(XY) 

k 

Example 3.8.1: (One-way analysis of variance) Let Y = pjJj + E and let 

tfo:p1 =.  . . = pk. Then under the full model 0 E Y = Y(J,, . . . , Jk) and under 

H ,  : 8 E V, = Y(J) for J = J,. Thus, since the J, are mutually orthogonal, 

1 

k 

liqll’ - llVOl12 = 5 ~ ; n ~  - nF2.  
The error sum of squares under the full model is 

This information is usually summarized in an analysis of variance table 
similar to Table 3.8.1, which gives the squared lengths of the projections of Y 
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Table 3.8.1 Analysis of Variance 

DF Space Source Squares Squares Squares 
Sum of Mean Expected Mean 

Mean VO 1 II *o I! 

Error v i  n - k IIY - Q l l ’  

Difference in Y n  Vi k - 1 119 - *,,llz 
means 

a2 t ii2n 

Total Q n llYllZ 

on the orthogonal subspace. Mean squares are obtained by dividing sums of 
squares by the corresponding degrees of freedom. Since each sum of squares 
is of the form IIP,.YI12 for some subspace P, its expected value is 
dim( V)a2 + llPy.8112, so that E(mean square)=a2 + l~P,.Bl12/(dim V). llPy,81i2 
may be obtained by substituting 8 for Y in the formula for the sum of squares. 
Thus, for P = &, P,,8 = pJ and llPV,BIIZ = ji2n for ji = (c nipj) /” .  

The F-statistic is 

Mean square for differences in means 
Error mean square 

F = ____I__ 

9 

which has an 4-  , . n - k ( ~ )  distribution for 

For a numerical example, suppose that a crop scientist wished to investigate 
three hybrids of corn. He had 12 acres of land available. Four (1/3) acre plots 
were assigned at random to each of variety 1.2 and 3. Corn was then planted 
and the yield in bushels measured separately on the plots. Unfortunately one 
plot (variety #2) was flooded and the observation lost. From the following 
data we can construct an analysis of variance table, Table 3.8.2. 

Table 3.8.2 Analysis of Variance 

Source DF ssqs. Mean Squares Expected Mean Squares 

Mean 1 35,284.45 35,284.45 
Among 
Varieties 2 86.55 43.27 

Error 8 92.00 11.50 

Total I t  35,463.00 



Yield (Bushels) 

1 2 3 

52 64 53 
56 57 55 
60 62 58 
56 50 

5 56 61 54 Grand mean = = 56.636 
“i 4 3 4 Mean SSqs. = 35,284.45 

Total 224 183 216 Grand total=623 

3 

Among Hybrids SSqs. = F; nj - P2n = 35,371 - 35,284.45 = 86.55 
j a l  

Total SSqs. = 1 Y i  = 35,463 

Error SSqs. = Total SSqs. - [Mean SSqs. f Among Hybrids SSqs] 

i j  

= 35,463 - 35,371 = 92 

To test H, : pL1 = p2 = p 3 ,  i.e., no variety effect vs. H, : Ho not true, for a = 0.05, 
we reject if 

Among hybrids MSqs. 
Error MSqs. 

F =  - _ _  - - - _ _  - > F  
2.8 .0 .95  = 4.46. 

In this case we observe F = 3.74, so we fail to reject Ho at 0.05 level. 
In general, an analysis of variance table bas the columns of Table 3.8.1 with 

rows corresponding to subspaces V,, . . . , V,, where the subspaces V, are usually 
mutually orthogonal and R = V, @ . - - @ V , .  In applications the “Space” 
column is omitted and the “Total” row is replaced by a ”Corrected Total“ row, 
usually called (somewhat confusingly) the “Total” row, corresponding to 
R n V k ,  for V, = Y(J). 

Example 3.8.2: Let xI = (1, I ,  1, I ,  I,)’, x2 = ( I ,  I ,  I ,  O,O)’, x3 =(1,0,0,0, I)’, 

Y = Bjxl  + E, and we wish to test HO:Bz = B3. Since Ho is of the form 

q = c’fl = 0, it is possible to use the t-statistic t = q/S,,. However, we will instead 
compute the F-statistic, which, as will be shown, is t2. Suppose we observe 
Y = y = (7, 2, 3, 1 1 ,  12y. 

3 

1 

For V =  9 ( x 1 ,  x2, XJ, we find M = X‘X = 
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e = (1,  - I,O, 1, - I)’, ESS,, = IlelI2 = 4, S2 = 412 = 2. Under H ,  8 = Plxl + 
p2(x2 + x,) = plxl + p 2 ~ 4  for x4 = (2, 1, l , O ,  l)’, so that Ho is equivalent to 
8 E V, = 9 ( x 1 ,  x4). The model 8 E Vo is the simple linear regression model, so 
we can use the formulas developed for that *model, or we can simply use the 
multiple regression approach. We find flo = (9, -2J, Yo = 9x1 - 2x, = 
(5, 7,7,9,7)’, e, = y - 9, = (2, -5,  -4,2,5)‘, * - Y o  = (1, -4, -4, 1,6)’. 
Notice that e, and Y - to are orthogonal to V,. Then ESS,, = lleo1I2 = 74 
and 119 - $‘ol~2 = 70. By the Pythagorean Theorem this is the same as 

The F-statistic is therefore F = [70/1]/2 = 35. Since Fl,2,0.y5 = 18.5. 
F,, , . , . , , ,  = 38.5, we reject Ho at level a = 0.05, but not at level 0.025. The 
“observed z-level” is 0.0274. Since 8, - 8, = - 7 - 3 = - 10, and Var(/& - 8,) = 

aZ[6 + 6 - 2]/7 = 10a2j7, the corresponding t-statistic is t = (- 10)/v’10(2)/7 = 

,/%, so that r 2  = F. 

A 

ESS,, - ESS,, = 74 - 4. 

The Likelihood Ratio Approach: Suppose again that Y = 8 + E for 
8 E V, a k-dimensional subspace of R,, E 2- N,(O, 0’1,) and we wish to test 
Ho : 8 E Vo, a ko < k-dimensional subspace of V. Consider the likelihood 
function 

as shown in Section 3.1. L(8,02)  is maximized under the restriction 8 E V+, a 
subspace of V, by taking 8 = 9 ,  = p(Y 1 V*) and cr2 = 6: = ((Y - t,l12/n. 
Define Q = p(Y 1 V). Qo = p(Y I Vo), b2 = IIY - QI!2/n, and ci = llY - YoI12/n. 
Then the likelihood ratio statistic is 

so that - 2n log L = I. = log(&g/at). The likelihood ratio test rejects for large 

i., equivalently for large &$bi = I + IIP - - Q O V  - = 1 + (:_kkO)F, - a mono- 
IIY - Yll2 

tone function of the F-statistic suggested earlier on heuristic grounds. Thus, the 
likelihood ratio test is the F-test. 

Asymptotic theory for the likelihood ratio statistic states that as n -+ 30, 1 
converges in distribution under Ho to ~ t - ~ ,  where, as usual, k = dim( V), 
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k ,  = dim( Vo). Since 

for large n we have another "proof" of this same conclusion. 

Testing H $ : A B  = 0: The null hypothesis Oe V, is a statement about 
E(Y) = 0. I t  may be more natural to state a null hypothesis in terms of p. 
Consider a q x k matrix A of known constants of rank 4, and suppose we wish 
to test HZ :AD = 0 . 

4 x 1  

Two approaches are possible. One is to devise a test directly in terms of AB. 
The other is to reduce Hg : AB = 0 to an equivalent form H, : 8 E V,, and then 
to use the method already discussed to test Ho. The two approaches turn out 
to be equivalent. 

To take the more direct approach consider the random y-dimensional vector 
Z = A$ - N ( A L  A(X'X)-'A'a2). The following theorem will enable us to 
devise a statistic depending on Z. 

Theorem 3.8.1: Let Z - Nk(q, Z), with Z nonsingular. Then Q = 
k x l  

Z'Z-'Z - xf(8) for 6 = q'Z-'q. 

Proof: This follows directly for the more general theory on quadratic 
forms in Chapter 2. For clarity we present a proof here. Let B be a matrix 
satisfying BB' = Z, SO B-"B' = X-*. Let W = B-'Z. Then W - N(B-'q, 1,) 

0 
Taking Z = A@, we get Q = Z'[A(X'X)-'A']-'Z/a2 = H(B)ia2 - xi(&, fof 

S = H(p)/a2, where, for each b, H(b) = (Ab)'[A(X'X)-'A']-'(Ab), and, since p 
and therefore Q are independent of S 2  = [IY - ?1I2/(n - k), the statistic 

and Q=Z'C-'Z=W'W=IlWli2...Xi(6) for 6 =  IIB-'qIlz = q'X-'q. 

and we can test H g  at level t~ by rejecting HZ for F* 2 Fq.m-k. -.=. 
Now consider a more indirect approach. Consider the subspace 

C = {PI AP = 0) = (row space of A ) I .  Define a, = Xc for c E C, and let 
V , =  {a,IcEC}. Since B=M- 'X 'O for each O E V ,  A p = O o  
A M -  'X' 0 = 0 o 01 Vl =(row space of AM-'X')  = (column space of B = 
X M - ' A ' ) o  OE(co1umn space of B)I. Let this last space be V,. Thus, 
V, = V n  v;. 
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The numerator sum of squares in the F-statistic used to test H , : ~ E  Vo is 
IIY - goI12 = IIPv,Y112. But the projection matrix Py, is 

Py, = B(BB)- 'B = X(X'X)- ' A'[A(XX)- 'X'X(X'X)- 'A']- 'A(X'X)- 'X' 

= X(X'X) - ' A[A'(X'X) 'A J - ' A( X'X) - 'X'. 

(Isn't this a beautiful formula? It has 12 matrix products, 6 transposes, and 4 
inverses.) Since 6 = (X'X)-'X'Y and IIPy,Y112 = Y P , , Y ,  we get IIPy,Yl12 = 
(A@)'[A(XX)- 'A] - '(Ag) = H(B), the same numerator sum of squares obtained 
by the direct approach. Thus, F* = F. The two approaches are equivalent. 

Continuation of Example 3.8.2: For Y, x lr  xt, x3 as above suppose that 

we wish to test H0:#?' = 0, /?, = P2,  equivalently that A$ = , for A = 

[i y The subspace C of R ,  in which $ lies under Ho is the 

orthogonal complement of the row space of A, the collection of $ of the 

form [ i]. The subspace Vi is the row space of B'= A M - ' X ' =  

[:I 

. -  

. V, is the image of C under the transform- 
- I  4 4 - 1  - 6  

ation-X, so that vectors 6 E V, are of the form &x2 + B2x3 = P2(2, 1, 1,0, I)', 
and are orthogonal to &, the column space of B. Sicce V, = Y(x4 I - A  x2 + x3), 
Yo  = P(YI Vo) = CW, X4)/IIX41121X4 = (31/7)X4, Yi P(Y I = Y - Yo = 
(1/7)( -20, - 10, - 10,70,60)', IIY,l12 = 1,300/7 = 185.7. The F-statistic is F = 
[185.7/2]/S2 = 46.4, for 2 and 1 d.f. Since F2.2,0.9,5 = 39.0, we reject at the 
a = 0.025 level. 

We could have computed 1 1 ~ , 1 1 2  from Z'CAM- 'A'J-'Z for Z = A$ = 

[- Since H = A M - ' A '  = (1/7) [-: 1 3 . H - ' = ( 1 / 7 ) [  10 1 ],weget 
1 5  - 

1,300/7 = 185.7, as before. 

Still another approach may seem reasonable, and, once again turns out to 
be equivalent to the F-test. Again, let A be q x k, of rank k, let C be its row 
space, and suppose we wish to test Ho : A$ = 0. Let H, : qc = c'$ = 0 for any 
c E C. Let h(c) = c'M- 'c. Then Var(4,) = h(c)a2 and S l  E h(c)S2 is its unbiased 
estimator. We can test H, using the statisiic t ,  = j , /S , ,  rejecting H, at level a 
for t f  = C($,  c)/S2 2 ti-k, .-#, where G(c, $) = (c'$)'/h(c). Then H , :  (qc = 0 for 
all c E C) e (A$ = 0 for all $) * 8 E V,, where Vo = V n  (column space of 
B = X M -  'A')'-. I t  seems reasonable to base a test on the statistic W = sup t,' = 

K ( f i ) / S 2 ,  where K(B) = sup G(c, 6). We need to know the distributio';lcof W, 
C P C  
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since the test which rejects for W 2 t.". k . & - =  will have level larger than a. We 
will show that K(Bj = H(B) ,  so that W / q  = F, and again we arrive at the same 
F-test. 

For each c E C,  again let a, = XM-'c. The vector a, may be written in the 
form bjxj, where b = M-'c = (61,. . . , 6 k y ,  and c is the vector of inner 
products of a, with the xi. Then c$ = c'M-'XY = (a,, Y) and h(c) = c'M- 'c = 
llacl12, so that G(c, fi) = (a,, Y)'/11a,1I2 = Jlp(Y IaC))1*. Since a,€ V1, and 9, = 
p(Y I Vl) = p(Y 1 a,) 4- [q, - p(Y I ac)], the orthogonality of these two vectors 
implies that Ilp(Y Ia,)li2 = 11*1 /12  - IIP, - p(Y la,)l12, so that G(c, 6) 5 
I)*LIIZ/SZ,Awith equality if and only if ar is a multiple of 9,. We conclude that 
K ( P )  = IIY1 /I' = _H(b). Therefore, Wjq = F. The supremum of t,' for c E C is 
taken for c = X'Y,, or any scalar multiple. 

In establishing three equivalent forms of the numerator sum of squares in 
the F-statistic, we have established some useful algebraic identities, which we 
summarize now for later use. 

Theorem 3.8.2: Let M be a k x k positive definite matrix. Let A be a q x k 
matrix of rank y. Let C be the row space of A, and define Q = A'[AM-'A]-'A. 

(c'b)2 
Then, for any bERt, ( I )  sup- --_ - = bQb, with the supremum achieved 

e E ~  c'M 'C 

for c = Qb, and (2) If X is an n x k matrix, X X  = M, 3 = Xb and g1 = 
XM-'Qb, then 9' = p ( 9  1 Vlj, where Vl is the column space of XM-'A', and 
ll9111~ = bQb. 

Proof: These identities were established above by first showing (2), then 
showing that llj,IIz was equal to the supremum in (1). In order to provide more 
insight, let us show (1) directly. 

As before, define G(c, b) = Let B be any k x k matrix satisfying 

B B  = M- I ,  and let d = Bc. Then G(c, b) = (B-'d, b)'/lldll' = (d, w)2/lldllz, 
where w = B -  b. If c is restricted to the row space of A, then d is restricted to the 
column space of B.  G(c, b) therefore remains unchanged if w is replace by its 
projection onto the column space of BA'. The projection matrix is P = 
BA'[ABBA]-'AB = BA'EAM- *A']-'AB'. Thus, G(c, b) = (d, Pw)2/11d112. By 
the Schwarz Inequality this is maximum (as a function of c) for d any multiple 
of Pw = PB'IQ, c any multiple of B-'PB-'b  = Qb, with maximum value 
I)PwI(' = bB-'PB-'b = bQb. This proves (1). (2) follows "easily" by substi- 
tution and lots of computation. The author uses "easily" when he wants the 
students to do the work. 0 

(c'b)' 
c'M - 'c 

Continuatioo of Example 3.8.2: Sin? 9, = (!/7)( - 20, - 10, - 10,70,60), 
f f  is maximized for a, = 0,, c = X'Y, = (1/7)(90, -40, -40), and tf = 
(c'fi)'/c'M-'c = (1,300/7)'/[!,300/7] = !,300/7 = 116,Il' = 185.7. 
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Continuation of Example 3.8.1: Consider the corn example with k = 3, 
n, = n 3  = 4, and n ,  = 3. Take fl = ( p l ,  p,, p,)’, and H , :  p, = * * * = pko Take 

A = [: -: -:I. This A could be replaced by GA for any nonsingular 

2 x 2 matrix G, so that the row space remains the same. The subspace C of 
R, is the row space ofA, the collection of 3-component vectors with components 

adding to zero. V, is the subspace of V of vectors of the form c hjJj which 

are orthogonal to V, = Y(J). Thus bn, = 0. An example is J,  - 45, + W,. 
The ij element of I, is 5. - Y, where F =  c Kj/n .  Thus, q, = 

! -0.636 - ~ . 6 3 ~  
for c = (nl( Fl - n, n2(  6 --n, n,( F3 - n)‘ = ( - 2.544, 13.092, - 7.992)’, and 
Y, = 1 ( c j j ! n j ) J j  = 

3 

j= 1 

i j  -0.636 4.364 -2.636 

-0.636 4.364 -2.636 

-0.636 4.354 -2.636 
, whose squared length is 86.55. tf is maximum 

( 5  - Y)Jj. 
i 

Problem 3.8.1: Let x1 = ( I ,  I ,  I ,  I, I ,  I)’, x2 = (3, -l,4,6,3,3)’, x3 = 
(7,3,2,0,3,3)‘, X, = (8,4,9, -.5,4,4)’, Y = (4,36,44, 12, 16,8)’ V =  
Y ( x , ,  x2,  x3,  x4). Suppose we wish to test H,, :fi4 = 0, pz = f i 3 .  

(a) Find two matrices A so that Ho o Afl = 0. 
(b) Find 1, 
(c) Define Vo so that H ,  - 6 ~  V, and find q, = p(Y I Vo), Y - qo and 

(d) Determine ESS,, = ilY - Yll’, SSE,, = (IY - qol12, !(g - qol12, and the 

(e) Verify that 113 - qo1(’ = Z [ A M - ’ A ’ ) - ‘ Z .  
(0 Find c and a, so that IlP - ~ , I ! ’ j S z  = tf = (a,, Y)Z/[Sr~~a,~~2]. 

= Xt. and 1. = AB, for one of your choices for A. 

9, = 3 - 9,. 

F-statistic. 

Problem 38.2: Let 0 be the space of arrays of the form of Y in one-way 
analysis of variance with k = 3, n1 = 3, n 2  = 4, n 3  = 3. and let J I ,  J , ,  J, be the 

corresponding column indicators. Let x = . Suppose the model 
3 4 4  

\ 3 /  

Y = 1 3 PjJi + D4x + E holds and we observe y = [i ,: 1:). Test at level 
1 



ct = 0.05 the null hypothesis that Dl = Pz = &. (The analysis justified by this 
model is called analysis of covariance. The y-values might be corn yields and 
the x-values fertility measurements on the corresponding plots). 

Problem 3.8.3: Consider the baseball bounce example of Problem 3.3.4. Let 
type A, B and C baseballs be dropped from heights 5 ,  10 and 15 feet and let 
the rebound heights be as given. 

Height, x (ft) 

5 10 15 

A 2.4 6.0 9.2 
B 2.4 4.9 7.6 
C 3.7 7.2 10.3 

State a model (assuming equal variances, a questionable hypothesis), and test 
the null hypotheses that the bounce coefficients are equal (a = 0.05). If instead 
the standard deviation of bounce heights were proportional to height x, how 
could you proceed? 

Problem 3.8.4: Consider the following regression model for n = 20 pairs 
(.Xi, K) 

I;  = p, + p1xi + p,x; + p,x:  + Ef 

for e l , .  . . , E, independent N ( 0 ,  a') random variables. The model above was fit, 
giving error sum of squares ESS(3) = 160. When the cubic term was omitted, 
the error sum of squares was ESS(2) = 180. When both the quadratic and cubic 
terms were omitted. the error sum of squares was ESS(1) = 200. Total sum of 
squares was ESS(0) = 1,000, after correction for the mean. 

(a) Give the sample multiple correlation coefficient for the cubic model 
above. 

(b) For a = 0.05 test H,: true model is the simple linear regression model 

(c) Find a matrix A such that H, of (b) is equivalent to AB = 0. 
& = po + plxi + E i .  

Problem 3.85: Show that the numerator sum of squares H ( 8 )  of Theorem 
3.8.1 is not changed by replacing A by C A  for G nonsingular. 

Problem 3.8.6: Suppose you wished to test Hp : An = d for d fs R,, a known 
vector of constants. How should you change H(P) (Theorem 3.8.1)? It can be 
shown that A B =  d is equivalent to 6 = 8, + v for 6, = B(AM-'A')-'d, 
M = X'X. B = XM-IA',  v E Vo for V, as defined in Theorem 3.8.1. Thus, we 
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can test the equivalent hypothesis that Z = Y - 8, has mean vector lying in 
V,. The test statistic is therefore obtained by replacing Y by Y - Bo, equivalently 
by replacing B by fi - Bo for Bo = M - ‘X‘O,. 

Problem 3.8.7: (Two-sample t-statistic) Let ( Y, ,, . . . , K”,) and 
( G I , .  . . , YZnJ be independent vectors, each having independent normally 
distributed components with variance all d ,  common means p, and pz .  Let Y 
be the array with two columns, ni elements in column i. 

(a) Invent vectors xI, xz so that Y = plxl  + pzxz + E, with E satisfying the 
usual model. 

(b) Let yl, &, S:, Si be the sample means and variances for the two samples. 
Show that the least squares estimator of (plr p2)  is ( F,, El) and that 

(c) Show that 

is a 100( 1 - a)u/, confidence interval on 9 = pl - p z .  
(d) Consider H,: 9 = p1 - p, = 0. Show that H ,  is equivalent to Oe Vo for 

some K,, and that, for this If,, F = t Z  for t = ( E  - yz)/[S(l/nl + I / ~ I ~ ) ” ~ ] .  
(e) Consider the following tire mileages (in 1,OOO’s) of two brands of tires. 

# I  41 49 45 41 
# 2  51 48 46 48 41 

Find a 95% confidence interval on p i  - p z  and test H,: p, 2 pz vs. H, : pl < PZ 

(f) Suppose it is known that 0: = rc: for r known but 0: and 0: unknown. 
for z = 0.05. 

Show that a lOO(1 - z)% confidence interval on /A, - p z  is 

where 

r 
Hint :  Let Zi = Yzi/,/‘i and estimate p t  - , / r (pz / r ) .  Find the interval for r = 2. 

Problem 3.8.8: Show that the proof of (2) in Theorem 3.8.2 is really easy. 
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Problem 3.8.9: (Behrens-Fisher) Consider the two sample problem 
X I , .  . . , Kn, - N u i ,  af), i = 1, 2, where all random variables are independent. 
This problem was considered in Problem 3.8.6. in the case ro: = a:, and our 
standard linear theory applied to produce the well-known formulas for 
confidence intervals and tests. This theory does not apply in the caw that the 
ratio a;/o: = r is not known. For large nl, n, (say both > 20) S! with high 
probability will be close to o: so that 

has an approximate N ( 0 ,  1) distribution, and yl - & f z, is an approxi- 
mate lOO(1 - a)”/:, confidence interval on p,  - p,. 

For moderate n,, n, a reasonable approximation due to Welch (1947) is 
obtained by replacing z, -ai2 by r,., I I a,2 for v the greatest integer less than or 
equal to 

A study of Wang (1971) shows that the approximation is good for r 2 0.05 for 
n,, n, 2 7, or r 2 0.005 and n,, n, 2 1 1 .  

Apply the Welch method for the data of Problem 3.8.7(e). Even though the 
Wang conditions are not satisfied, the method should be reasonably good. 

3.9 FURTHER DECOMPOSITION OF SUBSPACES 

Every subspace W of dimension d may be decomposed into d mutually 
orthogonal one-dimensional subspaces W,, . . . , W,. This is accomplished by 
finding an orthogonal basis w,, . , . , w,, for Wand taking 4 = V(w, ) .  If these 
vectors, or, equivalently, the spaces 4, are chosen appropriately then we may 
break the projection of Y onto W into the sum of its projections onto the 
subspaces W, and, using the Pythagorean Theorem, break the squared length 
of this projection (sum of squares for d d.f.) into d sums of squares with one 

d.f. each. That is, Ilp(Y 1 W)1I2 = 

For example, consider a one-way layout with ni observations for treatment 
level i, i = I , .  . . , k. The levels of treatment may correspond to measurements 
xi (amount of a chemical, temperature, time, etc.), and it may be reasonable to 
suppose that pi = y(x,) for some function g(x). It may also be reasonable to 
suppose that g(xi) = Po + B l x r  for some B0, 8 ,  or that g(xJ = Po + P1xi + &xf  

d 

(Y, wt)2/1[wil12. 
i- 1 
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for some Po, p,, p2.  In the second case the model becomes 

We can test H,: {y(x) is linear in x>, by taking I/, = Y(J, 1 xiCi) = Y(J, x*) 
for x* = c (xi - 2)Ci in the usual F-test. Then 

for 

This is the slope obtained in fitting a straight line to the points (xi, x.), each 

such point repeated n, times. Then f - Yo = - ),(.xi - -f)]Ci = 
k [ x  - 

k k i ;-I 

1 hCi, SO 119 - = c j'i  ni is the error sum of squares obtained in a 
i =  1 i = l  

simple linear regression on these points (xi, c.). 
The noncentrality parameter is therefore 

for ,3 = 
course, if the pi are linear functions of xi. 

W = V = Y ( C , ,  . . . , Ck), V, = J, 

nipi/n, and pl the same as /?, with p, replacing g. This is zero, of 

In the notation of the first paragraph of this section we could take 

and wl,. . . , wk a Gram- Schmidt orthogonalization of these vi's. 

k 

The treatment sum of squares is llq - qol!z = c ( Y ,  wi)z/IIwi(12. The ith term 
1 

in this sum is the sum of squares due to the ith power of the x's. In the case 
that the x(s are equally spaced. (of the form xi  = x, + di), relatively simple 
formulas for these sums of squares may be developed. To test 
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H,: {g(x) = E (  YJ x) is a quadratic function of x). assuming the one-way A of 
V model, we would use numerator sum of squares 

for k - 1 - 2 = k - 3 d.f. 

- - 
Example 3.9.1: Take k = 5 ,  ni = 10 for I = 1,. . . , 5, Y, = 40, Y2. = 45, 

y3 = 48, Y,. = 46, r5. = 43, Error SSqs. = 720. Treatment SSqs. = 372, and 
F = [372/4]/(720/36)] = 4.65, which is significant at the r = 0.01 level. 

Suppose now that treatment level i corresponds to x i  for xI = 3, s2 = 5, 
s3 = 7, x 4  = 9, xs = 1 I .  A plot of the against these x, (Figure 3.1 1) indicates 
a quadratic relation between the si and pi .  

The treatment SSqs. may be composed into four independent sums of 
squares, each with one degree of freedom (Table 3.9.1). Take x1 to the array 
with 10 .xis in the ith column. Let xz ,  x3, xq be the arrays formed by replacing 
these x i s  by the second, third and fourth powers of these xts. Then 
V = Y ( J ,  xlr  x2, x3, x4). Take W = V n V t  . Use the Gram-Schmidt process 
to find vectors wo = J, w,, w2,  w3, w4. Then Y(w,,, w,, . . ., wi) = 
Y(J, x,,. . .,xi) for i = 1,. . . , 4  and, of course, these wi are mutually 
orthogonal. W = Y ( w , ,  w2,  w3,  w.,). Since the xts increase linearly with i, and 

- 
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40 

X 

X 

X 
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FIGURE 3.11 vs. .xi, i = I.  2,. . . , 5 .  
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Table 3.9.1 

Column 

1 2 3 4 5 Squared Length Inner Product with Y 

the wi may be multiplied by arbitrary constants, we can determine simple 
expressions for them. The j t h  column of these wi have the following identical 
10 values. Then 

and 

The inner products and squared lengths are given in the table above. If the 

elements in the j t h  column of wi are all wij then (Y, wi) = c 5. wij(lO) and 

ilwi1l2 = 1 wt(l0). Thus, treatment SSqs. (372) has been decomposed into 

linear SSqs. (702/100 = 49), quadratic SSqs. (-210)2/140 = 315), cubic SSqs. 
(102/10 = 1) and quartic SSqs. (702/700 = 7). Each has one degree of freedom. 
Obviously in this case the quadratic effect dominates. The nu11 hypothesis H,: 
{pl is linear in x i }  is equivalent to 0 E Y ( J ,  x,) = Y(J, wl) = Vl (say). The 
numerator SSqs. in the F-statistic is therefore Ilp(Y I V n  Vt)l12. But Y n V t  = 
Y ( w 2 ,  w3, w4), so that 

5 

5 j - l  

i s 1  

4 

c ( Y ,  wi)2/Ilwi!lz = Treatment SSqs. - (Y. w ~ ) ~ / I I w ~ I I ~ .  (3.9.1) 
2 

323/3 
In this case, 372 - 49 = 323, so that F = -- = 5.38 and H, is rejected. 

20 
Similarly, H,: (pi is a quadratic function of x i )  has numerator SSqs. = 

8 i 2  1 (Y, = 8 so F = - = 0.2 and Ho is not rejected (at reasonable a 
3 20 
levels). 

4 
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3.10 POWER OF THE F-TEST 

In order to determine the power of an F-test we need a means of computing 
P(F 2 Fv,.vz.J for given values of v,,  v 2 ,  a and the noncentrality parameter 6, 
for F. The most common means of presenting these probabilities uses graphs 
p(c#), for c# = &(vl + I), one graph for each combination of v z ,  v l  and 
a = 0.05 and 0.01. Pearson-Hartley charts present graphs of ~ ( 4 ) ;  see Tables 
5.1-5.8 in the Appendix. For example, for v ,  = 2, a = 0.05, v 2  = 30, S = 12 we 
get c# = ,,K2/3 = 2 and power approximately 0.85. Odeh and Fox (1991) 
describe methods and provide charts which facilitate the finding of sample sizes 
necessary to achieve given power. 

Recall that the noncentrality parameter is 6 = ll8, Il2/o2, where 8, = p ( 8  I V , )  
and Vl = V n  V k .  In Section 3.9 we showed that I I ? l I 1 2  = Z[A'M-'A]-'Z, 
when H,  is expressed in the form A$ = 0, and Z = A$. We need only replace 
Y by 8 in this formula or in any other formula we have for the numerator sum 
ofsquares in the F-statistic. Thus, for & (zeta) = A$, 6 = (l/oz) c[AM-'A'J'&. 

____I_ 

Power of the F-Test in One-way A of Y: Suppose the statistic F has a 
noncentral F distribution with Y ,  and v2 d.f. and noncentrality parameter S. 
Consider also that under the null hypothesis H,: 6 = 0 and suppose that H, is 
to be rejected for F 2 F 3 , ,  - u  (which we also denote by F, -u(vl ,  v2) . )  This is 
the situation in one-way analysis of variance when we test H,: y ,  = p2 = * . . = 
pk. In this case 

Among means mean square 
Error mean square 

F = ~ 

and 

where 8, = p(8l V,) for V, = Y(J) and ji = 1 njpj /n. (: ) 
Example 3.10.1: This example is taken from Scheffe (1959, p. 163) who in 

turn credits it to Cuthbert Daniel, a well-known statistical consultant. Suppose 
four different kinds of alloy steel are prepared by varying the method of 
manufacture. It is expected that the tensile strength will be of order 150,000 psi 
(pounds per square inch) and the standard deviation of duplicate specimens 
from the same batch will be about 3,000 psi. Suppose 10 specimens of each kind 
are tested, and that 
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What is the power of the resulting .z = 0.05 level F-test? 

Solution: We have 

4 

6 = ( l id)  (pj  - p y n j  = 
1 

-_-- 
15 56 

4 
\ r l  = 4 - 1 = 3, ~2 = 40 -- 4 = 36, I#J = /-A = 1.96. Then from the Pearson .- 

Hartley charts the power is approximately 0.88. 
5( 14) 

9 
Similarly for n, = 5 observations per alloy type we get 6 = = 7.78, 

f-  
11, = 3, v2 = 20 - 4 = 16, I#J = ,,17.78/4 = 1.39, power approximately 0.60. 

Example 3.10.2: Continuing the alloy example, suppose we wish to design 
an experiment which will have power at  least 0.90 for a = 0.05 in the case that 
any two of the four means differ by 8,000 or more. How many observations 
should be taken on each alloy? 

4 

Solution: S = no (p, - ji)2i02, where no is the common sample size. If 

two means are to differ by 8,000 or more, then 1 (p j  - p)' is smallest when 
one p, is 4,000 larger than p ,  one is 4,000 smaller than /.i, and the other two pi 
are equal to p (see Problem 3.10.2). Since the power is an increasing function 
of 6 we must choose no so that 0.90 power is achieved for the smallest possible 

value of 6. Then 6 = no [4,000' + 0' + O2 + (- 4,000)2 ]/ 3,O0O2 = - no. Also 

v l  = 4 - 1 = 3, v 2  = 4(n0 - I ) ,  4 = vfs/4 = 0.943&. We can proceed by 
trial and error. 

For no = 9, I#J = 2.828, v 2  = 32, power = 1.00. We should try a smaller no. 
For no = 4, 4 = 1,846, v2 = 12, power = 0.76. For no = 5, I#J = 2.11, v 2  = 16, 
power = 0.89. For no = 6, 9 = 2.30. v2 = 20. power = 0.955. no = 5 seems to 
be approximately the right sample size. 

1 

32 
9 

Problem 3.10.1: Consider Problem 3.8.1, let H,: p2 = /j3, p4 = 0, let A be 
defined as before, and let 4 = AB. 

(a) Express 8, = 8 -. 8, as a lincar combination of two vectors v ,  and 
v2,  with coetlicients (& -&) and p4. Hint: Define x5 = x 2  +x,, x i  = 
p ( x , l  V, = V n V,'), for j = 2.3,4. Show that 8, = f i tx i  + D,x: + p4xa and 
that X T  + X: = 0. 

(b) Express the noncentrality parameter 6 as a quadratic form in 
(1-1, - p 2 )  and b,, by using the result of (a) and also by using the formula 
b = C [ A M - ' A ' ] - ' ~ / U ~ .  
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(c )  For p =  (10,3,5, -2)’. 0’ = 16, and a = 0.05, find 6, 6,. 6,, 6, and the 
power of the F-test. 

Problem 3.10.2: Let A > 0. Then G(x,. . . . , x,) = 1 ( x i  - Xj2  is minimum, 
subject to max Ixi - xjl 2 2A for (n - 2) xis equal to 2, one xi equal to 2 - A, 

one equal to X + A. Prove this. Hint: Let the two xis differing by 215 be x, and 

x2. Let Z2 = (xl + x2)/2. Show that G = A2/2 + 2(g2 - 2)’ + 

ij 

8 

(x, - 2)’. 
3 

Problem 3.10.3: (a) Suppose that for the corn yield in Example 3.8.1 the 
true means were 70, 75, 95 and that IS = 20. Find the power of the a = 0.05 
level test for equal means. 

(b) How large should no, the number of observations per treatment (number 
of plots per treatment) be in order to have power at least 0.90 for the parameters 
in (a)? 

(c) Suppose we wish to design an experiment with the three kinds of fertilizer 
which will have probability at least 0.90 of rejecting H ,  for z = 0.05 when two 
means differ by 10 or more, and D = 20. How large should no be? 

Problem 3.10.4: Consider a one-way layout with k = 4, n ,  = n2 = n3 = 5, 
n , = 6 . L e t x , = 2 . x 2 = 3 . x , = 5 , x 4 = 6 .  

(a) For p,  = 4, p2 = 1 1 ,  p 3  = 17, p4 = 16, u = 4, find the power of the 
a = 0.05 level test of the null hypotheses that pi is a linear function of xi for 
i = 1,2,3,4. Hint: See Problem 3.10.1. The noncentrality parameter is obtained 
by replacing Y by 6. 

(b) For equal sample sizes no ,  how large would no have to be in order for 
the test in (a) to have power at least 0.90? 

Problem 3.10.5: Suppose g(x) = E(Y Ix) and qj = g(x,) + ci, is observed 
for i = 1,. . . , rand j = 1,2,3,4 for E~~ - N ( 0 ,  02), independent. s, = 1, x2 = 2, 

(a) Assuming the full model for which g is an arbitrary function of x, express 
the noncentrality parameter for the F-test of H,: ( g  is a linear in x) as a function 
of r, p2,  and o2 for g(x) = Po + plx + &x2. 

x j  = 4, xq = 5. 

(b) Evaluate the power for r = 5, f ir  = 0.05, D’ = 3, a = 0.05. 
(c) Determine the minimum value of r for which the power of the test is 0.90, 

for c2 = 3, a = 0.05, p 2  = 0.05. 

3.11 CONFIDENCE AND PREDICTION INTERVALS 

Let % = (x,, . . . , xk) ,  and g(%) = E(Y } Z) be the regression function for Y on %. 

Suppose also that g(Z) = = g(Zi) + E~ for 
k 

p i x j ,  and that we observe 
1 
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ei - N ( 0 ,  a’) independently for i = 1 , .  . . , n, where f,, . . . , in are n values of 2. 
That is, we independently observe pairs ( q, &). Suppose that 8,  = (xol,. . . , xOk),  
is still another constant vector and that we wish to estimate u = g(%,). 

= Po + j , x i  + E ~ .  
equivalently Y = poJ + B,x + E, suppose we want a confidence interval on 
g(x,) = Po + pl.x0. Then 3, = (1, xo). 

B,xoj is a linear function of the p,, we can use the BLUE, 

rj = &lo) = io), the best linear unbiased estimator of 4. Again, from Section 
3.2, Var(4) = ($oM-’l;)02 = h(xo)a2 (say), so S: = h(x,)S2 and a I O q l  - a):,; 
confidence interval on q is given by ~(2,) f r ,  m,z[h(fo)S 3 , where t, -a !2  

For example, for the simple linear regression model 

k 

Since q = g(ji,) = 
1 

2 1!2 

has (n - k) d.f. 
For simple linear regression 4 = &go) = 8, + ),x, = + ),(xo - .f), so 

Thus, y(x,) is estimated most precisely for x, near f. In fact the variance of 
&x0) is the sum of the variance in estimating the height of the line at x = X 
and the variance in estimating the slope, multiplied by the square of the distance 
of x from X. Of course, the slope is estimated most precisely if the x-values used 
to estimate it are more widely spread, resulting in larger S,,, subject to the 
suitability of the model. 

Suppose that we want confidence intervals on g($) for each of the n rows 
of a design matrix X. the points in k-space at which Y has been observed. 
The value h ( i )  can k obtained for all such $ very easily as the diagonal of 
XM-IX’, which is the projection matrix P, onto the column space of X. 
Since trace (Pv) = dim( = k, it follows that these h(3) average k/n.  
For simple linear regression h ( l i )  = I/n + ( x i  - .U)2/S,,, so that h(xi )  = 1 + 
[I ( x i  - .Z)2]/Sx, = 2. More on this in Sections 4.4 and 4.6. 

Prediction Intervals: Suppose that we would like to predict the value Yo of a 
future observation, to be taken at a point 3 = 3,. This is a tougher problem be- 
cause, while g($,) was a fixed target, Yo is random, a moving target. An analogy 
would have an archer shoot n = 25 arrows at a “bullseye” target located on a 
wall, after which the target is removed, with the arrows remaining. A confidence 
interval corresponds to a guess we make about the location of center of the 
target based on our observation of the location of the arrows. A prediction 
interval is analogous to a guess as to the location of another arrow not let 
shot by the same archer. Obviously our prediction should be @()-Lo) = Yo. 
Let the error made be zo= & - f,. Then E(eo)=g(~ , ) -y ( .~ , )=0 ,  and 
Var(e,) = Va[( Yo) + Var( Yo), since Yo is independent of the observations used 
to determine Yo. Thus, Var(e,) = o2 + a2h($,) = a2[1 + h(3J-J. A IOO(1 - a)% 
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prediction interval on Yo is therefore given by d(jio) & t ,  -a,2[S2k(x0)J1’2 for 

k( lo )  = 1 + h(%,,). For simple linear regression &(lo) = 1 + - + (xo - X)2/Sxx. 
1 
n 

Problem 3.1 1.1 : A Ph.D. candidate in education did a study (actually, this 
is fictitious data, but it could be real!) of the relationship between hours of 
study (x) and grade point average at a large Midwestern university, whose 
name shall be protected. Fifty students were chosen at random from among 
those who had earned at least 30 semester credits, and the number of hours 
each spent studying during the fall semester was carefully recorded, using 
personal diaries kept by the students. Interviews with the students during the 
semester convinced the Ph.D. candidate that the numbers of hours reported 
were reasonably accurate. The number of hours spent studying during the term, 
xl, the previous G.P.A. (xz), and the G.P.A. for the fall term, Y, were all 
recorded. Consider the data of Table 3.11.1 and the inner product matrices 
M = X’X and U = X’Y. X is the 50 x 3 matrix with ones in the first column, 
xI and x2 values in the second and third columns. 

(a) Find the least squares simple linear regression line for Y vs. x,. and sketch 
the estimated regression line on the scatter diagram. Also determine S2 and the 
correlation coeficient (c.c.) ryx.I. 

(b) Let the 957; confidencu: interval for y(x,) = Po + Plxl be ( L ( x , ) ,  V(xi)). 
Sketch the two functions L ( x , )  and U ( x , )  on the same axes. 

(c) Let (L,,(x,) ,  U p ( x i ) )  be the corresponding prediction intervals for a 
student who studies x, hours. Sketch these intervals. 

(d) What conclusions can you reach about the relationship between studying 
and G.P.A. for the Fall semester? Would it be better to study the partial C.C. 

between x, and Y, with the effects of x2 removed? (Computations show that 
rrlXz = 0.3862 and ryxr = 0.5754, so you should be able to find this partial 
C.C. without difficulty.) How much higher could you expect a student’s G.P.A. 
to be if the student studies 100 more hours during the term? (Think about this; 
be careful about your conclusions.) 

Problem 3.11.2: Let x,,, xI,. . . , x, be positive constants. Let 
for i = I , .  . . , n for c O , .  . . , c, independent N(0, a2). The pairs ( x i ,  
observed for i = 1, .  . . , n and the value of Yo is to be predicted. 

= Pxi + E~ 
have been 

(a) Give a formula for a lOO(1 - r)% prediction interval on y0. 
(b) Apply the formula for n = 4, z = 0.05, and ( x i ,  c) pairs (1,2), (2,7), 

(c) Repeat (a) and (b) for confidence intervals on g(xo) = @xo, rather than 
(3, lo), (4, 1 I ) ,  xo = 5. Repeat for the same pairs, but xo = 10. 

prediction intervals. 

Problem 3.11.3: Let Y,, . . . , be a random sample from a N ( p ,  a’) 
distribution. Give a formula for a IOO(1 - a)% prediction interval on an 
observation Yo to be taken independently from the Same distribution. Hint: See 
Problem 3.1 1.1. 
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Table 3.1 1.1 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

303 
206 
247 
234 
266 
365 
33 I 
337 
369 
39 I 
366 
355 
208 
287 
31 5 
508 
308 
263 
323 
251 
125 
245 
392 
261 
256 

2.74 2.85 
2.46 2.12 
3.00 2.8 1 
2.82 2.46 
2.74 2.74 
2.28 3.08 
2.15 2.45 
2.82 2.79 
3.00 3.15 
3.30 3.34 
2.61 2.66 
3.15 3.34 
3.06 2.32 
3.57 2.90 
2.14 3.05 
3.29 3.98 
2.86 2.79 
2.38 2.74 
2.88 2.28 
2.77 2.67 
2.25 1.83 
3.20 2.29 
2.48 2.73 
2.15 2.30 
2.90 2.86 

26 396 3.18 3.22 
27 416 2.98 3.54 
28 350 2.59 2.94 
29 387 2.91 3.25 
30 296 3.10 3.19 
31 288 2.67 2.19 
32 303 2.66 2.26 
33 353 2.61 3.24 
34 21 7 3.01 2.80 
35 349 3.52 3.72 
36 359 2.99 2.96 
37 157 2.39 2.24 
38 372 3.50 3.76 
39 333 3.55 2.73 
40 226 2.45 2.54 
41 235 2.97 3.00 
42 289 2.76 2.73 
43 307 2.53 2.06 
44 408 2.9 I 3.98 
45 24 7 2.36 2.34 
46 268 3.12 3.22 
47 305 3.02 3.10 
48 358 3.24 2.82 
49 358 3.27 2.93 
50 115 2.52 1.63 

50.00 15,204.00 142.41 

15,204.00 4,9!0,158.00 43,834.26 

142.41 43,834.26 412.18 

U =  44,300.23 , C Y:=410.778. [ :::I 
Problem 3.11.4: A chemist has two methods of determining the amount of 

a chemical in samples of blood. Method A is expensive, but is quite precise. 
Method B is inexpensive, but somewhat imprecise. Label measurements under 
method A by x, and under B by y. Because of the extra cost of the x 
measurements, it is preferable to obtain y, but not x, but to give a statement 
about the uncertainty of the measurement. This is the “calibration problem”, 
discussed by Scheffe ( I  973) much more thoroughly. 
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Suppose that pairs (x,, x )  are observed independently for i = 1,. . . , n, where 
the x,’s are constants and r; = g(x,) f E ~ .  g(x) = fix, and E,  - N ( 0 , d ) .  An 
additional observation Yo is made on another blood sample using method B. 
but the corresponding measurement xo, using method A is not made. 

and Yo so that 
P(L  5 x,, I V) = 0.95 Hint: T = (& - # ( x ~ ) ) / , / ~ ( ~ ~ )  S has a t distribution 
for the proper choice of the function k(xo). Use this as a pivotal quantity, but 
don’t forget that both the numerator and denominator of T depend on xo.) 

(a) Find functions L and Lr, depending on the pairs (x,, 

(b) Apply your method to the data: 

x 3.13 4.45 5.64 6.79 

Y 2.6 4.1 5.1 6.0 
and y0 = 7.5 ___  - - - - - __ - _ _  - 

(c) Let y(x) = Po + p,x, with P o ,  fi, unknown. For observations 

x 2.21 3.54 4.89 5.96 

Y 0.8 2.2 3.3 4.5 
___ . _  -__ and Yo = 6.7 - - - -- - - . . 

find a 957,: confidence interval on xo, the x-reading corresponding to y0.  

Problem 3.11.5: Let h ( x )  = l / n  + (x - X)’/S,,. as defined earlier. 
(a) Use the fact that h(.xi) is the i th diagonal term of a projection matrix to 

prove that 0 I h(.xi) 5 1 for each i. 
(b) Use the inequality in (a) to give an upper bound for Ixi - 21 in terms of 

the sample standard deviation of the xis and n. Could the upper bound be 
achieved for some choice of (xl,. . . , x.)? 

3.12 A N  EXAMPLE FROM SAS 

The following study was carried out at North Carolina State University in 
order to determine the relationship between oxygen consumption ( y ) ,  a measure 
of aerobic fitness, and several other variables related to physical fitness among 
31 runners. For each individual the following measurements were made. 

Y = oxygen consumption in volume per unit body weight per unit time (oxy) 
x1 = time to run I $  miles (runtime) 
.x2 = age in years (age) 
x3 = weight in kilograms (weight) 
xq = pulse rate at end of run (runpulse) 
x5 = maximum pulse rate (maxpulse) 
x6 = resting pulse rate (restingpulse) 



128 THE LINEAR MODEL 

The following analysis (Tables 3.12. I through 3.12.9) was taken from the SAS 
User’s Guide: Statistics Version 5. 

The analysis will treat the x-variables as constants, though it may seem 
reasonable to consider them as random. However, we are interested in the con- 
ditional distribution of Y, given the x-variables, and not in the distribution of 
the x-variables. In fact the manner of selection of the participants in the study 
does not support conclusions about the joint distribution of the x-variables. 

(1) In Table 3.12.3 under each correlation coefficient r, P(IRI > r) is given 
for R having the distribution of a sample C.C. from a bivariate normal 
distribution with p = 0. 

Table 3,121 

i X I  x2 x3 x4 XS x6 Y 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

11.37 
10.07 
8.65 
8.17 
9.22 

1 1.63 
11.95 
10.85 
13.08 
8.63 

10.13 
14.03 
11.12 
10.60 
10.33 
8.95 

10.95 
10.00 
10.25 
10.08 
12.63 
11.17 
9.63 
8.92 

1 1.08 
12.88 
10.47 
9.93 
9.40 

11.50 
10.50 

44 
40 
44 
42 
38 
47 
40 
43 
44 
38 
44 
45 
45 
47 
54 
49 
51  
51 
48 
49 
57 
54 
52 
50 
51 
54 
51 
57 
49 
48 
52 

89.47 
75.07 
85.84 
68.15 
89.02 
77.45 
75.98 
81.19 
81.42 
81.87 
73.03 
87.66 
66.45 
79.15 
83.12 
8 1.42 
69.63 
77.91 
9 1.63 
73.37 
73.37 
79.38 
76.32 
70.8 7 
67.25 
91.63 
73.71 
59.08 
76.32 
61.24 
82.78 

178 
185 
I 5 6  
166 
178 
176 
I76 
162 
174 
170 
I68 
186 
176 
162 
166 
I 80 
I68 
I62 
I62 
168 
174 
I56 
164 
146 
172 
168 
186 
148 
186 
170 
170 

182 
185 
168 
172 
180 
176 
I80 
170 
176 
I86 
I68 
192 
I 76 
164 
170 
185 
172 
168 
164 
168 
176 
I65 
166 
155 
172 
172 
188 
155 
188 
I76 
172 

62 
62 
45 
40 
55 
58 
70 
64 
63 
48 
45 
56 
51 
47 
50 
44 
57 
48 
48 
67 
58 
62 
48 
48 
48 
44 
59 
49 
56 
52 
53 

44.609 
45.3 13 
54.297 
59.57 1 
49.874 
44.81 I 
45.68 1 
49.09 1 
39.442 
60.055 
50.541 
37.388 
44.754 
47.273 
5 1.855 
49.156 
40.836 
46.672 
46.774 
50.388 
39.407 
46.080 
45.441 
54.625 
45.1 18 
39.203 
45.790 
50.545 
48.673 
47.920 
47.467 

Sourcc Reprinted with permission from SASIStar (TM)  User’s Guide, Release 6.03 Edition, Cary, 
NC. 6 1988 SAS Institute Inc. 
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AN EXAMPLE FROM SAS 133 

Table 3.12.68 Analysis of Variaace 

Source DF Sum of Squares Mean Square F-Value Prob > F 

Model 6 722.543 61 120.423 93 22.433 o.Oo0 1 
Error 24 128.837 94 5.368 247 41 
C Total 30 851.381 54 

Root MSE 
Dep Mean 
C.V. 

2.3 16 948 RZ 0.848 7 
47.375 81 Adj. R2 0.8108 
4.890 572 

(2) The matrix in Table 3.12.5 is the X X  matrix and the X Y  vector for X 
the xdata matrix of A, with the attached column of ones (intercept). SSCP 
denotes sum of squares and cross products. 

(3) Table 3.12.6 is the analysis corresponding to the full model Y = 

“Model”, “Error” and “C Total” correspond to the subspaces Y n  V k ,  V’ and 
V,I in 31-space. 

The F-value in Table 3.1 2.6a (22.433) is model MS/error MS, which may be 
used to test H,: All b, for j 2 1 are 0. It is easy to show that F = (Rz / ( l  - R2)) 
[(n - k - I)/k] for k independent variables, not counting the constant term. 
For observed F = f, Prob > F is P ( F  > f )  for F 5 F k , n - k -  ( k  = 6 here). C.V. 
is the coefficient of variation = s / j  = 2.32/47.38. Adj. R 2  is R 2  adjusted 
for degrees of freedom, defined as 1 - s2/s:. Thus, (1 - Ridj,)  ( n  - k - 1)/ 
(n - 1 )  = 1 - R Z ,  so that R& is always less than R2. 

Table 3.12.6b reports for each j: j j ,  Sf,, ti = ) , /S&, and P ( T >  I t j [ )  for T 
with the t distribution for (n - k - 1) d.f. Type I SS is the reduction in error 
sum of squares (or increase in regression SS) given by adding that variable to 
the model given by the variables on lines above. For example, C total SS = 851 
is error SS when only the intercept is used. That error SS is reduced by 633 to 
118 when runtime is also used. It is reduced still further by 18 to 100 when age 
is also used. The total of all type I SS’s is 722.54, regression SS for the full model. 

Type I1 SS for variable j is the reduction A, in error SS achieved by adding 
variable j to the model without variable j .  It is sometimes useful to compute 
Rz-delete, called Rf for variable j .  the multiple C.C. when variable j is dropped. 
Since RZ - Rf = Af/TSS, Rf may easily be computed. For example, for 
runtime R: = 0.848 7 - 250.8/851.4 = 0.554. The partial C.C. r, of variable] with 
y, with the effects of other variables removed is, from Section 3.7, d j / (  1 + df)’I2 
for d j  = t j / ( n  - k - 1)”’. Some computer packages allow for printing of Rf 
and ri. The column “Tolerance” gives 1 - RZ for R Z  the m.c.c. for that variable 
with respect to all the other independent variables. It can be found using 
TOL = S2/[SZ(),)S:,(n - l)]. The reciprocal of the jth tolerance, often called 
the variance inflationfactor, is thejj term of (X‘X)- I ,  multiplied by (xu - ”3’. 

/?ox0 + ’ ’ ’ + /?ex6 -k E. For v = ~ ( X O , .  . . , x6) and = ~ ( X O ) .  The l h e S  

I 
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Table 3.12.7a Analysis of Variance 

Source DF Sum of Squares Mean Square F-Value Prob > F 

Model 3 656.27095 218.75698 30.272 o.Oo0 1 
Error 27 195.1 10 60 7.226 318 35 
C Total 30 851.381 54 

Root MSE 2.680 18 I R2 0.770 8 
Dep Mean 47.375 81 Adj. R 2  0.745 4 
C.V. 5.674 165 
~~~ ~ 

Table 3.12.7b Parameter Estimates 

Parameter Standard T for H,: 
Variable DF Estimate Error Parameter = 0 Prob > IT1 

Intercept 1 93.126 I5008 7.559 156 30 12.320 o.oO0 1 
Runtime 1 - 3.140 386 57 0.367 379 84 - 8.548 o.oO0 1 
Age I - 0.1 7 3 876 79 0.099 545 87 - 1.747 0.092 1 
Weight 1 -0.05443652 0.061 809 13 - 0.88 1 0.386 2 

Standardized estimate is fijSA,/S,,, the estimated regression coefficient when 
both Y and x j  are scaled to have standard deviation one. 

(4) Table 3.12.7 reports the analysis for the smaller model including data 
which might be more easily available, with independent variables runtime, age, 
and weight. The new error SS in 195.1 I ,  an increase of 195.1 1 - 128.84 = 66.27 
over error SS under the full model. Thus, the F-ratio for a test of the null 
hypothesis that coefficients for all other independent variables are zero is 

Since F,,,,,,,,, = 3.01, we reject at the 0.05 level. The model which includes 
all independent variables except weight and restpulse would, based on the 
ti-values, seem to be of interest. 

If one variable alone is to be used as a predictor, runtime = x, would seem 
to be best, since its C.C. with Y is -0.862 19. The equation of the simple linear 
regression fit of Y against x 1  has slope ryx,S, , /Sx,  = (-0.86219)(5.327/1.387) = 
-3.31, intercept P - j1.f, = 47.38 - (- 3.31)( 10.59) = 82.43. This variable 
alone explains 74.37; of the variation in Y. Other variables, by themselves, 
explain much less. 

The F-ratio for the test of the null hypotheses that only runtime and the 
constant term is needed is F = 3.35, which exceeds Fo.95. The partial correlation 
coefficients P~,,.~, for j # I would be of interest. 
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Problem 3.12.1: For a simple linear regression of Y vs. age, give the 
equation of the estimated regression line. Estimate o2 for this model, and give 
95% confidence and prediction intervals for a 40 year old. 

Problem 3.12.2: Fit the model Y = poxo + s l x l  + s2x2 + E for these data. 
Hint: First fit the model with x1 and x 2  replaced by the vectors of deviations 
from means. Then the (X‘X) and X‘Y matrices may be found from the tables 
provided and the inverse is easy to compute by hand. Also find the error sum 
of squares, and test the null hypothesis that this model suffices, assuming the 
full model Y = p o x  + p i x i  + ’ ’  ’ -k 86x6 + &. 

Problem 3.123: Find the partial correlation coefficients rY4.] and rys.,. 

Problem 3.12.4: Find the partial correlation coefficient of Y with age, with 
the effects of all other variables removed. 

Problem 3.12.5: What is the coefficient of variation of weight? 

Problem 3.12.6: What would R2 be if runpulse were dropped from the 
analysis? 

Problem 3.127: Assuming the full model of problem 3.12.1, test H,: 
jj4 = /is = p6 = 0, for z = 0.05. 

3.13 A N O T H E R  EXAMPLE: SALARY D A T A  

We consider here some faculty salary data, with the particular aim of trying to 
determine whether there is evidence of discrimination on the basis of gender. 
The College of Arts and Letters (English, History, Art, etc.) at Michigan State 
University was chosen for this small study because the data was readily 
available to the author (it is published for public use each year), and because 
that college had a larger number of female faculty than most. The data contains 
158 salaries for full professors on nine-month appointments for 1990-1991. Also 
recorded were years in rank and years of experience. The gender of the faculty 
member was determined from the name, which shall not be gwen here. Thus, 
we let 

Y = full year salary 
x 1  = indicator of females (there were 26 females) 
x2 = years in rank of full professor 
x 3  = total years of professional experience 
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TaMe 3.13.la Salary Data for the Colkge of Arts and 
1RtteI.S 

Mean Standard Deviation 

0.1646 0.372 0 
10.696 2 6.033 6 
26.41 14 6.273 I 

49,304.930 4 7,313.196 1 

Correlations 

Y X I  x 2 x3 

1.ooO -0.072 0.587 0.359 

-0.072 1.0oO -0.009 0.066 

0.587 -0.009 1.ooO 0.718 1 0.359 0.066 0.718 1.OOO 

Table 3.13.lb Multiple Regression TI& 

Variable j j  Estimate of Standard Error ti R Delete h 

Constant 44,457.1 2,215.2 20.07 O.OO0 
Indicator of female - 1,134.4 1,278.6 -0.88 0.594 0.376 
Years in rank 8 15.0 I 12.9 7.22 0.372 O.OO0 
Years experience - 139.4 108.9 -1.28 0.591 0.202 

Total SSqs. (corrected for mean) = 8,396,805,409 R 2  = 0.355 91 

Regression SSqs. = 2,988,495,539 R = 0.596 6 

Error SSqs. = 5,408,309,832 S = 5,926.1 

We will first consider the full model: = Po + &.xi, + &xu + /Isxis + q, 
for i = 1,. . . , 158 with the E~ independent N ( 0 ,  02). Regression analyses were 
performed using APL and SPSS, with the results of Tables 3.13.1 and 3.12.2. 
Since x3 = years of experience seemed to contribute little beyond the other 
variables to the prediction of salary, it was then dropped from the model, giving 
the new table 3.13.2. 

A reasonable conclusion, baed on these models, is that there is no or little 
discrimination based on gender. However, there is danger in such analyses 
which must be considered carefully. 

Suppose that the true regression function is E (  Y) = g(x2) and that g has the 
form sketched in Figure 3.12 (concave). 

Teachers in the public school system do in fact have regression functions of 
this shape, reaching an upper limit after some fixed number of years. Regression 
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TaMe 3.13.2 Multiple Regression Table 
~ - - _ _  _ _  - 

Variable 8, Estimate of Standard Error f i  R Delete P 

Constant 419 16.2 988.0 42.42 O.OO0 
Indicator of female - 1,305.3 1,274.2 - 1.02 0.594 0.587 
Years in rank I 10.9 78.5 9.05 0.071 0.OOO 

Total SSqs. (corrected for mean) = 8,396,805,409 R2 = 0.349 05 

Regression SSqs. = 2,930,874,674 R = 0.590 8 

Error SSqs. = 5,465,930,698 S = 5,938.4 

functions for management in some industries may instead have convex rather 
than concave shapes. Suppose in addition that female faculty members tend to 
have smaller xt  values, perhaps due to a recent effort to increase the proportion 
of female faculty. In this case B,, the coefficient of the indicator for females 
would tend to be positive, suggesting that females are paid at a higher rate 
than males, even though the salary policy is gender neutral. If, instead, the 
regression function were convex, bending upward, then lower x2 values for 
females and use of our linear model would suggest that males are paid more. 

0 5 10 15 20 25 30 

Years in Rank 

FQure 3.12 Salary in S1,OOO's vs. years in rank. 
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The fault, of course, is in the use of the model linear in x2.  Use of an additional 
term x f  in the model for the Michigan State data did not improve the fit. The 
same conclusions resulted when z = log Y, rather than Y, was used as the 
dependent variable. 

Consider the model Y = 8 + E, where 8 = B0J + fllf + f12x2.  J is the vector 
of all ones, f is the indicator for females, and x2 is the vector of xi2 values. Let 
m = J - f be the indicator for males, and x i  =x2  - [ p ( x 2  I m) + p(x, If)] = 
x2 - f2,m - f,,f. Then 8 E V = U(xo, f, x2) = 9 ( f ,  m, xi), and these last 
three vectors are mutually orthogonal. It follows that if 8 = y,f + y,m + y 2 x , l ,  
then 9, = y', 9, = F,, and 8, = p2 = ( x i ,  Y)/ilx~I12 are the least squares 
estimators of yf, y,, and y2 = b2, and that fll = y, - 7, - &(Zf2 - Z,,,,). Thus, 
b,  = ?, - F, - b2(X,2 - ,Cm2). The model states that for each sex the regression 
of Yon x2 is linear with slope p2 = y 2 ,  with intercept Po + PI for females, and 
flo for males. The estimates of these regression lines have slopes d2 ,  and pass 
through the points of means (Z,,, F',) for females, and (Zm2, Fm) for males. The 
coefficient 8, will be positive if and only if 5 - v,,, > f l , (X , ,  - Zmz), i.e., when 
f,, > f,,, if the slope of the line from (Z,,, y,) to (X,,, , y,) exceeds &, 
equivalently if the corrected female mean salary, F, - j2Z,, exceeds the 
corresponding corrected male mean score. 

There are occasions when it may be more appropriate to interchange the 
roles of x2 and Y, so that x, is the dependent variable, and Y one of the 
independent variables. This might be more appropriate when salary levels are 
fixed, but the number of years x2 needed to reach a salary may be vaned by 
the employer. Define Y' = Y - qf - F,m- The least squares lines for the case 
that the roles of Y and x2 are reversed again pass through the points of means, 
but have common slopes, when the abscissa is x2, ); = llY'1I2/(x2, Y') = 
IlY" I12/(x:, Y) = &r2, where r is the partial correlation coefficient of Y and 
x2, with the effects off  and m removed. The regression line for females will be 
above that for males if the slope of the line between the point of means for 
females to the point of means for males is greater than 1: = &r2. Supposing 
rz < 1, it follows that f i? > b,. Thus, it is quite possible for the female line to 
be above the male line when Y is used as the dependent variable, but below 
when x 2  is the dependent variable, indicating that females wait longer to achieve 
the same salary, though they have higher average salaries for the same time in 
rank. Of course, the reverse conclusions are also possible. This paradoxical 
situation is a consequence of the use of least squares, with the sum of the squares 
of vertical distances being minimized in one case, and the sum of squares of 
horizontal distances (x, -distance) in the other. In the courtroom, opposing 
lawyers in a dis-crimination suit, with their own "expert" statisticians, can each 
find supporting arguments. 

For the College of Arts and Letters the estimates of the regression lines were: 
%' = 40,611.0 + 710.86 x2 for females, and ? = 41,916.2 + 710.86 x2 for males. 
When x2 is treated as the dependent variable we get f2 = - 12.829 + 4.863 1 x 
10-4Y for females, and d2 = - 13.370 + 4.863 I x 10-4Y for males. Reversing 
the axes, with x2 as the abscissa, we get the lines Y = 263 8.0 + 205 6.3 x, for 
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females, and Y = 2749.3 + 2056.3 x, for females. The partial correlation 
coefficient of Y and x2 with the effects of the gender variables removed was 
r = 0.5880. The conclusions are consistent. For the same number of years in 
rank, when we use Y as the dependent variable, we estimate that males tend 
to have a salary about $1,300 higher. When we treat x, as the dependent 
variable, we estimate that males tend to earn about $1 1 1  more, and to have to 
work about six months less to earn the same salary. Too much should not be 
made of this, however, because the differences are not statistically significant. 

Problem 3.13.1: Consider the following salary data (fictitious) for the 
Department of Sociomechanics at Rich University in thousands of dollars per 
month (Y) and x, (years in rank). 

Females Males 

x, 1 2 2 3 x 2  3 4 4 5 
Y 2 3 5 6  Y 8 6 12 10 

(a) Fit the model Y = so + /llx, + b t x z  + E, where xl is the indicator for 

(b) Estimate o2 and give a 95% confidence interval on 8,. 
(c) Fit the model x2 = Do + y,xl + qY + E. Sketch the regression lines for 

males and for females, with x2 as the abscissa. On the same axes sketch the 
regression lines found in (a). Does there seem to be discrimination? 1s it for or 
against females? 

(d) Find the partial C.C. r of Y and x,, with the effects of gender removed. 
How is r related to the slopes of the lines sketched in (c)? 

(e) The Department of Philosophical Engineering uses the formula Y = 40 + 
IO,/xi. I t  has five female full professors, having x, = 0, 1, 2, 3 ,4  and four male 
professors having x2 = 8, 12, 16.20. Repeat (a) for this department. Does there 
seem to be discrimination? 

femalcs. 

Problem 3.13.2: Suppose that for the model and x2 values of problem 3.13.1 
p1 = -2, p, = 2, and u = 0.8. What is the power of the a = 0.05 level F-test 
(and two-sided t-test) of If,: P I  = O? 

Problem 3.133: The College of Natural Science (Physics, Chemistry, 
Mathematics, Zoology, etc., including Statistics) had 178 full professors on 
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nine-month appointments in 1993- 1994. For 15 female professors S,  = 7,167.2, 
S,, = 6.174, with correlation coefficient rYxl = 0.1094. For 163 male professors 
Sy = 13893.0, S,, = 7.773, with rkx2 = 0.1623. The means were 8 =  57,023.87, 
.f2 = 8.867 for females and Q= 65848.7, Z2 = 14.436 for males. 

(a) Use the model of Problem 3.13.1 to decide whether the data indicate 
discrimination against females. 

(b) Find a 95?; confidence interval on PI .  
(c) Find the multiple correlation coefficient for this model. 

Table 3.13.3 

Nutionul Leugue 

East 

New York 
Pittsburgh 
Montreal 
Chicago 
St. Louis 
Philadelphia 

Wcst 
Los Angela 
Cincinnati 
San Diego 
San Francisco 
Houston 
Atlanta 

Americun i.uayue 

E a t  

Boston 
Detroit 
Toronto 
Milwaukee 
New York 
Cleveland 
Baltimore 
Wcst 
Oakland 
Minnesota 
Kansas City 
Calibrnia 
Chicago 
Texas 
Seattle 

0.625 
0.531 
0.500 
0.475 
0.469 
0.404 

0.584 
0.540 
0.516 
0.512 
0.506 
0.338 

0.549 
0.543 
0.537 
0.537 
0.528 
0.48 1 
0.335 

0.642 
0.562 
0.522 
0.463 
0.44 1 
0.435 
0.422 

0.256 
0.247 
0.25 I 
0.261 
0.249 
0.239 

0.248 
0.246 
0.247 
0.248 
0.244 
0.242 

0.283 
0.2 50 
0.268 
0.257 
0.263 
0.261 
0.238 

0.263 
0.274 
0.259 
0.261 
0.244 
0.252 
0.257 

0.328 
0.321 
0.31 1 
0.312 
0.3 12 
0.308 

0.308 
0.31 1 
0.313 
0.321 
0.308 
0.301 

0.360 
0.326 
0.334 
0.316 
0.336 
0.317 
0.307 

0.339 
0.343 
0.324 
0.324 
0.305 
0.323 
0.319 

152 
110 
I07 
113 
71 

106 

99 
I22 
94 

113 
96 
96 

1 24 
143 
158 
I13 
148 
134 
137 

156 
151 
121 
124 
I32 
112 
I48 

140 
I19 
189 
120 
234 
112 

131 
207 
123 
121 
198 
95 

65 
87 

I07 
159 
146 
97 
69 

129 
107 
137 
86 
98 

130 
95 

0.98 1 
0.980 
0.978 
0.980 
0.98 1 
0.976 

0.977 
0.980 
0.98 I 
0.980 
0.978 
0.976 

0.984 
0.982 
0.982 
0.98 1 
0.978 
0.980 
0.980 

0.983 

0.980 
0.979 
0.976 
0.979 
0.980 

0.986 

2.9 1 
3.47 
3.08 
3.84 
3.47 
4.14 

2.96 
3.35 
3.28 
3.39 
3.4 1 
4.09 

3.97 
3.7 I 
3.80 
3.45 
4.24 
4.16 
4.54 

3.44 
3.93 
3.65 
4.32 
4.12 
4.05 
4.15 

703 
65 1 
628 
660 
578 
597 

628 
641 
594 
670 
617 
597 

813 
703 
763 
68 2 
772 
666 
550 

800 
759 
704 
714 
63 1 
737 
664 
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Problem 3.125: The data of Table 3.13.3 describe the performances of the 
26 major league baseball teams during the 1988 season. Teams played between 
160 and 163 games (rainouts caused fewer, ties caused more, than the scheduled 
162). Presented are: Y = percentage of games won, x, = batting average 
(proportion of hits to times at bat), x2 = on base average, x3 = # home runs, 
xq = # stolen bases, x5 = fielding average, and x6 = earned run average (mean 
number of runs given up per nine innings), and r = # runs scored. The data 
are from page 916 of the 1989 version of Total Baseball, Thorn and Palmer 
(1989). It would be of interest to determine the relationship between Y and the 
explanatory variables x,, . . . , x6, (not including r )  and to explain a reasonable 
proportion of the variation in Y, using as few of the explanatory variables as 
possible. Those who discover a good prediction formula may be hired as a team 
general manager. A general manager may be able to control some of the 
x-variables, at the expense of others, by making trades of players, drafting some 
players rather than others, or by spending money on the a minor league system, 
but could not control r directly. For this reason it is of interest to omit r as an 
explanatory variable. 

(a) Fit the model and use appropriate tests of hypotheses to decide whether 
a smaller model would suffice. Prepare a one-page report which could be 
understood by the president of a baseball team who had a beginning statistics 
class 40 years ago. Particularly ambitious readers may want to analyze such 
data for the years 1901-1994. 

(b) Since teams win when they score more runs than the opponent, it would 
seem that r and x6 alone would serve as better predictors of Y. Is that true for 
these data? How well can r be predicted from the x-variables? 
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Fitting of Regression Models 

Good model-building requires knowledge of the subject matter involved, a 
grasp of regression techniques, access to a computer and software, and 
ingenuity. Rather than looking for the model one looks for reasonable models. 
Only in an idealized world is there a perfect model. The regression function is 
almost never exactly linear in the independent variables. the errors probably 
do not have equal variances, and are not normally distributed. 

The purpose of this chapter is to provide some understanding of model- 
building techniques and of the effects of deviations from the idealizations we 
have made, and provide some techniques for recognizing them, and for making 
adjustments. The chapter should be viewed as a brief introduction rather than 
a complete review. Entire books have been devoted to regression techniques. 
See Cook and Weisberg (1982), Belsley, Kuh, and Welsch (1980), Myers (1986), 
Seber (1977), Searle (1971), Draper and Smith (1981), Carroll and Ruppert 
(1988), Hastie and Tibshirani (1990), and Koul (1992). 

4.1 LINEARIZING TRANSFORMATIONS 

Consider the problem of finding a regression function g(x) = &( Ylx)  for a single 
variable x. We have discussed techniques for estimating g(x) for the case that 

y(x) is a linear combination h ( x )  = P j f , ( x )  when the rj  are known functions 

of x; that is, y(x) is expressible as a linear function of unknown parameters flj. 
Presumably if g is a smooth function and x is not allowed to range too widely 
then g(x) may be approximated by a function of the form of h(x)  over the range 
of intcrest for x. What can we do if this is not the case? 

Consider a simple example, with observed ( x i ,  x) pairs as in the scatter 
diagram of Figure 4.1. 

It may be possible to fit a model of the form of h above, for h quadratic or 
cubic, say. However, the model is likely to require a number of parameters and 
could very well have undesirable properties at the extremes of x, particularly 

1 45 

k 

j -  1 
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if extrapolation is to be used. We might instead like to consider a function 
h(x)  = h(x, yo,  y l )  = yoeY'*, since it is always positive (for yo > 0) and approaches 
0 as x --$ ~j (for j ' l  < 0). This function is not linear in the parameters, however. 
The principle of least squares would, for observations ( x i ,  x ) ,  i = 1,. . . , n, lead 
to the minimization of the function 

Since h is not linear in yo and yl ,  the solution (Po, . i l)  is not linear in the &. 
Many statistical computer packages include routines which find the solution 
by iterative means. 

We will instead show how the model may be linearized so that techniques 
already discussed may be employed. Ignoring an error term, consider the 
approximation Y = h(s, yo, y l )  G y 0 P  or log Y = log yo + y l x l  (the symbol = 
means approximately equal). Setting 2 = log Y, Po = log yo, fll = yl, we get 
Z = Po + pix, a function linear in Po,  f l , .  If we now employ the simple linear 
regression model Zi = Po + #Itxi  + ci for Zi = log x ,  we can obtah  an estimate 
(b,, b , )  for (Po, P1), then use these to obtain the estimate (Po = el0, = b, )  for 
Qo, rl). Of course. this linear model is equivalent to 

so that the error term v i  = eel for is now multiplicative and has a log-normal 
distribution if  the ci have normal distributions. Confidence intervals on yo or 
y ,  may be found by first finding confidence intervals on Po or /I,. Lack 
of dependency of Y on ?I corresponds to b1 =O.  Note that the function 
h ( x )  = yoe7'* is not the regression function of Yon x in general, since E(e i )  = 0 
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FIGURE 4.2 

does not imply E(e") = 1. However, it may be a reasonable approximation. Of 
course, the solution (Bo, f l  j does not minimize Q. 

Consider a scatter diagram of the form (a) or (b) in Figure 4.2. Data of the 
sort in (b) may arise in chemistry when x = l j v ,  u is volume, and Y = p is 
pressure at a constant temperature. For either graph we may consider 
the model h(xj = y0xb1, with p1 < 0 corresponding to (a) and 0 < 8, 
corresponding to (b). Linearizing again. take Y i yox@l, Z = log Y =  
log y o  + 8 ,  log x = Po + P,w.  Considering the model Zi = Po + p l w i  + c i ,  for 
X i  = log q, wi = log xi, we can again find an estimate (&, 8, j for ( P o ,  a,), then 
let fo = e@o, 

In the case that Y is necessarily between 0 and 1, a proportion for example, 
we might consider the model 

= 1,. 

1' 
h(x)  = - for D = y o ~ 7 1 "  

1 + 11 

Setting Y = h(x)  and solving for v, we get v i Y/(1 - Y) and log u 5 

log yo + pls = log = 2. Sctting Zi = log[Y;i(l - &)I, Po = log yo, 

P I  = y , ,  and considering the model 

we can now estimate (p,, p,), hence yo = ebl and y ,  = PI. Least squares is not 
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in general the best method to be used in the estimation of ( f l 0 , f i I ) ,  since the 
usual error model for the ci is usually not appropriate (see Chapter 8). However, 
least squares will usually provide quite reasonable estimates. 

More generally for several independent variables (xl, . . . , xt)  the trans- 

formation 2 = log - .- (called fog-odds for probability Y) facilitates the 

fitting of the log-linear model 
( I  3 

h(5) = k(ii)/[I + k(5)J 

for ii = (x,, . . . , x k )  and k ( l )  = exp 1 pixi . (: ) 
The plotting of Y vs. x, log Y vs. x, log Y vs. logx, etc. can suggest 

which model may fit reasonably well. For example, if log Y seems to be 
approximately linear in x, then the model log Y = + B,x, equivalently, 
Y = yOeSIX may be appropriate. Or, if log Y seems to be quadratic in n, then 
Y = exp& + Plx + &x*) may be appropriate. 

Example 4.1.1: Consider 74 makes of automobiles with measurements: 
miles per gallon (mpg) and weight (wgt), as reported by the magazine Consumers 
Report. Figure 4.3 indicates that the regression of mpg against wgt is not linear. 

Volkswagen 
Rabbit 

40 

30- 

20 - 

10 - 
MPG = 39.58 + 0.00607 WEIGHT 

0 J 
I 1 1 

50 

40 

30 

20 

10 

0 

Volkswagen 
Rabbit 

I i 

0 2000 40oo 0 2 4 6 

Weight 1OOOOMleight 

FIGURE 43 Miles per gallon vs. weight and 10,000jweight for 74 automobiles. 
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Y 

There seems to be a significant gain in mpg per pound as wgt drops below 
2,000. A plot of mpg vs. 10,000/wgt is more linear and suggests the model 
mpg = Po + /?,(lO,OOO/wgt) + E. Least squares was used to fit this model, then 
the fitted model mpg = 3.556 + 49,78O/wgt plotted on the (wgt, mpg) axes for 
the weights observed. The resulting curve seems to be a better fit than the 
straight line. 

Example 4.12: Consider ten (x, Y) pairs as follows, where we seek a 
model for which 0 I; Y 5 1 for all x 2 0. 

x 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Y 0.035 0.080 0.171 0.329 0,538 0.734 0.868 0.940 0.974 0.989 

2 = l o p ( L )  is approximately linear in x, with 2? = -4.171 + 1.729~ (see 

Figure 4.4). Thus f = g/(t + 2). 
1 - Y  

Example 4.13: Consider the (x, Y) pairs in the first two columns of 
Table 4.1.1. It is possible that a quadratic function of x may fit these data points 
reasonably well. However, a plot of Z = log Y vs. x indicates that 2 is 
approximately linear in x, or, equivalently, that Y may be approximated by a 
function of the form h(x)  = yoeYlr Taking logs, we get the approximation 
Z = log Y = log yo + y,x, so we can use simple linear regression of Z on x to 
estimate log yo and y, (Figure 4.5). 

4 

2 

0 
2 

-2 

-4 I . . . . ,  

0 1 2 3 4 5  0 1 2 3 4 5  

X X 

FIGURE 4A Least squares fit of 2 = log(Yj(1 - Y ) )  vs. x and estimate of the regression of Y 
on x. 
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4.161 
9.786 

10.850 
23.000 
34.500 
43.190 
79.940 
99.880 

1.222 
1.426 
2.281 
2.384 
3. I35 
3.541 
3.766 
4.38 1 
4.604 

1.203 
I .645 
2.087 
2.529 
2.971 
3.413 
3.855 
4.297 
4.739 

3.330 
5. I82 
5.182 

12.540 
19.5 10 
30.360 
47.240 
73.490 

114.300 

0 J r  I 

1. 

0 2 4 6 8 10 0 2 4 6 8 1 0  

X X 

FIGURE 4.5 Fit of Y vs. x using linear fit of Z = log Y vs. x. 

Measuring the Goodness of Fit: In order to compare two or more attempts 
at fitting models to the same data we need a measure of the closeness or goodness 
of the fit. If the approximation of yi given by the model is q, then one such 

measure is R2(q,  y) = 1 - 2 ( Y C  '8 . This is the multiple correlation coeffi- 

cient only if the fi were obtained by fitting a linear model with a constant 
term. Consequently R2@) can be less that zero! 

Suppose that a transformation z = g(y) is made. Let 2 be the predicted value 
of z by fitting a linear model for z vs. x. Let 9 be the predicted value of y for 
a simple linear regression of y on x, and let qz = g-  '(2). Scott and Wild (1991) 

C (y i  - Y)' 
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give an example of a collection of six pairs of (x,y) values for which 
R2@, y) = 0.88. while R 2 ( i i z ,  y) = -0.316! 

(x, y): (O,O.l), (3,0.4), (8,2). (13, lo), (16, 1% (20, 16). 

In the least squares sense j is a better predictor of y than is q,. On the z-scale 
R2@, 2) = 0.94. Scott and Wild warn, and give examples to show, that values 
of R 2  based on different scales are not comparable. 

Measurement of the value of a transformation should be based on the scale 
to be used in making judgcments about the subject matter. These who use the 
methodology must choose the scale on which measures of the goodness of 
approximation are to be made. Finally, we should be reminded that the choice 
of R‘ as a measure was somewhat arbitrary. We could, for example, replace 
squared deviations by absolute or maximum deviations. 

Problem 4.1.1: Consider the ten (xi, &) values of Table 4.1.2 and the 
corresponding plots of (xi, Q and ( w i ,  &) for wi = In xi (see Figure 4.6). State 
a model which will justify 95?, confidence and prediction intervals on E( Y l x )  
and on Y for x = 10 and find these intervals. 

Table 4.1.2 

x Y W x Y H’ 

2 20.43 0.693 6 12.45 1.792 
2 20.92 0.693 8 10.35 2.079 
4 15.57 1.386 8 10.18 2.079 
4 14.85 1.386 10 7.78 2.303 
6 13.02 1.792 10 9.09 2.303 

Table 4.1.3 

X v W U 

1 0.5 21.640 -0.693 3.075 2.000 
2 1.0 8.343 o.oO0 2.121 1.Ooo 
3 1.5 4.833 0.405 1.575 0.667 
4 2.0 4.300 0.693 1.459 0.500 
5 2.5 2.343 0.916 0.851 0.400 
6 3.0 2.623 1.099 0.964 0.333 
7 3.5 1.818 1.253 0.598 0.286 
8 4.0 1.628 1.386 0.493 0.250 
9 4.5 1.09 1.504 0.647 0.222 

10 5.0 1.120 1.609 0.113 0.220 

E X =  27.5 ~ x z = 2 1 . 5 0  
X X ’ =  96.25 ZW,=  4.191 
Z y = 50.57 uy = 60.38 
c y ’  = 603.0 X U Z  = 3.946 

1 ~ ’  = 11.52 

XZ’ = 21.25 
X U  = 5.860 
XU’ = 6.199 

w = 8.173 

X i =  11.98 
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Problem 4.1.2: Find a 9004 confidence interval on y1 for the data in 
Example 4.1.2. What model justifies this interval? 

Problem 4.13: For the (xi, K )  pairs of Table 4.1.3 and Figure 4.7 define 
wi = log xi, zi = log x ,  uf = l/xi. Suggest a model, estimate the parameters, 
and sketch the resulting function h(x).  

Problem 4.1.4: Verify the two values of R 2  given by Scott and Wild. 

4.2 SPECIFICATION ERROR 

I t  is often difficult to determine which of many possible variables in 
3 = (.xl,. . . , x t )  to use in estimating the regression function y(B) = E(Y 1%) or 
in predicting Y, particularly in cases for which n is relatively small. The 
statistican is torn between the wish to keep the model simple and the wish for 
a good approximation. If a poor choice of a subset xi,, . . . , xi, of possible 
measurements is made, what will the penalty be? 

For example, in trying to determine the regression function g(%), should we 
use a fifth degree polynomial, or will a quadratic function suffice? Obviously 
we can fit the data more closely with a fifth degree polynomial, but may pay 
a price in increased complication, poor extrapolation, and, as we shall see, a 
loss of precision. On the other hand, if the true regression is cubic (it wouid be 
better to say, is approximately cubic for .x of interest) and we fit a quadratic 
function some inaccuracy (bias) would seem to result. 

To make the discussion precise suppose Y = 8 + E for E - N ( 0 ,  02J,)  and 
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our postulated model is 8 E V, a known subspace of R ,  of dimension k. As will 
be seen by the following analysis, if 8 6  V,  errors may result. To see this, let 
8 = 8" + 8_ for 0, = p(8l V). Let E, = P(E( V) and E, = E - E,. Then the least 
squares estimator of 8 is f = 8" + E" and the error in the estimation of 8 is 
d = * - 8 = -8, + E,. Thus, f has bias -OL. We can assess the expected 
sizes of the errors made in estimating 8 by computing 

Here we have taken advantage of the orthogonality of 8, and E, (Figure 4.8). 
To gauge the size of this we can compute the sum of the expected squared errors. 



154 FITTING OF REGRESSION MODELS 

FIGURE 4.8 

since V has dimension k. 
We might also study the random variable Q = lld1I2 = !18,112 + l l ~ ~ I [ ~  in 

order to understand the sizes of these errors. Q is a constant plus 6’ multiplied 
by a central X’ random variable (not noncentral x2) ,  with expectation given 
above. 

Error sum of squares is (/Y - Qll’ = liei + ~ ~ 1 1 ~ ,  so that IIY - P11*,/02 - 
xz-k(b) for 6 = ll8,IIZ/O2. Thus, E(S’) = 0’ -I- l18,!i2/(n - k). 

In searching for a good model we might try to choose a subspace V so that 
H ,  = Elldl12/az = l!@,lI’/d + k is small. Of course, If, depends on unknown 
parameters. It can be estimated if we can find an estimator of pure error uariunce 
0’. We might, for example, use a particularly large subspace V, in which we 
are quite sure 8 lies, and use error sum of squares for this subspace to estimate 
0’. Or we might use past data from another experiment with repeated 
observations on Y for the same il to estimate 4’. Let oZ be this estimator of 
pure error variance. Let S 2  be the estimator for the subspace V. 

(n - k) + k can be 

used as an estimator of H,. C, is called Mallows C, for the case that dim( V )  = p 
(Mallows 1964). Since H, = dim( V )  for 8 E V, we should hope to find a 
subspace V such that C ,  is close to or smaller than dim(V). 

Consider, for example, a sequence of regression vectors x,, x2,  . . . , with order 
chosen by the statistician. x j  might, for example, be the vector ofjth powers. 
Then for V, = V(x,,  . . . xk) and ck = CYkr we can compute the sequence C, ,  
C,, . . . and, as recommended by Mallows, plot the points (k, ck), choosing the 
subspace & for the smallest k for which ck is close to k. 

One possible criterion for the choice of a subspace Vo rather than a subspace 
V in which 8 is known to lie may be developed as follows. Since the bias of 
9, = p(Y 1 V,) is p(OlV,) - 8 = -eL and the sum of the squared errors is 
Q = !i8;Ii2 + IIE,~,II~, we have E(Q) = \lOl!I2 f k,a2 (see Theorem 2.2.2). The 

(S‘ - 
ri2 

Then E ( S Z  - a 2 ) ( n  - k )  = l18,11z, so that C, = 
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sum of squared errors for 9 = p(Y I V )  is ~ ~ E ~ ~ ~ ’ ,  which has expectation ka’. Thus 
we should choose V, if 

equivalently if the noncentrality parameter b = l10LI12/aZ in the F-test of 
H,: 8 E Vo is less than k - k, .  

and Qo = IIY - Po)!2. Then Q - Qo = I I ?  - 9ol12 has 
expectation llOL(I2 + ( k  - ko)a2 and E ( Q )  = ( n  - k ) d ,  so that 

Let Q = llY - 

k - k  
QO - Q( ---) n - k  

is an unbiased estimator of lpLliz. Thus, if we replace the parameters in (4.2.1) 
by unbiased estimators we get Q o  < 2 Q [ ( k  - ko)/(n - k ) ] ,  equivalently F = 

< 2. This is equivalent to C, < k (see Problem 4.25) .  (Q - Qo) / (k  - ko)  - 

Qt(n  - k )  

Example 4.2.1 : The data of Table 4.2.1 were generated using the regression 
function 

!?(a) = Yo + YlXl + B 2 . 9  + B 3 x 3  + B l x :  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 

10 
10 

1 
2 
3 
4 
1 

3 
4 
I 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

1 

1 
2 
4 
3 
1 
5 
4 
3 
5 
4 
3 
1 
1 
1 
1 
5 
5 
3 
3 
1 

8.04 
17.57 
27.43 
28.96 
15.78 
30.9 1 
28.95 
28.79 
40.74 
23.04 
29.60 
33.98 
24.65 
3 1.42 
39.82 
62.77 
49.23 
47.81 
65.14 
53.56 

11.46 
20.17 
34.60 
20.3 5 
18.72 
30.04 
18.27 
33.89 
34.7 1 
26.81 
34.78 
24.67 
26.36 
41.04 
37.68 
54.8 I 
53.78 
50.30 
55.03 
54.30 

9.8 1 
16.93 
28.20 
27.78 
11.48 
29.92 
3 1.72 
3 1.30 
3 1.94 
3 1.52 
35.18 
30.98 
25.93 
29.28 
38.56 
57.00 
53.79 
49.60 
60.73 
56.53 

14.33 
19.20 
27.1 I 
25.23 
14.69 
29.70 
29.55 
27.67 
32.72 
30.84 
32.77 
27.50 
27.88 
29.37 
36.76 
5 I .76 
54.2 1 
48.95 
58.41 
53.15 
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for po = 10, B1 = - 1, p, = 2, p3 = 3, p4 = 0.4, o2 = 25. Consider the full 
quadratic model 

and the sequence of subspaces V, spanned by the first k terms. So Vs is the true 
model. For these parameters two determinations Y, = 8 + and Y, = 8 + E, 

were made for 20 triples I, = (x,[,xZi, x3[). Table 4.2.1 presents xl, x2 ,  
x3, Y ,, Y, and estimates of 8 corresponding to Y,  and Y, for model V,. 

An estimate 8' of o2 was obtained by fitting the full quadratic model with 
10 parameters. For Y, and Y, these were d: = 26.04 and 8: = 32.18. Then 
consecutive models V,, V 3 , .  . . , V, were fit, and values of S; and the Mallows 
statistic C, obtadined for each (Table 4.2.2). If we define 6 = 8 - p(8l I$), then 
C, is an estimate of Hvk = lle",\12/02 + k (recall that dim(&) = k + 1). In 
choosing a model we look for the smallest k for which C, is reasonably close 
to k, equivalently S," is close to 8'. For both Y , and Y, this suggests the model 
Ki. 

For these models the analyses for Y, and Y, are given in Table 4.2.3. 

Table 4.2.2 

- 

2 
3 
4 
5 
6 
7 
8 
9 

10 

75.740 
63.902 
33.827 
2 1.458 
21.551 
20.563 
22.048 
24.020 
26.044 

37.255 

8.080 
1.182 
2.412 
3.054 
5.005 
7.067 
9.000 

2n. I 65 
0.684 
0.748 
0.875 
0.925 
0.930 
0.938 
0.939 
0.939 
0.940 

59.952 
60.024 
38. I27 
22.239 
23.606 
25.249 
27.299 
29.612 
32.182 

17.395 
17.763 
6.140 

- 0.943 
1.003 
2.984 
5.028 
7.04 I 
9.000 

0.696 
0.71 1 
0.828 
0.906 
0.907 
0.907 
0.908 

0.909 
0.908 

Table 4.2.3 

y, y2 

i S j  Sb, ti R j  i bj s6j t j  R j 

0 3.235 4.579 0.707 0 10.833 4.662 2.324 

2 3.351 0.938 3.573 0.928 2 1.494 0.955 1.565 0.944 
3 3.772 0.684 5.511 0.880 3 3.379 0.697 4.849 0.871 
4 0.463 0.145 3.197 0.935 4 0.519 0.147 3.526 0.910 

1 -1.013 1.631 -0.621 0.961 1 -1.8% 1.661 -1.142 0.947 
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Table 4.24 

i /?I Sb, t j R, 
0 R.116 6.822 1.190 
I - 1.047 1.635 - 0.640 0.963 
2 - 1.712 5.321 -0.322 0.964 
3 3.860 0.692 5.578 0.880 
4 0.466 0.145 3.2 12 0.937 
5 1.012 1.047 0.967 0.962 

R, is R-delete for the j t h  variable, the multiple C.C. when that variable is 
deleted. 

Thus, for these examples the procedure worked well. It will not always work 
as well. Had we entered the Bsx$ term before the p,x: term the Mallows 
statistics for Y, would have been C,: 37.3, 28.2, 8.1,9.5, 2.4, 3.1, 5.0, 7.1, 9.0 for 
k = 2,. . . , 10, so that the model V, would have been chosen, producing the 
regression analysis of Table 4.2.4. This suggests that variable 6 or 3 be dropped. 
Since variable 6 is x i ,  it seems more reasonable to drop this, reducing the model 
to V, again. The close linear relationship between x2 and x: caused their 
regression coefficients to have large variance, so that both t3 and t, are small. 

The AIC procedure of Akaike (1973, 1978) chooses the model A", in a 
sequence of models MI, . . . , ML of dimensions given by the subscripts for which 
AIC(k) = n(1ogS; + 1 )  + 2(k + 1 )  is minimum. Both this criterion and the 
Bayesian informatioo criterion, which minimizes BIC(k) = n log S,' + k log n, 
can be justified from the Bayesian point of view. See Schwarz (1978) for a 
discussion of the asymptotic properties of these procedures. Hurvich and 
Tsai (1993) discuss the effects of use of these criteria for model selection 
on the estimation of parameter vectors by confidence ellipsoids. For a full 
discussion of model-building methods see the book by Linhart and Zucchini 
(1986). 

Effects of Specification Errors on g = c'v 

In order to assess the effect of specification errors on fi, or more generally, 
q = c'v we need to specify 8 and V in terms of specific x-vectors. We consider 
two cases: overspecification and underspecification. 

Over specification 
k k r 

Suppose 8 = 1 p i x j .  but our postulated model is 8 = C p j x j  + yjwj, where 
1 1 1 

(x,, . . . , w,) are linearly independent. In matrix form we can write 8 = X@ + W7. 
The true model therefore corresponds to the statement that y = 0, so 

that the least squares estimator @,f) of (fi,7) is unbiased. To see how 
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this overspecification affects variances, consider a parameter r~ = clp, + . . . 
+ ckSk. The Gauss-Markov Theorem states that oo = cjf i jO.  where bo = 

@,”, . . . , pro)’ is the least squares estimation of under the true model, has the 
smallest variance among all linear unbiased linear estimators. Since 4 = c$ is 
a linear unbiased estimator, we conclude that 

r 

1 

Var(0,) c Var(4) unless t j  5 if,. 

More explicitly, from the proof of the Gauss-Markov Theorem, we get 

the unique vector in V, = Y ( x , ,  . . . , x, j satisfying X’a, =1 c. 
In order to write t j  explicitly, define Z = (X, W) = (xi,. . . , x k ,  w,, . . . , wT). 

h \  
Then 4 = (a, Y) for a = Z(Z’Z)-’ [ ,” , ,) = “;“‘r)yc the unique vector in 

V = Y(x, ,  . . . , x k ,  wl,. . . , w,) satisfying Z‘a = I r  ,” ,I. Then Hal VO) = ao, so 
that 

For = p(Y I b’)* (Y  - q)  I V,, since Vu is a subspace of I f .  Therefore, 

- I:-~-, and S2 = l/Y - Pllz/[n - (k + r)]  is an unbiased estimator liY - - Q I 2  
o2 

of oz even in the case of overspecification. The degrees of freedom for error is 
smaller by r than it would be for the true model, so we pay a price in reduced 
degrees of freedom for error. 

L‘n&rspeci/ication 
Suppose that the true model is 8 = Xb + Wy, but the postulated model is 
8 = Xfl. If V is the column space of X, then qv has bias -8, = -(I - Pv)Wy. 
Since E ( 8 )  = (X‘X)-’X’Y = (X‘X)-’X’(Xp+ Wy) = fl + (X’X)-’X‘Wy, p has 
bias (X’X)-’X’Wy as an estimator of p. However, E(Xb) = PvY = OVr so that 
8 is an unbiased estimator of the vector fly = 8 + (X’X)- ‘X‘Wy of coefficients 
in the least squares approximation 8, of 8. 

Suppose that we wish to estimate q = E(YIS, ik )  = g(S,  ik)  = afl + iky, the 
mean Y for an individual or unit with characteristics (2, i7). For the postulated 
model the estimator is f = jib, where 8 is-the least squares estimator cor- 
responding to X. Let Cpo,fo) and tjo = + G90 be the estimators cor- 
responding to the true model. It is important to interpret the ith component 
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of fi as the change in y(2, +) given a change in one unit in the ith component 
of 1, and no changes in other components of (k, 69. 

Let Y = Y(X), Z = (X, W), Yo = U ( Z ) ,  d = XM-'5,  do = Z(Z'Z)-'(C, ii)'. 
Then 4 = dY, to = dhY, and 

E ( 4 )  = d'6 = IM- 'X ' (X f l+  Wy) = %fi + kM-'X'Wy 

so that 4 has bias 

h ( 2 , G )  = (d - dJ6 = ( fM-'X'W - 6 ) ~ .  

The first term within the last parentheses is the predicted value of + for given 
1 based on the data (X, W) and a linear model W = XB + o, where o is an 
n x r error matrix. Thus, if ii is exactly consistent with the relationship between 
X and W, then 4 is unbiased for 1. 

For example, let Y be college grade point average, x, S.A.T. exam score, w1 
high school grade point average, and suppose linear regression of w ,  on x, 
predicts w ,  = 2.90 for x,  = 500. Then tj is an unbiased estimator of g(500,2.90), 
but would be biased for g(500,3.60). 

In order to compare t j  and do let us compute their mean square errors. We 
have 

Var(4) = lld[120' and Var(9,) = IldoI12a2. 

Since d E Y and, since d;Z = db(X, W) = (5, G), X'd, = 1 and X'd = 1, d = 
p(dol V ) .  Let dL = do - d. Then d, I V and do = d + d, is a decomposition of 
do into orthogonal vectors. It follows that 4, = (do, Y) = 4 + (d,, Y), where the 
two terms on the right are uncorrelated. Thus, 

MSE(4) = b 2 ( t  ik)  + Var(4) = [d; Wyl' + lld112~2 

and MSE(4,) = Var(fjO) = lIdoli2a2, so that 

Thus tj is a better estimator than 4, if 

6 is maximized for all d, E V1 n Yo, equivalently all (1, +), for dl any multiple 
of p(WyJ Vi n 16) = (1 - P,)Wy. We conclude that 4 is better than q0 for all 
vcctors (%,+) if 

A = [y'w'(r - P ~ ) W ~ I / ~  = lleLli2/a2 < I 
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A is the noncentrality parameter in the F-test of H,: y = 0. Since 

E ( F )  = 1 + -- for ( v , ,  v2)  d.f., and unbiased estimator of A is D = 

(r2v:2 F - I),,  so we could choose to use the smaller model when D < I ,  

equivalently if F < (I ;;I) v 2  - . This requires knowledge of W, of course. 

Here v 2  = n - ( k  - r), v 1  = r. For large n and r = 1,  this suggests dropping a 
single w if the F-statistic for testing H,: y = 0 is less than 2, equivalently if 
It1 < 45. It is difficult to evaluate the properties of such a procedure. 

It is possible that 6 can be less than one for some (2, G), greater for others, 
since 6 depends on the bias term (WM-’X’W - 3)y. In the case that W = w, 
a one-column matrix, the subspace V -  n is spanned by wL = p(wl V1 n I$), 
we get 

v 2 - 1 (  v 2  :) 

v 2  - 2 

6 = Y211w~112/~z, 

which does not depend upon (1,ii), so that rj is either better or worse than 
rjo, uniformly for all (2, ii). 

It is important to interpret the ith component of 6 as the change in 
E(Y) = g(1, i i )  given a change in one unit in the ith elements of f, and no 
change in G. 

As noted earlier E(S2)  = crz + l18,J12/(n - k). In the case of underspecification 

8, = (I - P,)WY, SO that lle,112 = ~ d .  

Thus E(S2) = uZ( 1 + A ). 
n - k  

Example 4.2.2: Suppose that g(x) = E( Ylx) = flo + 8,x + p2x2 + &x3. 
Var(Y(x) = u2, and we observe Y independently for x = -2, 1, 0, 1, 2. What 
penalty do we pay if our postulated model is simple linear regression: 
Ax) = 8, + P l X ?  

w, = (4, 1,0, 1,4)’, 
wz = (-8, - 1.0,1,8)’, so that X = (xo, xl, x2), W = (wl, wt), 8 = (Pi, V J ,  
7 = (r,. y J ,  8 = 0, + 8, where 8, = Xp, OZ = Wy. Then 8, = 6 - 
p(8l V )  = 8, - p(8,I V )  = f13w: + &w:, where for i = 1, 2, wl; is the part 
of wL orthogonal to V. Thus, w: = wI - 2x0 = (2, - 1, -2, - 1,2)’, wi = w2 - 

Thus, for example, e2 has bias -( -& + 2.48,) as an estimator of 8,, while 
9, has bias 2f13 as an estimator of 8,. Since l ~ O L ~ l 2  = 83Ilw;ll’ + flfll~i11~ = 
14b: + lop:, E(F2)  = aZ + (14/3)8: + (10/3)8f. 

The bias in 6 = (b,, ),>I is (X’X)-’X‘Wy = (2&, 3.48,)’. Thus, #& is un- 
biased for Po if and only if& = 0, and 8 ,  is unbiased for f l l  if and only if 8, = 0. 

Define x, = (1, 1, 1, 1, l)’, x, = (-2, - 1,0, 1,2)’, 

3 . 4 ~ ~  = ( -  1.2, 2.4, 0, -2.4, 1.2)’. 
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Table 4.2.5 

Model coo c11 c12 c33 c44 

us 0.971 13 0.12400 0.040 99 0.021 83 0.000 98 
'76 2.159 27 0.12406 1.31343 0.022 22 O.OO0 98 
u7 2.285 11 0.131 41 1.818 19 0.896 44 0.001 01 
V 8  2.566 52 0.13388 2.504 56 1.21 8 20 0.001 23 
1'9 2.606 0 1 0.141 64 3.327 51 1.804 93 0.001 27 
010 2.923 70 0.145 92 3.557 44 1.886 16 0.001 32 

Example 4.2.3: For X as in Example 4.2.1 consider the changes in the 
variances of regression coefficients as the number of terms in the model grows. 
Table 4.2.5 gives cJj = Var(f?,)/u2 for each postulated model V,, V,, . . . , VI0. 
cj, is thejj term in the corresponding matrix (X'X)- '. Notice that Var(ll),) jumps 
considerably as the model is changed from V, to V,, that is, the variable x:, 
which has correlation 0.9844 with x2, is added. Similarly Var(4,) jumps when 
the variable x: is added (correlation = 0.9808). 

Suppose we fit model &. Using the notation for underspcification X = 
(xo, x l ,  x2h  W = (x3, xd .  Then 7 = (h, A)' = (3.3) and 8 = Go. b,, f?,), has 
bias (X'X)- 'X'w7 = ( - 0.232,4.36,0.014 9)'. This bias could cause serious 
problems if regression coefficients are to have subject matter interpretations. 
4, will almost certainly be positive though its true value is - 1. 

Example 4.2.4: Suppose Y satisfies the simple linear regression model 
Y = soxo + Brxl  + E, and we ignore the x1  vector. That is, our postulated 
model is Y = poxo + E. Then X = xo, W = x, = w and wI is the vector of 
deviations of the xi's from X. Let q = 0, + plx0. Under this postulated model 
the estimator of q is tj = F, which has bias b( 1, x,) = flo + p,.? - (4, + /31-lco) = 
-pl(x0 - .?), and Var(tj) = ut/n. 

+ #?,(xo - X), The estimator under the true model is tjo = bo = b,xo = 

which is unbiased for q, with Var(fio) = u2 

@:(x0 - a)' + - and MSE(@,) = u2 

. Thus, MSE(4) = 

U 2  

n 
s: 

at/ s x x  
MSE(fi0) = (xO - 2)' [ 0: - -- fl, which is negative for 6 = -- < I .  6 is the 

noncentrality parameter in the F-test of H,: 
In the case that q = g(%,, 6) - g(f,, ii) = (a, - f,)! represents the change 

in E ( Y )  as !i changes from f, to !it, while 3 is held constant, use of the 
postulated model 8 = X! leads to the estimator t j  = (kl - f2)@ with bias 
(!il - ii,)M-'X'Wy. tj is an unbiased estimator of q for all choices f ,  and 
!i, from the rows of X if the column vectors of X are uncorrelated with 
those of W (see Problem 4.2.6). The comparisons between tj and tjO are the 

= 0. 
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same as for the more general case of rj = %fl + WY with %, - j i z  replacing ji, 6 
replacing +. 

Problem 4.2.1: Suppose that &) = E( Ylx)  = Po + blx + &xz + P3x3, 
Var( Y ( x )  = oz, and we observe Y independently for x = -2, - I ,  0, 1, 2. Find 
the biases in the estimation of (Po,  P,), 8, and 02, caused by fitting the simple 
linear regression model. 

Problem 4.2.2: Suppose that the roles of the postulated model and true 
model in Problem 4.2.1 are exchanged, so the simple linear regression model 
holds. Is &, 13,)  in (flo,. . . , f i 3 )  an unbiased estimator of (Po, /I1)? Evaluate 
Var& + B1x) and show that it is larger for the cubic model than it is for the 
(correct) simple linear regression model. 

Problem 4.2.3: Let xl, . . . , x20 be 20 real numbers, which include at  ieast 
six different values. Suppose that we observe Y corresponding to each x, and 
fit a polynomial of degree k in x for k = 0,. . . , 5 .  Let SSE(k) be the error 
sum of squares corresponding to the polynomial of degree k. Let ESS(0) = 
1,OOO, ESS(1) = 300, ESS(2) = 120, ESS(3) = 90, ESS(4) = $5, ESS(5) = 84. 
Evaluate the Mallows statistics C,, using the “pure” estimate of error 8’ = 
SSE(5)/(20 - 6). Which model seems to be appropriate‘? 

Problem 4.2.4: Suppose that the relationship between weight Y in pounds 
and height x in inches is Y = & + pix, + Pzw i- c, where w is the indicator 
for males. Observations were made on four males and three females: 

~~ 

Y I50 I80 140 160 110 I 20 130 
XI 70 74 66 72 62 64 66 
\V 1 1 1 1 0 0 0 

(a) Estimate the expected weight r,~ of a person 68 inches tall, with (Qo) and 

(b) Give an expression for the bias of Q and evaluate it for female 68 inches 

(c) For this 68 inch female for what values of pairs (b2, 02 )  would 4 be a better 

(d) Let Sz = SSE/(n - 2) for the fit of the simple linear regression model. 

without (4) using their sex. 

tall. if /I2 = 20. 

estimator than Go? 

Find €(Sz) for p 2  = 20, oz = 25. 

Problem 4.2.5: Prove that, for F as defined immediately before Example 
4.2.1, F < 2 is equivalent to C, < k. 
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Problem 4.2.6: Prove that in the case of the underspecified model zero 
correlation of all the column vectors of X with those of W implies that 
9 = (gl - SZ$ is an unbiased estimator of q = ( j z ,  - Sz)8 for all pairs (2’. S,) 
of row vectors of X. 

4 3  ‘‘GENERALIZED” LEAST SQUAREs  

k 
Under the model Y = 0 + E = c ajxj + E, the assumption that E(E)  = 0 and 

D[E] = 021n, leads, by the Gauss-Markov Theorem, to the optimality, in a 
certain sense, of least squares estimation. Though the condition D[E] = 021, is 
often quite reasonable, there are certainly many occasions when it is unrealistic. 
If the components of Y correspond to observations at consecutive points in 
time (time series) as is often the case with economic data, there will often be 
correlation, usually positive but sometimes negative, between observations at 
consecutive points in time. Larger values for the components of 8 often lead to 
corresponding large values for the variance terms of D[E] .  

Though lack of knowledge of I: = D [ E ]  can cause severe problems, there are 
occasions when C is known up to or nearly up to a multiplicative constant. In 
this case we can reduce the problem to the previous form. 

Bjxj + E = Xfl + E,  D [ E ]  = X = b2A, where A is a known 

n x n nonsingular matrix, c2 is an unknown constant (which is the common 
variance if the diagonal elements of A are all ones). Let BB’ = A, where B is 
n x n. Since A must be positive definite and (BF)(BF)’ = A for any orthogonal 
matrix F, an infinity of such B can be chosen. Thus B may be chosen to have 
special properties. It can, for example, be chosen to be lower triangular (zeros 
above the diagonal). Or if A has eigenvalues 1,. . . . , A, with corresponding 
eigenvectors vl . .  . . , v,, each of length one, then for V = (vl,.  . . , v,,), D = 
diag(i.,, . . . , A n ) ,  AV = VD, A = VDV’, so we can take B = VD’’Z or 
B = VD’;’V’ (the symmetric version). 

For given B with BB‘ = A, define 

1 

L 

Let Y = 8 + E = 
1 

for wj=B-’x j  and ~ = B - ’ E .  Then E(tL)=B-’E(&)=O, and D[qJ= 
B-1(a2A)B’-1 = ,,ZB-’AB’-l = d I , ,  so that Z satisfies the standard 
linear hypothesis we have considered before. Under the model E ( 2 )  = 
B ‘8 E Y(w, ,  . . . , wL). The least squares estimator of fl based on 2 is therefore 

(w’w)-’w’z = ji, 
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where W = (w],. . . , wk)  = B-IX. It follows that 

so 

Thus, B is a function of A alone (as well as X and Y), and does not depend on 
the particular decomposition BB' = A. Becayse fi is the least squares estimator 
of fl as a function of Z, and 5[Z] = 021n, has the optimality properties of 
the Gauss-Markov Theorem. Any tests of hypothesis can be performed using 
2. Of course, any statistic can be rewritten as a function of Y by making the 
substitution Z = B-'Y. 

The formula (4.3.1) above, and other formulas used in connection with this 
"generalized least squares" can be expressed as functions of inner products. 
The inner products in this case have the form 

(v], v2)* = v;A-"v, (4.3.2) 

Thus, when 5 [ ~ ]  = Q'I,, the inner product should be as given in (4.3.2) and 

fi = M-'U, 

where M is the inner product matrix among the x i s  using the inner product, 

and U is the vector of * inner products of Y with the xi. Then P = c bjxj is 

the orthogonal projection (in the * inner product) of Y onto 2?(x,, . . . , xk). 

k 

1 

Example: Suppose A = diap(w:, . . . , w:), B = diag(w,, . . . , wn). Then 2 = 

. This is usually called weighted least squares, since @ as 

Y l i W l  

B-ly=[;w) n 

defined in (4.3.1) minimizes (x - Pi/?)2wz. For k = 1, we get 
1 

so that, for wi  = K x i ,  we get 

1 "  
and, for wi = K x ? ,  we get b = - & / x i .  

n l  
Suppose A = (a,,) for a,, = pii- ' ' ,  - 1 < p < 1, as is the case when the ci 

satisfy the first-order autoregressive model ei = p e i -  + t i ,  where the ti are 
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0 -  . .  P 0 

- p  l + p z  - p  . 
l + p Z  - p  0 . 0 

- P  . * 

0 . .  
. .  
. . 1 - p 2  --p 

- P  1 - . .  0 0 

165 

, A = l + p z  

independent with equal variances. Then 

- I/A 0 0 0 -  0 -  

0 . .  P/A 1 0 

p2/A p I + p 2  - p  . 

--P . . 
. .  0 
. .  

. . --p 

- P  1 -  P " - 3  . . - P " - ' M  P " - ~  

Thus, 

B - ' =  

B =  

- A  0 0 0 .  . 0' 

--p 1 0 0 .  . 0 

0 - p  1 0 -  . 0 

0 0 - p  1 * * 0 

. . .  . . 

. . .  . . 

- 0  0 0 . .  - P  1-  

A y* AXj 1 

yz - P y2 xjz - P X ~ I  

Z = B - ' Y  =[ Y3 ; p Y 2 ]  and w j =  [ ] (4.3.3) 

xi* - p x .  K - P K - 1  F- 1 
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The first term is often discarded for simplicity. p can be estimated by first using 
least squares to estimate E, then estimating p by the correlation of consecutive 
pairs in e = Y - 1. 

The Durbin-Watson statistic is often used to estimate this autocorrelation 
coefficient p or to test the null hypotheses that i t  is zero. Assume equal variances 
among the ci, let e be the residual vector in the usual least squares fit, and define 

n - 1  

d = (ti, I - ei)2/lie!12 
i = l  

Then E(d) is approximately 2(1 - p ) ,  so that @ = I - d /2  is approximately 
unbiased for p. The distributions of d and fi  depend on X, so that an exact test 
of H,,: p = 0 is not available. Durbin and Watson (1950, 1951) gave an 
approximate test. See Theil, (1972) for details. Once 0 is obtained 1 may be 
found by using z and wj as defined in (4.3.3). 

Variance Stabilizing Transformations: In some situations it  may be obvious 
that it is unrealistic to suppose that the variances of the x are equal, and it  
may be better to choose a transformation Z = y(Y), which will cause the 
variance to remain relatively constant, even as the mean changes. For example, 
if Cr: has a binomial distribution with parameters m and pi, and yl. = w / m  is 
the sample proportion, then E( x) = pi, and Var( y )  = pi( 1 - p,)/m. This model 
will be discussed more thoroughly in Chapter 8, but let us consider how we 
might transform the x. so that their variances are approximately equal. 

Suppose that Y has mean p, and variance 02(p)  = Mp). In the example 
h ( p )  = p(l - p)jnt .  I f  y is chosen to be smooth, and the variation of Y around 
p not too large relative to p, then the distribution of y( Y) and that of the linear 
function yL( U) = g(p) + g’(p)( Y - p) should be approximately the same. But 
yL( Y )  has mean g(p) and variance [g’(p)]’h(p).  We should therefore choose y 
so that this function of p is a constant, say c. Thus, y’(p) = [ ~ / h ( j c ) ] ~ ’ ~ .  This 

implies that y(p) = c1j2 j h ( p ) - ’ . ’  dp + C, where C, and c, may be chosen 

arbitrarily. Usually C is chosen to be 0. 
For the example, h ( p )  = p(1 - p)/m, so that we can take 

transforming the x = q / m  by y( y’). If, for convenience, we take 2(cm)”” = I ,  
the resulting approximate variance is c = 1/4m. Especially when m is large, g( T) 
will have approximately the same variance across a wide range of p = pi. For 
example, for m = 20, for p i  = 0.5, 0.2 and 0.1, simulation shows that the 
variances of arcsin Y:‘* are approximately 0.133,0.154, and 0.193. as compared 
to Ij4m = 0.125 givcn by the asymptotic theory. 
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Another commonly used transformation is used for count data, for which 
the Poisson distribution may be an appropriate model. In this case h ( p )  = p, 

so that an appropriate transformation is g( Y), where y(p) = c l f 2  p - l ; ,  Jp = 

v’p, for c = 1/4. For a table of such transformations see Kempthorne (1952, 
p. 156). 

Though such variance stabilizing transformations often have the additional 
benefit of creating more nearly normal distributions of observations and 
estimators, they may destroy the linear relationship between the expected value 
of the dependent variable and the explanatory variables. They therefore should 
be used with care and with understanding of the subject matter of the 
application. 

I 

Problem 4.3.1: Let & - N(p, w i K )  be independent for i = 1,. , . , n, for 
known wi,  unknown K. Find the weighted least squares estimator of p both 
by using (4.3.1) and directly by writing Zi = K/,,’k,. Give a formula for an 
unbiased estimator of K. 

Problem 4.3.2: Let Y = (Yl ,  Y,, Y3)’ = a l x ,  + S2x2 + E for x, = (1,O. I)‘, 
x2 = (1.1, O)’, E - N(0.  Z), where the components of E have equal variance u2, 
p ( ~ ,  e 2 )  = p(c,, c3) = 0, P ( E , ,  c3) = 1/2. Find a,, a2 such that ((al, Y). (a2, Y)) = 
(bl, b,) is the generalized least squares estimator of (/I,, &)- Give the covariance 
matrix for (ill, 1,). 

Problem 4.3.3: Let X,, . . . , X, be a random sample (r.s.) from N ( p , ,  0’) 

and let Yf,. . . , Y, be an r.s. from N ( p 2 ,  00’). with the vectors of X’s and Y‘s 
independent, for unknown p,, p 2 ,  u2, known 6. Give the generalized least 
squares estimator of pl - p 2 ,  and the corresponding confidence interval on 
p 1  - p2 (see Problem 3.8.6). 

Problem 43.4: Suppose that = Po + B,xi  + ci with the c;s independent 
with variances k i d .  Give an explicit nonmatrix formula for the generalized least 
squares estimator b,  of a, and give its variance ( k i s  known). Compare the 
variances of /?, and the least squares estimator (based on the rs) b, of PI for 
n = 5,  s j  = i. ki = i. 

Problem 4.3.5: Find the variance stabilizing transformation g for the case 
that Var( Y) = h ( p )  = i.p2, for a constant 2. This is the case for the gamma 
distribution, including the chi-square. 

4.4 EFFECTS OF ADDITIONAL OR FEWER OBSERVATIONS 

In this section we study the effects on and fi of the addition or deletion of 
an observation vector (ni .  qi) or collection of such vectors. Much work has 
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been done over the last 15 or 20 years on this topic, and we will only give here 
an introduction. Readers are referred to books by Belsey, Kuh and Welsch 
(1980), by Cook and Weisberg (1980) and to the review paper and book by 
Chatterjee and Hadi (1986, 1988). 

To facilitate the study let us decompose X and Y as follows: 

x = ("I), Y = ('1). 
x2 y2 

where Xi and Y, have n, rows for i = 1, 2 and n ,  + n,  = n. Let M, = XiX,, 
M = X'X = M I  + M,. We suppose that XI has full column rank, so that MI, 
and therefore M, are nonsingular. Let fi be the least squares estimator of fl for 

(X, Y) and let fi* be the estimator for (X,, YI).  Let ? = X) = (?) and 
. ... 

q* = xg* = (:i), with qi = Xis and q: = Xis. Define = Y - Y .. = (::) and 

similarly define e* = Y - Y* - = ti). Our tasks will be to develop formulas 
\ - & I  

relating I to and 9 to q*. We will be interested in d i n g  observations 
(finding fl from )* and q from ?*) and deleting observations (finding @* from 
fl and Y* from 9). 

Adding Observations: The normal equation for ) is 

M@ = (M, + M,)@ = X'Y = X;Yl + X;Y2 = MI)* + X;Y,. (4.4.1) 

The last equality follows because @* satisfies the normal equation relative to 
(XI, Yl) .  l-hus 

MI() - s*) = X;Y, - M2@ = X;(Y2 - 9,) = Xie,, 
and 

@ - )* = M - ' X ' e  1 2 2' (4.4.2) 

We want a formula depending on et rather than e,. To find one, multiply 
though by X, to obtain 

9, - 9; = Q2e,, where Qz = X,M;'X;. 

The left-hand side is e: - e,, so that 

e? = (Im2 + Qtkt 
and (4.4.2) becomes 

(4.4.3) 
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In the literature this change vecror is often called DFBETA. Let us call it A 
here. The change P - q* is therefore 

P - q* = ("')A = ("')M;'X;(L, + Qz)-'ef (4.4.4) 
XZ XZ 

To express SSE in terms of SSE* and er, we write 

Y - P* = (Y - P, + (9 - P*) (4.4.5) 

The two vectors on the right are orthogonal, since (Y - P) I (column space of 
X). Then 

iiY - ?*/I' = llYl - Y:1(' f ller112 = SSE* + llerIIZ, (4.4.6) 

and, using (4.4.4), we find 119 - ?*,Iz = er'(In2 + Qz)-'QzeZ. Then using(4.4.6) 
and the Pythagorean Theorem we find 

SSE = SSE* + er'(I + Qz)-'e:. (4.4.7) 

The case nz = 1 is of special interest. Let X, = f,, er = er = yZ - fop*, 
Q2 = %,M; 'xb. We get A = fi - = M; 'x&(e:/(I + Qz)). The term 1 + Qz 
is k(%,), the multiplier of u2 in the variance of prediction error (see Section 
3.1 1). Notice that the change A is in the direction of M; '2; with the multiple 
depending on both the prediction error e: and the distance measure Q2.  The 
increase in error sum of squares is SSE - SSE* = eZ2/(2,), indicating a large 
increase if the additional observation is far from its predicted value in units of 
the standard deviation of prediction errors at fo. 

Deleting Observations: We want a formula similar to (4.4.2) which uses M 
rather than M,. It is possible to use formulas for the inverse of partitioned 
matrices (Section 1.7), but we will avoid this by beginning with (4.4.1). Since 
Mfi = (M - M2)@* + X;Yz, where 

it follows that 
- = M-'X;ef. (4.4.8) 

This time we should replace et  by a term depending on e,. Multiplying by Xz 
we get 

9, - Pz = er - e2 = (X,M-'X;)e? (4.4.9) 
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The matrix h = X,M-*X;  in parentheses is the lower right n, x n2 submatrix 
of X(X'X)-'X' = H, projection onto thc column space of X, often called the 
hat-matrix because HY = g. From (4.4.8) we get 

ef = [I,, - h]-'e,, 

so that (4.4.8) becomes 

(4.4.10) 

@* - @ = -M-'X;[I,, - h)-'e, (4.4.1 1 ) 

Finally then, 

I* - = x(p - @) = -XM-'X;[I,, - hJ-'e,. (4.4.12) 

The n x n, matrix XM-'X;  on the right consists of the last n, columns of H. 
Matrix computation then gives 

llY* - Ell2 = e>(In2 - h)-'h(Im2 - b)-'e2 (4.4.13) 

TO express SSE* = liy, - Q:112 in terms of SSE = \IY - Ill', we again use 
(4.4.6) : 

ilY - Q*II, = SSE* + llerIIZ 

From (4.4.12) and (4.4.13) and the Pythagorean Theorem we get 

SSE* = SSE - e;(ln2 - h)-'e2 (4.4.14) 

In the special case that t i2  = 1, X, = 5,. h = 5,M"'xb is the ( t i ,  n) term of 
H. h = h(i,)  is sometimes called the leoerage of the observation vector G o ,  since 
by (4.4.8) e = (1 - h)e*. Then (4.4.1 1) becomes 

and 

where e2 = e2 = Y, - Zap. From (4.4.14) we get 

(4.4.15) 

(4.4.16) 
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I t  is sometimes useful ty study the change vector A = Ai for fo = Bi, the ith 
row of X. In this case, let f l - i  = fl*, 9. = q*, SSE-, = SSE*, e - ,  = X - fi@", 

hi = %,M-'%:. Then 

Ai = f i - i  - 6 = -M-'fii[e-i/(l - hi) ] ,  (4.4.17) 

where hi is the (ii) diagonal term of the hat-matrix H. 

Q-, - Q = -XM-'%f[e_J(l - h i ) ] ,  (4.4.18) 

SSE - = SSE - e;/( 1 - hi) (4.4.19) 

Study of the values given by (4.4.17) to (4.4.19) for each i may suggest omission 
of one or more observations, or perhaps another model. The residuals e- i  are 
called the PRESS residuals, and e t i  is the PRESS statistic. One criterion for 

the choice of a model is to choose the one with the smallest PRESS statistic. 
i 

Example 4.4.1: Consider the simple linear regression model Y = poxo + 
p,x, + E for xo the vector of all ones. I t  is convenient to suppose x, is in 
mean-deviation form, so that xo 1 xl. Then 

M=[" '1, S,,= I I x , ~ ~ ~ ,  % i = ( ~ , ~ i - z ) ,  
0 s x x  

and from (4.4.17), 

for 
1 

n 
hi = . + (Xi - 2)2/Szx 

The j th  element of $'. - is 

Example 4.4.2: Consider the eight (x, Y) pairs given in Table 4.4.1 with 
values of the corresponding components of 3 and e = Y - q corresponding to 
the simple linear regression model. The least squares estimate of (&,PI)  is 
(4.9167, 0.4167). Elimination of each of the observations ( x ~ ,  5 )  in turn 
produces the eight estimates f i - i  of (/lo, p , )  given in Table 4.4.2. See, for example 
in Table 4.4.3, that elimination of (x8, Y,) = (8,3) causes the estimate of slope 
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Table 4.4.1 
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X Y 9 e 

5 
5 
6 
8 
8 
10 
1 1  
3 

5.750 
6. I67 
6.167 
7.000 
7.000 
7.417 
8.250 
8.250 

- 0.750 
- 1.667 
-0.167 

1 .Ooo 
1 .Ooo 
2.583 
2.750 

- 5.250 

Table 4.4.2 

B 8- ,  6 - 2  8 - 3  B - 4  8-*  b - 6  8 - 7  8 - 8  
~ ~~~~ 

4.9167 5.5667 5.531 8 5.0045 4.7738 4.7738 4.5950 6.2000 2.4667 
0.4167 0.3167 0.3318 0.4046 0.4167 0.4167 0.3198 0.0500 1.1167 

Table 4.4.3 

2 5 5.750 6.200 
3 5 6.167 6.517 
3 6 6.167 6.517 
5 8 7.000 7.150 
5 8 7.000 7.150 
6 10 7.417 7.467 
8 1 I 8.250 8.100 
8 3 8.250 8.100 

6.195 5.814 5.607 5.607 
6.527 8.218 6.024 6.024 
6.527 6.218 6.024 6.024 
7.191 7.027 6.857 6.857 
7.191 7.027 6.857 6.857 
7.523 7.432 7.274 7.274 
8.186 8.241 8.107 8.107 
8.186 8.241 8.107 8.107 

5.623 6.300 4.700 
5.955 6.350 5.817 
5.955 6.350 5.817 
6.619 6.450 8.050 
6.619 6.450 8.050 
6.950 6.500 9.167 
7.615 6.600 11.400 
7.615 6.600 11.400 

to be large. Elimination of (x,, X,) causes the estimated regression line to be 
almost flat, while elimination of observation number 4 or 5 has almost no effect 
on the slope. This is so because J x i  - in (4.4.18) for xi  = 5 is small. The 
residual vectors e-, = Y - g - i  are given in Table 4.4.4. Notice, for example, 
that the eighth component of e-, is very negative. Error sums of squares and 
the corresponding estimate of variance vary considerably with i (Table 
4.4.5). 

Problem 4.4.1: Suppose that a simple linear regression analysis has been 
performed on the following pairs: 
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x -3 - 2  - 1  0 1 2 3 
Y 14 7 9 4 5 5 - 2  

(The x’s add to zero, because the original mean was subtracted). Thus 

F = 6, C X: = 28, C xi = -56, C Y: = 396 

(a) Find the last squares estimates B and 

(b) Use (4.4.11) and (4.4.12) to find the least squares estimates 

for the simple linear regression 
model. Also find ESS. 

and q* 
for the case that the observation (3, -2) is omitted. Check your work by 
computing these from scratch. Also find ESS*. 

(c) Suppose an additional observation (4,4) is obtained (so there are eight 
(x, Y) pairs). Find A = B - @* and use this to obtain @ = (b,, ),)I, the vector 
9, and the new error sum of squares, ESS. (The stars correspond now to the 
smaller data set.) 

(d) Suppose two new observations (-4,17) and (4, -6) are added to the 
original data. Use (4.4.3) and (4.4.4) to find @ and 9, also find ESS. Verify your 
solution fi by starting from scratch. 

Problem 4.4.2: Consider the two sample model with n1 independent 
observations from N ( p , ,  a2), n, from N ( p 2 ,  a2). Suppose one more observation 
Yo is taken from the distribution. Use (4.4.3) to show that the change in the 
estimator of (p,, p z )  is ((yo - F,)/(o, + l ) ,O) .  

Problem 4.43: Suppose the observations (X2, Y2) are deleted to obtain 
from B using (4.4.1 1). Then a new estimator @** is obtained from 
(X,, Y2) to the deleted data set using (4.4.2). Show that p* = b. 

by adding 

Problem 4.4.4: Fill in the details in the paragraph following (4.4.4) to show 
that (4.4.7) holds. 

4.5 FINDING THE “BEST” SET OF REGRESSORS 

Whenever a large set of independent variables x,, . . . , xf is available, particularly 
when n is not considerably larger, we are faced with the problem of choosing 
the best subset. For example, we may have n = 25 observations (%[, Yi)  where 
?& is a vector with k = 10 components. While we could use all 10 components 
to predict Y, and as a result reduce error sum of squares as much as possible, 
considerations of precision discussed in Section 4.2, and the wish to find a model 
with reasonable simplicity suggest a smaller subset of variables. 
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There are 2k - I subsets of k-variables with at least one member. Given 
today's computer power it is often possible to fit models for all such subsets. 
Algorithms for doing so are available. See, for example, Seber and Wild (1989. 
ch. 13) on choosing the "best" regression. We would need some criterion for 
choice of a model from among a large number. Knowledge of the subject 
matter should almost always be a guide. Such knowledge may suggest, for 
example, that variables # I ,  1 3 ,  and #7  should be included, and that future 
observations of variable # 9  may be so difficult or expensive that we should 
look for a model not including #9. 

A number of procedures are available for choosing a model. For details see 
Seber ( 1  977). Usually these are stepup or stepdown types. A srep-up procedure 
begins with a small set of variables, possibly only the constant term, and adds 
variable one at a time, depending on the contribution of that variable to the 
fit. The procedure may allow for elimination of certain variables after addition 
of another. The stepdown procedure begins with a more complex model, 
possibly all x-variables, and eliminates variables one at a time, choices being 
made in such a way that error sum of squares increases least (or regression 
sum of squares decreases least). Both procedures usually involve F- or 1-tests, 
but it is usually difficult or impossible to evaluate error probabilities. The sweep 
algorithm, to be described here without proof, facilitates computation. See 
Kennedy and Gentle (1980) for a complete discussion. 

The Sweep Algorithm: (Beaton, 1964, in slightly different form) Let the k 
columns of X correspond to the set of explanatory (regressor) variables under 
consideration. Usually the first column of X is the column of ones. Let 

W = (X, Y), and let Q = W'W = [ ::t the inner-product matrix. Then 

the sweep operator S ( k )  (sweep on the kth row) is a matrix-valued function of 
a square matrix A = (ai,) with value S(k) A = B = (b,) of the same size defined 
as follows. We assume for simplicity that A is nonsingular: ( I )  b, = l /akk, (2) 
b, = akjjau and b,, = -ajk/akk for j Z k, (3) 6,  = aij - ajtak,/au for i # k, 
j Z k. Let S(0) be the identity sweep, that is, S(0) A = A for all square A. 

For any sequence of integers ( i , , .  . . , i,), let S(ij,.  . . , i,) = S(i,)S(i2). . .S(i,). 
That is, S ( i l , .  . . , i,) A = S(il)S(i2j. . .S(i,) A. Then, these sweep operators have 
the following properties. 

( I )  The order in which (i,,. . . , i,) is written is irrelevant, i.e. if ( j , .  . . . , j , )  

(2) S(i, i )  = S(0). That is, sweeping A twice produces A. 
is a permutation of ( i , ,  . . . , i,) then S(il,. . . , i,) = S ( j , ,  . . . , j , ) .  

(3) Suppose that A is symmetric. If A = [i;: 'I2], and A , ,  is n, x n,, 

then S(1,. . . , n,) A = B = , [ -:;: 3, where B,, = A;:, B,2 = 

A22 
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Suppose now that we apply S( 1,. . . , r) to the inner-product matrix Q. Let 
X = (X,, Xz), where X, consists of the first r columns of X. Let M, = XiX,, 
UI = X;Z, where Z = (Xz, Y). Then S(1,. . . , r )  

-Z'M;' Z'Z - Z'ML'Z 
Q = [  M;' 

The matrix in the upper right is the matrix of regression coeffi$ents when the 
last (k - r )  variables are regressed on the first r. In particular, b, the coefficient 
vector in the regression of Y on the first r regressor variables, is the vector 
consisting of the first r elements in the last column. The matrix on the lower 
right is the inner-product matrix among the (k - r) residual vectors, after 
removal of the effects of the first r. ESS for the regression of Y on the first r 
regressors is in thf lower right corner. The r x r matrix on the upper left is 
useful because D[pJ = M i t e 2  in the case that Y = X,P+ E ,  D [ E ]  = ozI,. By 
sweeping consecutively on rows I ,  2, I ,  3, 2, 1, for example, we get important 
statistics in the least squares fits of all of the possible linear models involving 
the first three variables. An algorithm due to Garside (1965) can be used to 
consecutively fit all possible regressions of Y against subsets of the regressor 
variables with a minimum of sweeps. 

Example 45.1: Let 

1 1 1 18.21 

I 1 2 16.29 

w = (X, Y) = 

and 

Q =  

6 3 

3 3 

21 6 

79.15 48.8 

21 79.1 5- 

6 48.87 

91 241.32 

241.32 1,117.04- 

Q is the inner-product matrix corresponding to W. Y = XP + E,  where 8 = 
(20,0, -2)', and E was an observation from N6(0, 0216), o = 0.2. Refer to the 
second and third columns of X by x2 and x3. The following sweeps were 
determined : 
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0.167 0.500 3.500 13.192 

-0.500 1.500 -4.500 9.299 

-3.500 -4.500 17.500 -35.707 

- 13.192 9.299 - 35.707 72.902 

S(1)Q = 

Sample means are given in the first row. The 3 x 3 submatrix on the lower 
right is the sum of squares and cross-products matrix for deviations of the 
second, third, and fourth columns of W from their means. For example, the 
total sum of squares for Y is 72.902. 

r 0.333 -0.333 5.000 10.0921 

-0.333 0.667 -3.000 6.199 

-5.000 3.000 4.000 -7.810 
S(2, 1 )Q = S(2)S( 1 )Q = 

L - 10.092 -6.199 -7.810 15.2571 

This indicates, for example, that simple linear regression of Y on x2 produces 
the estimate 3 = 10.092 - 6.199x2, with ESS = 15.257, 

Is’. 0.333 -0.333 
-0.333 0.667 

3)Q = l7 
- 0.867 1.400 -0.200 20.333 

- 1.400 0.343 0.257 0.117 

-0 .20  -0.257 0.057 -2.040 

-20.333 0.117 2.040 0.046 

6.583 -4.083 - 1.250 19.855 

-4.083 2.917 0.750 0.341 

1.250 -0.750 0.250 - 1.953 

- 19.855 -0.341 1.953 0.007 

SU, 3,2)Q = 

A 957” confidence interval on &, assuming the model corresponding to the 
design matrix X, is C0.341 f (3.182)~(0.007/3)(2.91?)]. R$ = 1 - 15.257/72902, 
R$ = 1 - 0.046i72.902. 

f- -. -. - - 

Model fitting is an art, and different good statisticians may arrive at 
somewhat different models. There is no substitute for a strong interaction 
between statistical and subject matter knowledge. 
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In one situation it is possible to determine the probability of the correct 
choice of a model. Suppose that V, = R, of dimension n, and that Vo 3 V, =I . . . 
3 V ,  is a decreasing sequence of subspaces of dimensions k ,  = n > k ,  > 
kz > . . . > k,. Suppose that Y = 8 + E for 8 E qo for some j o ,  1 I j o  I r, j o  
unknown, and E N(0,  a21,). Suppose also that r , ,  . . . , a, are chosen error 
probabilities. Define 8, = p(81V,).  

Let H ( i )  be the null hypothesis: 8 E 6.  Then we choose a subspace by first 
testing H(2) assuming H ( 1 )  holds, using an F-test at level zl. If H ( 2 )  is rejected 
then we decide that 8 E Vl, 8 4 V,. If H(2) is accepted then we test H ( 3 ) ,  assuming 
H(2) holds, using an F-test at level a2.  If H ( 3 )  is rejected then we decide that 
6 E V, but 8 4 V3. We continue in this way until an F-test rejects H( j) for some 
j .  In this case we decide 8 c  I.;:-,, but 8 $  q. 

More formally, let iii = p(Y I 4) and 

Ei,/di 

( E ,  + * * + Ei-  I)i(ni - k i )  
Define di = tii - tiic , and 6 = - . Let li be the event 

[& 5 F, -&Ii, n - k,))]. Then we decide that (8 E 5, but 8 4 I.;:+ ,) if I,, . . . , lj 
occur but not l j+ , .  

We therefore want to evaluate the probability of the event Dj = 
(II n . . . n l j )  n I ; ,  , forj  ij,. We can do so because the events I,, . . . , IjCl 
are independent for j 5 j,. To see this, note that 

(1) El, . . . , E, are independent 
(2) For j < j o ,  E j  - u2i(j, 

(3) E," 1 - u'&(A) for A = 110 - 

(4) I ,  depends only on R, = E,; 

+ 1 I1 ' /o2 
j -  I 

E i .  From Problem 2.5.5 R,,  . . . , R,,  , 
are independent. 0 

Thus P ( l j )  = 1 - ilj for j -= j o  and P(l ;+  ,) = x j +  , for j < j,, y(A) fo r j  = j,, 
where ?(A) is the power of the F-test for d,(, and n - k, d.f. and noncentrality 
parameter A. It follows that 

5 

Example 4.5.2: Suppose that y(x) = E( Y l x )  = &xi  and we wish to decide 

whether a polynomial of smaller degree than five is reasonable. We fit each of 
0 

6 - j  

the models y(x) = Pixi in turn, and determine the error sum of squares 
0 
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. if and their differences Ej, for each. We first compute Fl = -___ 
El 

&/(n - 6 )  
F, > F, - = , ( I ,  n - 6) then we decide that the fifth degree polynomial is required. 
Since the spaces V, and V, have dimensions 6 and 5,  E ,  has one d.f., so that 
we could use the t-test for H,: p5 = 0. Otherwise we fit the fourth degree model, 

, and decide a fourth degree polynomial is E ,  compute F2 = ___ 
( E ,  + E , ) / ( n  - 5 )  

required if F, > F, n - 5).  Continuing this way we decide among six 
possible models, of degrees 5, 4, 3, 2, 1, 0. 

Suppose Y is observed for x = 0, 1,. . . , 10, 0, = 30, fll = -2, f12 = 0.15, 
f13 = p4 = /I5 = 0, at = 2, and we choose each a, = 0.05. The probability that 
we make the correct decision is then (0.95)3y(A) for A = 110 - 0,i12/az, where 
V, = Y(xo, xl), the space spanned by the vector of ones and the x-vector. 

In this case 8, 8, = p(81 Vs), and 8 - OV5 are given in Table 4.5.1. So 
that A = 19.31/4 = 4.83. From the Pearson-Hartley charts, we find for 
b, = ,/4.83/2 = 1.55, v 1  = 1, v2 = 10 - 3 = 7, y(A) = 0.47. Thus, the prob- 
ability of a correct decision is (0.95)3(0.47) = 0.40. The probability that 
the simple linear regression model is chosen is (0.95)’(0.53) = 0.45. Table 4.5.1 
presents U i  = 30 - 2xi + 0.15.~: and the best linear approximation. We 
obtain A = ;I0 - 0,112/a2 = 19.31 and 8,i = 27.75 - 0 . 5 ~ ~ .  O5 = (O,,, . . . , 05, I = 

c -- 

P ( W W X 0 ,  X l ) ) .  

A Simulation: Y = 8 + E was generated according to Example 4.5.2. The 
vectors Y, qj, ei = Y - Qi are given in Table 4.5.2 for j = I , .  . . , 5 .  

0.366 2.8 17 

6.348/4 6.71415 
Then F, = = 0.23, so H( 1 ) :  B5 = 0 is accepted. F2 = ~ = 2.108 < 

2.339 
9.53 1/6 

F0.95( 1, 5). so H(2):  B., = p5 = 0 is accepted. F3 = = 1.47 < F0.923( 1,6), 

Table 4.5.1 

X 0 05 0 - o5 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

30.00 
28. I5 
26.60 
25.35 
24.40 
23.75 
23.40 
23.35 
23.60 
24.15 
25.00 

27.75 
27.25 
26.75 
26.25 
25.75 
25.25 
24.75 
24.25 
23.75 
23.25 
22.75 

2.25 
0.90 

-0.15 
- 0.90 
- 1.35 
- 1.50 
- 1.35 
- 0.90 
-0.15 

0.90 
2.25 
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27.5 
3 1.08 5/7 

so N ( 3 ) :  P3 = P4 = & = 0 is accepted. F4 = ___ = 6.192 > F0.9s(l, 7) = 

5.59, so we decide that the model should be quadratic. This time, we made the 
right decision. 

Problem 45.1: Let 

1 

x = I l  1 1 

1 

1 

1 

1 

1 

- 1  

- 1  

- I  

1 

- 1  

0 

- 1  

1 

0 

3 

and consider the model Y = C Pjxj + E .  

(a) Let Y = (16, 10,7,0,2, I)’. Use the step-down procedure described above, 
with xi’s all 0.05, to choose an appropriate model. Notice that, in a rare act of 
kindness, the author has chosen orthogonal regressor vectors. The projection 
vectors Qj consist entirely of integers. 

Pjxj + E. Suppose that PI = 4, /.Iz = P3 = 0, 

and 6’ = 8.333. What are the probabilities that the procedure chooses each of 
the models .,Mi, i = 3, 2, 1, O? (/lo is not given because the probability does not 
depend on Po). In order to facilitate the Computation, we offer Table 4.5.3 (as 
for the Pearson-Hartley charts, 4 = ,,/m), 

0 

i 

(b) Let -Mi be the model Y = 
0 

(e) Repeat (b) for the case p3 = 0, /12 = 2, /11 = 4, a’ = 8.333. 

Problem 4.5.2: Consider the inner-product matrix Q of Example 4.5.1. 
(a) Verify that S(2)Q = S(I)S(I, 2)Q. 

Table 45.3 Power of the a = 0.05 F-Test for v, = 1, Small v2 

v2 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 

I 0.05 0.06 0.08 0.11 0.14 0.18 0.21 0.24 0.28 0.31 0.34 
2 0.05 0.06 0.11 0.17 0.26 0.36 0.46 0.56 0.65 0.73 0.80 
3 0.05 0.07 0.13 0.22 0.35 0.49 0.63 0.75 0.84 0.91 0.95 
4 0.05 0.07 0.14 0.26 0.41 0.57 0.72 0.84 0.92 0.96 0.98 
5 0.05 0.08 0.15 0.28 0.45 0.62 0.77 0.88 0.95 0.98 0.99 
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(b) For the simple linear regression model for Y vs. x3. find b. Use this to 

(c) Find the partial correlation coefficient ry3, 12.  

find a 9504 confidence interval on p2, and a 95% prediction interval for x3 = 7. 

4.6 EXAMINATION OF RESIDUALS 

In judging the adequacy of the fit of a model and the distributional assumptions 
on E for these models it is useful to examine the residual vector e = Y - 9, for 
P = p(Pl v), v = ~ ( x , ,  . . . , xk). Since e = P ~ . E  = (I, - P,)E, E(E) = o im- 
plies E(e) = 0 and D[E] = a21, implies D[e]  = a2(1, - PV). For H = Py = (hij) ,  
the hat-matrix, e, therefore has variance 02(1 - hi), for hi = h,, the ith diagonal 

term of H. For simple linear regression hij = + (x i  - %)(x i  - %)&. Since 

the trace or a projection matrix is the dimension of the subspace onto which 
it projects, 

1 

I1 

r( 

C Var(ei) = a2 trace(1 - Pv) = a2[n - dim VJ 
I 

An observation on Y taken at j i  = j i , ,  the ith row of X, is said to have high 
leaeruye on the residual e, if an observation on Y for that j i  will tend to cause 
the prediction error to be small compared to what it otherwise would be. Since, 
from (4.4.5) r, = e-,(  1 -. hi), Var(e,),Nar(e-,) = (1  - hi)2, so that large values 
of hi imply a significant payoff toward prediction at gi by taking an observation 
at j i , .  For example, in simple linear regression hi will be large for xi far from 
.C: and in two variable regression with a constant term hi will be large for 
jii = (1, x,,, xZi)  far from (1, %,, i2). Of course, placement of observations too 
far from corresponding means often leads to nonlinearity of regression. 
Though the regression of weight on height may be roughly linear for 
heights near the average. weights for the range (4 feet, 8 feet) are centainly not 
linear in height. 

We obtain “Studentized residuals,” often abbreviated as R-student,, by 
dividing ei by an estimate of its standard deviation, uncontaminated by &. 
From (4.4.18) this uncontaminated estimator of o2 is S t i  = SSE-,/(n - k), 
where SSE-, = SSE - ef / ( l  - hi). Then 

Since ri is approximately distributed as standard normal for reasonably large 
n, these ri may be used to decide whether some observations are outliers, not 
consistent with the model. Values of lril greater than 3 or 4 may be labeled as 
outliers, and some consideration given to discarding them, or to methods not 
so sensitive to outliers as least squares methods. 
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Checking for Normality: These r l .  being distributed under our usual model 
approximately as standard normal, may be used to check for normality of the 
E ~ .  We will not suggest any formal test of hypothesis but will instead describe 
a graphical technique. As wil! be discussed in Section 4.7 the normality of the 
ci is not vital to normality of or even to the qi ,  since these statistics are linear 
combinations of the ti so that, particularly for large n, a form of the Central 
Limit Theorem holds. 

Suppose we have observed a random sample W,, . . . , W, from some con- 
tinuous distribution F and wonder whether F is a normal distribution; that is, 

corresponding order statistics, the ordered &'s. Since F ( q . )  has a uniform 
distribution on [0, 13, it can be shown that E(Yj)) is approximately F - ' ( u j )  
for uj = ( j  - 1/2)in. Since, under normality, F - ' ( u j )  = p + cO-'(uj) ,  this 
means that in approximation ECW,,] = p + ocP-'(uj) so that for Z j  = @ - ' ( u j )  
the ( Z j ,  Wu,) pairs satisfy the simple linear regression model. Therefore, if we 
plot the ( Z j ,  qj,) pairs for j = 1,. . . , n they should fall approximately on a 
straight line with slope 6, intercept p. "Normal" graph paper allows for easy 
plotting of the pairs. The horizontal Z,-axis is labeled with uj values instead of 
Zj so that the Zj need not be computed. 

Example 4.6.1: Table 4.6.1 below gives values of = 50 - 2xi + ei for 60 
x,'s as in the first column, where the ci have the double exponential density 
S(x) = (Ii20) exp(-lx1/0) for 8 = 5v!2. f has mean 0, standard deviation 
4% = 10. Figure 4.9 compares this density with the normal density with the 
same mean and variance. Figure 4.10 compares corresponding c.d.f.'s. Figure 
4.11 presents the scatter diagram and the corresponding least squares line. 
Figure 4.12 is a plot of the ordered R-Student values ri vs Zi = O-'(ui). For 
ordered ri values r ( , )  < r t2)  c . . * < rIb3,, ui = ( i  - 1/2)/63, the points (ut, rll)) 

-30 -20 -10 0 10 20 30 
X 

FIGURE 4.9 Normal and double exponential densities. 
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FIGURE 4.10 Normal and double exponential c.d.L's. 
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FIGURE 4.11 Scatterplot of Y vs. x and LS fit 

and the best fitting straight line were plotted in Figure 4.12. The plot indicates 
that the tails of the distribution are spread more widely than would be expected 
for observations taken from a normal distribution. The intercept and slope were 
-0.008 and 0.898, near 0 and I as would be expected. 

In order to investigate the behavior of the estimator st of the slope for the 
case that the ei have a double exponential distribution this same example was 
repeated 1,OOO times. As Figure 4.13 illustrates the distribution of 8,  certainly 
appears to be normal. The sample standard deviation of these 1,OOO values was 
0.2058, very close to the theoretical value 0.208 1. Among 1,OOO W/A and 95% 
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FIGURE 4.12 Plot of the pairs (j:lOOO. &I)  for 1,OOO samples, where h’ is thejth order statistic. 
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FIGURE 4.13 Histogram of I,ooO sample regression slopes for double cxponential errors. 

confidence intervals 909 and 955, respectively, covered PI = -2. The experi- 
ment was repeated for 10 observations on Y corresponding to x = 1, .  . . , 10, 
again with the ci double exponential. Again 8, seems to have an approximate 
normal distribution. This time 893 among 1,OOO 90% confidence intervals 
covered f i ,  = -2. 

4.7 COLLINEARITY 

Collinearity in general is a relationship among the vectors x,, . . . , x, in which 
one or more are “almost” a linear combination of the others. Such collinearity 
can cause ( I )  inflation in the variance of estimators Bj of regression coefficients 
or of linear combinations of such coefficients, (2) excessive effects of roundoff 
errors or measurement errors on the xj. 
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Let t = (x l , .  . . , x t )  be a point at which we would like to predict Y. If 
E(Y 1%) = y(t )  = t@, then under our usual model i(%) = 2s is the BLUE, having 
variance h(t)az, for h(t)  = t(X'X)-'%'. In general h is smaller for t near the 
row vectors of X. For example, in simple linear regression, h(t) = h(1, x) = 
(I/n) + (x - X)2/Sxx, so that h is large if x is far from the mean of the x-values 
used to estimate the regression line. 

In order to investigate the variation in h(t) as ii vanes, let (Li,6,)  for 
i = I , .  . . , k be eigenvalue, eigenvector pairs for M = X'X. Suppose that the 6, 
have been chosen to be orthogonal. Then M-I has eigenpairs (l/ii ,wi). 
Suppose also that 0 < ill I; . . . 5 I., and liiiillz = 1 for each i. If we let 
f l  = Gig;,  then f l  is orthogonal projection onto 9 ( G i ) ,  44 = 0 for i Z j .  
M = 1 I-,& = Wd(i)W' and M-' = 1 ( l / i i ) e .  = Wd(ljA)W', where W = 

(6,, . . . , bk), d(A) = diag(l/il,. . . ,A , )  and d(l/i.) = diag(1/Al,. . . , Ak). Then 
h(+,) = l/Ai, and h is maximum for t = bl, minimum for t = tik (each subject 
to lltlr = 1). The ratio 

i 

is usually called the condition number for X. L ; j 2 , .  . . , .?:I2 are the diagonal 
elements in the singular value decomposition of X and of X'. 

If K is large then we can do rather poorly in estimating y(%) for some P 
relative to that for others at the same distance from the origin. K may not be 
an interesting number if our interest is in y(i)  only for t near those for which 
observations have already been taken. For I = ii,, the ith row of X, h(I,)  = hii ,  
the ith diagonal element of H, the hat-matrix. Thus, if hii is large (9, has high 
leverage), then the prediction at 3, depends heavily on &, and has relatively 
high variance. Since I: hii = trace(H) = k, the average h,, is k/n. 

Scaling of the x-vectors does not affect prediction of Y, since the r s  are 
correspondingly inversely scaled, and when a constant term is included in the 
model, replacement of an x-vector by the corresponding vector of deviations 
from the mean also does not affect predictions. Such scalar and centering 
changes do affect the condition number K, however. K therefore has more 
meaning for comparison purposes if these changes are made. If each x-vector 
is centered and has length one (except the vector of ones) then M = X'X is of 
the form 

where R is the correlation matrix, and we can consider the ratio of the largest 
and smallest eigenvalues of R as a measure of the condition K for R, large 
values indicating a problem, K = 1 being ideal, achieved when all x-vectors are 
uncorrelated. The eigenvectors bi for R are called the principal components. 
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FIGURE 4.14 Contours of constant variance for predicted values. 

If the aim is to estimate f l j  then we can take 2 = iit, the ith unit vector, so that 

It(%) = 1/llxfll2 

If xj has been centered, and has length one then this is 1/(1 - Rf), where R j  is 
the multiple correlation coefficient of xj with the other x-vectors. 1/(1 - RS) is 
called the cariance injarion factor (Marquardt 1970). 

Example 4.7.1: Consider the model Y = Boxo + fllxl + &x2 + E, where 
x,, is the vector of ones, and 50 (xli, x t i )  pairs are as given in Figure 4.14. For 

M the 2 x 2 sum of cross products of deviations matrix. The sample covariance 
matrix among the ( x l i ,  x t i )  pairs is M/(n - 1). Contours of constant values of 
h(f) are as indicated in Figure 4.14. The straight line, the major axis of the 
ellipse, has the equation &i.; = 0, where ii, = (0.867, -0.498) is the eigenvector 
corresponding to the smallest eigenvalue of M-I (largest for M). 

The contours indicate that variances are smallest in the direction of the 
major axis, and that for ii in a direction away from that axis, variances increase 
rapidly as distance from (X,, 2,) increases. Since (1, 1) is much more in the 
direction of the major axis than is (1, - I) ,  we could expect Var(6, + b,) to be 
much smaller than Var(Bl - 8,). These variances are (7.95 x 10-4)02 and 
(47.70 x 10-4)a2. 

] x 10-4 
2,538 1,169 7.238 -7.165 

. - I = [  - 7.165 15.565 M = [  1,169 1,181- 1 
0.866 1 

" = [0.4988] 
I., = 3,211.31 

0.498 8 
i., = 507.92 fi, = [ ] 

- 0.866 7 
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One of the problems with use of the condition number K as an indicator of 
possible difficulty caused by collinearity is that it gives no indication of the 
cause or of possible solutions. If a major aim of the regression study is the 
estimation of slopes pj then a finer analysis can suggest such causes and 
solutions. Since 

and the auriunce proporticns 

are measures of the relative contributions of the i th  eigenpair to the variance 
of B j ,  since 1 pij = 1. Study of these p i j  provides some insight into the causes 

of large variance inflation. 
i 

Example 4.7.2: Consider the following excerpt from SASISTAT User/ 
Guide: Volume 2, GLM-VARCOMP 5 ,  page 141. The collinearity diagnostics 
(Table 4.7.1) for the fitness data, discussed earlier in Section 3.12, based on the 
matrix with columns scaled to have length one, but with the means not 
subtracted, are presented. Tables 4.7.2 and 4.7.3 present corresponding diag- 
nostics based on the correlation matrix R for two different models. In the 
author's opinion these last diagnostics are much more useful. The condition 
number of R is ,.-. The variance proportion p6* = 0.953 5 indicates that 
variability of x 4  (runpulse) in the direction of the eigenvector G6 corresponding 
to the smallest eigenvalue (0.060 3) contributes 95.35% of the variability of 8,. 
vt, is essentially a multiple of the difference between runpulse and maxpulse. 
This Same eigenvector contributes 95.970f; of the variability of p,. That 
variations in B4 and ), are affected so strongly by the same eigenvector 
should not be surprising in light of the correlation 0.929 8 for the corresponding 
variables. These considerations suggest that runpulse and maxpulse measure 
substantially the same thing, and that we should try an analysis in which one 
of these is omitted. Table 4.7.2 presents a regression analysis for the model { 1, 
2, 3, 4, 6) (with runpulse dropped). The condition number K for this smaller 
model is v/5.320, considerably smaller than for the full model. The variance 
inflation factor for variable 5 (runpulse) has been reduced considerably from 
that for the full model. 

The estimated standard error for ,!?, is correspondingly smaller than for the 
full model. These pij can be helpful in indicating possible difficulties caused by 
roundoff or measurement errors in the independent variables. If errors are made 
observing a row 1, of X in the direction of the eigenvector corresponding to 
the smallest eigenvalue A,, X'X it can have large effects on the bj for which p j l  
is large. 

r -  -- 
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Table 4.7.2s Correlation Matrix R for lndepeaent Variables x,, . . . , x, 

1 1.OoOo 0.188 7 0. I43 5 0.3136 0.226 1 0.450 4 
2 0.1887 1.0000 -0.2335 -0.3379 -0.4329 -0.164 I 
3 0.1435 -0.2335 1.0000 0.181 5 0.249 4 0.044 0 
4 0.3136 -0.3379 0.181 5 1.Oooo 0.929 8 0.352 5 
5 0.226 I - 0.432 9 0.249 4 0.929 8 1.oooo 0.305 1 
6 0.4504 -0.164 I 0.044 0 0.352 5 0.305 I 1.Oooo 

x, = runtime, x2 = age, x3 = weight, x., = runpulse, x5 = maxpulse, x6 = rstpulse 

Table 4.7.2b Eigenvectors Si for R 

1 2 3 4 5 6 

0.279 4 0.667 0 0.236 9 -0.073 2 - 0.643 0 -0.0467 
-0.3156 0.561 7 0.075 9 -0.534 1 0.538 8 - 0.059 7 

0.237 0 -0.193 9 0.921 0 0.019 3 0.235 5 0.047 5 
0.564 7 -0.041 4 -0.211 8 -0.3686 0.1156 0.696 7 
0.566 6 -0.1565 -0.163 9 - 0.329 7 0.1125 -0.711 5 
0.355 5 0.4192 - 0. I34 9 0.681 5 0.463 5 - 0.020 6 

Table 4.7.2~ Variance lnflatioa Factors I /  llxf 11 = cii 

i 1 2 3 4 5 6 

C j j  
1.591 1.513 1.55 8.437 8.744 1.416 

Table 4.7.M Collinearity Diagnostics pli for Model {2,3,4,5,6,7) 

i 

i .ii 1 

1 2.575 1.OooO 0.0190 
2 1.328 1.9390 0.2106 
3 0.925 1 2.7830 0.0382 
4 0.7432 3.4650 0.0045 
5 0.368 7 6.9840 0.7408 
6 0.0603 42.6800 0.0228 

2 

0.025 6 
0.157 1 
0.004 1 
0.253 6 
0.520 6 
0.039 0 

3 4 5 6 

0.0189 0.0147 0.0143 0.0347 
0.0245 O.OOO2 0.002 1 0.0935 
0.7936 0.0057 0.003 3 0.0139 
0.0004 0.021 7 0.0167 0.441 5 
0.1302 0.0043 0.0039 0.411 5 
0.0324 0.9535 0.9597 0.049 
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Table 4 . 7 3 ~  Regreasion Analysis for Model (1,2,3,5,6}, R2 = 0.9042 

i bj Sb, ti Rj 

0 116.5 11.62 10.030 
I - 2.704 0.412 - 6.561 0.709 
2 -0.285 0.104 - 2.753 0.873 
3 - 0.052 0.058 - 0.898 0.90 1 
5 -0.126 0.052 -2.414 0.880 
6 -0.027 0.07 1 -0.382 0.904 

Table 4.73b Variance Inflation Factors for Model {I ,  2,3,5,6) 

i 1 2 3 5 6 
CiJ 1 .579 1.408 1.116 1.389 1.414 

Table 4 . 7 3 ~  Collinearity Diagnostics pa for Model {l, 2,3,5,6) 

.ii I jLi I 2 3 5 6 

1 1.873 1 .Ooo 0.073 0.030 0.030 0.107 0.098 
2 1.275 1.469 0.1 69 0.271 0.070 0.01 1 0.036 
3 0.900 2.08 1 0.064 0.09 1 0.704 0.039 0.097 
4 0.036 3.153 0.82 1 0.575 0.099 0.196 0.319 
5 0.594 5.230 0.009 0.056 0.032 0.629 0.465 

The hyperplane 9 = 8, + ,?,.r, + &ZZ above the ( x I ,  x2) plane therefore 
has a wPobhIe in the direction of iil = (0.867 1, -0.498 1). We are trying to 
balance a thin board sheet on a rough picket fence running in the direction of 
i i2 ,  the major axis. A few more pickets (observations) taken at points distant 
from this fence would contribute considerably to the stability of the sheet. 

Ridge Regression: Since M - ’ = ( I/,ii)iiiiii = W‘d(l/E.)W, the error in the 

estimation of fi is fi - fi = M-’X’E = ( l/ibi)Diiii = 1 &iii/Si, where Di E 

i i i X ’ ~ ,  and 4 = D,/,/& which have zero mean. Let F = (Fl,. . . , Fk)’ = 
d(i,-’”)W‘X‘c. Then E(F) = 0 and D[F] = 0’1,. Of course, it follows that 
D[B] = a2M-’ = O’ 1 (l/Ai)c, so that some of the variances of the bj may be 

large if any of the Ai are close to zero. The ridge regression estimator of fi was 
defined to remove some of this excessive variation by instead accepting a certain 
amount of bias. 

i 

i i 

i 
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Definition 4.7.1: For r 2 0 the rth order ridge regression estimator of jl is 

fir = (M + rfk)- 'X'Y.  

Note that B, is a vector, not the rth component of B. This should not cause 
confusion; We can write jl, in a form which will provide more insight. Since 
X'Y = ~ j l ,  f i r  = z,B for Z, 3 (M + &)-'M.  But, writing M in its spectral 
form, we get 

so that 

The bias in fir is the first term on the right minus jl, which simplifies to 

'[x -!- &]jl = r[M + rIk]-'jl. One measure of the bias of the vector fir is 

r2 c aJ(r + ii)', where gi = fl'sjl = IIp(jlli+i)l!2. The function y2(r) in an in- 

creasing function of r, with ~ ~ ( 0 )  = 0, (corresponding to the least squares 

estimator) and lim y2(r)  = a, = ljjlliz. Thus, as r becomes larger fi, is forced 

to be nearer the origin. In tee limit i t  is the zero vector itself. 

matrix for 1, is 

i A i + r  
the squared length of this vector, which is yz(r) = r2fV 

i 

r-m i 

The payoff in the use of jl, is in the decrease in variances. The covariance 

All terms are decreasing as functions of r. AnA overall measure of the preci$on of 
f i r  is the sum of the variances, the trace of DCfl,]. We find yl(r) 3 trace(D[P,]) = 

, ~ ~ ( 0 )  = a' c ( l / A i )  = o2 trace(M-') is the variance of the least 

squares estimator fi. It is easy to show that y l  has a negative derivative near 0, 
so that for at  least some values of r near 0 this measure of overall variance is 
smaller than it is for jl. Since y z  has derivative with limit zero as r approaches 
zero from the right, it follows that for at least some positive r the sum 
yl(r) + y2(r) of the mean square errors is smaller than it is for jl. 

Hoed and Kennard (1970a) show that, subject to the willingness to let the 

4 g2c __I_ 

, (ii + r12 1 



SSE increase by some fixed amount &, the estimator which minimizes the 
squared length of the estimate b of p is a ridge estimator. 

An obvious generalization of the ridge estimator is produced by substituting 
a vector r = ( r , ,  . . . , rk), with nonnegative components, for the number r. Define 

F,ik,. Formulas for biases and covariance 
f + ri - . .~ 

matrices are given merely by replacing each Ri + r by ii + T i .  It seems 
reasonable to use larger ri whenever ii is small. In the extreme, when Ai is 
particularly small we could take the limit as rr approaches infinity, equivalently 

omitting iii from the analysis. We get b,, E 1 (l/Ai)q X’Y, where A is the 

set of indices not omitted. Properties of BA are those of the estimator obtained 
by taking the r-vector to be the vector of zeros and infinities (really taking limits 
as rI  -+ a), with zeros corresponding to indices in A. ~ 

A ridge trace (for the case that ri = r) is a graph of Bj(r), thejth component 
of @, as a function of r. Some insight into the effects of the use of ridge regression 
on individual regression components is gained. An appropriate choice of r may 
be made by studying all ridge traces, though in general it is not an easy choice. 
Nor is it easy to decide whether to use ridge regression at all. It is tempting 
to try to estimate the functions y l  and 7, and to minimize this estimate. This 
requires an estimate of the bias term, and our reasoning*becomes rather circular. 
The reader might try to replace fl in 7, by b, or by b, to get an estimate i),, 
then compute E(f2). 

[ iE*  1 

Example 4.7.3: Let u, = (1, - 1, 0, 0, O)t/&, u, = (1, 1, - 2,0,0>/,,/%, u3 = 

(1,1,1, -3,O)/J12. Let x1 = uI, x2 = u2, and x j  = (u,ul + u2u2 + uj)/ 
,,/a, + u$ = 1. Thus, the x-vectors are orthogonal to (1, I ,  1, 1, I ) ,  and each 
has length one. As u1 and a, increase in absolute value the matrix M = X‘X 
becomes increasingly ill-conditioned, so that ridge regression becomcs more 
appropriate. To illustrate this let u1 = 5 ,  and u, = 10. Then 

i’ - 

1 0 0.445 4 

M=[O 1 

0.4454 0.8909 1 

which has eigenvalues 1.996, 0.996, 0.00396, so that M is somewhat ill- 
conditioned. The corresponding eigenvectors are iil = (0.3162,0.632 5,0.707 l)’, 
ik, = (0.8944, -0.4472, O)’, and ik3 = (0.3162, 0.6325, -0.707 1). For fl = 
(10,20, 30)’, and 8 = (40.65,40.61, -45.95, -2.31,O)’ and (r = 5 an observation 
Y = (38.00, 12.97, - 37.69, - 3.54,0.15)’ was generated. Thc ridge estimates of 
6 and the resulting error mean squares for each of 10 values of r are given in 
Table 4.7.4. The least squares estimates correspond to r = 0, for which ESS is 
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80 ' s 
60 . 

3 3  4 0 .  
.p"% o m  2 0 '  

a 0 '  

-20 . 

Table 4.7.4 

r b, I A 2  b ,3  ESS 

- .. 
betahae 

betahatl /- 

O.Oo0 
0.010 
0.020 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 

- 16.98 
-0.71 

1.96 
3.06 
3.66 
4.04 
4.30 
4.48 
4.63 
4.74 
4.83 

- 17.41 
14.60 
19.79 
21.83 
22.88 
23.49 
23.86 
24.10 
24.24 
24.33 
24.37 

77.44 
41.34 
35.25 
32.66 
31.19 
30.22 
29.51 
28.96 
28.51 
28.13 
27.80 

23.74 
34.10 
38.03 
40.10 
41.58 
42.86 
44.09 
45.34 
46.64 
48.01 
49.47 

smallest. Notice that the estimates seem to be closer to the corresponding 
parameters (10,20,30) as r increases. As r increases the ridge estimates will 
begin to be pushed down toward zero, as we accept more bias in the effort 
to decrease variation (Figure 4.15). The problem the statistician faces, of 
course, is that fi is unknown and it is difficult to choose the appropriate r. 
Knowledge of the subject matter may provide some guidance, so that if too 
small values of r seem to provide unreasonable estimates, these values can 
be rejected. Usually the ridge traces will stabilize and gradually shrink 
toward zero, and a good choice for r may be the a minimum value for which 
all traces have stabilized. For better understanding see the papers mentioned 
above. 

Problem 4.7.1: Show that the variance inflation factor for the j th com- 

_>-, where GL = ( g i l , .  . . , Gik)' is the 
A.  6 2 .  

i (/.i + rI2 
ponent of the ridge estimator b, is 

eigenvector of M corresponding to Li. 
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Problem 4.7.2: Use the formula 8, = (M + rI,.)-lMb and matrix algebra 
to show that DCB,] = (M + rI,)-2Ma2 = M(M + rI,)-’02. 

Problem 4.73: Suppose that M = [d y ]  for 0 s a I 1. Find 1, and pi for 

i = 1. 2, and use these to write a nonmatrix formula for D@,]. Compare the 
performances of b, and b for the case that 1 - a or 1 + a is small, say E. 

Problem 4.7.4: What are the variance inflation factors for in Example 
4.7.1? 

4.8 ASYMPTOTIC NORMALITY 

In this section we will briefly discuss, without proof, conditions under which 
the estimator @ is approximately normally distributed, even though the usual 
assumptions on E are not satisfied. Though in any application n is finite, any 
mathematical treatment of the distributional properties of B under these relaxed 
conditions must be asymptotic. In order to investigate the closeness of these 
distributions to normality some computer simulations will be discussed. 

Eicher’s Theorem 3.1 (Eicher, 1965) considers a sequence of regression 
models 

Yn = XnB + En, 

where Y, has n components, E(E,)  = 0, C, = D[E,]  = diag(a:, . . , , a:), and X, 
is an n x k matrix of constants. Suppose the Components of E, are independent. 
Then, as usual, 

8, = Mt’XAY, = 6 + M,-’X;&, 

for M, = XiX,. Then 6, is an unbiased estimator of 6 with covariance matrix 

For a simple example suppose k = 1 and X, = (1.2,. . . , n)’ with a1 = . . . = a,. 

asymptotically normally distributed? Since in is fi plus a 
1 . .  

linear combination of the components of E, we might hope that a form of the 
Central Limit Theorem will cause 6, to be normally distributed even when the 
components of E, are not. 

Consider an even more extreme example. For k = 1 take X, = (1,. . . , 1, n)’, 
the components of E, identically distributed with variance a’. 
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has variance 02:(n2 + n - 1) and 

The first factor in the first term on the right is asymptotically N ( 0 ,  l), and the 
second factor converges to 0. Thus the first term converges in probability to 
zero. The second term converges in distribution to the distribution of ~,/cr. Thus 
2, will be asymptotically normally distributed only if E, is normally distributed. 
Too much weight has been put on U,, relative to the weight on the other x. 

Similarly, if X, is the vector of all ones, but the components of E, have 
variances which differ greatly, then most of the variation in B,, will be caused 
by those components with relatively large variance. Eicher's Theorem makes 
the requirements that not too much weight be given to some components, and 
that there be not too much relative variation in the components of E,. 

Let li,, be the ith row of X, and let B, bc the symmetric k x k matrix 
satisfying B,Z = M,. Let .9 be the collection of all distributions with mean zero, 
finite positive variance. Suppose that all components of E, have a distribution 
in 9. 

Tbeorem 4.8.1 (Eicher): Let 2, = B; ' ( f in  - 8). Then Z, is asymptotically 
distributed as N,(O, Ik) for all G E 9 if and only if 

Condition (1) assures that not too much weight be put on any single 
observation x. din is the leverage of the observation corresponding to li. 
Condition (2) does not allow components of E, to have probability mass at  
locations which diverge too far from that of other components. Condition (3) 
forces all components to a minimum standard of variation. 

Consider the first example above with X, = (1,2,. . . , n)'. Then d ,  = 

x:,/C xf, = iz//c iz = 6i2/"n(n + 1)(2n + l)], h, = 6n / (n  + 1)(2n + 1 j < 

6(2n + I ) - l  4 0 as n -+ eel. Therefore, if the components of E, have identical 
distributions with finite positive variance then Z, = (en - p)/,,,6ar(fIn), where 
Var(g,) = 6/[n(n + 1)(2n + l)], is asymptotically N(0,  1). 

n n 

so 
1 1 

-7. 
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In the second example, with X i  = ( I , .  . . , 1, n), 

%,,Mi '%J, = li[(n - 1) + n 2 ]  for l s ' j s n - 1  

= n z / [ ( n  - 1) + n2)] for j = n 

Since this i s  maximum fo r j  = n and this maximum converges to one, (1) is not 
satisfied, so that 2, is not asymptotically normal for all G E 9. 

Eicher showed, for example, that if the ij element of X, is i'' for c, > * . * > 
ck > - then X, satisfies (1). Thus polynomial regression (c, = j )  on integers 
1 , .  . . , n satisfies 1. 

One of the problems with Theorem 4.8.1 is that Z, depends on the unknown 
Z,. Fortunately it is possible to replace M, by C, = M i  'XLS,X,M,-' where 
S, = diag(e,, . . . ,en) and e = (e l , .  . . , en) is the usual residual vector. 

Theorem 4.6.2 (Eicher): Let C, be the symmetric n x n matrix satisfying 
G,2 = C, and define W, = G;'($,, - B). Then W, converges in distribution to 
N,(O, Ik) if ail three parts of Theorem 4.8.1 hold. 

In the case that the components of E have identical distributions F we can 
state a simpler version of the Central Limit Theorem for least squares estimators 
for linear models, duc to Huber (1981). We follow the presentation of Mammen 
(1992). 

Theorem 4.8.3: Let the components of E be independent, with common c.d.f. 
F. Let h, be the largest diagonal term (leverage) of the projection matrix 
P, = X,M;'X;. Let c = (c,. . . . , c,.)' be a vector of constants, let q = c'p, and 
4, = c's,,. Then %, = [c'M, 'c]"~((, - q )  converges in distribution to standard 
normal if and only if either ( I )  h, -* 0, or (2) F is a normal distribution. 

Example 4.81 : Suppose E ,  has independent identically distributed com- 
ponents with mean 0, variance cr2 > 0. Let xo be the vector of n ones, and let 
x. be the first n components of (1,;. f.. . .). Let x: = xi - %,xo and X = (xo, x:). 

ThenM, = XiX, = diag(l/n, llxTI12),for Ilxtli' = 1 (l / iz)  - [I(l/i)]'/n. Since 
n 

n n 1 

1 1 
U, = (l/i') - n2/6 4 0 and I/, = ( . l / i )  - log n -+ q G 0.577 23 (Euler's con- 

stant), for i, = (1, 1 - k,)), 

Thus condition (1) is not satisfied. The regression slope 8, depends too heavily 
on the observations corresponding to the first few x i .  If F were a normal 
distribution, then the standardized version 2 of fi has a standard normal 
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distribution for every n. However, if F is not a normal distribution, then b, 
cannot be asymptotically normal. 

This result suggests that in the case that the errors E~ corresponding to a few 
of the xi’s which are relatively far from the mean have distributions which differ 
greatly from the normal, that b1 will also have a distribution differing greatly 
from normal (though not as much as for the 8,) .  

Though limit theorems are useful in that they indicate the conditions under 
which a distribution may be approximated by the limiting distribution, they 
do not in general say how large n must be before the approximation is 
good. The next few examples may provide some understanding of these 
approximations. 

Example 4.82: Let 2 have the standard normal distribution, Let V be 0 
or 1 with probabilities 1 - p, p independent of 2. Then 

o,Z, if V = O  

02Z, if V =  1 
E = [ul(l - V )  + t72 V-JZ = 

has the “contaminated normal distribution,” with c.d.f. 

W) = (1 - P P ( X / f l , )  + @(x:~’). 

F has mean E ( E )  = 0, variance Var(E) = ( 1  - p)u: + pcrf. The density of E is 
plotted in Figure 4.16(a). 

Now consider simple linear regression & = Po + fi,.x, + E,  for i = 1 , .  . . , n, 
where the E ~ S  are a random sample from F above. Take n = 10, x i  = i for 
i = I , .  . . , 9  and xl0 = 30. Take o1 = 2, o2 = 20, p = 0.2. 

(30 - 7.5)’ 
= 0.9 13, 

(:O) i- - 62% 
Thus, d,o, lo  as defined in Eicher’s Theorem is 

not very close to 0 as suggested by condition (1). The other d , . t o  values are 
considerably smaller. Certainly the ci are not normally distributed, and it seems 
that too much weight on x, = 30 in the determination of b,  may cause 8, and 
the corresponding t-statistic to have distributions differing greatly from the 
normal and t distributions. Figure 4.16(b), the histogram for 1, for lo00 
simulations, indicates that 8, takes more extreme values than would be 
expected under the normal distribution. These values are caused by large lell 
corresponding to x, = 30. Figure 4.1qc) is the corresponding histogram for 
T = b l / ~ g l .  

The comparison of the distribution of 8, with the normal distribution is 
more evident in Figure 4.16(d). Notice that the c.d.f.3 are approximately equal 
at the 57; and 95% percentile points. Figure 4.16(e) indicates the same things 
for the t-statistic, showing that T has a 95th percentile somewhat larger than 
that given by the t8  distribution. As a result claimed 95% confidence intervals 
on P I  would in reality be roughly 90% intervals. Among 1,OOO values of T 
frequencies and nominal probabilities using the t ,  distribution were as follows: 
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~ ~~ 

I -2.897 -2.306 - 1.860 -1.397 1.397 1.860 2.306 2.897 
P ( T <  6 )  0.01 0.025 0.05 0.10 0.90 0.95 0.975 0 . 9  
Frequency 30 42 57 72 915 931 947 959 

We estimate P( 1 TI I 2.306), for example, to be (947 - 42)/1,000 = 0.905, while 
the nominal value is 0.95. 

Thus, even for this case, for a distribution F with rather “heavy tails” 
(kurtosis I3.67), and relatively heavy weight on one observation (corresponding 
to .Y = 30) the distribution of the t-statistic is not terribly far from the nominal 
t distribution. Certainly for a larger number of observations or less relative 
weight on a relatively few observations, or “more normal” distributions for the 
E the approximation is better. 

Figure 4.16(f), a comparison between the sample c.d.f. for W = ESSja’ = 
S2(8)/az and the c.d.f. for xf  indicates that the heavy tail for F has a stronger 
effect on the distribution of W. In general, nonnormality has a much stronger 
effect on the distribution of S2 than on B, so that conclusions concerning a’ 
must remain somewhat tentative in the presence of suspected heavy non- 
normality. In general, positive kurtosis (p,/04 - 3) tends to cause W to have 
heavier tails than does x’. 

We will go no further in discussing these approximations. Readers interested 
in the cffects of departure from the assumptions of the usual linear model, 
especially in the case of the analysis of variance are referred to Chapter 10 of 
ScheffCs text, The Analysis of Variance. At the conclusion of Section 10.2 Scheffe 
summarizes 

Our conclusions from the examples of this section may be briefly summarized as 
follows: (i) Nonnormality has little effect on inferences about means but serious effects 
on inferences about variances of random variables whose kurtosis yz differs from 
zero. (ii) Inequality of variances in the cells of a layout has little effect on inferences 
about means if the cell numbers are equal, serious effects with unequal cell numbers. 
(iii) The effect of correlation in the observations can be serious on inference about 
means. 

The kurtosis of a random variable c is y2 = E(c - pC)*/o4 - 3. For the 
normal distribution = 0. 

4.9 SPLINE FUNCTIONS 

On occasion we may choose to approximate a regression function g(x) = E( Y ( x )  
by functions h,(x) over nonoverlapping intervals lj. We could simply treat the 
data corresponding to x;s in lj as separate curve fitting problems. However, it 
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often desirable that the approximating function h(x )  = hj(s) for x E lj have 
certain smoothness properties. For example, the viscosity of a chemical may 
change continuously with temperature x (degrees Celsius), and linearly for the 
three intervals (- 100,0), (0, 100), and (100,300), but the slope may change at 
x = 0 or at x = 100. 

Let t y 0  < u1 c * - * < or+ , be fixed known points and let l j  be the closed 
interval [o,- ,, u j ]  for J = 1,. . . , r + 1. Suppose that the regression function is 
g(x) which we hope to approximate by a function 

h(x )  = p j ( x )  for X E  l j ,  for j = 1,. . . , r + 1, 

where p j ( x )  is a polynomial of degree at most rn. It is common to choose m = 3. 
In the viscosity example above m = 1. Suppose that h(x)  has continuous 
derivatives of order m - 1 on the interval (uo,ortl). The points uj  for 
J = 1,. . . , r are called knots and the function h(x) is called a spline function. 

The word "spline" is taken from the draftsman's spline, a flexible thin rod 
tied down at certain fixed points (the knots), which physically must then follow 
a cubic path (m = 3) between points. The word was chosen by Schoenberg 
( 1946). 

It is possible to represent such spline functions in a simple way, so that least 
squares computations are facilitated. Define d j ( x )  = p j ( x )  - p i -  l ( x )  for j = 
1,. . . , r for x E (xo, x,, Then pj.+ = pt + d ,  + . . + d j .  Because derivatives 
of h up to order m - 1 are contmuous, the first m - 1 derivatives of d j  at uj 
must all be zero. Since d, is a polynomial of order at most rn, this implies that 
d j ( x )  = Pj(x - ~ j ) " .  Thus, 

i 
h(x)  = p l ( x >  + C Pi(x - c i ) l  for x E lj+ ,,I = I , .  , . , r. 

i= I 

By defining 

I u for u 2 0  
0 for u < O  

u+ = {  
we can write g in the form 

r 

A x )  = P 1 (XI + C Pi(x - oi): 7 

i =  1 
(4.9.1) 

since for x E I j +  ,, i > j ,  (x - v i ) +  = 0. Let ai(x) = (x - ui)"+ and p , ( x )  = 
a0 + a,x + . . . + z,,,xm. Then 

m , 
h ( x )  = 2 a,xj + C P i U i ( X ) ,  

0 1 

so that h has been expressed as a linear combination of unknown parameters, 
with known coefficients (for known knots). Thus, if we observe n pairs ( x i ,  x) ,  
we can represent the model & = h(x,)  + ci in the usual regression form 
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for fl= (ao, .  . .,a,,,, / I l , .  . .,/Ir)’, X = (xo,. . , , x,,,, al,. . . , ar), with ith row 
(I ,  xi, x;, . . . , xy, U,(Xi). . . . , ar(xi)). 

Example 4.9.1: Let m = 2, r = 2, uo = 0, u1 = 5, L’, = 10, og = 20, and 
suppose pl(x) = 80 - lox + 0.5x2, /Il = 0.6, and /I2 = -2, so that 

P J X )  = P ~ ( x )  + 0 . 6 ( ~  - 5)’ = 95 - 1 6 ~  + 1 . 1 ~ ’  
and 

P~(x )  = P ~ ( x )  - 2 ( ~  - 10)’ = - 105 + 2 4 ~  - 0 . 9 ~ ~ .  

Then h(x) = pj(x) over l j ,  j = 1, 2, 3, where I ,  = [0,5], I ,  = [5 ,  lo], I 3  = 
[lo, 201. For xi  = OS(i  - 1 )  and i = 1 , .  . . ,41 observations & = h(xi) + E* for 
Ei - H(0,  100) where taken independently. 

Figure 4.17 presents graphs of the points (xi, K ) ,  h(x) ,  and h(x). Table 4.9.1 
presents X, 8, Y, q, = Y - *, for Oi = h(xi). The parameters and their estimates 
were 
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Y 
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86.39 

o2 = 100.0 
S’ = IIY - Q1I2/(41 - 5) = 142.6 

0.280 
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X 

FIGURE 4.17 
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Table 4.9.1 

FITTING OF REGRESSION MODELS 

X 

I 
1 
1 
I 
I 
I 
I 
1 
1 
1 
I 
1 
I 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 
I 
I 
1 
1 
I 
1 
1 
1 
1 
1 
I 
1 
I 
I 
1 

0.0 
0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 
10.5 
11.0 
11.5 
12.0 
12.5 
13.0 
13.5 
14.0 
14.5 
15.0 
15.5 
16.0 
16.5 
17.0 
17.5 
18.0 
18.5 
19.0 
19.5 
20.0 

0.00 
0.25 
1 .00 
2.25 
4.00 
6.25 
9.00 

12.25 
16.00 
20.25 
25.00 
30.25 
36.00 
42.25 
49.00 
56.25 
64.00 
72.25 
81.00 
90.25 

100.00 
110.30 
121.00 
132.30 
144.00 
156.20 
169.00 
182.20 
196.00 
210.20 
225.00 
240.20 
256.00 
272.20 
289.00 
306.30 
324.00 
342.20 
361.00 
380.20 
400.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.25 
1 .00 
2.25 
4.00 
6.25 
9.00 

12.25 
16.00 
20.25 
25.00 
30.25 
36.00 
42.25 
49.00 
56.25 
64.00 
72.25 
81.00 
90.25 

100.00 
110.30 
121.00 
132.30 
144.00 
1 56.20 
169.00 
182.20 
196.00 
2 10.20 
225.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.25 
1 .00 
2.25 
4.00 
6.25 
9.00 

12.25 
16.00 
20.25 
25.00 
30.25 
36.00 
42.25 
49.00 
56.25 
64.00 
72.25 
81.00 
90.25 

100.00 

80.00 
75.12 
70.50 
66.13 
62.00 
58.13 
54.50 
51.12 
48.00 
45.12 
42.50 
40.27 
38.60 
37.48 
36.90 
36.88 
37.40 
38.48 
40.10 
42.27 
45.00 
47.78 
50.10 
51.97 
53.40 
54.37 
54.90 
54.98 
54.60 
53.78 
52.50 
50.77 
48.60 
45.97 
42.50 
39.37 
35.40 
30.97 
26.10 
20.78 
15.00 

93.24 
75.14 
67.79 
66.86 
57.71 
72.10 
42.12 
63.96 
45.01 
41.45 
31.28 
27.97 
49.26 
29.55 
42.69 
30.3 I 
44.99 
36.98 
50.96 
40.87 
39.67 
44.69 
31.39 
58.89 
43.12 
35.61 
60.35 
3 1.72 
71.76 
37.47 
54.2 1 
75.8 1 
51.88 
49.50 
55.00 
67.29 
21.48 
32.02 
19.47 
11.42 
13.18 

86.39 
79.83 
73.70 
68.00 
72.72 
57.87 
53.45 
49.46 
45.89 
42.74 
40.03 
37.01 
36.16 
35.07 
34.55 
34.60 
35.21 
36.39 
38.14 
40.45 
43.33 
46.27 
48.76 
50.8 I 
52.41 
53.57 
54.28 
54.54 
54.36 
53.73 
52.65 
51.13 
49.16 
46.74 
43.88 
40.57 
36.82 
32.62 
27.97 
22.88 
17.34 

6.950 
- 4.692 
- 5.91 3 
- 1.143 
- 5.017 
14.230 

14.500 
- 11.330 

- 0.880 
- 1.290 
- 8.75 1 
- 9 . w  
13.100 

-5.514 
8.146 

- 4.282 
9.779 
0.596 

12.830 
0.42 1 

- 3.664 
- 1.579 
- 17.370 

8.078 
- 9.294 
- 17.950 

6.07 I 

17.400 

1.562 
24.680 
2.725 
2.754 

11.120 
26.720 

- 15.340 
- 0.603 
- 8.500 
- 5.465 
-4.163 

- 22.820 

- 16.250 
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The estimate of D[)] was 

69.160 

- 39.57 

- 5.748 

1.212 
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1 
-39.57 4.742 -5.748 1.212 

31.69 -4.248 5.661 - 1.726 

-4.248 0.596 -0.831 0.294 , 

5.661 -0.831 1.218 -0.505 

- 1.726 0.294 -0.505 0.311 

We can test the null hypothesis of no change of regression at knot ui, 

equivalently f l j  = 0, using ti = b,&,. We obtain 1 ,  = 0.280/J1.218 = 0.254, 
t 2  = -2.026/J0.31 I = 3.63. We conclude that a model with a single knot at 
u2 = 10 would seem to suffice (an incorrect decision). 

I 

The prediction function h is an approximation of It, which itself is an 
approximation of the regression function y. The approximation of g by h can 
be improved if the number and positions of the knots are chosen carefully. For 
a discussion of splines in a nonstatistical setting see deBoor (1978). 

One problem with the choice of the matrix X is that the vectors ai may be 
almost dependent so that X is somewhat ill-conditioned. The functions ui(x) 
may be replaced by other functions Bi(x), called &splines, which are zero 
outside relatively narrow intervals, so that the column space of X remains the 
same. The solution 8 remains the same, but computations are likely to be more 
precise. The condition that the polynomials and their first m - 1 derivatives 
agree at the knots may be weakened by requiring that they agree for fewer 
derivatives, or the value of m can be made to vary with the knots, with resulting 
complications in computations. For a thorough discussion of the fitting of 
surfaces (regression functions of two or more variables), see the book by 
Lancaster and Salkauskas (1986), or the paper by Friedman (1991). 

Problem4.9.1: Let O < v l  and let O < x , ,  S X , ~ S  . . .  < x l n ,  IU, I 
x 2  5 - . . 5 xZn2 .  For observations (xi , ,  x,) for j = 1,. . . , ni, i = 1, 2, find the 
least squares approximation by functions of the form 

Evaluate bl ,  b2 for u1 = 3, and pairs of observations (1,3), (2. 5), (4,3), ( 5 , 5 ) .  
Sketch the scatter diagram and the function h. 

Problem 4.9.2: (a) Suppose m = 2, r = 2, ti,, = 0, u1 = 4, u2 = 8, u3 = 10 and 
observations on Yare taken for x = 1,2,. . . , 10. What is the matrix X needed 
in order to fit a spline function? 



208 FITTlNG OF REGRESSION MODELS 

(b) For the following (x, Y) pairs estimate the coefficients (q, a2, a3. p,. pt). 

x 1  2 3 4 5 6 7 8 9 10 
Y 12.81 11.73 15.74 28.29 40.44 50.60 59.52 68.11 78.10 97.23 

(c) Suppose these satisfy a spline model for m = 2 and ui as in (a). Find 

(d) Test the null hypothesis that g is the same quadratic function on [0, lo] 
a 95% confidence interval on g(x) E E( Y l x )  for x = 7. 

for a = 0.05. 

4.10 NONLINEAR LEAST SQUARES 

Almost all of the models so far considered have been linear in the parameters. 
Even when nonlinear models were considered in Section 4.1 we made a 
lineuriziny trunsjiormution, in order to take advantage of the mathematical 
apparatus available for linear models. There are occasions, however, when a 
nonlinear model cannot be linearized, or when we would greatly prefer to get 
a better fit to the data than that provided by linearizing. 

Suppose, for example, that we have observed n pairs (xi,yi), and for 
theoretical reasons, or simply based on a graphical look at the data, we hope 
to fit a function of the form g(x; 6) = g(x; Po. pl. y,) = Po + #llxpl to the data. 
There are no transformations on x or y which will result in a function which 
is linear in the parameters. Instead, we can attempt to use least squares directly. 
Let Q(p) = 1 [ y I  - g(xi; p)]'. The principle of least squares chooses 0 = B, the 

value which minimizes Q. What makes this problem different from those already 
considered is the nonlinearity of g(x; p) in p. 

To emphasize the dependence of g(xi ;  6) on p, define g,@) = g(xi ;  p). and let 
g(p) be the corresponding n-component column vector. is also written as a 
column vectpr. Define r(p) = y - g@), the vector of residuals. Our task is to 
choose p = fl so that Q(fl) = Ilr(p)lI2 is minimum. Th,e trick we will use is to 
suppose that we have a rough estimate, or guess, say Po of p. For fl reasonably 
close to g" g(B) will be approximately linear in p. If g@) is a reasonably smooth 
function (that is, all the component functions of g(p) are smooth), then we can 

i 

use a Taylor approximation of g(p). Let g@) = '!: - lBaaO,- and let g@) be 
. - A  

the corresponding n-compnent row vector. Let W = W(po) be the n x 3 
matrix withjth column g'(po), with ith row W,. The linear Taylor a proximation 
(the differential) of g(p) at 8" is b(p) = g(p) + 1 g@)(P, - &') = g(p) + 
W(P)(p- p), which, of course is linear in p. Let 7 = p -  g". Replace Q(p) 

j 
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by Q*@) = C [Y i  - hi(B)I2 = [(yi - ~i(s”)) - WiyI2. Letting z i  = yi - g@), 

we get Q*(B) = [zi - W,y]’ = )/z - WyiJ2, where z = y - g(& The function 

Q*@) is minimized by y = 9 = fW’W)-’W’z, B = 1 = 9 + p. More explicitly, 

i i 

I 

ji’ = s” + (W’W)-’W’(y - g(s”). (4.10.1) 

Once we have obtained the improvement fi’ we can replace by b’, then 
improve on 1’. using (4.10.1) again with W = W(B’). In this way we get a 
sequence of vectors @, which will under suitable smoothness conditions, (which 
are concerned with the existence of derivatives of the g,(P)), will converge to a 
point in 3-space. At the (r + 1)th iteration take W, = W(@) and 

We will refer to the procedure provided by (4.10.2) as the Newton NLLS 
method. If the starting point is too far from the minimum point the procedure 
can fail to converge. It is sometimes worthwhile to choose a collection of points 
b in the parameter space at  which to evaluate Q(b), then start at the point bo 
at which Q(b) is minimum. 

Example 4.10.1: Suppose = g(xi; P) + gi for g(x; B) = #fo + #flxfz for 
i = 1, .  . . , 12. The following x i  and parameter values P o ,  ply p2 were chosen in 
order to generate values: Po = 1, p1 = 3, and pZ = 0.5. Using these parameters 
and xi values given in Table 4.10.1, values of g,@) = g(xi; P) were determined. 
Then a vector E = ( E ~ , .  . . , E ’ ~ ) ‘  was generated, with the E ~ S  independent 
N(O,O.Ol) and Y = g(B) + E determined. 

Table 4.10.1 A Fit Using Nonlinear Least !3quares 

i xi SAB) Ei Yi 8 ei= x -  q 
I 0.05 
2 0.05 
3 0.10 
4 0.10 
5 0.20 
6 0.20 
7 0.40 
8 0.40 
9 0.80 

10 0.80 
1 1  1.20 
12 1.20 

1.671 
1.67 1 
1.949 
I .949 
2.342 
2.342 
2.897 
2.891 
3.683 
3.683 
4.286 
4.286 

- 0.032 1.639 
0.010 1.681 
0.093 2.042 

-0.169 I .780 
0.06 1 2.402 
0.022 2.364 
0.200 3.097 

-0.128 2.769 
- 0.267 3.4 16 

0.1 20 3.803 
0.222 4.508 

- 0.048 4.238 

1.664 
1.664 
1.941 
1.94 1 
2.336 
2.336 
2.900 
2.900 
3.704 
3.704 
4.325 
4.325 

- 0.025 
0.0 17 
0.101 

-0.161 
0.066 
0.028 

-0.197 
0.131 

-0.288 
0.099 
0.183 

- 0.087 
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The functions yo@) = I ,  g'@) = .P, gz((B) = Pl(ln x)xdr2 were then deter- 
mined. Following this. a rather arbitrary starting point Po = (0.5,2,0.8)' was 
chosen. Formula (4.10.1) was used iteratively. On the rth iteration the matrix 
W, = W ( r )  and &go) had to be determined. The sequence converged rapidly: 
1' = (1.228,2.808,0.440)', b' = (1.044,2.986,0.520)', f13 = (1.016,3.014,0.513)', 
p4 = (1.015,3.014,0.513). The difference - b3 had maximum absolute value 
less than 0.001, so the computer program written to perform these computations 
ordered the iterations to stop. Table 4.10.1 prcsents interesting statistics. We 
find ESS = (1 Y - f Ij = 0.23 1 9, S2 = ESS/( 12 - 3) = 0.025 8. 

Asymptotically, as n + x, the statistical properties of b, E, and S2 are the 
same as they would be if the model were truly linear, with design matrix 
W = W(p), which must be estimated by W = W(0). Thus, for example, for large 
n, in approximation B - N(fl, a*(W'W)-'), even without the normality of E ,  (if 
y(x; p) is reasonably smooth, and the xi are not spread out too much.) We are 
obviously being somewhat vague here. The student eager for more rigor is 
referred to Nonlineur Regression by Seber and Wild ( I  989). 

Continuation of Example 4.10.1: For these observations with Sz = 0.025 8, 
we estimate the covariance matrix for 0 by 

0.159 -0.156 0.0481 

S*[W(b)'W(fi)]-' = -0.156 0.160 -0.046 . 
0.048 -0.046 0.016 

Since we know fl = (1,3,0.5) and a', we can compute thc better approximation 

0.152 -0.149 0.0451 

~'[W(fi)'W(p)]-' = -0.149 0.152 -0.043 . 

0.045 -0.043 0.014 

Even this is an approximation, since it pretends that g(p) is linear near the true 
parameter value. We simulated the experiment 500 times, each time computing 
fl. Th,e sample mean of the 500 values of 8 was (0.946,3.049,0.497), suggesting 
that p is almost unbiased. The mean value for S2 was 0.008 9, so S2 has a small 

negative bias. The sample covariance matrix was 0.083 0.084 -0.021 , 

indicating that the estimates of the variances of Bo, bl, and b2 were somewhat 
larger than their true values. Since the sample size was relatively small, we did 
reasonably well. Histograms of the coefficients based on the 500 simulations 
indicate that the distribution of bo is somewhat skewed to the left (long tail on 

1 [ 0.022 -0.021 0.006 

0.085 -0.083 0.022 
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the left, with a few negative values), f l ,  is skewed to the right, but that p, has 
a roughly normal distribution. 

We have emphasized the example with three pis,  and one independent 
variable x. Of course, three may be replaced by any number k c n of 
independent variables, though g(p) must be a 1-1 function on the domain on 
which p takes its values, and unless k/n is small the statistical distributional 
approximations may be poor. In the following example, a multiplicative model, 
we compare the solutions given by nonlinear least squares, and those given by 
a linearizing transformation. 

Example 4.10.2: Let & = g(gi; p) + c i ,  where ti = (xilr x,,), and g(2;  p) = 
&,.x~~.x$' for 2 = (.xi! x,). Observations were taken for 18 values ti as given 
in Table 4.10.2. These were taken for p = (2.7,0.5,0.9)', and E~ - N(0,  a2) with 
CT = 0.5. Define gi@) = g(?+, p), and, as before, let g(p) be the corresponding 
18-component column vector. Let gJ(p) be the vector of partial derivatives with 
respect to Pj for j = 0, 1, 2. For example, the ith component of g'(b) is 
Po(ln xi,)xf,'xh = (In xil)gi(P). Then W(p) is the 18 x 3 matrix with j t h  column 

[ - yi (p) ] * ,  resulting 

= g(B) as given in the table. The 

g'(B). 
The Newton method was used to minimize Q(p) = 

i 

in the estimate fi = (2.541,0.551,0.799), and 

Table 4.10.2 Comparison of the Fits Provided by Nonlinear Least Squares and by a 
Linearizing Transformation 

Ei x -  u: 
1 0.5 0.2 0.449 
2 0.5 0.6 1.206 
3 0.5 1.0 1.909 
4 1.0 0.2 0.634 
5 1.0 0.6 1.705 
6 1.0 1.0 2.700 
7 1.5 0.2 0.777 
8 1.5 0.6 2.088 
9 1.5 1.0 3.307 

10 2.0 0.2 0.897 
11  2.0 0.6 2.411 
I 2  2.0 1.0 3.818 
13 2.5 0.2 1.W3 
14 2.5 0.6 2.696 
I5 1.5 1.0 4.269 
16 3.0 0.2 1.099 
17 3.0 0.6 2.953 
18 3.0 1.0 4.677 

- 0.087 
0.256 

- 0.622 
-0.525 

0.193 
0.144 
0.279 
0.015 
0.003 
0.346 

-0.507 
0.029 
0.086 
0.2 I7 

-0.208 
0.250 
0.359 

-0.144 

0.361 0.480 
1.461 1.153 
1.287 1.734 
0.109 0.703 
1.898 1.690 
2.844 2.541 
1.056 0.879 
2.103 2.113 
3.309 3.177 
1.243 1.030 
1.904 2.476 
3.847 3.723 
1.089 1.164 
2.913 2.800 
4.061 4.210 
1.349 1.287 
3.312 3.095 
4.533 4.655 

-0.1 19 
0.308 

-0.447 
- 0.594 

0.209 
0.303 
0.178 

- 0.009 
0.132 
0.214 
0.571 
0.124 

- 0.075 
0.113 

-0.149 
0.062 
0.2 17 

-0.122 

0.400 
0.871 
1.896 
0.515 
1.121 
2.439 
0.663 
1.442 
3.138 
0.852 
1.855 
4.036 
1.096 
2.386 
5.192 
1.410 
3.069 
6.679 

- 0.039 
0.590 

- 0.609 
- 0.406 

0.778 
0.405 
0.394 
0.662 
0. I72 
0.391 
0.050 

-0.189 
- 0.007 

0.527 
- 1.131 
- 0.06 I 

0.243 
- 2.146 



212 FITTING OF REGRESSION MODELS 

function g can be linearized. Taking logs, we get the approximation Zi = In i 

In Po + PI In xil + f lz In x i 2 .  Least squares, minimizing 1 [zi - In gi(p)JZ, was 

used to obtain the estimate p*, = (2.47,0.711,0.988). The error sums of squares 
for the two estimates were Q(p) = 1.339 and Q(B*) = 8.695. The estimate of uz 
was Sz = I .339/15 = 0.0893, substantially below uz = 0.25. The approximation 
of Y by is certainly better than that provided by $* = g(F*), as must be the 
case. We estimate the covariance matrix of 6 to be 

1 

20.51 -7.51 3.07 

-7.51 4.17 0.00 . [ 3.07 0.00 5 . 2 1  

The entire experiment was simulated 400 times, providing the estimate 

53.00 -0.02 

4.W 1.31 16.56 

of the covariance matrix, with (mean $) = (2.713,0.491,0.8994), and (mean 
S2) = 0.253. Histograms indicated that 6 has a distribution which is close to 
normal (see Table 4.10.2). 

Problem 4.10.1: Use least squares to determine 8 so that g(x; B) = ellx 
approximates y for the three (x, y) pairs (1,2.071), (2,4.309), (3,8.955). 

Problem 4.10.2: Repeat 4.10.1 for g(x; fl) = pleBzx. for the three (x, y) pairs 
(1,2.713), (2, 3.025), (3, 11.731). 

Problem 4.103: Let g(x, f l )  = x/p, and suppose (x, y) takes the values (1,2), 
(2,4), (3.61, ( 4 , O  

(a) Show that if j? = b, then $ + I  = b - b2(2 - l/b). 
(b) Use nonlinear least squares beginning with 

get tired. What happens if the starting point is /!l” = l? 
(c) What is the estimate of B if we use the linearizing methods of Section 4. l‘! 

= 0.8, and iterate until you 

Problem 4.10.4: Make one iteration of the Newton NLLS procedure for 
the starting point = (0.6,3,2), to try to improve on the least squares fit for 
the regression function g ( 2 ;  p) = g(x,, x,; PI, P,, P3) = f l , , ~ { ~ x ~ ,  for (xl, x2. y) 
triples ( 1 ,  I ,  1.382), (1,2,0.192), (2, 1,27.567), (2,2,3.633). Let 6’ be the 
“improved value.” Evaluate Q(6,) and Q(6’) to see whether you have an 
improvement. If you have a computer or enough patience also find the least 
squares estimate 6. 
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Problem 4.10.5: If - N ( g ( A i ;  p), a’), for i = 1 , .  . . , n are independent 
r.v.’s, what is the maximum likelihood estimator of fl? 

Problem 4.10.6: Suppose that Y = Xp + E, and that E - ”0, a’). If the 
Newton method is used with a starting value @”, what are 8’. 82.. . . ? 

4.11 ROBUST REGRESSION 

Consider the scatter diagram of Figure 4.18, with straight lines fit to the data 
using three different methods: least squares, the M-method of Hubex, and least 
median squares. The aim under each method is to minimize the distance between 
the vector y and the vector of predicted distances y = BoJ + 8,x. Under the 
least squares method, the squared distance is IIy - $ti2. A problem with this 
measure of distance is that it puts particularly heavy weight on larger deviations. 
If a relatively few of the error terms (the q‘s) are exceptionafly large, these may 
have a heavy influence on the estimates of (po,fll), particularly when the 
leverage [ l/n + ( x i  - ,f)’/z (xi - X)’] of an observation at .K = xi  is large, that 
is, when xi is far from 2. This sensitivity of least squares to one or a few 
observations led Box and Andersen (1955) to use the word “robust” in 
connection with a study of the effects of departures from the usual assumptions 
of a model. A robust statistical procedure has come to mean that the procedure 
continues to have desirable properties when the assumptions of the model are 
not satisfied. For example, a robust procedure would work well in the case that 
ci has the contaminated normal distribution, being an observation from a 
N@, a’) distribution with a large probability p, but being an observation from 
N ( p ,  a2K), for large K, with probability 1 - p .  Tukey’s paper (1962) on data 

loo 

80 

Y 6 0  

40 

20 

0 

. 

5 10 15 20 
X 

FIGURE 4.18 Least squares, least median of squares, and Huber estimates of a regression 
function. 
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analysis. calling for more realistic statistical methodology, less dependent on 
assumptions, was very important in stimulating the effort of the last 30 years 
or so on robust methods. Huber’s book of 1981 listed 116 papers and books 
on the subject, and the pace has increased each year, particularly with the rapid 
increase in computational power. For a thorough discussion of the use of robust 
methods in regression, both for the M-method discussed here and for the 
R-method (R for rank) see the monograph by H. Koul (1992). 

Huber (1964) suggested the M-estimator for the location problem. In the 
location problem we observe a random sample Yl, . . . , Y. from a distribution 
F ( y  - @) and wish to estimate 8. The letter M was chosen to remind us of the 
mean, the median, and the maximum likelihood estimator. Let p ( u )  be a 
continuous convex function on the real line converging to + cx: as u - x or 
u -+ + x. Informally convexity means that a straight line connecting two points 
of thc graph of p lies above or on the graph. Simple choices are p , ( u )  = u2/2,  
p 2 ( 4  = IuI, and 

u2/2 for u I k 
P 3 ( 4  = { l u l k - k 2 / 2  for l u / > k  , 

for some k > 0. 

The M-estimator of 0 is the value 8 of r which minimizes 

Q ( t )  = C P( K - t). 

The M-estimators corresponding to p ,  and p 2  are (5, = P and 8, = 

med( U,,  . . . , Y,). The estimator 4, corresponding to p 3 ,  usually called the Huber 
estimuror, is more dificult to compute, but may be thought of as a compromise 
between the mean and the median. Suppose that p has the derivative +. so that 

Q’(r) = +( & - t). For p, ,  p 2 ,  p3 the corresponding + are + , ( u )  = u, 
6 
6r Q(t )  = 

and 
U S  - k  

for - k  < u 5 k .  

u > k  

Let U have distribction F ,  and define i ( r )  = E[+(U - t ) ] .  Let i ( c )  = 
min,IR(t)!. If p ( - u )  = p(u)  for all u, as it is for the examples above, and f is 
symmetric about zero, then c = 0. In his 1964 paper Huber proved (in slightly 
different notation, Lemma 4) that if ( I )  I.@) = 0, (2) i. has a derivative at c and 
i’(c) < 0. (3) E[I(12(D’ - r ) ]  is finite and continuous at c, then n ’ ~ ’ [ d ,  - 8 - c ]  
is asymptotically normal with variance V($, F )  = E[tj2(V - c ) ] / [ l l ’ ( ~ ) ] ~ .  In the 
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case that $ is sufficiently smooth, j.’(c) = - E($’(U - c)).  Thus, V ( $ , ,  F) = 
Var(U)/l, c = 0, and E[$: (U - c)] = 1, A(c) = 1 - 2F(c), and j-’(c) = 2f(c) .  so 
that V(( t3 ,  F) = I/[4fz(c)J. If the distribution of the Ys has median 0, so that 
F has median 0, then this is the usual formula for the asymptotic variance of 
the median. 

Consider the contamination model F = ( 1  - E)G + EH, where E > 0 is small, 
and G and H are c.d.f.’s. G is considered to be fixed but H is allowed to vary 
over a collection of c.d.f.3. Huber showed (Theorem 1) that there exist $,, F, 
such that sup, V($,,  F )  = V($,,  Fo) = inf, V{$, Fo). The first supremum is 
taken over all c.d.f.’s H for which E,,[JIO( U)]  = 0. The density f b  corresponding 
to F, is given explicitly in terms of G, and $o = -fb/fo, the choice of i,b 

corresponding to the maximum likelihood estimator, is a Huber estimator for 
an explicit choice of k depending on E and g. This result suggests that if we 
want an estimator which will perform well when F is G with no more than E 

contamination, we should use a Huber estimator. At least asymptotically this 
will minimize the worst we can do (in a certain sense). As Huber points out, 
his Lemma 4 is somewhat unsatisfactory in that the supremum over H depends 
on (to, though this can be avoided by assuming that both G and H define 
symmetric distributions about 0. See the paper for details. 

Figure 4.19 presents Q’(r) for the choices i ,b, ,  $z, $ 3  for the sample I ,  2, 3, 
12, 17. The parameter k for thc Huber estimator is k = 6. The median and 
Huber estimates would not change if 12 and 17 were made arbitrarily larger. 

Now consider simple linear regression. Define 

e, = ei(ho, h , )  = yi - (h,  + b , x i )  and Q(bo, b , )  = p(ei(bo, b , ) ) .  

Let 

and 

Q(t) 

FIGURE 4.19 Q ‘ ( r )  for $,, + 2 ,  $3 for the sample I ,  2. 3, 12, 17. 
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We seek the pair (bo,  b , )  for which Q" and Q' are simultaneously 0. The 
estimates corresponding to tC/', +2 ,  and q3 are called, respectively, the least 
squares, least median of squares, and Huber estimates of (/lo, p,). The Huber 
parameter k is usually chosen to be a multiple c of a consistent robust estimator 
of a scale parameter. For example, for some choice (bo, bl), which is considered 
to be close to (PO,Pl) with high probability, k might be chosen to be c 
med(lei(bo, b,) l ) .  By defining wi = Jl(ei)/ei, the equations Qo = 0, Q' = 0, 
become C wiei = 0, and wixiei = 0, the weighted least squares equations. 
Since the ei depend on (bo, b , )  the weights ei and weights wi must be recomputed 
on each of the iterations used to find the solution. For the function rreg 
in the software package S-Plus c is 1.345. In the S-Plus language the 
weight function is +(u)/u. For computational details see Heiberger and Becker 
( 1992). 

In Figure 4.18 the straight line estimates provided by these three methods 
differ considerably, because the observations corresponding to x = 13,. . . , 19 
are above the straight line extrapolation suggested by the observations for 
smaller x, and because the observation (20, SE), which appears to be an outlier. 
The least median of squares (LMS) estimate ignores these last eight observa- 
tions almost completely. The Huber estimate puts no more weight on this 
outlier than it would if it were considerably closer to the Huber line. Had all 
points except the outlier been close to the LMS line, the Huber line would 
almost coincide with it, and the least squares line would have a smaller slope, 
since it must account for the outlier. 

are 
taken for each integer x,, 1 -< x i  I 2 0 .  Explicitly, x1 = 1, x2 = 1, x3 = 2, 
xS9 = 20,. . . , xd0 = 20. Suppose also that E~ - F, where F = (1 - E)N(O, 3*) + 
EN(O, ((5)(3))'), E = 0.1. That is, the E~ have the distribution of (3Z)[( I - 6) + 561, 
where Z is has a standard normal distribution, and 6 is 0 or 1 with probabilities 
0.9,O.l. The E ~ S  have a contaminated normal distribution with contamination 
probability 0.1, contamination distribution N(O,225). 

This experiment was performed 200 times, with the coefficient estimates of 
(Po, B , )  produced for each of the Huber and LS methods. Figure 4.20 presents 
the pairs of estimates for both the Huber and LS methods. Notice that there 
is considerably less variation in the Huber estimates. The corresponding sample 
covariance matrix, with order (b0, 8,) for least squares, then (So, b,) for the 
Huber estimates) among the four estimates (based this time on 400 experiments) 
was 

Suppose now that = 10 + 2xi + E , ,  and that two observations 

3.431 -0.249 1.865 -0.138 

-0.249 0.023 -0.135 0.013 

1.865 -0.135 1.534 -0.112 

-0.138 0.013 -0.112 0,010 

The sample means were 10.002,2.001,10.049, 1.995, so that all estimators appear 
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0 . .  
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FIGURE 4.20 Least squares estimates and Huber estimates. 

to be unbiased. Histograms (Figure 4.21) of 8,  for 400 simulations indicate that 
the least squares and Huber estimators are normally distributed. 

The Gauss-Markov Theorem states that the LS estimators are best among 
linear unbiased estimators (in having smallest variance). The Hubex estimator 
(and other M-estimators, other than the least squares estimator) are not linear, 
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FIGURE 4.21 Histograms or least squares estimates of slop and Huber estimates of slope. 

so that they are not eligible for the Gauss-Markov competition The con- 
taminated normal distribution is not itself a normal distribution, so we cannot 
call on normal theory to arguc that the LS estimator is best. Perhaps we should 
therefore not be surprised to learn from this simulation, or from the theory 
described in Huber (1981) or Hampel et al. (1986) that we can do better in the 
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presence of contamination than the LS estimator. The problem, of course, for 
the applied statistician is recognizing whether contamination is present. It is 
tempting to view the data before deciding whether to use a robust, rather than 
a LS estimator, and good statisticians will do that, though it is difficult to judge 
the properties of procedures which use informal judgments. 

Let us return now to the more general linear model Y = Xfl + E ,  where the 
components of E are independent with c.d.f. F. To avoid confusion with the k 
of Huber’s estimator, suppose that X is n x p ,  and that has p components. 
Define Q(b) = C p(Y, - Sib,), where lii is the ith row of X. The M-estimator of 
fi in the minimizer fl of Q(b), equivalently, the b satisfying I& - gib)xjj = 0, 
for j = 1 , .  . . , p .  Let e = e(b) = Y - Xb. Then this normal equation can be 
written in the form $(e) I x j ,  for each j ,  or $(e) I Y ( x , ,  . . . , x p )  = V.  By $(e) 
we mean the componentwise application of $ to the components of e. In order 
to consider the asymptotic properties of an M-estimator in this regression 
setting, we must consider. as in Section 4.8, a sequence of matrices X,. Let 
M, = XkX,, and let H, = X,M;.’X:, projection onto the column space of X,. 
Let h, be the maximum of the diagonal elements of H,. That is, h, is the 
maximum of the leverages of all the rows of X,. For simple linear regression 
this is max,[l/n + ( x i  - .?)’i’S,,] = l /n + max(x, - .f)’/S,,. Consjder any 
parameter q = (c, fi) = c,pl + . * * + cP&, and the estimator 4. = (c, fl,), where 
fin is the M-estimator of fl. Huber proved (1981, Section 7.4) that Z, = (4, - q)/u, 
is asymptotically standard normal, under suitable conditions on ((I and F, when 
h, -, 0 as n -+ x’. Here cf = [c’Mn-’c]V(@, F), where V($, F) = E [ $ ( U ) ’ ] /  
[ E ( $ ’ ) I 2  as defined above (not the subspace). V($, F )  is minimum if t+h = f’/j; 
producing the maximum likelihood estimator. In practice we will not know F, 
but can estimate Vconsistently by ~/t(e~)~]/[(l /n) C t+h’(q)]’, 
as suggested by Huber. If fact, Huber suggests that be multiplied by 

K’ = 1 + ( p / n )  v%!’(L’)). We will ignore this factor, which is close to 

one if p << n. In the case ((I(u) = u, corresponding to least squares, becomes 
the usual error mean square Sz. 

For the contamination example above numerical integration was used to 
find E [ $ ( r / ) ’ ]  = 10.30, and E[$‘(U)] = P ( - 6  < U < 6) = 0.8901. Simula- 
tions gave approximately the same values. Thus, V(+, F )  + 12.998, so that 
the asymptotic variance of the Huber estimator (for k = 6) is 12.998/Sx, = 
12.998j1330 = 0.00977, which compares well with 0.010 given in the sample 

covariance matrix. We were a bit lucky because the value of k used in the S- 
Plus procedure is itself estimated from the data. The variance of the least 
squares estimator is a’/S,, = [0.9(9) + 0.1 (225)]/Sx, = 30.6/1,330 = 0.023 0, 
which compares well with 0.023 3 obtained in the simulation. 

Other simulations indicate that the variances of the Huber estimators 
remains about the same across a wide ranges of choices of the parameter k. As 
k becomes larger the Huber estimator becomes more like the least squares 
estimator. In the case that F is a normal distribution, least squares, cor- 

= [(l/(n - p ) )  

E(* (U HZ 
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responding to k = m, is best. However, for more commonly chosen values of 
k, variances for Huber estimators increase relatively little over those for LS. 

We estimate cf by 6: = [c'M, 'c] t. Corresponding 100( 1 - a)% confidence 
intervals on q are given by 4, f z1 -$,. For large n this is the same formula 
as given in Section 3.2, with the extra multiplier v:", so the asymptotic relative 
length of confidence intervals produced by the M-estimator to the length of 
those produced by the method of LS is V."'. 

Huber showed that asymptotic normality holds even in the case that p = pn 
is allowed to increase with n so that h,pf + 0. Yohai and Maronna (1979) 
showed that the power 2 on p .  may be replaced by 3/2. 

Huber (1981, Section 7.10) suggests the following procedure for test- 
ing H,: 8 =  1 Btx, E V,, where V, is a ?,-dimensional subspace of V =  
9 ( x l , .  . . , x p ) .  Find the M-estimate 9 = XS of 9. Find the M-estimate of 8, 
based on the model 0 E V,. using 9, rather than Y (the answers will be different). 
Call this 9,. Definc 

c must be replaced by a consistent estimate of a scale parameter based on 
e = Y - q. Under If,, Wis asymptotically distributed as chi-square with p - p o  
degrees of freedom. 

Problem 4.11.1: (a) For the location parameter problem and the sample 3, 
5, 8, 16, 30, plot the function Q ( t )  corresponding to the Huber estimator with 
k = 5. To do this first find Q"(t), which is constant on intervals. Use your plot 
to determine the Huber estimate. Repeat for k = 10 and k = 15. 

(b) For the same sample determine the M-estimate corresponding to 

What is the estimate if 6 is replaced by 1 million? 

Problem 4.11.2: Is the Huber estimator with k = 4 as applied in simple 
linear regression the same as least squares estimate of D, for the pairs of 
observations (1,3), (2,6), (3,21)? 

Problem 4.11.3: Let X be an n x p matrix of rank p < n. Let b and ),, be 
the least squares and Huber estimates of fl in the linear model corresponding 
to y. Let e = y - XS = (e l , .  . . , en)'. Prove that max(leil) I k implies that fiH = B. i 

Problem 4.11.4: (a) For p = p 3  and the uniform distribution on [ - 1, 13 
for errors, with density J ( x )  = (1/2) for - 1 < x -= 1, show that V(+, F )  = 
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(1 - 2k/3) for k I 1 and V($,  F) = 1/3 for k > 1. What is the optimum choice 
for k? What is the resulting Huber estimator? Find its variance and compare 
it to V($,  F). 

Problem 4.115: Let = flxi + e, for i = 1,2, 3. Find the least squares and 
Huber (k = 5 )  estimates of fl for the ( x i ,  &) pairs (1, l), (2,2), (3,30). For which 
values of y 3  does the sample of pairs (1, l) ,  (2,2), (3, yJ  produce the Huber 
estimate (k = 5 )  which is equal to the least squares estimate? 

412 BOOTSTRAPPING IN REGRESSION 

Bradley Efron (1979,1982) introduced the “bootstrap estimate” as a means of 
estimating the distribution of a function R ( Y , F )  of data and an unknown 
distribution F, where the components of Y are a random sample from F. 
Suppose, for example, that R = R(Y, F )  = T = (P - p)/[Su/,/n], where p is 
the mean for F. R is Student’s “t-statistic” (not strictly a statistic, since it 
depends on the unknown p). T is used as a pivotal quantity in order to 
determine confidence intervals on p. This requires that its distribution be 
known. If F is a normal distribution then R has the t distribution with n - 1 
d.f. However, ifF is not normal then R does not, in general, have a t distribution. 
If n is large the t distribution may serve as an approximation, but certainly in 
some applications n may not be large. 

For another example let R(Y, F) = &(Y) - 6, where 6 is the median of the 
symmetric distribution F, and is the trimmed mean, the mean when the 
smallest k and largest k r s  are omitted. In this case R is the error made in 
using to estimate 0. More explicitly, if ei = & - 0, then, since &(Y) = 
0 + &(E),  R(Y, F) = &(E). In still one more example discussed by Efron, Y was 
a vector of pairs of observations (Vi ,  6 )  from a bivariate distribution F, and 
R(Y, F )  = r - p, where r and p are the sample and population correlation 
coefficients. 

Efron suggested that the conditional distribution of R* = R(Y*, F.) given Y 
serve as an estimator of the distribution of R. Here Y* = (G,. . . , c) is a 
random sample (the bootstrap sample, taken with replacement) from the 
empirical (or sample) distribution function F, determined by the components 
of Y. That is, F,(y) = (l in) c I [  I y], the proportion of the rs less than or 
equal to y. His intuitive argument was that at least for large n, R*, conditionally 
on the sample Y, should have a distribution close to that of R. 

- p = E, the error in using the sample mean y to 
estimate the mean p of the distribution F. Then R* = F“ - F, where F“ is the 
mean of a bootstrap sample of n from the “population” { Y,, . . . , V,> with mean 
y. If we define E: = - F, then R* = P. We know that the conditional 
distribution of R*, given Y, has mean 0 and variance 62,/n, where 6, = 
(lin) c (x - F)*. We also know that for large n, and reasonably behaved Y, 

Consider R(Y, F )  = 
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conditionally on Y, K* will be approximately normally distributed. We usually 
use &:in or (ci:/n)[n/(n - I)]  as an estimator of the variance of R. We also know 
that R has an approximate normal distribution if n is large and F is reasonably 
well behaved. Can we find the exact conditional distribution of R*'? In theory 
we can, since Y is known, though the problem may be mathematically 
intractable. Efron's idea was to take bootstrap samples of n from F, some large 
number B times to obtain R r , .  . . , Rf,  then to use these to estimate the 
distribution of R. The use of F,, rather than some other estimator Fi,  obtained 
by assuming that F = FA belongs to some collection of distributions para- 
meterized by )., causes the bootstrap methods we will discuss to be called 
nonparametr ic. 

Theory developed over the last 15 years has shown that in a number of 
circumstances, the "bootstrap" is a better approximation to the distribution of 
R than is the normal theory. In fact, there are cases in which the normal 
approximation may be quite poor, but the bootstrap approximation is good. 
The bootstrap has become practically possible because computing power has 
increased tremendously over these last 15 years. 

In this section we will avoid presenting proofs or even precise statements of 
the limit theory which justifies the approximations provided by the bootstrap. 
We are particularly interested, of course, in applications to linear models. Refer 
to the book by Rousseeuw and Leroy (1987) and the monograph by Mammen 
( 1992). Mammen's references include 79 papers with the name bootstrap in the 
title. For a less theoretical expository review of the bootstrap see Efron and 
Tibshirani (1986). 

Let 0 = B ( F )  be an unknown parameter, a function of F. Let 4 = 6(F,) the 
corresponding value of 0 for the distribution F,. Let R(Y. F )  = 4 - 0, the error 
made when 0 is estimated by 6. The bootstrap estimate of the variance of R is 
6; = Var(R*IY), the conditional variance of K* = R(Y*, Fn), given Y. There 
are n" possible samples of the components of Y of size n, all equally likely under 
"simple" bootstrap sampling. In theory, all we have to do  is compute R* for 
each such sample, then compute the variance of these ti" values. Though this 
is in the realm of the possible for n = 10 (10 billion samples), for larger n this 
soon becomes impossible. lnstead the bootstrap method requires that we choose 
some large number B samples at  random, determine R:, . . . , R& then estimate 
Var(R) by 6: = (1;B) 1 (RF - R*)'. In practice it is often enough to let 
B = 900. though i t  is usually relatively inexpensive to let B = l,OOO, IO,OOO, or 
even 100,OOO. 

Example 4.12.1: L.et F be the contaminated normal distribution: 

F ( x )  = 0.9@(.x) + 0.1@(~/5). 

Let O(F)  be the 0.2-trimmed mean. That is, for F(x,,,) = 0.2 and F(x,. ,)  = 0.8, 

6 ( F )  = j::: .xf(s)/0.6, where j' is the density corresponding to F. By symmetry 
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FIGURE 4.22 Density o f  error for trimmed mcan and bootstrap estimate of the density, based 
on one sample of 40. 

O(F) = 0 and 6 = 8(F,)  is the sample 0.2-trimmed mean. We consider samples 
of size n = 40. To find Var(b) 5 0 0  simples of 40 were chosen. The variance was 
found to be 0.0349. Then a single sample of 40 was taken and B = 1,OOO 
bootstrap samples of 40 were taken. The sample variance of these 1,000K*'s 

Figurc 4.22 presents estimates of the density of H based on this simulation, 
was 8; = 0.030. 

and also by bootstrapping a single sample of 40 1,OOO times. 

We will briefly discuss t w o  basic methods for the determination of bootstrap 
confidence intervals, the naive or percentile method and the t-method. For a 
full discussion of these and others from a theoretical point of view, see Hall 
(1988). For a more general review of the bootstrap method with examples, see 
Efron and Tibshirani (1986, 1993). Let 0 = 8 ( F )  be an unknown parameter and 
let 8 = O(F,). If, for example, 0 is the mean of the distribution F, then 8 is the 
sample mean. If  0 ( F )  is the median for F then 8 is the sample median. Let 
R = R ( Y ,  F )  = O(F,) - O ( F )  = 6 - 0, the error in estimating 0 by 8. We would 
like to estimate the distribution S(R) of R. Let R. be the 7th percentile of 9 ( R ) .  
Then 1 - z = P ( R  L R , )  = P ( b  - 0 2 R,) = P($ - R ,  2 0), SO that 6 - R, is 
an upper 1 OO( 1 - r)4, confidence limit on 0. Similarly, 

so that 6, - R ,  - 2  IS a lOO(1 - a)"/, lower confidence limit on 0. Thus, 
[d - R ,  -,,, 4 

The problem with this is that the distribution of R is unknown. For an 
R,,] is  a lWl - r ,  - a,)o; confidence interval on 0. 
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observation Y let R* = R(Y*, Fn), where Y* is a bootstrap sample from F,, the 
empirical distribution of Y. We can estimate Q(R)  by 9 ( R * I Y ) ,  the conditional 
distribution of R* given Y. We can do this, if we have enough computing power, 
by determining R* for all n“ possible bootstrap samples. In general this is 
impossible so we instead choose some large number B (say 200 or 1,OOO or 
l0,OOO) of bootstrap samples. For the ith bootstrap sample let R t  = 8: - 8, 
the bootstrap estimate of the error. We can now estimate R ,  for any 7 by the 
corresponding sample percentile of R:, . . . , R t .  That is, if k, is the nearest 
integer to p ,  then we estimate R ,  by Rr = EL,, the k,th order statistic 
among the R f .  The interval [d - R,  -,,, 0 - R 3 is then an approximate 
lOO(1 - a, - x2)% confidence interval on 8. This is a confidence interval 
obtained by a percentile method, though it does not quite correspond to the 
lOO(1 - 2a)”/, percentile interval [d - fi l  - a l ,  d - k, , ]  of Efron (1982). 

In the case that F is symmetric about 0, R ,  = 1 - R , - , ,  so that a better 
confidence interval is given by 6 & 2, -,, where A, -I is the (1 - r)th sample 
quantile of the absolute values IRFI. It is reasonable to believe that near 
symmetry will also cause the absolute percentile bootstrap method to be slightly 
better. 

The bootstrap t-method for confidence intervals requires that some estimator 
B of the standard deviation of d be available. This could be the bootstrap 
estimator. Define T(Y, F) = ( b  - 8)/d. If we knew the distribution of T then 
we could determine quantiles t ,  and t,,, so that 1 - a, = P ( T 5  ?,-,,) = 
P(d - 0 5 c, -,,&) = P ( b  - t ,  -,,8 5 O), and 1 - r2 = P ( T 2  fa*) = P(6 5 ta,B). 
Then [$ - t1-=,&,  f? - rz28] would be a l00[l - a,  - az]% confidence interval 
on 0. 

We can estimate the distribution of T by that of P = (8* - f?)/d*, con- 
ditionally on the sample Y .  Here f?* and d* are the estimates of 6 and the 
standard deviation of 8 based on a bootstrap sample Y* from Fn. We can 
generate B values of P, then estimate r l - , ,  and ta2 by the corresponding 
percentiles i,-,, and ia2 of these B values of F. The bootstrap t-confidence 
interval is then [d - f, -,,&, 4 - i,,8]. If 6 itself is a bootstrap estimator, this 
would require bootstrap of a bootstrap sample. If B = 1,OOO for both stages of 
bootstrapping, this would require 1 million bootstrap samples, each of size n. 
Again in the case of symmetry or near symmetry of F about 0, it might be 
better to use the interval 8 k 21-,&, where A,-= is the ( I  - a)th sample 
quantile of the c’s. 

= ? 

Example 4.12.2: Consider the contaminated normal example of Example 
4.12.1, for samples of size 20. To keep things simple consider the mean 
0 = O(F) = 0. Then d = y, and b2 = S2/n .  where Sz is the usual sample variance. 
In this case F certainly is not a normal distribution so that T does not have a 
t distribution. We computed six 90% confidence intervals for each sample of 
20, by (1) the usual t-method with interval k 1.729S/,/20, (2) the bootstrap 
percentile method described above, (3) the bootstrap percentile method of 
Efron, (4) the bootstrap absolute percentile method, ( 5 )  the bootstrap t-method 



BOOTSTRAPPING IN REGRESSION 225 

Table 4.12.1 
by t-Method and Bootstrap Metbods 

Coverage Percentages and Lengths for 90”/, Confidence Intervals Determined 

Method 1 2 3 4 5 6 

Percentage 90.09 89.96 84.2 86.8 81.9 93.8 
Mean Length 1.75 1.62 1.62 1.62 1.99 2.06 

described above, and, finally, (6) the bootstrap absolute t-method. Table 4.12.1 
above presents the coverage percentages, and the mean lengths of each of these 
intervals. The conclusion would seem to be that we are quite well off if we 
stick to the t-method, and forego bootstrapping. Another simulation, with 
F = 0.3N( - 1, 1) + 0.7N(3/7, l ) ,  n = IS, a nonsymmetric distribution, produced 
essentially the same results. In these examples the variance for F exists, so that 
the t-statistic is asymptotically normal. Simulations for F with a mean but not 
a variance, showed that the bootstrap percentile method can defeat the 
t-method, and that the bootstrap t-method can also be bad. Comparisons of 
lengths of intervals based on their mean lengths can give false impressions for 
such distributions, however, since heavy tails for F tend occasionally to produce 
very long intervals. 

Application of the Bootstrap Method to Regression 

k 

Suppose that the linear model Y = pixi  + E holds, where the components 

of E are independent, identically distributed with c.d.f. F. Let the column space 
of X be VtAof dimension k. By the Gauss-Markov Theorem the least squares 
estimator B =  X’Y = fl + X ’ E ,  for M = X‘X, X’ = M-lX’ has minimum 
variance among all linear unbiased estimators of the components of fl. However, 
fi is not normallyPistributed unless F is a normal distribution. We know from 
Section 4.10 that p is asymptotically normally distributed if k remains fixed and 
the maximum h, of the diagonal elements of the projection matrix Pv = XX’ = 
XM-IX’ converges to zero as n -, tm. However, we usually do not know the 
distribution of fl or of a linear combination c$ for small n. The normai 
approximation may not be good. From Section 4.1 1 on robust estimation we 
know that in some circumstances it is better to give up the relative simplicity 
of least squares in order to gain precision. The bootstrap method offers a way 
of avoiding the assumption of normality and the relative complexity of the 
analysis required by these robust methods. 

Let R(Y, fl) = fi - fl = X+E and for fixed e = (c l , .  . . , c,)’ let R,(Y, p) = 
d(fi - p) = c’R(Y, p). We would like to know the distributions of R and R,. Let 
e = Y - = gk - XX*)Y = (Ik - XX+)E, the residual vector. Let e* be an 
n-component vector obtained by randomly choosing, with replacement, from 
the components of e (not E). That is, conditionally on Y, the components are 

1 
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independent and identically distributed with c.d.f. F,, the empirical c.d.f. of e. 
One bootstrap idea is to use the conditional distributions of R* = X t e *  and 
of R r  = c'XTe*, given Y (and therefore e). to approximate that of R = X + E  
and R, = c'X*E. I t  turns out (Bickel and Freedman 1983) that k2in -, 0 implies 
that the conditional distributions of R* and of R: will converge (in a certain 
sense, not to be discussed here) to that of R and R,. We will describe the 
percentile bootstrap and t-bootstrap methods for finding confidence intervals 
and the F-bootstrap method for testing linear hypotheses. See Mammen (1992) 
for details of the theory. We are assuming here that the vector of all ones lies 
in the column space of X; otherwise the components of e should be adjusted 
by subtracting their mean, before determining e*. 

Let e be determined. Let e:, for i = I , .  . . , B, be a random bootstrap sample 
from the empirical distribution determined by e. That is, each e: is an 
n-component vector whose components are independently chosen from the 
components of e. Let R: = X'e: and Rri = c'X'e: = c'R:. Then the empirical 
distributions of the &-component vectors R:, . . . , R; and of R;,, . . . . R$ serve 
as approximations of the distribution of R and of R?. 

Define h(c) = c'M-'c, S' = IIY - X@II2,!(n - k )  = llel12/(n - k) ,  
and 

T = ~ ' (1  - f l ) i [ h ( ~ ) S ~ ] ' " ~  = [R,/S]h(c)- 

In order to determine a confidence interval on tic = c'b we should know the 
distribution of 7. We can approximate the distribution of Tfrom the bootstrap 
samples ef , .  . . , eg ,  to obtain F,. . . , G, where = [R~!S:]h(c)-':*. Here 
S:. = I!(&, - P,)e:\iL. Thus, in order to determine c, we must perform a 
regression analysis on e*. Though e E V*, because of the random choice of the 
E: from the componen:s of e, e* is not contained in V'. From the ordered 
values of these we can determine estimates i, - ~ 1  and i,, of the percentiles 
t ,  - r l  and f a r .  One percentile bootstrap iOO(1 - x1 - a,)?.; confidence interval 
on c ' ~  is [cji - i, -z,~~i(c)'!2, c$ - F s , ~ h ( c ) ' / 2 ~ .  

We can determine bootstrap cutoff points for the F-test of H,:  8 = 
1 P j x j  E I(,, a k,, < k dimensional subspace of V.  Let e:, . . . , e t  be defined as 
before. Let F: = [\j(P, - P,,)e:1\2/[(k - ko)]/S?], the usual F-statistic for the 
observation vector e?. Then the proper cutoff point for the F-test can be 
estimated by the (1 - r)th quantile of the empirical distribution of F?'s. 

SchetTe simultaneous confidence intervals can be obtained by simply sub- 
stituting the estimated F-cutoff point for F,-= in the usual normal theory 
formula. Of course, the Ronferroni method can also be used, finding, for 
example. tive 991'0 confidence intervals by the t-bootstrap method in order to have 
9SlC overall confidence. In theory the bootstrap Tukey method could also be used 
by bootstrapping to approximate the distribution of y = Range( y,,.  . . , z ) j 'S .  

Fundamental to our discussion of the bootstrap has been the assumption 
that the E~ have the same distribution F. There are certainly many applications 
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when that is not a reasonable assumption. Theory has been developed in recent 
years which allows the bootstrap method, (the "wild bootstrap" for example) 
to be applied to the case that the ei do  not have the same distribution. In other 
applications it may be more reasonable to believe that the pairs (iii, x )  
constitutc a random sample form a (k + 1)-dimensional distribution. For 
discussions of applications of the bootstrap in these situations, see Wu (1986) 
and Tibshirani and Efron (1993). 

Example 4.12.3: We looked for a design matrix X and distribution F for 
which the usual normal theory method would perform poorly, while the 
bootstrap method did well. This suggests that we estimate a parameter ti = c'p 
for which the estimator 4 = c$ put heavy weight on one or just a few cis, and 
that F differ considerably from any normal distribution. As an extreme we 
chose X = (xl, xz), where x, = (1,O.. . . ,O)', and x t  = (0, I , .  . . , I)', each of 50 
components, and c = (l,O)', so that r]  = fll, the coefficient of x l .  Then 4 = 
b1 = #I1 + cl. The distribution of rj - r]  = c l  is F. F was chosen to be the 112, 
1:2 mixture of N ( 0 ,  1) and N(0,  100). The t-95Sd-interval on r ] :  8, 2.01S, 
would be expected to have approximate probability of coverage F( 1.960) - 
F( 1.960) = 2@(1.96(50.5)''2) - 1 = 0.918. Using B = 1,OOO. six nominal 95"/, 
intervals were found for 2,000 repetitions of this experiment (see Table 4.12.2). 
The methods were as described in Example 4.12.1. Even in this extreme case, 
chosen to make the bootstrap method look good, the usual t-method ( #  1) 
does reasonably well. The two t-bootstrap procedures ( #  5 and #6) have 
coverage probabilities closer to the nominal 950/6, but they pay the price of 
larger mean length. An ct = 0.05 level F-test of H,: b, = pz was performed for 
the case that Ho was true for each repetition of the experiment, using both the 
usual method, which rejects for F > Fo.9s.  ,, J8, and the bootstrap method 
described above. These two methods rejected 169 and 127 times, respectively, 
so that the true r-levels are estimated to be 0.084 5 and 0.063 5. 

Example 4.12.4: The t-method can be expected to fail when the variance 
for F does not exist. For that reason we also chose F to be the c.d.f. for the 
distribution of E = { U  .'Id, for < = I or - 1 with probabilities 1/2, 1/2, and U 
uniform [0, 13, t and U independent. The mean exists for 6 > 1, the variance 
for 6 > 2. For 8 = 1.5 we simulated the two-sample problem with n, = n2 = 15, 

Table 4.12.2 Coverage Percentages and Lengthf for %Yo Confidence lntervab on 
Determined by t-hlehod and Bootstrap Methods 

Method 1 7 3 4 5 6 

as 

Percentage 90.4 92.2 86.7 91.9 93.6 93.8 
Mean Length 14.2 15.7 18.8 15.7 17.0 17.0 
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Table 4.12.3 Coverage Percentages and Lengths for 95y0 Confidence Intervals on p2 - p, 
Determined by t-Method and Bootstrap Method 

Method 1 2 3 4 5 6 

Percentage 95.1 94.6 87.4 81.6 93.4 90.9 
Mean Length 7.32 6.3 1 6.31 8.32 9.76 12.1 

again finding six intervals as described in Example 4.12.2. 2,000 samples of 
n,  + n2 = 30 were taken, and B = 1,OOO bootstrap samples were taken in each 
case. Application of the bootstrap - regression method requires in this case 
that the deviations elj  = Yli - Y, and ezl = Gi - 5, a bootstrap sample 
(e:i,. . . , eYn,, er,, . . . , ern,) taken, then the bootstrap distributions of 
(G - 2:) - (a, - el)  = d* and of I* = d*/S,*, obtained by B repetitions (Table 
4.12.3). The conclusion in this case is that the usual t-method performs 
surprisingly well, that the Efron percentile method does rather badly, that the 
absolute t and absolute percentile methods do not not do well as compared to 
methods # 2 and # 6, and, as would be expected in a case in which the variance 
for F does not exist, it is better to use a percentile method rather than a 
t-method. 

In general, the author found in a number of other simulations, that the usual 
t- and F-methods perform surprisingly well, with respect to confidence intervals 
and to tests, both for the level of significance, and for the power. In a wide 
range of problems, it seems to be doubtful that with replacement bootstrapping 
will do much better than the classical methods. 

For discussion of “permutation bootstrapping in regression” see LePage and 
Podgorski (1992, 1994). For a discussion of bootstrapping for non-normal 
errors see LePage, Podgorski, and Ryznar (1994). 

Problem 4.12.1: (a) For the sample 3, 9, 6 find the exact bootstrap 

(b) Find the bootstrap estimate of the variance of the sample mean. Can you 

(c) Repeat (a) for the sample median. 
(d) Repeat (b) for the sample median. 

distribution of the sample mean. 

do this without answering (a) first? 

Problem 4.12.2: Define an algorithm which could be used on your favorite 
computer and software package to find a 957; confidence interval on the mean 
p of a distribution F, based on a random sample of n from F. The method 
should use the sample mean as the estimator, and employ both the percentile- 
bootstrap and t-bootstrap methods. If possible use the algorithm to carry out 
a simulation for the case that F is as in example 4.1.2. n = 10, B = 200. Repeat 
500 times in order to estimate the coverage probability and mean lengths of the 
intervals. 
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Problem 4.123: Let = fixi + ci, i = I ,  2, 3, suppose the (.xi, q )  pairs 
( I ,  l ) ,  (2,3), (3,7) are observed. 

(a) Find the bootstrap estimate of the distribution of $ - @. (Since the 
residual vector will not have components summing to zero, the components of 
e* should be a random sample from the "corrected e"). 

(b) Use the result of (a) to find an approximate 80% confidence interval on fl. 
(c) The permutation bootstrap method for regression analysis chooses the 

elements of e* without rather than with replacement, after correcting*so the 
components sum to zero. Use this method to estimate the distribution of @ - fl. 
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Simultaneous Confidence Intervals 

We have discussed methods for the setting of confidence intervals on parameters 
q = cJ, + .  * .  + ckpk. These are of the form I, = [y1& tS,] and have the 
property P(q E 1,) = 1 - Q for each choice of c = (c~,. . . , ct). It is often 
desirable to be able to make the claim 

~ ( q  E I,., c E cj = I - CI? (5.1.1) 

where C is some finite or infinite collection of such vectors. The collection 
{ I c ,  c E C )  is then a family of confidence intervals with confidence coefficient 
1 - x .  

For example, consider one-way analysis of variance with four means p,, p2, 
p 3 ,  p4 o f  interest. We may be interested in the 6 difierences pi - p j  for i > j 
and might like to have 95% confidence that all intervals of the form of I, 
simultaneously hold. Then C is the collection of six coefficient vectors of the 
form(1, - l , O , O ) o r ( l , O ,  -l,O),etc. 

For simple linear regression we may be interested in intervals on Po + P1.x 
for all x over the entire range of x for which the model holds. Thus each 
c is of the form (1. x). Since a confidence interval I ,  on g(x) determines an 
interval (11, on oy(x) = upo + / 3 , ( ~ )  it is thcrefore equivalent to find intervals 

on all linear combination upo + hp , .  Thus C may be taken to be 
all of R,. 

In this chapter we discuss three simultaneous confidence interval (SCJ) 
methods: ( 1 )  Bonferroni, (2) SchetTk, (3) Tukey. The Ronferroni method is 
fundamentally the simplest method and for small finite C is usually the best in 
that the resulting intervals are shorter. The Scheffk method is the most 
mathematically elegant (an opinion of the author), and has applicability to all 
the linear models we have and will consider. The Tukey method is applicable 
only to cases with repeated observations for each of several means but for those 
situations usually provides shorter intervals than the Scheffk method. The 
Neuman Kuels (Kuels, 1952) and Duncan procedures are multiple tests of 
hypotheses, rather than methods for the determination of SCI’s. The Duncan 
procedure is often used because the method finds more significant differences 

2.30 
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than the simultaneous methods to be discussed, but does not offer the error 
protection that SCl's do. For example, for a = 0.05, with five equal means and 
large degrees of freedom for error, the Duncan procedure has probability 
approximately 1 -- 0.954 = 0.185 that at least one significant difference will be 
found. We will not discuss the Duncan and Newman-Kuels procedures. 

5.1 BONFERRONI CONFIDENCE INTERVALS 

Suppose we want confidence intervals on a fixed number of linear combina- 
tions 

of the parameters of the linear model. We already have a technique for 
finding a lOO(1 - I )% confidence interval on each such linear combination, 
namely 

fj  = [tjj f r ,  -z,j2S(tjj)] for j = 1 , .  . . , r ,  

where 4, = c$. S2(fjj)  = S2c>(X'X)-'cj and 1 ,  
Let E,  be the event that the confidence interval Ij covers qj = tip. We can 

make use of the Bonjerroni Inequality to put a lower bound on the probability 
that all confidence intervals hold simultaneously. Thus 

has (n - k) d.f.. 

If we want P n E, 2 1 - ct we therefore need only choose I , ,  . . . , a, such 

that 
r (,it ) 

x j  I x .  The usual choice is I, = ct/r. 
1 

In one-way analysis of variance treatment # 1 might be a control, perhaps 
the standard seed. Treatments #2, #3, # 4  might be new varieties of seed, and 
we might want to compare each against the control. We may therefore be 
interested primarily in the linear combinations p 2  - pl,  p 3  - pl, p4 - p l .  

Tables 2.1-2.3 in the Appendix, presenting l-distribution quantiles t ,  -a,2m 

for various choices of ct and m, facilitates use of the Bonferroni inequality. For 
example, for the three parameters above and a = 0.05 we find for v = 20, 
t20.1 -o ,05 ,6  = 2.61 so we can use 6 - _+ 2.61J-i.S for j = 2, 3, 4. If 
we wish simultaneous 950.; intervals on p1 - p 2 ,  pLI  - p 3 ,  p ,  - p4, p z  - p 3 ,  
142 - ~ 4 1  ~3 - 144 we t 2 0 , 1 - 0 . 0 ~ i 1 2  = 2.93. 
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5.2 SCHEFFE SIMULTANEOUS CONFIDENCE INTERVALS 

k 

Let Y = pixj + E with E - N(0, a’l,). Let C be a subspace of R, of dimension 

q, I 5 4 I; k. Consider the collection of parameters qc as c ranges over C. The 
Scheffk simultaneous confidence interval method provides a collection of 
intervals I, on qc which simultaneously hold for all C E  C with prescribed 
probability (confidence). 

For example, for the one-way layout we are often interested in “contrasts” 
only, linear combinations of pl, . . . , pr with coefficients adding to zero. Thus 
C = 9(Jk)’. For simple linear regression we are interested in linear combina- 
tions Po + Blx. In this case we take C = R, and get confidence intervals on all 
linear combinations c o j o  + c l j , .  

To develop these SCI’s, define a, = XM-lc, where M = X’X. Then q, = 
(c, p) = (a,, 8) for all 8 E V and, since a,X = c, (tC, x,) = ci for i = 1, . . . , k. In 
addition, p - p = m-’X‘(Y - 0) = M-’X’E, so 4, = (a,, E). We have E(&) = qc 
and Var(q,j = Var((a,, Y)) = cr211ac[lz = cr2c’M-’c. Let S: = S211a,l12, an un- 
biased estimator of Var(4,). 

Recall the method used to find a confidence interval on an individual 
parameter tj-, = c’p. We used the fact that the pivotal quantity T, = c‘(6 - p)/ 
[S2c’M-lcl1’’ = (4, - q,)/S, = (ac, c)/[S~~a,Il] has Student’s t distribution with 
n - k d.f. We can determine simultaneous confidence intervals by considering 
the random variable W* = sup T:. 

Define V, = {a,lc E C). Then dim( Vl) = dim(C) = 4. Let 2, = ~ ( E I  V , )  and 
2, = p(Ela,). Then, since p(2, la,) = E, and (el - e,) I &,, it follows that S ’ q  = 
lI$1l2 = litl 11’ - I(&, - &l12 I; [It, 112, with equality only if a, is a multiple of tl. 
Thus, from Theorem 2.5.6, w*/q = [llt?,l12/q]/S2 - Fq.n-k. Taking K Z / q  = 
Fq,n-,,yr the lwth percentile of the <.,-, distribution, we get K = (qFq..-k.y)liz, 
and 

P (  T: I; K for all c E C )  = P( w*/q  5 Fq,n-k,J = y. 

1 

C E C  

Finally, we conclude that 

The intervals I, within the brackets will therefore contain the corresponding 
parameters r,tc for all c E C with probability y. The intervals I, are called Scheffk 
simultaneous confidence intervals after Henry Scheffe (1953). 

Application to Simpie Linear Regression: Let g(x) = / Io + /Ilx. Suppose we 
observe (x,. 4)  for I; = ,!lo + o , x i  + ti for i = 1,. . . , n and want confidence 
intervals I, on g(x) which hold simultaneously for all x for which this simple 
linear regression model holds. 

Let C = R , .  Then the Scheffk method provides simultaneous intervals on 
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copo + cJI, hence on y(x) = Po + blx. Since C = R , ,  V, = V = Y(J,  x). Thus, 
1ooy% simultaneous confidence intervals on y ( x )  = Po + p l x  are given by 

where d(x) = so + 1,x. Since Var(&x)) = h(x)02,  where h(x)  = l/n + (x - 2)'/ 
S,,, the simultaneous intervals are 

&x) f [ ~ ( X ) S ~ ] ~ ; ~ K  

We earlier found that a lW;% confidence interval on g(x), holding for that 
x only, is 

O(X) rh(x)'"S for t = 2.-2,(1 + y ) / 2  

Thus the ratio of the length of the simultaneous interval at x to the individual 
interval is ( K / t )  = (2Fz,,_2,yjtn-2,(l+r),2)1'2, 1 2  which always exceeds one. 

Connection Between Scbeffe lntervals and Tests of Hypotbeses: Let 

as defined in Section 3.7. 1, is the statistic used to test the null hypothesis that 
qc. = 0. Note that was defined similarly, with E rather than Y. Then 
qC - KSlla,II I 0  S 4, + KSlla,I/ if and only if [t: 5 K ' ] .  I t  follows that O E  1, 
for all c E C if and only if 

W E  SUP tf 5 K 2  = qF4 ,n-k , y .  
C € C  

(5.2.1) 

I t  was shown in Section 3.7 that W/y = F, where F is the statistic used to test 
H,: 8 E V i  o 8 I V,, where V, = {v = XM-'c, c E C}. Therefore, (5.2.1) holds 
if and only if No is accepted at level r. We conclude that 0 E 1, for all c E C if 
and only if the r-level F-test for H, is accepted. Stated conversely, this means 
that rejection of lf, at level Q implies the existence of at least one c E C for 
which the intcrval 1, does not include zero. 

One-way Analysis of Variance: Let C = {c E R,[c I J}. Then the collection 

c ip i  for c E C is the collection of contrasts. 
k 

of linear combinations (c, p) = 
k 1 

For c E C, a, = ( c i / n i ) J i  so = , a ( k  - 1)-dimensional 

[(a, 6) = 0 for a E V,] o c,p,  = 0 for all c E C . 

1 

subspace of R,. But [pl = p 2  =.  . . = pk] o [O = plJ  for some pl] o 

1 
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k 

The simultaneous Scheffe confidence intervals on contrast cipi are given by 
1 

112 - 112 where = [ 4 F q , , - k , a 1  - [ ( k  - l ) F k -  I , n - k , l  - a 1  . 
If it is desirable to make an overall statement of confidence on all linear 

combinations cipi,  then we can take C = R k .  We can include. for example, 

confidence intervals on p ] ,  p 2 , .  . . , p k  as well as on contrasts. In this case we 
need only change K to 

k 

1 

Confidence Ellipsoids: Let C = R k ,  so that Vc = V. Then E, = ~ ( € 1  V,)  = 
~ ( € 1  V )  = 2 = * - 8 = X(B - 8). It follows that 

W* = IlelI12/S2 = ( S  - P)'M(B - fl)/S2. 

Let this last term, considered as a function of 8, be Q(B) and define A = 
(b E R,IQ(b) 5 kFk,n-k. . , ) .  A is the convex hull of an ellipsoid in Rk (union 
of interior and boundary). Since 8 E A o W*lk I & , m - k , y ,  it follows that 
P ( p  E A )  = 7, so that A is a lOoy% confidence ellipsoid on fl. Since W* = sup Tf, 

p E A o qC E I, for all c E R,. If flo is a specified value for the parameter vector, 
we can test H,: b = 8, at level 3 by rejecting Ho whenever the lOO(1 - z)?; 
confidence ellipsoid A does not contain Po. 

cenk 

Problem 5.2.1 : Consider the weighing Problem 3. I .  I with the two unknown 
weights and &. 

(a) Suppose we want Scheffk simultaneous 957; confidence intervals on 
all linear combinations of PI and &. For the four weighings made and for Y = 
(7, 3, I ,  7)' find these intervals for the three linear combinations &, /I2, and 

(b) Use the Bonferroni method to find 95% simultaneous confidence intervals 

(c) Suppose that we wish to test H,: /Il = p2 = 0. Then sup tf/y = F is the 

corresponding F-statistic. For which value of c does t,'jq = F? What is the 
corresponding a,? 

P I  - B Z .  

on these same three linear combinations. 

C E C  

(d) Find a 9 5 : ~  confidence ellipsoid for b = (PI,  &)' for these data. 

Problem 5.2.2: For the pairs (xi, K): (0,7), ( I ,  7), (2,5), (3, 1) and the simple 
linear regression model sketch the 953; confidence ellipsoid on 8 = (Po,  PI j'. 
Suppose that you wished to test H,: B = (7, - I ) ' .  Would you reject Ho at level 
2 = 0.05? 
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Problem 5.23: Consider the model for one-way analysis of variance, with 
k = 4, means pl, pz. p 3 ,  p4, and observations: treatment # 1: 3, 5, 7; treatment 
#2:  6, 8; treatment # 3 :  8, 10; treatment #4:  8, 10, 12. 

(a) Perform the u = 0.05 level F-test of H,: pl = p2 = p 3  = p4. 
(b) Use the Scheffe method to find 95% simultaneous confidence intervals 

(c) For which c = (c,, c2, c3 ,  c4)' does tZ/(4 - I )  = F, the F-statistic you 

(d) Suppose that you wish SCl's on all linear combinations of the p j .  What 

on the six parameters of the type pi - p j .  

found in (a)? 

are the resulting 95y; confidence intervals on p1 and on (pL1 - p 2 ) ?  

Problem 5.2.4: For the fitness data of Section 3.12 consider the simple 
linear regression of Y(oxygen) vs. x, (runtime). Find the least squares estimate 
&x,) of g(x,) = E(Ylxl) and two functions k , ( x , )  and k 2 ( x l )  such that for 
each -xl P(Y(x,) E C d h )  k k,(x,)SI) = 0.95 and P ( g ( x , )  E CO(xl) k k2(x , )S1  
for all xl) = 0.95. 

5.3 TUKEY SIMULTANEOUS CONFIDENCE INTERVALS 

The Tukey procedure for finding simultaneous confidence intervals depends on 
the following definition. 

Definition 5.3.1: Let W,, . . . , W, be independent r.v.'s, each N ( p , o Z ) .  Let 

= Range(W,, . . . , K). Let vSz/a2 have a x 2  
V 

distribution and be independent of ( W,, . . . , Wk). Then q = R/S is said to have 
the studentised range distribution. Let qykv be the y-quantile of this distribution. 

has the stdentized uuyrnenfed 
max( R, M) - 

I S 
Let M = max ( I  U: - pl). Then 4' = - 

runyr distribution. Let yIky be the 7-quantile of this distribution. 

Comment: For k large it is unlikely that all & are on the same side of p, 
so that usually M c R and q' = q. For any k, P(q = 4') = 1 - 2- (k -1 ) .  Even 
when 4 and q' differ, they will usually be close. For y large q ; k y  & qykv. 

The densities and c.d.f.'s of 4 and q' cannot be expressed in closed form. See 
Table 6 in the Appendix for 95 and 99 percentiles for varying values of k and v. 
Harter (1960) presents much more complete tables of the c.d.f. 

The following theorem, proved by John Tukey (1953), justifies the Tukey 
simultaneous confidence interval method. 

Theorem 5.3.1: Let J,, . . . , 8, be independent with 6, - N(O,, a2a2), where 
u is a known positive constant. Let vSz!02 - x:, independent of (d,, . . . , &). 
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Then 

(1) P((0,  - 0;) E [(a, - 6 ; )  k TS] for all j and j ' )  = 7 for T = aqYkv, and 
(2 )  P((8, - 0;) E [(hj - 6 ; )  k T'S]  and 8, E [6, L- T ' S ) )  = y for all j and 

j ' ,  for T' = aqbk,. 

In application to one-way analysis of variance, bj will be the treatment mean 
6, the constant a will be t/Jnj, which we will assume for now is the same for 
all j .  S2 is error mean square. The theorem makes it possible to: (1) using q, 
give simultaneous confidence intervals which will cover all differences p i  - pi 
with a prescribed probability 11 and (2) using q', give simultaneous confidence 
intervals which will cover all differences p i  - pj  and all means pi with prescribed 
probability y. The proof is easy. 

hoof:  Let R = Range(8, - o,, . . . , 8, - 0k). Since (8, - ej) /a - N(O, c2), 
R/(Sa) has the studentized range distribution. Hence y = P ( R / S  I aq,,,) 

= p(l(sj - 8,) - toj. - dj.>l s ~ a q ~ , ,  for all j, j ' )  

= p([(Oj - oj.) E [(CS, - a,.) 2 TS]  for all j ,  j ' ) .  

The proof of (2) is similar. c7 

In order to expand the number of linear combinations on O,, . . . , 0, for which 

c,Sj 
k 

k I 
confidence intervals are given from those of type 0, - 8; to all contrasts 

for C c j  = 0 we need. 
1 

Lemma 53.1: Let d , ,  . . . , dk be any real numbers. Then 

= max (dj - df) = Range(d,, . . . , dk) 
ii' 

Proof: Without loss of generality we may suppose that 0 5 d ,  I . . . I dk,  
by a change of notation and the fact that adding the same amount to all di 

does not change C c id j ,  since c, = 0. Then 
k k 

1 1 
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Similarly, 

Theorem 5.3.2: Under the assumptions of Theorem 5.3.1 : 

for all contrasts(c,, . . . , ck)  = y, where T = f f q y k r .  1 
Proof: Let dj  = dj  - ej in the inequality of Theorem 5.3.1. Then Theorem 

5.3.2 follows immediately from Theorem 5.3.1. 

Theorem 533: Under the assumptions of Theorem 5.3.1 : 

for all(c,, . . . , c L )  = y, where T’ = aq;,,. ) 
Extension to Unequal Sample Sizes: Suppose we want simultaneous con- 

fidence intervals on cjOj, but Var(dj) = o Z / n j ,  with differing nj .  The original 
Tukey procedure required all 8, to have the same variance. Extensions have 
been proposed by many authors, including Dunn (1974,101-103), Sidak (1967, 
626-633). Hochberg (1975,426-433), Tukey (1953), Kramer (1956, 307- 310), 
and Spjetvoll and Stoline (1973, 975-978). See the comparison of these and 
several others by Stoline (1981). Stoline recommends the use of the Tukey- 
Kramer (T-K) method (Tukey (1953) and Kramer (1956)). The T- K procedure, 
applied to the one-way model with ni observations for sample i, i = 1,. . . , k, 
yields the lOO(1 - a)% simultaneous confidence intervals 

5 - 8, & 41 -,,kys[(l/nj + 1/n,*)/2]”2 

on pj - p),. L. D. Brown (1984) showed that for the cases k = 3, 4, 5 that the 
simultaneoos coverage probability is at least 1 - a. Simulation work of Dunnett 
(1980) indicates that this may be true for all k, or at least that the coverage 
probability is not much less than the nominal value. In addition, the lengths 
of these intervals are in general a bit less or equal to those provided by other 
methods. The T-K method and most of the others reduce to the Tukey method 
when the sample sizes are equal. 

Example 53.1: Suppose that 40 pigs were chosen to take part in a study 
designed to determine the effects of four different feeds on weight gains over a 
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one-month period. The pigs were randomly assigned to the four feeds, 10 to 
each feed. The weight gains were: 

Feed 1 24 20 29 26 29 30 33 21 20 28 
Feed2 37 30 35 41 31 34 33 32 32 32 
Feed3 32 34 31 23 33 31 30 32 33 33 
Feed4 26 22 20 28 28 32 25 21 32 32 

The sample means were: feed I ,  26.6; feed 2, 33.7; feed 3, 31.2; feed 4,27.2; with 
grand mean E = 29.675, corrected total SSqs. = 840.77, feed SSqs. = 341.07, 
error SSqs = 499.7, feed MSq. = 113.69, S2 = 13.881. Therefore, the F-statistic 
for H,: p ,  = pz = ,u3 = p4 is F = (feed MSq.)/S2 = 8.191. Since F,,36,0.9995 
7.51, we reject H, at any reasonable a-level. The estimate of the standard 
error of the feed means is ,/s./lO = 1.178. Since yo95,4.36 = 3.81, Tukey 
simultaneous 95% confidence intervals on the contrasts p, - p j  for i # j are 
given by (g  - < ) & 3.81(1.178) = (z  - 6.) k 4.488. Two sample means 
which differ by more than 4.488 are said to be significantly different. We 
have 95% confidence that all these statements are correct simultaneously. 
Consider Table 5.3.1. Since the interval on pl  - p, is to the left of 0, we 
can conclude that p, < p3. Similarly, we conclude that p 2  > p4, and that 
P, > P4- 

Suppose that thc eighth, ninth, and tenth observations for feed 2, the ninth 
and tenth for feed 3, and the tenth for feed 4 were not obtained because the 
pigs died, or were sick for reasons not connected to the feed they ate. 
We car. still perform an analysis of variance. We find S2 = 14.434, feed 
MSq. = 121.91, F = 8.45, with means: feed 1, 26.60; feed 2, 33.89; feed 3, 30.88; 
feed 4, 25.86. We can use the T--K method to obtain simultaneous confidence 
intervals on differences pj - p,.. For p 2  - p4, for example, the 9Y4, interval (one 
of a family) becomes E(33.89 - 25.86) k (3.86),/14.434/[(1/7 + l/9)J2]1’zJ = 
E8.03 k 5.233. 

Problem 53.1: For the contrasts in Table 5.3.1 find the ratio of the lengths 
of 95”/; Bonferroni SCI’s to those of 95% Scheffe and Tukey intervals for the 
40 observations in Example 5.3.1. 

Table S.3.1 

Contrast Estimate Interval Contrast Estimate Interval 

PI - P 2  -7.1 - 11.59,2.61 Pz - P 3  2.5 - 1.99,6.99 
/I1 - /I3 -4.6 -9.09, -0.1 1 pz - p4 6.5 2.01, 10.99 
111 - P4 - 0.6 - 5.09.3.89 113 - 114 6.0 1.51, 10.49 
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Problem 5.3.2: In Example 5.3.1 with the missing observations, use the 95Oi, 
T- K method to find the interval on p3 - p4. 

Problem 53.3: Find C, not depending on 'J or v,  such that qy ,2 ,v  = Ctv,,l + y);2 

Problem 5.3.4: For the case k = 1, define K = 0. How is the distribution 
for all 7 and v. Demonstrate this relationship for v = 10, y = 0.95. 

of q' related to the t-distribution for this case? 

Problem 5.35: Let Y l , .  . . , Yzo be a random sample from the N(p, 2 5 )  
distribution. Find the probability that at least two of these r.v.'s differ by 28.25 
or more. 

Problem 5.3.6: For Example 5.3.1, each n, = 10, find a contrast 1 cipi for 
which 957; Scheffe intervals on all contrasts are shorter than corresponding 
95% Tukey intervals. 

5.4 COMPARISON OF LENGTHS 

The lengths of Bonferroni, Scheffe and Tukey intervals are each multiples of S, 
so that relative lengths are constants which depend on c l , .  , . , ck  and (in 
one-way analysis of variance) on  nI, . . . , nk .  Therefore the choice of a method 
can be made independent of the data, and can be made after x,  the ni, and the 
set C are chosen. The choice as to method should not depend on the sample 
means because probability statements on the performances of the methods 
would no longer be valid. 

For equal sample sizes n,. relative lengths of confidence intervals arc 

where v = (nl  - I ) &  is error d.f. 

For all parameters of the type q = pi - pj ,  r = 0.05, k = 3, 5. 7, v = 10, cc 
these relative lengths are as in Table 5.4.1. 

Thus, for simultaneous intervals on all p, - p) the Tukey method provides 
shorter intervals than both the Bonferroni and Scheffi methods. For parameters 
of the type p j ,  - &p,, + pj,)rTqS is 2/d'3 = 1.155 times as large, so that Scheffe 
intervals are sometimes shorter. For even more complex parameters the Scheffe 
method begins to win the battle. Since inclusion of more confidence intervals 
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Table 5.4.1 Ratios of Length Among Tukey, Bonferroai, a d  ScMe SCI's 

Y =  10 v = cr, 

k = 3  k = 5  k = 7  k - 1 0  k - 3  k = 5  k = 7  k = l O  

rT.s 0.958 0.884 0.824 0.765 0.956 0.886 0.831 0.768 
rB.s 1.002 0.960 0.919 0.875 0.976 0.913 0.854 0.793 
rTSB 0.956 0.918 0.897 0.874 0.980 0.970 0.973 0.968 

in the family causes all Bonferroni intervals to be longer, while Tukey and 
Scheffe methods apply to all contrasts, the Bonferroni method is relatively 
undesirable if many more complex parameters are of interest. 

There is some tendency for users of these methods to apply them only when 
the F-test for equal means rejects. However, as shown by OIshen (1973), the 
conditional probability that all resulting confidence intervals are correct, given 
rejection, is always less than the nominal value. This should make it clear that 
probability interpretations for confidence intervals are relative to the entire 
sample spacu, and that it is good practice to present confidence intervals 
whether or not the F-test rejects. 

Suppose we are interested in five hybrids of corn with four observations on 

3.29 and 40.95, = 4.37, so eT,R = 4.37/(3.29)fi = 0.939. Tukey intervals are 
shorter. 

If hybrid # 1  is standard, and comparisons of pj for j >  1 with pl  are 
desirable then we may be interested only in confidence intervals on pi - p,  for 
j > 1. The multiplier of S/& for the Bonferroni interval is ~ 2 t , , , o . o s , s  = 4.016, 
rather than 4.23, so that rtmB = 4.23/4.016 = 1.05. Bonferroni intervals are 
shorter. 

If the family of confidence intervals should also include those on the pj, we 
can either replace q by q' (which is very slightly larger) for the Tukey method, 
or possibly use the Scheffe method with K = ,,'(5)F,.,,,,.,, = 3.81, resulting 
in the multiplier .,hK = 5.38. For the Bonferroni method the corresponding 
multiplier is & l s , l  -o.05,30 = 5.40, since there are now 15 confidence intervals 
(10 pairs, 5 individuals). Thus, the Tukey method does considerably better than 
either the Scheffe or Bonferroni method. 

the yield for each hybrid, so that we have 15 d.f. for error. Then t lS . ,  -o ,05120 - - 

- ~ -  

Example 5.4.1: Five hybrids of corn were each planted on 4 half-acre plots, 
each chosen randomly from 20 available plots (completely randomized design). 
Yields in bushels for all 20 plots were recorded. Sample means were Fl = 49.5, 
F2 = 58.1, y3 = 53.2, r?, = 51.3, y, = 56.8. Error mean square was S L  = 8.73. 
Hybrid mean square was 52.59, so F = 6.02 > F4,,5.0.95 = 3.06. 95% Bonferroni, 
SchefE and Tukey confidence intervals on all differences pi - p j  all have the 
form & KS/&, where K = , , ~ t1 -0 .05 ,20  = 5.12 for Bonferroni, K = - 



BECHHOFER'S METHOD 241 

c y3 T5 j?. 
X X X X X - 

49 50 51 52 53 54 55 56 57 58 59 

Figure 5.1 

- ________  
\,'@ - l)F4,1s,o.95(2) = 4.948 for Scheffe, and K = qs,15,0.95 = 4.37 for Tukey, 
Thus, Tukey intervals are best, of the form 

Figure 5.1 illustrates a convenient graphical procedure for comparison of 
means. Lines are drawn under any two sample means which differ by less than 
6.46, for which the confidence interval on the corresponding difference in pj's 
includes zero. Thus, the overall 95% confidence allows us to say that p2 > p4, 
P2 > PI, Ps > P I .  

- 5 6.46. 

Probiem 5.4.1: Evaluate RT,S, RB,s and RT,B for a = 0.05, one-way analysis 
of variance, for k = 4, for common sample sizes n, = 5 and n, = 10. 

Problem 5.4.2: Consider the model for one-way analysis of variance with 
= - p i  for observations q. - N ( p i ,  0') for j = 1,. . . , i = 1, .  . . , k. Let 

each i and S2 = [ 5 ( qj - ? .)']/(n - k). Let WMS = (W, - wn, /(k - 1) 1 

c o c  ( i  >I[ i I"' 

and F = WMS/S2 .  Let q = Range(W,, . . . , K)/[S/&,]. Let c = ( c , , .  . . , ck)  

be a contrast. Let Hc = 

(a) Show that H, I k. 
(b) Prove that F(k - 1) = sup T f ,  where T, = cf S2 c:/nl 

and C is the collection of contrasts. 
1 F(k - 1) k 

(c) Prove that s ___- 5 -. 
2 a2 4 

(d) Use these inequalities to prove that Hc/(4k) 5 RT,s 5 HJ8. 
(e) Compute RT.S for c of the forms (1, - I ,  0, . . . , 0) and (k - 1, - 1, . . . , - 1) 

for k = 3, 5, n ,  = 10, and y = 0.95 and compare the values with the bounds 
given in (d). 

5.5 BECHHOFER'S METHOD 

It is sometimes desirable not only to compare several means but also to choose 
the largest and offer some measure of assurance that it is the best. A method 
developed by Bechhofer (1954), by Bechhofer, Dunnett and Sobel (1954) and 
improved by Fabian (1962) does this. 
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Definition 5.5.1: Let (Zl, .  . . . Zk) = z be a r.s. from N ( 0 ,  1 )  and let W - x," 
(Z, - Z,>/,/U~v. Then D is said to have be independent of z. Let D = 

Bechhofer's distribution D(k ,  1') with parameters k, v. 

max 
1 = 2 ,  . .k 

Dunnett (1955) prepared the tables, which were reproduced in Fabian and 
Hannan (1985). As defined in the latter K~ -Jk, v) is the ( 1  - r)100 percentile 
of the D(k ,  v) distribution. See Table 7 in the Appendix. 

The following theorem, a direct consequence of the definition, essentially 
identifies the population with the largest, or nearly the largest mean. The 
theorem is given as originally stated by Fabian (1962). 

Theorem 5.5.1: Let xi - pi for i = 1 , .  . . , k be independent N ( 0 ,  02 /n ) .  
S2 

Let p ,  = max(p,. , . . .pk). Let - x: be independent of (Xl , .  . . , Xk). Let 
6- 

x, = max(x,, ..., f k )  (I is the index of the largest fi). Define 6 = 

~ ~ - = ( k ,  v*)(S2/ti)1;2 - and 6, = max(0, S). Then 

Example 5.5.1: Consider the data of Examplc 4.3.1. Then Y = 15. k = 5, 
~ ~ , ~ ~ ( 5 ,  15) = 3.30, I = 2, X, = 58.1, o = 3.30, 6 = 6, = (8.73/4)"' - 
(58.1 - 56.8) = 3.58. Thus, we have 95",; confidence that p 2  - 3.58, that 
p 2  is at least as large as the maximum (of the pis, not of the X i s )  minus 3.58. 

- 

Proof of Theurem 5.5.1: For simplicity of notation suppose p, = p o .  

Define Zi = (Zi - pi)/(o/Jn) for each i and let W = S2v/oz. Then for K = 
K~ -J&, v) the event 

has probability 1 - 3, and implies the event 

If I = 1 then. since d + 2 0, certainly pl 2 po - b +. I f  I # 1 then f1  I max fi 

so that when X1 is  replaced by this maximum the inequality still holds. Thus 
i f 1  

- N implies p, 2 pco - S + . Y 
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Let A = Kv/S2/n. If pl = p, 2 pj  + A for j = 2.. . , , k then, since A > 6, 
with probability one, p l  ;r pl - 6 ,  implies p l  2 p, - A, which then implies 
I = 1. Thus, if the maximum pi  is at least A larger than the second largest pj  
then with probability at least 1 - ap, is the largest sample mean. This was the 
original formulation by Bechhofer (1954). In this formulation S2 was obtained 
from a first sample, then n was chosen to make A equal to a prescribed 
constant A,,. 

Problem 55.1: Table 5.5.1, taken from Hald (1952, p. 434), presents the 
measured strength minus 340 of nine cables, with 12 independent measurements 
on each cable. The last two rows present (sums of squared deviation) = sit so 
that the sample variance for the ith sample is Sf = si j l  1, and the sample mcans 
xi  = xi for each cable. Error sum of square was x i  = 
-6.58, C .x: = 165.1. 

The usual one-way analysis of variance model with means p j  seems 
appropriate. 

(a) Fill out an ANOVA table and test H,: p l  = .  - = p9 for a = 0.05. 
(b) Suppose you wish confidence interval on a11 pairs p, - p j ,  with simui- 

taneous confidence coefficient 0.95. For the Bonferroni, SchefGi, and Tukey 
methods find constants K = K,, Ks, and K, so that (fj - f j , )  k KSJJI:! are 
the appropriate confidence intervals. 

(c) For the smallest of K,, K,, K, find KS/J 'C?  and present a line diagram 
similar to that of Example 4.3.1. 

(d) Suppose cable # 1 is the standard cable and you therefore only want 
simultaneous intervals on pi  - p, for j > 1. Which method is appropriate? 

(e) Use Bechhofer's method to estimate the largest population mean p,, and 
make an appropriate 95% confidence statement. 

(f) Suppose these cables are of three types, with cables 1, 2, 3 of type A; 4, 
5,6 of type B; and 7,8,9 of type C. Suppose also that you only wish to compare 
cables of the same type. Thus you want simultaneous confidence intervals on 
p j  - p j .  where j and j' are of the same type. For coefficient 0.95 use Scheffk's 
method to do this for all nine such differences. Compare the length with that 
given by the Bonferroni method. How could the Tukey and Bonferroni method 
be combined to do this'? Additional quantiles for y would be needed, so the 
tables for q given here are inadequate. 

si = 2,626.9, and 
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C H A P T E R  6 

Two-way and Three-Way Analyses 
of Variance 

6.1 TWO-WAY ANALYSIS OF VARIANCE 

Hicks’ (1982, p. 105) has the following problem: 

To determine the effect of two glass types and three phosphor types on the light 
output of a television tube, light output is measured by the current required to 
produce 30 foot-iamberts of light output. Thus the higher the current is in 
microamperes, the poorer the tube is in light output. Three observations were taken 
under each of the six treatment conditions and the experiment was completely 
randomized. The following data were recorded. 

Phosphor Type 

Glass Type A 3 C 

1 
~ ~ ~~~~ 

280 300 270 
290 310 285 
285 295 290 

2 230 260 220 
235 240 225 
240 235 230 

Do an analysis of variance on these data and test the effect of glass type, phosphor 
types. and interaction on the current flow. 

By “completely randomized” the author means that the 18 tubes were 
randomly partitioned into six groups of 3 with the glass on the tubes in group 
i receiving treatment i for i = 1, .  . . ,6. By the “analysis of variance” in this 
case we mean that the measure of overall variation (corrected total sum of 

245 
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squares) is expressed as the sum of four measures of variation due to glass type, 
phosphor type, interaction between glass and phosphor types, and error. 

It will be particularly useful in the consideration of such tables to consider 
them as vectors without reshaping them into column vectors. By keeping the 
shape of the table, the corresponding linear models, with x-vectors which are 
indicators of rows, columns or cells of the table, will be much more obvious. 
Mathematically, models remain the same whether or not we reshape into 
columns. Reshaping into columns does have an intuitive cost, however. 

In general suppose we observe qjk for k = 1,. . . , K ,  j = 1,.  . . , J ,  and 
i = 1,. . . , 1. The values o f j  correspond to the levels of a factor B. The values 
of i correspond to the levels of a factor A. The values of k correspond to repeated 
measurements taken for each i ,  j combination 

Model: x j k  - N ( p i j ,  8) and these xjk are independent. 

Let Y be the array of K j k .  Let p (rather than @) denote E(Y). All the elements 

Define 
in the same cell of p are identical (Figure 6.1). 

FIGURE 6,l 
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Then pij = p + ai + Bj + (aB)ij. The full model then can be written as follows. 

Full model: xjk = p + ai + f l j  + + cijk, 
where 

The cilk are independent. There is a 1 1 correspondence between the parameter 
vectors p = E(Y) and the ( 1  + I + J + 1J)-tuple of parameter vectors 
(p, a,, . . . , a,, pl,  . . . , SJ, . . . , (ap)lJ) satisfying the above equalities. This 
expression of the full model is simply another way of presenting the model on 
the previous page. Thus it is not necessary and is employed only because it 
makes the study of the variability of the p i j  more convenient. The parameters 
(ab)ij are called interactions. 

Example 6.1.1: Consider a 2 x 3 table of pL;s as follows: 

Mean 
69 65 58 64 

Mean 63 62 55 60 
[57 59 521 56 

B 

1 A [  -2  1 1 
2 - 1  - 1  

A graphical display is useful. See Figure 6.2. The fact that the graphs of the 
means for rows 1 and 2 are almost parallel is a reflection of the fact that the 
interactions are small. If, in fact, interactions were zero, so that p i j  = p + ai + Bj, 
we would say that means are additive, or that there is additivity of means. 

In vector form, we can write 
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1 2 

Wwnn 
FIGURE 6.2 Cell population means. 

3 

where xo is the array of all 1's 

C ,  = indicator of cell ij 

Ai = 1 C, = indicator or row i (level i of A) 

Bj = 

J 

j =  1 

f 

Cij = indicator of column j (level j of B) 
i = l  

Define SZ to be space of 1 x J x K arrays, so that each realization of Y is in R 
Let V = 9 ( C l l ,  ClZ,.  . . , C , J )  = set of arrays with elements in the same 

cell equal. Let = 9(xo), VR = Y(A1, . .  . ,A,), V A =  VR n V i ,  Vc = 
Y(B,, . . . , B J ) ,  VB = Vc n V k ,  V,, = Vn ( Vo @ V, @ VB)'. Then it is easy to 
show that 

The subspaces Vo, V,, V,, V,, are mutually orthogonal and V = Vo @ VA @ 
VB 8 y,B. That V, 1 V' follows from a simple computation of inner products. 
The other orthogonalities follow from the definitions of these subspaces. Thus 
every vector y E R is the sum of its projections onto the five mutually orthogonal 
subspaces Vo, V,, b, VeA, V'. That is, Y = go + q, + P, + qAB + e, where 
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e = Y - 9, where q = p(Y I V) = 

p for Y in these formulas we get 

gj .  Cij = %‘Q + q,, + + Substituting 
ii 

A 

These expressions expIain why fi, !ti, I j ,  (aPjij were defined as above. 

Properties of the Estimators @, a,, &, and @$: Each of these estimators 
is linear in the observations K j k ,  so that their properties are relatively easy to 
determine. It may be surprising that we should even attempt to estimate any 
of z,, P j ,  or (zb)ij, since, as defined in Section 3.3, these parameters are not 
estimable with respect to the parameter space R I + , + , + , ,  of all possible 
parameter vectors. However, we have restricted our parameter space by forcing 
row and column sums to be. zero, so that relative to the restricted parameter 
space these parameters are estimable. Since E( x j . )  = p i j .  it follows that any 
linear function of these p i j  are estimated - unbiasedly by the - corresponding - 
functions of the xj.. Thus, fi = P. ., di  = K,. - r ,  ., = r j .  - Y . .  and 

= ti. - [ f i  + di  + Pj] are all unbiased estimators of the corresponding 
parameters (the “polite” versions of the same symbols-without the hats). The 
four arrays A {a,, . . . , $,}, { fl,, . . . , fl,}, @fl)i,) are mutually uncorrelated 
because they are linear functions of the corresponding four orthogonal 
projections qo, qA, qB, qAB. By symmetry it is clear that the members of the 
same array have the same variance. Let us find formulas for these variances: 
0: = Var(fi). of 5 Var(d,), a; = Var(bj), and a& = VarGf?)ij). 

Since f l  = F,, . is the mean of n = K I J  uncorrelated observations with 
variance 02, we find Var(p) = a2/KIJ. Similarly, Var($. .) = a2/KJ and 
Var( yj . )  = a2jKI. Since x,. = + d , ,  and the two terms on the right are 

uncorrelated, of = (oz/JK) [ I - - 3 = a 2 ; ; y  . Similarly, a: = --- - -- -- . This 

expression for u,” may also be found from the computation trace(D[qAJ) = 
IJKu: = trace(P,,a2) = a’ dim(VA) = a2(I - 1). 

A 

a2(J - 1) 
I J K  
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Since E j .  = ,2 + di  + Bj + (2)ij, and the four terms on the right are 
a2(I - 1)(J - 1) 

i J K  
uncorrelated. we find u:* = Var( E j . )  - ci - u,' - at = 

linear restrictions: c tii = c bj = c (a& = 
Covariances among terms in the skme arrayxay be found by exploiting the 

= 0. For example, suppose 
i j 

that c,, = cov(d,, ei.) for i # i'. = 0 = la: + (I - I)Ic,,, so that 

c, = -u,'/(I - 1) = -a2/1JK and p ( d i ,  .L$-) = - l/(I- 1). Similarly, cov(bj, b,,) 
= -.;/(.I - I), p(bj, b j , )  = - i / ( ~  - 1). Covariances among interaction terms 
can be shown to be 

C O V ( ( ~ / ~ ) , ~ ,  = - ( J  - I)u2!IJK for i # i', j = j '  

-(I - I)a2/lJK for i = i', j # j '  

O ~ , V J K  for i # i', j # j ' .  

n n  

If E has a multivariate normal distribution then these estimators are jointly 
normally distributed. 

The Analysis of Variance: By the Pythagorean Theorem, we can write ilYI12 
as the sum of the squared lengths of the five vectors in the decomposition 
Y = go + 9" + gB + ?A,, + e and organize the data into the analysis of variance 
table, Table 6.1.1. We present these sums of squares in their more intuitive 
forms and also in their Computational form. In the old days, when the author 
was a student, not long after R. A. Fisher developed these methods, before easy 
computations were possible, these formulas were necessary to avoid the 
necessity of first computing means, then sums of squares. These computational 
formulas are no longer so important. In fact, sums of squares are computed 
more precisely in their "deviation" form, using the first expression given below. 
I f  the Computational form is used, precision can he enhanced by first subtracting 
a convenient constant from all &jk. Only I I ~ ~ I I ~  is affected. 

Subtotal SSqs. = liq - qol12 = K ( Kj, - p., . )2  = K C q. - CT 
ij ij 

= C T,f,.iK - CT 
i j  
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Adjusted Total SSqS. = ( q / k  - F .  .)’ = 1 Y$k - CT 
ijk i jk 

A x B Interaction SSqs. = Subtotal SSqs. - ASSqs - BSSqs. 

Error SSqs = 1 ( T , k  - Zj.)’ = Adjusted Total SSqs. - Subtotal SSqs. 

S’ = Error Mean Square = Error SSqs . / [ (K  - i ) fJ ]  

i jk  

Suppose we wish to test HA,: ( ~ f l ) ~ ~  = 0 for all i, j (no interaction). Under 
8 V’ @ V, = Vs. Since V n V i  = VAB, the F-statistic needed HAR p lies in 

to test NAB is therefore 

l&&l’/(f - l)(J - 1) 
FAB = _ _  ..- ~ for ( I  - 1)(J - 1) and (K - 1)ZJ d.f., 

S2 

Similarly, suppose we wish to test H A :  zi = OVi (no A effect). Under HA 
p lies in K, 0 V, 0 V,, and, since V n (& @ V, @ VAe)’ = VA, the statistic 
needed to test HA is 

Similarly, the F-statistic for testing H,: flj = 0 for all j (no B effect) is 

Distributional Properties of the Sums of Squares: Being projections on 
mutually orthogonal subspaces, the random vectors qo, qA, Y,, qAB, e are 
independent. We also know that for any subspace V* 

I ! P P I  V*)I12/a2 - Xd2im v*(IIP(rI V*)1I2/a2) 

IIp(pJV*)il’ may be determined by substituting p for Y in the formula for 
IIp(Y I Y*)ll’. Thus, for example, 

1 

I I P ~ I  VA)I12 = C (p i .  - p I Z J K  = J K  C z f  
i 1 

To summarize: 
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(5) IIY - ql12/02 - x & -  t , lr(0) (Error SSqs.1 

(6) Y - qo112/a2 - x : ~ ~ : -  l(x ( p i ,  - p)’K/o’ )  (Adj. Total SSqs.) 
i j  

(7) I I * o I I ~ / ~ ~  - X : ( I J K P ~ / ~ ’ )  

(8) I I Y I I ~ / ~ Z  * X : ~ ( K  gpij /o2) 

The r.v.’s IIqAli2, IIqBl12, I(q,,BIJ2, Ilel12, 11qo112 are independent. 

Example 6.1.2: Consider the television tube data at the start of the chapter. 
These vectors are then 

280 300 270 

290 310 285 

285 295 290 

230 260 220 

235 240 225 

240 235 230, 

B, = 

A, = 

1 0 0  

1 0 0  

1 0 0  

1 0 0  

1 0 0  

1 0 0 ,  

1 1 1  

1 1 1  

1 1 1  

0 0 0  

0 0 0  

, o  0 0 

B, = 

0 0  

A 2 = ~ ’  0 0  

1 1  

1 1  

1 1  

0 1 0  

0 1 0  

0 1 0  

0 1 0  

0 1 0  

,o 1 0 

0 0 1  

0 0 1  

0 0 1  

1 1  

1 1  

1 1  :I 
~~ 1 

1 

1 

B3 = 
0 0 1  

0 0 1  

,o wi 0 1 :I 
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262.2 262.2 262.2 27.22 27.22 27.22 

'262.2 262.2 262.2: I ~ 27.22 27.22 27.22 27.22 27.221 27.22 

262.2 262.2 262.2 
YA = 

262.2 262.2 262.2 -27.22 - 27.22 - 27.22 

262.2 262.2 262.2 - 27.22 - 27.22 - 27.22 

D262.2 262.2 262.2 - 27.22 - 27.22 - 27.22 

-2.22 11.11 -8.889 

-2.22 11.11 -8.889 

-2.22 11.11 -8.889 

-2.22 11.11 -8.889 

-2.22 11.1 1 -8.889 

-2.22 11.11 -8.889 

285 301.7 281.7 

= I 2 8 5  285 301.7 301.7 281.7 281.71 

235 245.0 225.0 

235 245.0 225.0 

235 245.0 225.0 

Y A R  = 

' -2.22 1.11 1.11' 

-2.22 1.11 1.11 

-2.22 1.11 1.11 

2.22 - 1.11 - 1.11 

2.22 -1.11 -1.11 

, 2.22 -1.11 -1.11. 

-5  - 1.67 - 1.67 

5 8.33 3.33 

0 -6.67 8.33 

-5  15.00 -5.00 

0 -5.00 0.00 

5 - 10.00 5.00 

Means 

P . .  = 262.2 Fl, .  = 289.4 G . . .  = 235.0 

F..r. = 260.0 F z .  = 273.3 F 3 .  = 253.3 

235 245.0 225.0- 1 285 301.7 281.7- 
Xj,'S 

Squurvd Lengths 

~ ~ ? o ~ \ z  = 1,237,689 1 1 ? 1 1 2  = 1,252,317 ( \ * 1 1 *  = 1,253,150 

And the analysis of variance table is Table 6.1.2. 
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Table 6.1.2 Analysis of Variance Table 

Source Subspace DF SSqs. MSq. Expected MSq. 

Glass v* 1 13,339 13,339 6’ + 9 1 
Phosphor 4 2 1,244 622 6’ + 3 1 $  
G x P  v,, 2 44 22 6’ + (312) (a,@$ 

Subtotal V n  v; 5 14,628 2925.6 O* + (31.5) 1 (p,j - p)’ 
Error V‘ I2 833 69.4 rrl 

Corr. Total V i  17 1 5,46 I 

Mean vo 1 1,237,689 

Total R 18 1.253.150 

F-ratios 
Subtotal MSq. 

Error MSq. 
= 42.16 __ FST = 

G x PMSq. 
f A B  = -- _ - -  = 0.32 

Error MSq. 

G MSq. 

Error MSq. 

P MSq. 
Error MSq. 

- = 192.2 FA = 

F,, = -- -__ - - 8.96 

Fsr may be used to test the null hypotheses that all cell means are equal. Since 
FST is so large we certainly reject. FAB is certainly consistent with interactions 
all zero or small. FA and Fs indicate strong A (glass) and B (phosphor) effects. 

A graphical display of cell means makes the conclusion clear (see Figure 
6.3). Cell means haw standard errors r ~ / ~ / 3 ,  which we estimate to be %/Sz/3 = 

,,’169.4,/3 = 4.8 1.  
Tukey 9504 confidence intervals on differences p i j  - pi.j. are o f  the form 

x j ,  - F . .  I J ’  . + - qS;%,$ for q = qo.95,6,,2 = 4.75. Thus, cell means differing by 
more than yS/,j3 = 22.8 may be labeled as “significantly different.” Any two 
cells means corresponding to difTerent glass levels are significantly different. 
Otherwise they are not. 

If we believe that no interaction is present, a reasonable belief in this case, 
then the ai and / I j  are interesting parameters, and we may wish to find confidence 
intervals on differences ai - xi. or /Ij - p j . .  For example, Tukey intervals on 
these / I j  - pj. are [Ti .  ~ - - -  E,..  & 3.77,/69.4/6] = [T,. - y j . .  k 12.821, since 
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FIGURE 6.3 Sample cell means for combinations of phosphor and glass. 

yo,95, 3,12 = 3.77. Thus, levels 2 and 3 of phosphor can be viewed as significantly 
different at overall level 0.05. 

Estimation of Cell Means: In the possible presence of interaction the model 
I;iii - N ( p i j ,  a’) implies that pij should be estimated by the corresponding cell 
mean cj. Simultaneous confidence intervals on all or some cell means may be 
obtained by treating the 1 x J cells as k = 1 x J treatments in one-way analysis 
of variance. The Bechhofer method may be used in the same way if the object 
is to estimate the largest pi, .  

If interactions are known to be zero or nearly zero, these methods may be 
improved. It is tempting to perform an F-test for interaction, then decide upon 
failure to reject or for small F that interaction is lacking. Such procedures have 
been advocated. See Yates (1935) and a discussion of this problem by Traxler 
(1976). It is quite possible that a fair degree of interaction is present, however, 
but that by chance the F-value is small. This procedure can therefore lead to 
bias in the estimation of the p i j .  

Under the assumption of no interaction Y$ = 4 + 51, + b, = E.. + (x.. - F ,  .) + ( F j  - F ,  .)  is sometimes used as an estimator of p i j .  Since 
E( yl*i> = p i j  - (r/Oi,, has bias - ( X S ) ~ ~ .  

for n = I J K ,  so that the mean square error for c. is E ( q  - p,,)’ = 
[ - + Var( Y t ) .  

MSE( c.)/MSE( cj)  = [l + (ajI)&’a’] ~ ( I  + J - l), which is always less 

than 1 if ( X ~ I ) ~ ,  = 0, considerably so for large I or J. ?$ has smaller mean square 

I 

IJ 
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error than zj. if and only if (as); < Var( zj )  - Var(qz) = Var((r&) = 
[(f - l)(J - l)/fJ](02/K). If we choose to use P = (q) to estimate p 
whenever the sum over i and j of these mean square errors is less than that for 
9 = ( Ejii.) ,  we are lead to the inequality 

rh 

C (a@): < ( I  - I)(J - I)o'/K 
i j  

If we then replace these parameters by unbiased estimators in terms of MSAB 
and MSE, we get the inequality F < 2 (see Section 4.2). Thus, if F c 2, we 
might expect to do better (smaller total mean square error) using the 9: rather 
than the zj. Some computer simulations indicate that such a procedure works 
better than the procedure which uses (c j . )  only in the case that interactions 
are very close to zero, which we almost never can know. 

Fabian (1991) shows that when the goal is to find a confidence intervals on 
one pij or on all p i j  or to find the largest pij ,  a two-stage procedure which uses 
qz and bounds on the sizes of interaction terms determined from the g j ,  will 
not in general improve on the direct use of the cj., treating the problem from 
a one-way ANOVA point of view. 

In the case that interactions are absent p ranges over V*, which has 
dimension v = I + J - 1. Scheffe simultaneous confidence intervals on qr = 

c cijpij have the form tj, 2 K j k Z ( x  c;), where K = J v F " . , ~ .  ,), and 4, = 
ii c cijY& For contrasts only, v becomes I + J - 2. Since the cell mean 
ii 
estimators qoolj have unequal covariances, the Tukey method must stick to the 
estimators X,., so that Scheffe intervals will be shorter. Recall, however, that 
if in truth interactions are present, the biases in q. could cause errors in some 
of the Scheffk intervals. 

Problem 6.1.1: Let the number of observations in cell i j be K,. Define 
V, = Y(A, ,  . . . , A,) n VA, V, = Y(B,, . , . , B,) n V ; .  What conditions must 
the a, satisfy in order that CcciAie V,'? Prove that V, I V, if and only if 
K ,  = K i .  K .  j / K . .  (where a dot means that the corresponding subscript has been 
summed over). Thus the subspaces V,, V,, V,, VAB, V1 are still orthogonal 
when the cell frequencies are proportional. Hint: First show that the vectors 
A t  = A, - p(A,I V,) span V,, and define vectors B; similarly.) 

Problem 6.1.2: In order to determine the effects of training on rats the 
following 2 x 4 factorial experiment was performed. Rats were trained by 
forcing them to swim in a tub of water for a given length of time with small 
weights attached. Four different lengths of training session (10, 20, 30, 40 
minutes) were used. Training occurred every day, every second day, or every 
third day. For each of the 12 treatment combinations, 5 rats were trained. The 
experiment was completely randomized. That is, 60 rats were used and 
randomly assigned to the 12 treatment combinations. The measured variable 
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Every 

Day 

was the log of the length of time the rats were able lo swim with added weights 
after 6 weeks of training. (An experiment similar to this was actually performed. 
The experimenter called on the author’s help because some observations were 
missing -some rats drowned.) 

3.18 3.33 2.80 5.87 
2.84 4.94 3.87 4.31 

1.94 2.21 3.57 5.33 

Length 
10 20 30 40 

p . 2 6  4.01 2.88 3 . 7 q  

L2.69 2.73 3.18 4.53J 

r 3.66 5.79 2.98 2 .9q  

Cell Totals 

13.91 17.22 16.30 23.80 
15.81 20.16 16.35 18.76 

22.14 23.58 23.77 29.94 

Cell Means 

Every 

Second 

Day 

2.782 3.444 3.260 4.760’ 

3.162 4.032 3.270 3.752 

4.428 4.716 4.754 5.988. 

3.07 4.23 4.21 4.34 

2.35 3.25 3.31 3.84 

4.23 3.28 2.44 4.05 

L 2.50 3.61 3.41 3.58J 

3.36 3.35 3.47 6.53 Sum of Squared Deviations 

From Cell Means 

1.108 4.604 0.831 2.812 

2.495 4.485 1.678 1.1 15 

1.647 2.965 6.995 1.404 

&,k = 241.709 Y$ = 1052.88 

Training mcans: 3.561, 3.554,4.972 

Length means: 3.457,4.064, 3.761,4.832 

(a) State an appropriate model and fill out the analysis of variance table. 
(b) Perform appropriate F-tests and state conclusions. 
(c) Use Tukey’s method to make comparisons among training and also 

among length effects. 
(d) These data were actually generated using computer simulation for 

B = 0.8, p = 4, a1 = -0.7, a2 = 0, x 3  = 0.7, 8 ,  = -0.6, & =0.2, b3 = 0.2, 
= 0.6, = 0, u2 = 0.64. Determine the powers of the a = 0.05 level tests 

of the null hypotheses of no training and of no length effects. 
(e) Suppose that p, = ,!lo + lOjy. That is, log of swimming time is linearly 
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affected by the length of the training session. Give a 9504 confidence interval 
on y. 

(f) Suppose that the observations 3.26 in cell (1, I )  and 5.54 in cell (3,4) 
were missing. Determine an unbiased estimator of o', assuming that the loss 
of these observations was independent of their values, and evaluate it. 

Problem 6.13: Consider a 2 x 3 table with two observations per cell. Make 

(a) SSA = SSB = SSAB = 0, SSE = 2 
(b) SSA > 0, SSB > 0, SSAB = SSE = 0 
(c) SSA = SSB = 0, SSAB > 0, SSE = 100 
(d) SSA > 0, SSB = 0, SSAB > 0, SSE = 0 

up data so that the following conditions are satisfied: 

toblem 6.1.4: Derive the formulas for the variances and covariances of 
the (aB)ij. 

6.2 UNEQUAL NUMBERS OF OBSERVATIONS PER CELL 

Let the number of obscrvations in cell ij be Kij .  Define y0 = Y(J), 

as before. Then 

Ki jc i j  = 0 for each i and C Kijci j  = 0 for each j 
i 

As shown in Problem 6.1.1, V, I V, if and only if K i j  = K i t  K .  j /  K , , for all i and j. 
Under the full model xjk - N(pij, a'), so that the BLUE for pij is xj,, which 

exists if Kij > 0. It follows in the case that K ,  > 0 for all i and j that the BLUE 
for P, ri, B j ,  (aB)ij are 

1 I p = - - c  z j . ,  d , =  1 x j .  - p ,  
1J i j  J j  



260 ‘TWO-WAY Ah73 THREE-WAY AWALYSES OF VARIANCE 

Variances and covariances are easy to determine. For example, Var(di) = 

o:(l - 2 / 1 )  + C IT; for IT; = Var(U:.) = - C - , where U:. = --c x,. and 

Var(Bi - tic) = Var( q. - e..) = 0: + u;. 
Under the full model q = p(Y IV) = xj. Cij. The error space VL is the null 

space unless at least one Ki j  > 1. As before SSE = ilY - 411’ = c ( K j k  - Kj . ) ’ .  
are zero is equivalent to the 

statement that p~ V, = Vo @ VA@ V,. To test the null hypothesis of no 
interaction, equivalently p E V,, we must find ** = p(Y I V * )  = p(*l P). 

Define A: = Ai - A, for i = 1,.  . . , I - I ,  and B: = Bi - Bj for j  = 1 , .  . . , J. 
Then, since 1 zi = 0, and /Y j  = 0, v* = 9(xo ,  A:, . . . , Af- BY,. . . , Bf- l). 
Regression methods may be employed to find the least squares estimates jl, 

., d l - l ,  ,&, ,... , ) J - l  and B, = - C di, pJ = - 1 bj. Then Q = 

1 IT2 1 1 

1 ,  J z  j K ,  J j  

ij 

iJ* 

The statement that all interactions 

r - t  3 -  1 

i j 
I J I J 

i i I i 
fixo + .cIiAi + C SjBj and 11q*tl2 = PT.. . + C di T . .  + Ij T . j . .  Only in 

exceptional cases will there be simple formulas for these estimators and 
squared lengths. The F-statistic for H,: p E v* is F = ([IIv112 - Ilq*112]/ 

We may be interested in testing the null hypotheses of no A effects (all ails 0) 
in the absence or in the presence of interaction. Absence is equivalent to p E V,, 
and H,,: (no A effect) then implies p E V, 0 V, Y(BJ,. . . , Bj). The numerator 
sum of squares in the F-statistic is therefore IIY* - Yol12, where *, = F . j .  Bj 

for (I - 1) d.f.. The denominator sum of squares is IIY* - qol12 for K . .  - 
(I + J - 1)d.f.. It may be preferable to use llY - QlI’, however, since interaction 
just may be present. 

In the presence of interaction it probably does not make much practical 
sense to test the null hypotheses of no A effect. The null hypothesis then states 
that the average A effect xi  across all levels of B is 0 for each i. It is rare that 
such an average is of real interest. Nevertheless, there is nothing which prohibits 
such a test from a mathematical point of view. Under H,: p = px, + c /YjBj + 

(afi)ijCij, so that H,, is equivalent to p E Y(Bl , .  . . , Bj) n KPr = V,, (say), 

where Cs = ( ~ f i ) ~ , C ~ ~  c (up),, = c (cx~)~, = 0 for all i and j . Unless K, is 

of the form yifi for all i andj, KPr is not VAB. It can be shown that KPr is spanned 
by the vectors (Ai - A,) x (B, - BJ), where multiplication is componentwise. 
Ct, is not, in general, orthogonal to VB. Using these basis vectors p(Y I V,,) can 
be computed using regression methods. If K,,  > 0 for all ij then V,, has 
dimension J + (I - 1)(J - 1). 

The F-statistic FB for H,: (no B effect) is given analogously. The numerators 
of statistics FA and FB are no longer independent. 

In the case that the K ,  are approximately equal a shortcut approximation 

( I  - 1)(J - l)}/S2. 

i 

I i j  

iij I i 1 
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is available. Computer experimentation has shown that even in the case of a 
2 x 3 table with two observations in cells ( 1 , l )  and (2,3), four in the others, 
the null distributions of F-statistics remain approximately the same. 

Define K'= -- - , the harmonic mean. Let Error SSqs. = 
(;J i j  ii)-' c ( K j k  - Ej.j2. Since sums of squares higher in the ANOVA table depend only 

on the means Ej., compute these using the formulas for the equal Kij case using 
ijk 

instead of K, using these xj.. Thus, take 

1 -  1 1 

J l  l i  I J  i j  
E.. = - q j . ,  r,. = --I gj . ,  8 . .  = -1 x j . ,  CT= p..(zJR). 

Subtotal SSqs. = R (x.. - y.. . ) 2  = l? c rf.. - CT, 
i j  i j  

SSA = J R C ( E . .  - 8. . ) *  = J K C  F;.. - CT, 
i f 

S S B = I K C ( E j ,  - F , , . ) 2 = l K ~ P j .  -CT, 
i i 

SSAB = Subtotal SSqs. - SSA - SSB. 
and 

Approximate confidence intervals on linear combinations c cijpi, can be 
obtained by using the usual formulas with R replacing K. 

Example 6.2.1: Suppose that we observe Y as follows for 1 = 2, J = 3. 

Then, for example, 
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The vectors Y. x, A:. BT, BZ, were put in column form and multiple regres- 
sion was used to find fi = 10.47. d ,  = 4.52, f i ,  = 6.53, 8, = -2.30. Therefore 
B, = -4.52, and p 3  = ~ 4 . 2 3 .  Then f1,, =A?ll, =,fi + d ,  + I1 = 21.52. 
Similarly, ?,2, = 12.69, Y13, = 8 3 2  = 10.76, Y,,, =_Y2,, = 12.48, fi21 = 
G2, 33.66, Y23 ,  = 1.72. We find IjY(12 = 1,800.0, llY112 = 1,775.6, ESS = 
j l  Y - Y 11 ’ = i!Y (1 ’ - ll$II ’ = 24.4, S2 = 24.4/( 1 1 - 4) = 3.49. (SSE and Sz cor- 
respond to the model p E V*; for the model with interaction term SSE = 8.) 

To test H,: x ,  = 0, we fit the model p E Vg = Y(B,, B,, B3). We find $$ = 
p ( _ Y I Y , * ) = c F i B j ,  where F ,  =17.00, y , .=6 .67 ,  F 3  =8.50, and 
ilY,*1l2 = 1578.3, IIY - $,*I/’ = 197.5. Then F = [197.5j1]/Sz = 56.6, for 1 d.f.. 
Since dirn(V* n V,*) = 1, F = r2, where r = d,/[S/lldllJ, d ,  = (d, Y)/ildl12, where 
d = A: -- p(A:J V:), and 11d1/2 = 11A:112 - ilp(ArI V$)llz = 1 1  - 4/3 = 29/3. 
Thus t = 4.52,:”3.49(3/29)]’:’ = 7.52 = J56.6. 

7- 

Problem 6.2.1: Consider the following 2 x 3 table: 

Factor B 
B ,  8, B ,  

1 Al L25.23 l 5 , 1 7  8,7,9 
A,  10 1,3 4,8 

Factor A 

(a) Find the least squares estimates of the parameters pi,, p, ai, P j ,  in 
the full model. 

(b) For the model with interactions zero determine the least squares estimates 
of the pi,, and the resulting error sum of squares. Also show that for this modci 
fi = 74/7,d, = - 8 ,  = 231j42,p1 = 99/14,j?, = -22/14,), = -77j14.Test the 
null hypothesis H.,B: (no interaction effects) at level a = 0.05. 

(c) Assuming no interaction effects, test HA: r, = a, = 0 at level r = 0.05, 
using an F-statistic, FA. The assumption of no interaction is not realistic, based 
on the test in (b). 

(d) Repeat the F-test of (b) using the approximate procedure. 

Problem 6.2.2: Suppose that the factors A and B have each have two levels, 
Al, A ,  and B,, B,. Suppose also that one observation x,, is taken in cell ij 
for all ( i , j )  # (2,2), and that for cell (2,2) two observations &,, and Y,,, are 
taken. Consider the additive model &,k = p + a, + Pi + & t j ,  with rl  + a, = 0, 
f l ,  + p, = 0, cij’s independent N(0, a’). 

(a) Give explicit nonmatrix formulas for the least squares estimators of p, 
Z l r  PI. 

(b) Test H,: Q, = 0, for 3 = 0.05, for Y , , ,  = 19, YI2,  = 13, Y,, ,  = 1 1 ,  
Y,,, = 3, Y,,, = 7. Also find a 95% confidence interval on a,. What is the 
relationship between this confidence interval and the test? 

(c) Consider the approximate method. Let the estimators of p, a,, j?, be 
p* = (m, Y), r: = (a, Y), /3: = (b, Y). Find m, a, b. Show that these estimators 
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are unbiased, but that they have larger variances than the least squares 
estimators. 

(d) Show that the results of (c) hold in general for any I x J table with Kij  
observations in cell ij. 

6 3  TWO-WAY ANALYSIS OF VARIANCE, ONE OBSERVATION 
PER CELL 

I f  the number K of observations per cell in a two-way layout is just one, the 
degree of freedom for error is  zero. In fact V, the space spanned by the cell 
indicators, is the sample space. If there is another estimator S2 of c2 available, 
possibly from some previous experiment, then this estimator can serve as the 
error mean square. Otherwise there is no way to separate uz from the interaction 
effect. If interaction mean square is used instead of error mean square in 
the F-tests then power is lost if the interaction effect, as measured by 

(as)$, is large relative to 6’. Similarly, confidence intervals on 

linear combinations of the pij (or on the parameters p, at, f l j ,  (afl)i,) will be 
longer. 

~ - 
K 

- -_ 
( I  - 1)(J - 1 )  i j  

I t  is sometimes reasonable to believe that the model 

pij = p + x i  + pj + Ei j  (6.3.1) 

for ai = C ,!Ij = 0 holds at least in good approximation. Then interaction 

mean square can serve as a stand in for error mean square in the F-tests and 
in confidence intervals. The ANOVA table is Table 6.3.1. 

i j 

The model (6.3.1) is called the additive model. 

Problem 63.1: In an effort to compare the mileages produced by three 
types G,, Gz and G,  of gasoline, four automobiles A , ,  A,, A,,  A, were chosen. 
Each automobile was driven over a 200 mile course three times, beginning once 
with a full tank of gasoline of type Gi, i = 1, 2, 3. The numbers of gallons 
of gasoline consumed were: 

Automobiles 

A ,  A2 

Gasoline 

Type 

(a) State an appropriate model, determine 

A3 A4 

1 7.82 8.25 

7.61 8.95 

7.95 8.65 

the corresponding analysis of 
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TaMe 63.1 

Source DF ssqs. MSq. Error MSq. 

A 

B 

1 - 1  

J - 1  
1 

J - 1  
a2 + - . - -C# 

Residual ( I  - 1)(J - 1) Difference 6 2  

Corr. Total IJ - 1 C(Xj - F.)* 
i j  

variance table, and perform appropriate F-tests. Use the symbols p, 7, (for 
gasoline type) and a, (for automobiles). 

(b) Find 95% simultaneous confidence intervals on aj - xi. for j # j ’ .  Use 
the method which provides the shortest intervals. 

(c) Suppose that in previous tests with an automobile similar to these on 
the same 200 mile test track, the sample variances S2 were 0.0237 for GI for 
three trials, 0.0345 for G, for four trials, the 0.0199 for G, for two trials. How 
could this additional information be used to change the F-tests and the 
confidence intervals? 

Problem 6.3.2: Suppose that automobiles A, had engine trouble just before 
it was to be used with gasoline G,, so that that observation was missing, though 
all other observations were obtained. 

(a) Show that the least squares estimators of the parameters p, ai, Bj are for 
this case of one missing observation, the same as they would be if the missing 
observation YJ4 were replaced by yJ4 = Y,. + Y4 - ., where these means are 
determined from the observations which were obtained. Hint: Pretend that the 
observation y 3 ,  was available, and add to the model the extra parameter 
the mean of cell 34. For each possible selection of y,, the least squares estimates 
of the cell means would be, as functions of y,,, the same as discussed for the 
full data case. But, the estimate for cell 34, with this extra parameter, would 
equal y34. Thus, y3, = f i .  + p4 - p., where the starred means are expressed 
in terms of yJ4 and the means of the observations actually obtained. 

(b) Generalize the result to the case of any I x J table with one missing 
observation. 

(c) Carry out the arithmetic for the data in Problem 6.3.1, and determine 
the estimate Sz. Use it to test I fG:  no Gasoline Effect. 

(d) Show that where 

Ti.  = 

- - 

- f 3  = ( 7 r l .  + T,. - ST3. + 3&, - 3&,)/24, 
3 xi. Find Var(jiI - f3). Also determine Var(f, - f2). 

(e) Find individual 95% confidence intervals on y ,  - y z  and y I  - 7,. 
j =  1 
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6.4 DESIGN OF EXPERIMENTS 

The purpose of this section is to introduce the student to some of the language 
of the design of experiments. It is  the design of the experiment which justifies, 
or at least makes credible, the models we have and will be considering. The 
randomness which the experimenter deliberately introduces not only makes the 
conclusions reached more believable to justifiably suspicious readers, but often 
makes the distributional assumptions of the models used more realistic. 

Definition 6.4.1: An experimental design is a plan for the assignment of 
treatment levels or combinations of levels of treatments to experimental units 
and for the taking of measurements on the units under those treatment levels 
or combinations of levels. 

Comment: An experimental unit is an element, thing, material, person, etc., 
to which treatment levels are applied as a whole. Experimental units are not 
split; the entire unit must receive the same treatment level or combination of 
levels. 

Definition 6.4.2: A completely randomized design is a design for which the 
levels of treatments (or combinations of levels) are assigned randomly to the 
units, i.e., so that if a treatment level t is to be assigned n, times to the N 
experimental units available, for t = 1 , .  . . , k, then all (no, n,, . . . , nk) = 

k 

possible assignments are equally likely. Here no = N - n, is the 
1 

number of units receiving no treatment level. 

Example 6.4.1: For k = 3 treatment levels. Level 1, a control, is assigned 
to four units, level 2 to three units, level 3 to two units. Then N = 9, and there 

are ( ) = 9!/(4! 3! 2!) = 1,260 possible assignments. The three treatments 

might be methods of heart surgery, the nine experimental units 3-month-old 
rats. 

4, 392 

Definition6.43: A randomized block design is a design for which the 
experimental units are separated (partitioned) into blocks of units, and 
treatment levels are then randomly assigned within the separate blocks. 

Example 6.4.2: In an agricultural experiment we might be interested in four 
levels of seed, with the measured variable being yield on half-acre plots. The 
field might have 40 half-acre plots as follows. 
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Blocks 
1 2 3 4 5 6 7 8 9 1 0  

We could allocate each of the four levels to 10 randomly chosen plots from 
among the 40, a completely randomized design. However, if the land has higher 
fertility as we move to the east, we might restrict the randomization so that 
each seed level occurs in each of the 10 blocks. 

In general, blocks should be chosen so that units within blocks are relatively 
homogeneous, while block-to-block variation is as large as possible. In the 
language of sample surveys blocks are called strata. 

6.5 THREE-WAY ANALYSIS OF VARIANCE 

Consider a three-way complete factorial. Three factors A, B, C have, respectively, 
u, b, c levels and m observation are taken for each combination of the A, 8, C 
levels, for ahcm observations in all. 

1 
Factor B 

2 ... h 
Factor C -+ 

1 

2 
Factor A 

Let the observations corresponding to level i of A, level j of B, level k of C be 
vj,.., . . . , q j k m .  We suppose K j k I  - N(pijk, a*) and that the q,,., are independent. 
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Define 

The are second-order interaction terms. Then the model can be stated as 

where 

Define the vectors Ai, Bj, Ck, (AB),, (AC)ik, (BC),, (ABC)ijk to be the 
indicator arrays suggested by the letters. Thus, for example, (AB), is one in 
cells at level i of A,  levelj on B. 

The sample space R of possible values of Y may be broken into mutually 
orthogonal subspaces as follows: 

6 = W(x,)  V’ = Y ( A , ,  . . . , A,) n V;  = 

15 = I;P(B,, . . . , Bb) n V i  = 

6 = w(c1,. . . , c c j  0 v,; = 

VAB = Y((AB),,. . . . , (AB),,) n V i  n V j  n V i  

VAC, C i C  (defined similarly) 

Y,BC = (6 6 VA 6 v, 8 %- @ VB @ Vc @ b c v  n V, 

and 



268 

Thus, 
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I t  is easy to verify that these nine subspaces are mutually orthogonal. For 
example, a vector v E VAB is of the form 

v = 1 dij(AB)ij for c di j  = c d i j  = 0. 
i j  i 

A vector w E VEc is of the form 

Then (v, w) = 1 dijfj.r((AB)ij, (BC)jk). This inner product is 0 if j # j ’ .  m if 
i j  j ’ k  

= j ’ .  Thus (V, W) = mdijhk = m 1 dij c fil: = 0. 
i j k  i j  h 

The model can be written in the form Y = p f E, where 

The projections of Y onto these subspaces are 
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Sums of squares are computed easily: 

For computational purposes, let 

Then qAB = Y* - (qo + 9” + qB) and by the Pythagorean Theorem, 

But Y * - E o = c ( z j . .  - F . . . ) ( A B ) i j s o  
i j  

This is called the ‘ A B  subtotal’. It is the adjusted total sum of squares when 
the data is treated as a two-way ANOVA on A and B, with C ignored. Thus 

SSAB = ( A B  Subtotal) - (SSA + SSB). 

Similarly, 

l l?~c11~ = C ( x . k .  - P . .  .)’(bm) - (SSA -I- SSC) 
i& 

= AB Subtotal - (SSA + SSC) 

~ l Y K ~ ~ z = ~ ( ~ j k .  - F.. .)’(am)-(SSB+SSC) 
j k  

= BC Subtotal - (SSB + SSC) 
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Finally, by defining 

ABC Subtotal = c ( gjk. - r .  .Iz 
i j k  

we get 

ll?AE1)2 = (ABC Subtotal) - (SSA + SSB + SSC + SSAB -t SSAC + SSBC) 

Of course, 

Summarizing, we get Table 6.5.1. We can then test the null hypothesis that 
projection of p on any of the subspaces VA, V’, . . . , VABc is zero, using 

the 
the 

F-statistic with numerator the corresponding MSq. and the denominator 
S2 = Error MSq. Usually we would want to proceed upward beginning with 
the more complex model terms. Whenever we reject the hypothesis that the 
corresponding lower-order terms in the interaction are zero. For example, if 
we decide AC interaction is present it makes little practical sense to test for A 
effects or C effects. 

Example 6.5.1: Consider a three-way factorial discussed by Cochran and 
Cox (1957, p. 177): 

5.32 Numerical Example: a 4 x 4 x 3 Factorial in Raadomized Blocks 
A number of experiments have indicated that electrical stimulation may be helpful 
in preventing the wasting away of muscles that are denervated. A factorial experiment 
on rats W a c  conducted by Solandt, DeLury, and Hunter (5 .8)  in order to learn 
something about the most effective method of treatment. The factors and their levels 
are shown below. 

.4: Number of Treatment 
Periods Daily (Minutes) 

1 1 Galvanic 
3 2 Faradic 
6 3 60 cycle alternating 

5 60 cycle alternating 

B: Length of Treatment C: Type of Current 

Treatments were started on the third day after denervdting and continued for 11 
consecutive days. There are 48 different combinations of methods of treatment, 
each of which was applied to a different rat. Two replicates were conducted, using 
96 rats in all. 
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63.750 67.875 64.0oO 
60.125 62.000 63.875 
58.625 58.875 67.000 
59.500 64.750 68.250 

The muscles denervated were the gastronemius-soleus group on one side of the 
animal, denervation being accomplished by the removal of a small part of the sciatic 
nerve. The measure used for judging the effects of the treatments was the weight of the 
denervated muscle at the end of the experiment. Since this depends on the sizc of the 
animal, the weight of the corresponding muscle on the other side of the body was 
included as a covariate. 

The data are shown in Table 6.5.2. 

c1 

c2 
c3 
c4 

Though Cochran and Cox did not describe how Reps. I and I1 differ, let us 
assume that they were repetitions of the experiment with 48 rats at different 
points in time. For an initial analysis we will ignore this Reps. variable. A 
discussion of the use of the covariate x will be postponed until Section 6.6. 

Cell means were 

b,  c1 59.0 74.0 63.5 
c2 60.5 62.5 58.5 
c3 66.5 64.5 70.5 
c4 69.0 70.5 63.5 

b2 c ,  55.5 55.0 58.0 
c2 58.5 55.0 55.0 
c3 63.0 63.0 71.5 
c4 63.5 75.0 71.0 

b3 c ,  55.0 58.0 66.5 

c3 59.5 61.0 71.5 
c4 56.0 66.5 80.5 

~2 64.0 50.0 49.5 

b4 c1 51.5 55.5 71.0 

c3  62.5 72.5 65.0 
~2 58.0 59.0 57.5 

~4 66.0 72.0 79.5 

Two-way means were 

0 1  a2 a3 

55.250 60.625 64.750 
60.250 56.625 55.125 
62.875 65.250 69.625 
63.625 71.000 73.625 
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TnMe6.5.2 Weights of Dewneted 01) end Corresponding Normal (x) Muscle 
(unit = 0.1 gram) 

Length of 
Treatment 

Number of Treatment Periods Daily 

One (a1) l-%ree (0s) Six (a6) 

(Minutes) Type of Current y X Y X Y x 

Rep. I 1 (bl) G 72 152 74 131 69 131 
F 61 130 61 129 65 126 
60 62 141 65 112 70 111 
25 85 147 76 125 61 130 

2 (b2) G 67 136 52 110 62 122 
F 60 111 55 180 59 122 
60 64 126 65 190 64 98 
25 67 123 72 117 60 92 

Rep.11 1 (bl) 

G 57 120 66 132 72 129 
F 72 165 43 95 43 97 
60 63 112 66 130 72 180 
25 56 125 75 130 92 162 

G 57 121 56 160 78 135 
F 60 87 63 115 58 118 
60 61 93 79 126 68 160 
25 73 108 86 140 71 I20 

G 46 97 74 131 58 81 
F 60 126 64 124 52 102 
60 71 129 64 117 71 108 
25 53 108 65 108 66 108 

2 (b2) G 44 83 58 117 54 97 
F 57 104 55 112 51 loo 
60 62 114 61 100 79 115 
25 60 105 78 112 82 102 

3 (b3) G 53 101 50 103 61 115 
F 56 120 57 110 56 105 
60 56 101 56 109 71 105 
25 56 97 58 87 69 107 

4 (W G 46 107 55 108 64 115 
F 56 109 55 104 57 103 
60 64 114 66 101 62 99 
25 59 102 58 98 88 135 
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b3 

65.500 60.500 67.167 67.667 
56.167 56.167 65.833 69.833 
59.833 54.500 64.0oO 67.667 
59.333 58.167 66.667 72.500 

A means B means C means 

“ I  “2 a3 h ,  h? h, h, C1 cz c3 c4 

60.5 63.375 65.791 65.208 62.0 61.5 64.167 60.201) 57.333 65.917 69.417 

Grand mean = ? = F. . = 63.218 

Then CT = F2(96) = 383,674.6 

SSA = 32C60.5’ + 63.375’ + 65.781’3 - CT = 447.44 

A B  Subtotal = 8C63.75’ + .  . . + 68.252] - CT = 1,038.531 

SSAB = ( A B  Subtotal) - (SSA + SSB) = 367.98 

ABC Subtotal= 2[592 + . . . + 79.52J -- CT = 5,177.906 

SSABC = (ABC Subtotal) - [SSA + SSB + SSC + SSAD + SSAC + SSBC] 

= 1.050.9 

Other sums of squares were found similarly. The ANOVA Table is Table 6.5.3. 
Only the A and C main effects are significantly different at the 0.05 level 
(F,., , , , . , ,  = 3.20). Thus the A and C means are of particular interest. 

Table 6.5.3 

Source DF SSqs. MSq. F 

A 
B 
C 
AB 
AC 
BC 
ABC 
Error 

2 447.44 
3 223.1 1 
3 2,145.45 
6 367.98 
6 644.40 
9 298.68 

18 1,050.85 
48 3,1104.50 

223.72 3.36 
74.37 1.12 

715.15 10.73 
61.33 0.92 

107.40 1.61 
33.19 0.50 
58.38 0.87 
66.66 

(Corr. Total) 95 8,992.41 
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I f  a term r, for t = 1,2 is added to the model for the two levels of replication, 
then 

2 

SSRep. = 48 (F. .  ., - r , .  .)’ 
) = I  

= 48( F.. , I  - T I  .2)’/2 = 48 (65.729 - 60.708)’/2 = 605.01 
for one d.f. The error sum of squares becomes 3,804.50 - 605.01 = 3,199.49 for 
47 d.f. We reject the null hypothesis of no Rep. effect at reasonable a levels. 
Conclusions relative to other effects do not change. 

Problem 6.5.1: Consider the following 2 x 2 x 2 table of means p i p .  

(a) Find the parameters p, x i ,  O j , .  . .  fly)^^^. 
(b) If three observations are taken independently from N(p, , , ,  a’) for each 

cell gk, and c = 4, what is the power of the Q = 0.05 level F-test of Ho: No 
A x B interaction? 

Problem6.5.2: Sample of sizes two were taken from each of the eight 
normal distributions with the means pi,& as presented in Problem 6.5.1, and 
variances each c’ = 16, then rounded to the nearest integer. 

b l [ i  ;] 
” 21 14 

(a) Estimate the parameters, and fill out the analysis of variance table. 
(b) Since the eight subspaces V,, VA, VB, . . . , VAK, V1 all have dimension 

one, the corresponding sums of squares may all be expressed in the form 
IIp(Ylx)ll’ = (Y, X ) ~ / I I X J ~ ~ .  Give a vector x for each of these subspaces. 

(c) What are the lengths of simultaneous 95% Scheffk and Tukey confidence 
intervals on differences among all cell means? Draw a diagram indicating which 
of the means are significantly different. 

(d) For the model with all first- and second-order interaction terms zero 
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what is the least squares estimator of P,,~? What is its variance under this 
model? Find a 9576 individual confidence interval on p, 

(e) What is the bias of the estimator of (d) for pijk as given in Problem 6.5.1? 
under this model. 

Problem 6.5.3: Prove that the subspaces V’ and V,, are orthogonal. 

6.6 THE ANALYSIS OF COVARIANCE 

Suppose that Y is observed under varying experimental conditions in a factorial 
design, but that in addition measurements xl, or xl  and x2, taking values on 
a continuous scale, are made on each unit. In cases in which it is reasonable 
to suppose that Y is aflected linearly by these covariates the data may be 
analyzed by the method of analysis of covariance. 

For example, we might measure the yield of corn on 24 plots of land, for 3 
varieties of seed, 4 levels of fertilizer, 2 plots for each combination of seed and 
fertilizer. It is reasonable to suppose that the yield is related also to the fertility 
x of the soil, and therefore measure x for each plot. A reasonable model might 
then be: 

y.. = p . . + y x . .  +&..  1Jk 1J I f i  1JkY 

for k = 1. 2; j = 1, 2, 3, 4; and i = I ,  2, 3. We might also observe some other 
variable Wijk on each plot and then add another term /?Wip to the model. 

Define the parameters p, a,, pi, (a& as functions of the pi,. and the vectors 
x,, Ai, Bj, C, as before. In vector form the model becomes: 

Y = pxo + aiAi + c PjBj + c (aj?)ijCij + yx + E, 
i I i i  

where x = (x,~,.). In the case of several covariates yx could be replaced by 

There is in theory no difficulty in testing null hypotheses of the form H,: 
(ap)i, = 0 for all ij or H,: ai = 0 for all i. We need only fit the model with and 
without these terms present, and express the F-statistic in terms of the 
appropriate sums of squares. 

We will discuss the analysis for the case of several covariates, but will attempt 
to give explicit formulas for estimators only for the case of a single covariate x. 

Consider the model Y = 9 + &, for 9 = p + ymxm E V = Vl 8 V,, whcre 
t< = Y((Cil)) and V, = ,Lp(x,, . . . , x,). Suppose V, and V,  are linearly inde- 
pendent. This means that for each x,,, at least some cell has values which are 
not all the same. We will refer to V,  as the cooariate space. Define V,, EZ 
V ;  A &. Then V = Vl @ V,, and V, I Vl,. The subspace V,, is spanned by the 
vectors xk = x, - p ( x ,  I V,) .  When V is spanned by the cell indicators, each x i  
is the vector obtained by subtracting the corresponding cell mean from each 
componpt . 

Let Y, = p(YI Vl), ? ZE p(Y I V ) ,  and qlx = p ( q I  V,,). Then orthogonality 

c Y m X m .  
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implies that P = 9, + PI,, and (Y - 9,) = (Y - 9) + qIx. Orthogonality of 
(Y - I) to V and therefore to V,, therefore implies that 

IIY - 4Il2 = IIY - %I1 - Il9lrlIz4 
That is, 

(SSE under the analysis of covariance model) 

= (SSE under the analysis of variance model) - llP1,ll’. 

In the case that the number of covariates is one we can give explicit formulas 
for the parameter estimates. From Section 3.5 we have 3 = (Y, xL)/l[xil12, and 
Var(.i)) = 02/11x’11’. When V, is the space spanned by the cell means we get 

This last sum of squares is the SSE in an analysis of variance on the x-values. 
Of course, I I ~ , ~ I I ’  = (Y, ~ ~ ) ’ / 1 1 x l ~ ~ .  

we 
first notice that 9 = 1 xj. C,, + fx’ = C ( gj .  - fXij . )Ci j  + fx. Thus, pi, = 

Ej. - 9gi,, the corrected cell means. Since the parameters p, ai, pi, (afl)ij are 
linear functions of the pi j ,  their estimators are the corresponding linear functions 

x’ = (xifi - %ij.)cij, (Y, X I )  = 1 xjk(Xij& - Zij.)’, and llxlll’ = (Xip - nij.)’. 
ijk f j&  

To get explicit formulas for estimators of the pi , ,  p, a,, pi, 

ij ij 

I 1 
of the it,. For example, ji = pi,*, Bi = - 1 f i r j .  The E,. are uncorrelated 

K l J  K J  ik 
with ?, and with each other. Variances and - covariances among the Pij can be 
determined from the relationship Pij = xj. - $ti,. . These can be used to find 
variances and covariances for linear combinations, such as for the Bi or for 
differences 8, - bl,.. 

Suppose that we wish to test a null hypothesis H,: @ e  V,@ 5, where 
V2 c V,. In two-way analysis of variance, if we wish to test for lack of 
interaction, V, would be the subspace spanned by the row and column 
indicators. We need to fit the model which holds under the null hypothesis. We 
need only repeat the argument above with V, replaced by V,. For Vz, = Vz n 
v.: I 92, = P(Y I V2x), 

(Error sum of squares under the Ho analysis of covariance model) 

= (Error sum of squares under the Ho analysis of variance model) 

- l l ~ z x I 1 2 .  

The numerator sum of squares for the F-statistic is therefore 

(Numerator sum of squares for test of Ho for the analysis of variance model) 

- l lQlX/ l2  + IIQZXl lZ*  
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The degree of freedom for this numerator sum of squares remains the same as 
it was for the analysis of variance model. 

Again, if there is only one covariate, explicit formulas can be given. Let 

observed vector. Then p(Y I V2 6 V,)  = p(Y I V2) + q2,%, where q2,. = ?,xi, and 
f2  = (Y, xi)/llx~l12, and I l~ lx!12 = (Y, ~ i ) ~ / l l x ~ l l ~ .  

An analysis of covariance can be performed in much the same way as 
analysis of variance is performed. Add two columns to the usual analysis of 
variance sums of squares column. Each term in the analysis of variance sum of 
squares column is of the form H,,, = Y’PY, where P is projection onto the 
corresponding subspace. Make the second and third column entries in that row 
Hxy = x‘PY. and H,., 3 x’Px. Let EYY, Ex., and Ex,  be the corresponding terms 
for the error row of the table. Then sums of squares for the analysis of covariance 
are all of the form 

X I  = - p ( x l  V:  n 4) = x - p(xl V2), the error vector under Ho when x is the 

C = (Error SSqs. under Ho) - (Error SSqs. under Full Model) 

= I f &  + EYy - WXy + Ex,)2/’(Hxx + Exx)I  - [E,, - E:y/E,x] .  

The estimate of the regression coefficient y under the null hypothesis corre- 
sponding to a given row of the table is (H,, + Exy) / (Hxx  + Ex,) .  These sums 
of squares no longer have the additive properties the terms H,,, did, since the 
corresponding subspaces V i  n V,  are not orthogonal. 

Example 6.6.1: Consider the results (Table 6.6.1) of an experiment con- 
ducted to study the effects of three feeding treatments on the weight gains of 
pigs, as reported by Wishart (1950) and analyzed by Ostle (1963, 455). In this 

Table &6.1 
Feding T k l  

Initial Weights and Gaim in Weight of Young Pigs in a Comparative 

Food 

A B C 

Male Female Male Female Male Female 

Pen1 x 38 48 

Pen11 x 35 32 

Pen Ill x 41 35 

Pen IV .Y 48 46 

PenV x 43 32 

Y 9.52 9.94 

Y 8.21 9.48 

4‘ 9.32 9.32 

y 10.56 10.90 

y 10.42 8.82 

39 48 

38 32 

46 41 

40 46 

40 37 

8.5 1 10.00 

9.95 9.24 

8.43 9.34 

8.86 9.68 

9.20 9.67 

48 48 

37 28 

42 33 

42 50 

40 30 

9.1 1 9.75 

8.50 8.66 

8.90 7.63 

9.5 I 10.37 

8.76 8.57 
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experiment 15 male pigs and 15 female pigs were randomly assigned to 15 pens, 
combinations of 5 pens, and three feeding treatments, so that in each pen one 
male and one female pig received each of the three treatments. The initial weight 
x and the weight gain were recorded for each pig. Pens were considered to be 
a blocking variable, with interactions between pens and the sex and treatment 
variables expected to be relatively small. 

For food level i ,  sex level j ( I  for male, 2 for female), pen level k, let the 
weight gain be xjk and the initial weight X i j k .  Suppose that xjk = p i j k  + p i j k  + 
& i p ,  with the usual assumptions on the E , , ~ .  Suppose that pi,,' = p + fi + sj + 
( f i ) , ,  + pk, where h, s j ,  ( f s ) i j ,  and pk  are the food, sex, food x sex, and pen 
effects, and these parameters add to zero over each subscript. We have chosen 
to use the symbols fi, s j ,  and pk  rather than the more generic notation a,, fli, 
and 6, (say) because it will remind us more readily of the meaning of the effect. 
Such notation is usually preferable. 

The terms 1 y2, c xy, and c xz for food, for example, are computed as 
follows: 

Other sums of squares and cross-products are computed similarly, using the 
formulas for two-way analysis of variance. Then the error SSqs. for the analysis 
of covariance is €,, - €,',/Exx = 8.414 - (39.3672/442.93) = 4.815. The degree 
of freedom for error is 20 - I = 19, since we have one covariate. Notice that 
error MSq. has been reduced for 8.314/20 = 0.416 to 4.815/ 19 = 0.253. 

The sum of squares for food, for example, in the analysis of covariance was 
computed using the formulas above with If,, = 2.269, Ifxy = -0.147, H,, = 5.40. 
The estimate of y for the full model is $ = Ery/E,, = 0.889. Table 6.6.2 presents 

Table 6.6.2 

Source 

Pens 
Food 
Sex 
Food x sex 
Error 

Corr. Total 

Sums of Squares and Cross Products Analysis of Covariance 

DF CY' C X Y  C X '  

4 4.852 39.905 605.81 
2 2.269 -0.147 5.40 
1 0.434 -3.130 32.03 
2 0.476 3.112 22.47 

20 8.314 39.367 442.93 

SSqs. MeanSq. .i 
2.359 0.590 0.076 
2.337 1.168 0,087 
1.259 1.259 0.075 
0.098 0.049 0.091 
4.815 0.253 0.089 

29 16.345 78.501 I ,  108.70 
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Table 6.6.3 

F Approx. p-value 

Pens 2.33 
Food 4.62 
sex 4.98 
Food x sex 0.19 

0.10 
0.025 
0.W 
0.980 

the estimates of y for the models corresponding to each of the other rows. For 
example, iF = 0.087 is the estimate when the food terms f i  are omitted from 
the model. 

The F-statistics corresponding to the first four rows of Table 6.6.2 are given 
in Table 6.6.3. The model with the interaction terms omitted seems to be the 
most appropriate. The parameter pijk is estimated by jiiB = g j k  - ?xi;,, which 
has variance Var(pijk) = Var( tjk) + Var($)(x&k)2 = a2[20/25 + (x&)'/EXx], 
with covariances cov(pijt, & j r k ,  j = a2(x&kxil;j'k')/E,. 

Table of 
A B C 

M F M F M F 

5.71 6.01 5.13 5.71 4.99 5.38 

6.24 6.54 5.66 6.23 5.52 5.91 

5.52 5.82 4.94 5.52 4.80 

6.17 6.47 5.59 6.17 5.45 5.85 

6.17 6.47 5.59 6.17 5.45 5.85 

The estimates of the standard errors of these j i i j k  were all between 0.41 and 
0.45. There are too many covariances for us to attempt to give them here, 
though they are small relative to these standard deviations. Estimates of the p, 
f i ,  s j ,  and (fs), are given in Table 6.6.4. 

To make comparisons of the effects of the levels of the food effects we need 
to know 

which we estimate by replacing 0' by S2 = Error MSq. = 0.253 to get 0.0849 
for i = 1, i' = 2,0.084 5 for i = 1, i' = 3, and 0.084 9 for i = 2, i' = 3. Similarly, 
we estimate Var(S, - .f2) = 02[2/15 + (f., . - Z.2.)2/Exx] to be 0.0362. These 
estimates can be used to give confidence intervals on the differences. 
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Table 6.6.4 

P 5.740 

Sl.  s2 -0.212.0.212 
f i v  f 2 9  f3 

(Phj 0.063 -0.063 

0.014 -0.014 

0.371, -0.070, -0.301 

-0.077 0.077 

Pk -0.254,0.274, -0.442,0.211,0.211 

As is evident from this example, the payoff in using the covariate in the 
analysis, despite its additional complication, is that it reduces the size of error 
MSq., providing shorter confidence intervals, and more power. Analysis of 
covariance should not be used if the covariate itself is affected by the factors 
being studied. In this last example that is definitely not the case because x was 
the weight of the pig before the experiment began. Thus, in a study of the effects 
of three different methods of teaching algebra to high school freshman it would 
be appropriate to use the score on a standardized math exam if the exam were 
given before the experiment, but not if the exam were given during or after the 
experiment. (The models discussed in this chapter would not be appropriate 
for most such experiments because the performances of students in the same 
classroom could not be considered to be independcnt, usually being affected 
by the same teacher and by interaction among students.) 

Problem 6.6.1: Suppose that following pairs (x i jk .  x jk )  are observed for 
i = 1,2;  j = 1,2; k = 1, 2. 

(10, 25) (7, 8) 
(14, 23) (5, 12) 

(a) For the analysis of covariance model Kjk  = p + ai + pi + (%mil + yxijr + 
E~~~ determine the analysis of covariance table, estimate the parameters, and 
perform appropriate F-tests. 

(b) Plot the scatter diagram and the estimated regression line for each ij cell 
of the two-way table. (You can do this on just one pair of xy-axes if you use 
different labels for the points corresponding to different cells. 

(c) Find Var((&, - s2)), both for the model in (a) and for the same model 
with the yxi,, term omitted. Use this to find 95% confidence intervals on a1 - x2 
for both models. 

(d) Find a 95% confidence interval on y, for the model of (a). 
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(e) Let SSA be the sum of squares used to test H,: a, = r2 = 0 for this model. 
Show that SSA = (5 ,  - d,)2/[Var(&, - d2)/a2]. 

(9 How many covariates xl. . . . , x, could be used for these eight observations 
on Y? 

(g) Suppose that Xijk = x i j  for all ijk, so that the x-values within the ij cell 
were the same. Could an analysis of covariance be performed? Could it be 
performed if the model did not include interaction terms (aB)i,? 

Problem 6.6.2: The analysis of covariance models we have considered 
has assumed that the slope ‘J is the same for every cell of the table. In the 
case of a 2 x 3 table with three observations per cell suppose that xjk = 
pij  + y i j x i j  + Qj&. 

(a) Describe how you could test the null hypothesis that the yij are the same 
for all i and j .  

(b) Could you carry out this test if there were only two observations per cell? 
(c) Consider the model with y i j  replaced by y i .  How could you test the null 

hypothesis that y l  = y2? Is there a corresponding t-test? 



C H A P T E R  7 

Miscellaneous Other Models 

7.1 THE RANDOM EFFECTS MODEL 

In this chapter we consider models which do not quite satisfy the general linear 
model in the sense that they contain two independent random terms, say q and 
E rather than only one. In another sense the error term is the sum < = q + c, for 
which different observations will not in general be independent. The special 
structure of 5 as a sum allows us to develop estimators and tests in computa- 
tionally simple form. 

We will only treat a few of these random component models here and will, 
for example, not even discuss mixed models for two-way layouts when one 
factor has randomly chosen levels. Multivariate analysis of variance is best used 
in such situations, and we shail not attempt to discuss its techniques. Those 
interested in multivariate statislical methods are referred to books by Morrison 
(1976) or Johnson and Wichern (1988). 

Suppose we are interested in studying the output in numbers of parts turned 
out by the workers in a factory. A large number of workers are available, and 
we choose f of them at random, asking each to work J different two-hour time 
periods. The measured variable is then qj, the number of parts turned out by 
worker i in time period j .  We suppose that the worker has had enough 
experience so that there is no learning effect. The following model may be 
appropriate: 

x j = p + u a , + ~ i j  for j =  1, . . . ,  J 

i =  1, ..., f 

wherc a, - N ( 0 ,  o:), cii - N ( 0 ,  a2j, and the E , ~  and u, are J I  + f independent 
r.v.’s. 

This model differs from the usual one-way ANOVA model, called thefixed 
eflecrs model, in that the ui are considered to be random variables. In fact, 
conditional on the a, {on the specific workers chosen in the example) this is 
the fixed effects model with pi = ,u + ai. This model, unconditional on the ai, 
is called the random componenrs model, and is appropriate when the levels of 
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the treatment variable (the workers in the example) under study can be 
considered as a random sample from a large collection of possible levels, and 
inferences are to be made about this large collection, rather than just those 
levels on which observations are taken. The example above and a complete 
discussion of the mathematics involved is found in Scheffk (1959, Ch. 7). 

As for the fixed model define Y to be the I x J array of xi, Ai to be the I x J 
array with 1's in column I ,  0's elsewhere, 

I 

V, = Ip(xo), for xo = x A i  
I 

V' = Y ( A , ,  . . . , A,) A Vt = C biA, C h i  = 0 I: I :  I 
V = Y ( A , ,  . . . , A,) = V, @ V, 

Then 
I 

Y = p x o  + x aiAi + E, and Y - N ( p x 0 ,  Zy), 
1 

where the elements of Xy are given by 

cov( x j ,  x:.i.) = cov(a, + Eij, a,. + Ci#j.)  

= u: + u2 for i = i '  and j = j '  

= G: for i = i' and j if.{ 

= 0 for i # i' 

If we order the elements of Y by first going down columns then across rows, then 

where B, is a J x J block of all ones. Thus for I = 3, J = 2, we get 

2 ?& = 0, 

1 1 0 0 0 0  :'i.::l 
0 0 0 0 1 1  

+ a  

' l o o o o d  
0 1 0 0 0 0  

0 0 1 0 0 0  

0 0 0 1 0 0  

0 0 0 0 1 0  

-0 0 0 0 0 1. 
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As for the fixed effects model, let 

and 
SSE = lle1I2 = ( E ~ ~  - 4.)’ 

i i  

Let = at + 4 . .  Then - N and the & are independent. It 

follows that 

SSA 2 

CCF- m2 
i 

X I - 1  _ _  --= 
o2 o2 +Jot  

J 
0.’ + 

In addition, the & are independent of the vector e, and therefore of SSE, which 
is the same as it is for the fixed effects model. Thus, SSE/a2 - x:,- l)l. It follows 
that 

The analysis can be summarized by the usual one-way ANOVA table, with 
the same d.f.’s, sums of squares, and mean squares as for the fixed effects model. 
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The only change appears in the expected mean squares column, with E(MSA) = 
a' + Ja:. 

Though we will not show it here, the maximum likelihood estimator of 
the pair (a2, a:) is (e2, SSA/n - 5d2), where Ci2 = SSEjn .  It is more common 
to use the estimator (MSE, (MSA - MSE)/J), which is unbiased. However, it 
makes little sense to estimate a," by a negative number. so that it makes more 
sense to replace (MSA - MSE)jJ by the minimum of this and zero. Of course 
the estimator is then biased. That seems to be a small price to pay to avoid an 
embarrassing point estimate. 

Let 
SSA/(I - 1 )  A MSq. a2 +Job F = . - - - - - - - = - - -  and O =  - -. 

SSE/(J - 1)l Error MSq. o2 

We have shown that FjO has a central F distribution. Thus, for Fa,2 and Fl -a,2 

the 1OO(a/2) and tOO(1 - a/2) percentiles of the F,- distribution, 

We have a lOO(1 - a)?(, confidence interval on 8 = 1 + J(o:/a2). Manipulating 
the inequalities still further, we get 

An approximate confidence interval on a,' is obtained by substituting S2 for 
d, to get the interval 

The approximation is good if I ( J  - 1) = Error d.f. is large. A loO(1 - aj2)% 
one-sided confidence interval may be obtained by leaving OH either end of the 
interval. 

We can test H,: .:/a2 5 r, vs. H,: a:/oz > ro for r, a known constant as 
follows. Since 

1 

1 + Ja:/a2 FjO = F (  ) 5. FI- I .  I ( , -  1). 

for af/d 5 r,. so that the test which rejects H, for F 2 ( 1  + Jro)F ,  is an 
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a-level test. Its power function for r = u,2iaz is 

(1 + Jr,) 
(1 + J r )  

= area under F,- ,) density to the right of F, -=. 

For the case ro = 0 the test rejects for F L F, 
practice it is not reasonable to expect uf = 0, however. 

the usual ANOVA test. In 

Problem 7.1.1: For the random effects model, what is the C.C. y( Kj, I&) for 
j # j ’? 

Problem 7.1.2: Let U,, VI, U,, &, . . . , U,, V, be independent r.v.*s with 
= c Vp, and let Ui 5 N ( 0 ,  a:) and 5 - N(O,&). Let = c Ui/k and 

Q = C [(Ui + G )  - (U + QI2. 
(a) Describe the conditional distribution of Q, given V, = c,. . . . , V, = ut. 
(b) Describe the unconditional distribution of Q. 
(c) Apply the results of (a) and (b) to (4 - @‘)’, where H( = a, + Ei. 

Problem 7.13: In order to determine the contamination by dioxin of land 
formerly used as a dumpsite, the land was divided into 20,000 one foot by one 
foot squares. Fifty of these squares were then chosen randomly for analysis. Five 
samples of soil, each of one cubic inch, were then taken from each sample 
square. Measurements, in parts per billion of dioxin, were then obtained for 
example, 

Sample Square 
1 2 3 4 5  50 

195 323 257 332 328 ... 262 

180 295 248 263 284 . . . 259 

187 306 261 281 264 ... 267 

196 320 282 292 320 . . . 268 

149 344 263 326 262 , . . 265 

Computations gave: 

C &j = 96,936 Y$ = 40,835,618 (7 = 203,375,212. 
i j  ii 

(a) State an appropriate random effects model, with variances u2 and uf (for 

(b) Determine the analysis of variance table. 
squares). 
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(c) Find 95% confidence intervals on u2, R = u,'/a2, and IS,'. 

(d) For R = o;/o2 test H,: 8 s, 5 vs. H , :  8 > 5, for SI = 0.05. 
(e) These data were actually generated on a computer using p = 400, Q = 30, 

6, = 100. Did the confidence intervals include these parameter values? Find the 
power of the test of (d). 

(f) What were Var( E Var( y., - 17.. Var( .)? What were their 
estimates? 

(g) Suppose that the cost of observations is $90 for each square and $3 for 
each measurement of dioxin, so that the total cost was C = ($90)(50) + 
(%3)(250) = $5,250. Suppose that the purpose of the study was to estimate the 
overall mean per square foot as precisely as possible. Find a choice of (I, J) 
which would cause Var( f .) to be as small as possible subject to the cost being 
no larger, and compute Var( ,) for the experiment performed and for the better 
experiment. 

7.2 NESTING 

Suppose we expand the experiment of Section 7.1 as follows. We are interested 
in I different machines (or machine types). Ji workers are chosen randomly to 
work on machine i, for i = 1,. . . , I. Then each worker is assigned to K different 
two-hour periods, all on the same machine. The production in time period k 
is q j k  for k = 1,. . . , K. Then, since an individual worker works only on one 
machine, workers are said to be "nested within machines." 

Example 7.21: K = 3, I = 4, J1 = 3, J, = 3, J3 = 2, J4 = 4 

Workers 

Machine 1 Machine 2 Machine 3 Machine 4 

I 2 3 4 5 6 7 8 9 10 1 1  12 
~~~ ~~ 

31 41 36 48 39 50 29 37 45 57 50 53 
35 38 39 48 42 50 32 39 46 54 50 55 
30 37 38 45 41 53 30 39 48 55 54 49 

A reasonable model is 

The nesting i s  indicated by the notation wfij,, since the values which j takes 
depend on I, with j "nested" within machine i. Let Ji be the number of workers 
nested within machine i, for i = 1, .  . . , I. Let Mo = 0, and Mi = J, + . . . + JI 



for each i. Then for each i, j takes only the values Mi-,  + I , .  . . , Mi.  For each 
j, k takes the values 1. .  . ., K. Suppose mi,. . . ,m, are fixed effects with 
C mi = 0, and the wni, are random variables, independent, with N ( 0 ,  a:) 

distributions. Then 
i 

and 

a: + a2 for i = i’,j = j‘,.. = 

for i = i‘, j = j ‘ , k  # k‘ 

for j # j ’  forall i, k,k’. 

cov( q j k ,  & # j ’ k * )  = 

Let Y be the array of K ( C J i )  observations y jk .  Let Mi be the indicator of 
machine i, let wj( i )  be the indicator of worker j, who uses machine i. Define 

The analysis of variance is given in Table 7.2.1. For each (i, j )  
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Table 7.2.1 Analysis of Variance 

Source Su bspace DF ssqs. MSq. Expected Msq. 

K 
I - 1  

Machine V, 1 - 1  SSM u2 + KO; + --Cm’J, 

Worker vw iCJi - 1) ssw u2 -k K u t  
1 

Error V L  (K - l ) x J ,  SSE 0 2  

Adj. Total V k  K ( C J J -  I SST 

and the gj .  are independent. Then 

SSM ssw 
._ =c(K- Y...)2Ji and ~ = C ( E j .  - g,.)2 
K i  K i j  

are among means SSqs. and error SSqs. for one-way analysis of variance on 
the g j , .  Thus, they are independent, 

i 2 - x , - ~  for b = - - -  
o2 + K o t  

SSM SSM 

and 
ss w 

- - x$,$- ,  (central x2) .  ss w 
x(.: + ;) - - o2 + K a t  

Thus 
Machine MSq. 
Worker Msq. FM = - FI- Lp,-m. 

Confidence intervals on ai/02 can be obtained by the same method used in 
the one-way ANOVA random effects model. Thus (L, U )  is a lOO(1 - (I)% 
confidence interval on 

oi!a2 for L = ( 5 - - I )  1 and 
U = (l:; - 1) f ,  f-1 - I12 K 

where Faiz and Fl - l iz  are percentiles of the F ( v , ,  v 2 )  distribution for v 1  = 
Ji - I and ti2 = (K - 1)(CJJ and F, = ( WMSq.)/SZ. Since [E(MSW) - a2]/ 

K = at, 6: = [MSW - S2]/K is an unbiased point estimator of a t .  It makes 
sense, however, to replace 6: by 0 whenever it is less than 0, so the unbiasedness 
is lost. 
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Problem 7.2.1: Hicks (1982, Example 11 .1 )  described the following experi- 
ment: 

In a recent in-plant training course the members of the class were assigned a h a 1  
problem. Each class member was to go to the plant and set up an experiment using 
the techniques that had been discussed in the class. One engineer wanted to study 
the strain readings of glass cathode supports from five different machines. Each 
machine had four “heads” on which the glass was formed, and she decided to take 
four samples from each head. She treated this experiment as a 5 x 4 factorial with 
four replications per cell. Complete randomization of the testing for strain readings 
presented no problem. Her model was 

with 

i = l , 2  ,..., 5 j =  1 ,..., 4 k =  1 ,..., 4 

Her data and analysis appear in Table 7.2.2. In this model she assumed that both 
machines and heads were fixed, and used the 10 percent significance level. The results 
indicated no significant interaction at the 10 percent level of significance. 

The qucstion was raised as to whether the four heads were actually removed from 
machine A and mounted on machine B. then on C. and so on. Of course, the answer 
was no, as each machine had its own four heads. Thus machines and heads did not 
form a factorial experiment, as the heads on each machine were unique for that 
particular machine. In each case the experiment is called a nested experiment: levels 
of one factor are nested within, or are subsamples of, levels of another factor. Such 
experiments are called hierarchical experiments. 

Table 7.2.2 Data for Strain Problem in a Nested Experiment 

Machine Head 

A B C D E 

1 2 3 4 5 6 7 8 9 10 1 1  12 13 14 15 16 17 18 19 20 

6 1 3  1 7  10 2 4 0  0 1 0  8 7 11 5 1 0  1 6  3 3 
2 3 1 0  4 9 1 1 3  0 1 1  5 2 0 1 0  8 8 4 7 0 7 
0 9 0 7  7 1 7 4  5 6 0 5  6 8 9 6  7 0 2 4  
8 8 6 9  1 2 1 0 9 1  5 7 7 4  4 3 4 5  9 3 2 0  

Head Totals 

16 33 17 27 38 14 21 8 10 34 20 18 21 26 22 19 21 16 7 14 

Machine Totals 

93 81 82 88 58 
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(a) Define a more appropriate model than that chosen by the student. 
(b) Determine the appropriate analysis of variance table and test the 

(c) Find a 95% confidence intervals on of r /d  and (approximately) on o i .  

Problem 7.2.2: Express P(d:  > 0) in terms of the central F c.d.f. and the 
parameter 0 = [o’ + Ka:]/az. Evaluate it for the case I = 3, J1 = J2 = J3 = 5, 

hypotheses 0; = 0 and (all mi = 0) at level Q = 0.05. 

K = 4, R = o:/u’ = 0.355. 

Problem 7.23: For the worker--machine model find: 
(a) The C.C. p (  xj., Er. )  and Var( E j  - xi..) for j # j’. 

(c) The c.c. p ( x . .  , 4.. .) and Var(x,. - I;.. ,) for i # i’. 
(b) The C.C. p( q j k ,  3 j k ’ )  and VaC( $k - $k’)  for k # k’. 

73 SPLIT PLOT DESIGNS 

Ostle (1963) describes an experiment designed to determine the effects of 
temperature and electrolyte on the lifetime of thermal batteries. The electrolytes 
were A, B, C, D, and the temperatures were low, medium and high. The 
temperature chamber had positions for four batteries. On six consecutive days 
(replicates) the chamber was used three times (whole-plots, so that there were 
I8 whole-plots). The three temperatures were randomly assigned to thcse 
whole-plots. Within each whole-plot one battery with each of the electrolytes 
was randomly chosen for a position, split-plot, within the chamber. The 
measured variable was the activated life of the battery (Table 7.3.1). For an 
agricultural example suppose four hybrids of corn H,, Hz, H,, H4 and three 
levels of fertilizer F,, F2, F3 are of interest. Three farms (replicates) each have 
four acres available for use. On each farm the land is divided into one-acre 
whole plots, and one of each of the hybrids assigned randomly to these whole 
plots. Then each whole plot is divided into three split-plots and the three 
fertilizers randomly assigned to these split-plots. 

Consider the battery example again. Let i index replicate, j index temperature 
and k index electrolyte. A reasonable model is then 

x j k  = + Pi + tj + Pij  + ?& + cT?)jk + &ijk 

where pi is the fixed replication effect, ti is the fixed temperature effect, p i j  is 
the random whole-plot effect, yk is the fixed electrolyte effect, ( ~ 7 ) ~ ~  is the 
temperature-electrolyte interaction effect, and E,,& is the split-plot effect. &ilk also 
contains other random errors. In addition, yk = c ( T P ) ~ ~  = 0, 

p i j  - N ( 0 ,  oi), cijk - N ( 0 ,  02) and these random variables p i j ,  Eijk are all 
independent. 

The sums of squares for each of the terms of the model are determined as 
before for a three-way factorial with one observation per cell assuming no 

p i  = c T~ = 
j 
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Table 73.1 Activated Lives in Hours of 72 Thermal Batteries Tested in I Split Plot 
Design Which Used Temperatures as wbde plots and Electrolytes as Split Plots 

Replicate 

Electrolyte 1 2 3 4 5 6 

A 
B 
C 
D 

A 
B 
C 
D 

A 
B 
C 
D 

2.17 
1.58 
2.29 
2.23 

2.33 
1.38 
1.86 
2.27 

1.75 
1.52 
1.55 
1.56 

Low Temperature 
1.88 1.62 
1.26 1.22 
1.60 1.67 
2.01 1.82 

2.01 1.70 
1.30 I .85 
1.70 1.81 
1.81 2.0 1 

1.95 2.13 
I .47 I .80 
1.61 1.82 
1.72 1.99 

Medium Temperature 

Nigh Temperature 

2.34 
1.59 
1.91 
2.10 

1.78 
I .09 
1.54 
I .40 

1.78 
I .37 
1.56 
1.55 

1.58 
1.25 
1.39 
1.66 

1.42 
1.13 
1.67 
1.31 

1.31 
1.01 
1.23 
1.51 

1.66 
0.94 
1.12 
1.10 

1.35 
1.06 
0.88 
1.06 

1.30 
1.31 
1.13 
1.33 

Source: Reprinted with permission from Statistics in Research by Bernard Ostle. 6 1963 Iowa 
State Press. 

interaction between replicates and electrolyte or between temperature and 
electrolyte. In general, suppose there are R replicates, T temperatures, L 
electrolytes. Then 

SSR = (TL) C (c.. - F.. .)2 

SST = ( R L )  C ( Fj. - F . .)’ 

(Replicates) 

(Temperature) 

i 

I 

RTSubtotal = L C ( zj. - r‘. . . ) 2  

ii 

SSRT = (RTSubtotal) - SSR - SST (RT Interaction) 

(Whole-Plots) 

(Electrolytes) 

TLSubtotal=Rc(Fjk- F , , ) ’  
j k  

SSTL = (TL Subtotal) - SST (TL interaction) 

(COrr.) Total ss = 1 ( g j k  - r .  .)’ 
i jk  

SSE = Total SS - (RT Subtotal) - SSL (Error) - SSTL 
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Each sum of squares is the squared length of the projection of Y on a 
subspace, the subspaces for R,  T, P ,  L, error being orthogonal. SSRT is RT 
interaction sum of squares, which we have chosen to call whole-plot error and 
labeled as pi,. 

Since qj .  - N ( p  + p i  + r j .  0: + a2/L), by arguments similar to those for 
nested designs we get 

SSP 2 
X ( A  - I M T -  1) - 

La; + 0’ 

SSE 
0’ 

X R ( T - l M L  1) 

These sums of squares are independent. 
F-tests far replicate and temperature effects use the mean square for whole 

plots = SSP/(R - l)(T - I )  in the denominator. F-tests for the split-plot factor, 
electrolyte, use error mean square. The ANOVA table presented by Ostle for 
these data is Table 7.3.2. 

Table 7.3.2 Abbreviated ANOVA 

Source DF SSqs. MSq. F Expected MSq. 

Whole Plots 
Replicates 5 4.1499 0.8300 6.09’ a* + 4 u i  + 12 p:/5 
Temperatures 2 0.1781 0.0890 0.65 u2 + 40; + 24 rf12 

Splic Plots 

Whole plot error 10 1.3622 0.1362 0 2  + 4u; 

Electrolytes 3 1.9625 0.6542* 23.4 u2 + 18 
Temperature x electrolyte 6 0.2105 0.0351 1.25 u2 + 6 &r7)j$ 
Split plot error 45 1.2586 0.0280 a2 

*Significant at the x = 0.01 level. 
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Since Fs. 10,0.99 = 5.64, F3.4s,o.99 = 4.24 both replicate and electrolyte effects 
are significantly different from zero at the 0.01 level. There seems to be little 
effect due to temperature or temperature x electrolyte interaction. It would 
be appropriate to compare electrolyte means, which have variances a2/18, 
estimated to be 0.028 O/l8. 

Problem 73.1: Analysis o f  the battery data produced: 
Y$ = 192.7, and means as follows: 

&,% = 114.97, 

Replicates 

2.068 1.688 1.583 1.985 1.470 1.205 

1.960 1.705 1.842 1.453 1.383 1.088 

1.595 1.688 1.935 1.565 1.265 1.268 1 
Electrolytes 

1.875 1.307 1.663 1.820 

1.765 1.302 1.577 1.643 

1.703 1.413 1.483 1.610 I 
Rep. Means Temp. Means 

1.874 1.693 1.787 1.667 1.372 1.187 1.662 1.572 1.552 

Electrolyte Means 

1.781 1.341 1.574 1.691 

C Ti". = 47.319 

1 Ptjk = 30.989 

1 F:. . = 15.645 

C F2j. = 7.647 

(a) Verify the sums of squares in Ostle's table. 
(b) Find an individual 95% confidence interval z I  - z2.  
(c) Find an individual 95% confidence inlerval on y ,  - y 2 .  

Problem 73.2: Prove that SST, SSR, and SSL are independent r.v.3. 

7.4 BALANCED INCOMPLETE BLOCK DESIGNS 

Consider the following experiment described b y  Mendenhall (1968, p. 325): 

An experiment was conducted to compare the effect of p = 7 chemical substances on 
the skin of male rats. The area of experimentation on the animal's skin was confined 
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to a region which was known to be relatively homogeneous, but this restricted 
the experimenter to three experimental units (patches of skin) per animal. Hence to 
eliminate the rat-to-rat variability for the comparison of treatments, the experiment 
was blocked on rats using the balanced incomplete block design shown below (k = 3, 
r = 3, 6 = 7,1= 1). The seven blocks correspond to 7 rats. 

Blocks 

I 2 3 4 5 6 7 

A 

14.2 

r,l 
14.3 16.3 

E 

13.1 

This experimental design is called an incomplere block design because not all 
treatment levels are represented in each block. There are h = 7 blocks (rats), 
k = 3 experimental units (patches) within each block, t = 7 levels of the chemical 
factor (the treatment), each level is replicated r = 3 times, and each pair of levels 
is together in the same block ;C = 1 time. The experiment is called balanced 
because r does not depend on the treatment level, block size k is constant, and 
the number A does not depend on a combination ii’ of treatment levels. 

A second example, taken from Scheffk (1  959, p. 189) has b = 10 blocks (which 
corresponds to time), each block has k = 3 treatment levels (detergents) from 
among t = 5 treatment levels, each treatment level is replicated r = 6 times, and 
each pair of treatment levels is contained within the same block A = 3 times. 

In a test to compare detergents with respect to a certain characteristic a large stack 
of dinner plates soiled in a specified way i s  prepared and the detergents are tested 
in blocks of three, there being in each block three basins with different detergents 
and three dishwashers who rotate after washing each plate. The measurements in the 
table are the numbers of plates washed before the foam disappears from the basin. 
Use the T-method with 0.90 confidence coefficient on the intrablock estimates to 
decide which pairs of detergents differ significantly. 

~~ 

Block 1 2  3 4 5 6 7 8 9 10 

A 21 28 30 31 29 30 
B 26 26 29 30 21 26 

D 29 33 34 31 33 31 
E 26 24 25 23 24 26 

Detergent C 30 34 32 34 31 33 
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The T-method to which Scheff6 referred was Tukey’s method for simultaneous 
confidence intervals. He referred to his own method as the S-method. 

Other examples may be found in Cochran and Cox (1957,475-6,480,482). 
The largest has t = 28, k = 7, r = 9, b = 36,i. = 2. For any k < t, we can always 

take b = (l), r = b k / t ,  I = bk(k - l) /t(t  - I), which may be a larger experi- 

ment than desired. 
Such experiments can be useful in cases in which blocks are not large enough 

to accommodate all treatment levels. In an agricultural experiment with many 
locations with at most four plots each of which must receive only one hybrid 
of corn, an experiment to compare six hybrids must use incomplete blocks. In 
comparing five cake mixes using ovens with only three positions for cakes, the 
blocks (baking periods) must be incomplete. In an industrial experiment to 
compare three procedures, workers may only be able to use two procedures on 
any day. Thus a block (worker-day) must be incomplete. 

Before we discuss these balanced incomplete block designs, let us first 
consider a model for incomplete block designs which may not be balanced. If 
we let the observations at treatment level i, block j be 4j, ,  . . . , xjKu, the model 

K j k  - “ ~ t j ,  cz) 

with independence, may be fit using standard regression methods as described 
in Section 6.2. 

Unless K i ,  is at least one for each ij, however, we have no estimator for pi, ,  
particularly for an interaction parameter (afi)ij. Therefore we are led to 
consideration of the additive model ~r E V = .LP(A,,. . . , A,, B,, . .:, BJ. To test 
H,: pEY(B,, ..., B,)= V’, let b =  VnV:, Y = p ( Y I V ) ,  Ye=p(YIC’,), 
gA = p(Y I VAi = % - g,, e = Y - Y. Since B,, . , . , Bk is an orthogonal basis 

for V,, ?, = FjB,. Since V, 1 Vs, 9 = 9” -t q,. V, is spanned by the vectors 
1 

A: = Aj - p(Ai I V,) = A, - 1 ( K , j / K .  j)Bj (7.4.1 ) 
j 

for i =  1. ..., r. 
These vectors sum to the zero vector, so that V, has dimension at most 

t - 1. In general, without some restrictions on the K i j  it may have smaller 
dimension. 

In the case that the design is a balanced incomplete block design (BIBD), 
special relationships among the parameters t, r, b, k ,  A make it possible to solve 
explicitly for q. First, the total number of observations is 

n = x K , .  = z r = r t  and n = x K . j = C k = b k  
i i i i 

so that (1) rt = bk. Secondly, the number of pairs of different treatment levels 
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in the same block, summed across all blocks. is A( i) and also (:)b, so that 

For BIBDs all K i j  are zero or one. Let 9 be the collection of pairs ( i ,  j )  for 
which K, = 1. Let 9(i) = { j l ( i ,  j ) e Y ) .  

From (7.4.1) we get A: = A, - ( l /k )  c K i f B j  = Ai - c Bj .  For (i', j )  E 9, 

the (i', j )  element of A: is I - I j k  if j E 9 ( i )  and i = i', - l /k  if j E Y(i )  and 
i # i', 0 for j # 9 ( i ) .  Notice that 1 A: = 0. These A: have inner product matrix 
M* E (mi,), where 

(2) At(t - 1) = k(k  - 1)b. 

f j E .f ( I )  

i 

mi, = r - (l/k2)kr = r (k - I)/& = ( 1  - l)J./k for i = j and 

= - ( l / k 2 ) A k  = - L / k  for i # j. (7.4.2) 

Thus M* = (i- t /k)[I,  - (I/t)J,],_where J, is the r x t matrix of all ones. 

these ui, compute 
Let c = (A t /&)  and suppose YA = 1 uiAi. Since I xo, c ui = 0. To find 

(Y, A:) = (qA, A:) = C ui.(AF, A,) + ai(AF, A:) 
i'#i 

= ( - L / k ) ( - u i )  + ui(t - I)()./&) = ca, 

I t  follows that ui = (Y. Af)c-". More explicitly, 

The term B ( i )  = c K i j  f j  = 1 r, is the correction for blocks for treatment 
level i. 

If pi, = p + a, + /I, with 1 !xi = C pj = 0, then, substituting pij for G,, we 
get ui = a,, the effect of treatment level i. Thus ui is an unbiased estimator of ai. 

The coefficient vector a = (a,,  . . . , a,) has covariance matrix ~ ' c - ~ M *  = 
(a2/c)[l, - (l/t)J,], so that Var(ui - ai,) = 202/c  = 2ka2 / l t .  More generally, for 
a contrast q = C ciai, var(fj) = (1 c:)(&a2)/t, 

For ( i ,  j )  E Y the (i, j )  term of qA is ai - b,, where 6, = ( l /k)  C ui. (see 

Problem 7.4.1). Of course, the (i, j )  term of qB, for (i, j) E 9, is 8,. 
Explicit formulas for sums of squares may be determined as follows: 

j js.?(i) 

( i . j )e.# 
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S 2  = Iiell2/v, for v = n - dim(V) = 12 - t - b + 1 is the usual estimator of u'. 
The F-statistic for the test of H,: (zi = 0 for all i )  is F = [II~,,II*/(t - 1)]/S2. 
F has the noncentral F distribution with noncentrality parameter (c  a f ) / a z ,  
and ( t  - 1, v )  d.f. 

Notice that the definitions of q,, and qB are not symmetric. A test of H,: 
(no block effect) o (all f l j  = 0) may be constructed analogously to the test of 
H,: (no treatment effect) e (all a, = 0). The numerator sum of squares is not 

The joint distribution of all differences a, - ar is the same as it would be if 
the ai were independent, with variances az/c. It follows that Tukey simultaneous 
confidence intervals on the ai - ria are given by [a, - a,. f q ,  - a , , , v ( S 2 / ~ ) ' ' 2 ] .  

For a randomized block design with all treatment levels within each block, 
r blocks, the estimator for q is i)RL = ci z., which has Var(QBL) = u'(C c f ) / r .  
The eficiency of the balanced incomplete block design relative to the ran- 
domized block design is therefore 

11*B811'* 

Var(ijBL) At t (k  - I )  
Var(i)) kr ( t  - l ) k  

e = = = - -- - = c /r ,  

so that e -= 1 for t > k. For the dishwasher example e = 5/6, so the design is 
relatively efficient, even though there are three basins rather than live. 

Example 7.4.1: Consider the dishwashing example with k = 3, t = 5, 
b = 10, r = 6, L = 3. In order to represent the sample space 0 conveniently 
take R to be the collection of 5 x 10 matrices with rows corresponding to levels 
of treatment, columns to blocks, with zeros where no observations was taken. 
Thus 

27 28 30 31 29 30 0 0 0 0 

26 26 29 0 0 0 30 21 26 0 

30 0 0 34 32 0 34 31 

0 29 0 33 0 34 31 0 33 31 

0 0 26 0 24 25 0 23 24 26 

1 1  1 1  1 1 0 0 0 0 '  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0. 
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0 0 0 0 0 0 0 0 0 0  

l l l o o o l l l o  

0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0 0 0  

B2= 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0  ! 0 0 0 0 0 0 0 0 0 0  1 
1 1 1 0 0 0 0 0 0 0  

l l l o o o l l l o  

0 t 0 0 0 0 l 0 1 0  

0 0 1 0 0 0 0 1 1 0  

- 1 - 1 - 1 0 0 0  0 0 0 0  

A:= [ - 1  ;-; 0 0 2 0 0 0  0 0 0 - 1  2 - 1  2 0 2 1  0 - 1 

3 
0 0 0 0 - I  0 - 1 0  

0 - 1  0 0 0  0 - 1  - 1  0 

Notice that p(A, I VB) has ones in blocks in which treatment level i appears, 
and, of course, each A: I VB. 

Example 7.4.2: For the dishwasher data block sums and means are given 
Table 7.4.1. 

Table 7.4.1 

Block 1 2 3 4 5 6 7 8 9 10 
Sum mean 83 83 85 98 85 89 95 75 83 90 

27.67 27.67 29.33 32.67 28.33 29.67 31.67 25.00 27.67 30.00 
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Table 7.4.2 

Treatment 1 2 3 4 5 
-~ ~- 

Sum mean 175 I58 1 94 191 143 

4 1 ,  174.3 168.0 175.3 179.3 169.0 

29.17 26.33 32.33 31.83 24.67 c = s  

0 1  0.13 - 2.00 3.73 2 3  3 - 4.20 

The treatment totals, means, correlations, and a, are given in Table 7.4.2. 
The projections are 

27.18 27.64 30.49 30.73 28.58 30.38 0 0 0 0 

25.04 25.51 28.36 0 0 0 28.31 23.82 26.96 0 

30.78 0 0 34.33 32.18 0 34.04 29.56 0 33.11 

0 29.84 0 32.93 0 32.58 32.64 0 31.29 31.71 

0 0 26.16 0 24.24 26.04 0 21.62 24.76 25.18 

27.67 27.67 28.33 32.67 28.33 29.67 0 0 0 0 

27.67 27.67 28.33 0 0 0 31.67 25 27.67 0 

0 32.67 28.33 0 31.67 25 0 

0 27.67 0 32.67 0 29.67 31.67 0 27.67 30 

0 0 28.33 0 28.33 29.67 0 25 27.67 

-0.489 -0.022 2.156 - 1.933 0.244 

-2.622 -2.156 0.022 0 0 

0 1.667 3.844 

0 2.178 0 0.267 0 

0 0 -2.178 0 - 4.089 

0.711 0 0 0 0 

0 -3.356 -1.178 -0.711 0 

0 2.378 4.556 0 3.111 

2.911 0.978 0 3.622 1.711 

-3.622 0 - 3.378 - 2.9 1 1 - 4.822 
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Directly from these vectors or from the formulas, we get 

205.2 j4 
I .88 

Thus S2 = 30.1/(30 - 14) = 1.88, and the F-statistic is F = - - - = 27.3 for 

(4 - 1 )  and 16 d.f. We reject the null hypothesis of no detergent effect at any 
reasonable a-level. 

Since Var(a, - u,,) = 2a2c- ', we estimate these variances to be S2(ai - ai.) = 
2(1.88)/5 = 0.75, so that individual 95% confidence intervals on xi - ai, are 
given by ai - ai. & (2.131)d0.75. 7 

Problem 7.4.1: Prove that for ( i ,  j )  E 9, the (i, j )  term of YA is ai - bj ,  where 
6, = ( l / k )  c a,. 

( i . j b 6 4  

Problem 7.4.2: Prove that IlqAllz = c C u:. 

Problem 7.4.3: For the rat experiment with seven levels of chemical as 
described in this section: 

(a) Estimate the chemical effects zi and find a random variable Q so that 
(ui - a,.) & Q for all i # i' are Tukey simultaneous 90;' confidence intervals on 
all ai - ai..  

(b) Test H,,: all zi = 0 at level z = 0.05. 
(c) Determine A t ,  qA, qB, and ?, or for those with less time, at least the 

(d) Find the efficiency e of this experiment relative to a randomized block 
terms corresponding to j = 3. 

design with 21 observations. 

Problem 7.4.4: Consider the case k = 2, b = 3, c = 3, r = 2, I = 1, with 
observations as indicated. 

Let R be the collection of all possible Y. 
(a) Find A:, A f ,  A j  and M*. 
(b) Give formulas for a,, u2, a3 without using summation or matrix notation. 
(c) Consider the estimator 4 = &, - Y,, of q = a, - z2. Compare its 

variance with that of a,  - u2. 
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(d) For any BIBD compare the variance of a,  - a2 with that of the estimator 
obtained only using differenus between observations in the same block (the 
intrablock estimator). 

Problem 7.4.5: The following experiment to measure the effects of cold 
storage on the tenderness of beef was conducted by Dr. Pauline Paul at Iowa 
State University (Paul, 1943; see Table 7.4.1). An analysis was described by 
Cochran and Cox (1957). The six periods of storage were 0, 1, 2, 4, 9, and 18 
days. Thirty muscles were used in 15 pairs. Members of the same pairs were 
the left and right versions of the same muscle. The five replicates were types of 
muscle. For this analysis we ask the student to ignore the replicate effect, and 
to consider the block (pair) and treatment (storage time) effects only. 

All pieces of meat were roasted. The measured variable was the total 
tenderness score given by four judges on a 0-10 scale. Treatment numbers are 
indicated in parentheses, followed by the observation. 
Treat this as a BIBD, with nine blocks of k = 2. 

(a) Find the parameters b, r, t, 1, c, and efficiency e. 
(b) Find the statistics a,, . . . , ab and use these to determine an analysis of 

(c) Test H,: (no storage effect) for a = 0.05. 
(d) Use the Tukey method to produce a line diagram which describes 

(e) For braoer students: Test H,: (no replicate effect) for a = 0.05, assuming 

variance table. 

significant (a = 0.05) differences among storage effects. 

a model in which block effects are random, replicate effects fixed. 

Table 7.4.1 Scores for Tenderness of Beef 

Rep. I Rep. I1 Rep. 111 Rep. IV Rep. V 

( 1 ) 7  (2)17 (1)17 (3)27 ( 1 ) l O  (4)25 (1)25 (5)40 (1 )11  (6)27 
(3)26 (4)25 (2)23 ( 3 2 7  (2)26 (6)37 (2)25 (4)34 (2)24 (3)21 
( 3 3 3  (6)29 (4)29 (6)30 (3)24 ( 3 2 6  (3)34 (6)32 (4)26 (5)32 
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Analysis of Frequency Data 

In this chapter we will discuss methodology for the analysis of count orfrequency 
data, for which the observation Y is a table for which the ith component is the 
number of occurrences of some event A i .  The names categorical data analysis, 
analysis of contingency tables, frequency table analysis, log-linear models, and 
discrete multivariate analysis have also been used to describe the subject. 
Though the probability models we will discuss are quite different than those 
of the first seven chapters, many of the linearity properties developed can still 
be exploited to give insight into this somewhat more difficult theory. 

The theory to be discussed is more difficult for two major reasons. First, the 
mean vector m = E(Y) can no longer be assumed to lie in a known linear 
subspace V. lnstead we will discuss models in which p = log(m) lies in V. The 
function log( -), linking m to p = log(p) E V, is often called the link function. 
Fortunately, the need for this link function is not too difficult to overcome, and 
we will be able to draw vector space pictures which offer intuitive understanding 
which the author (and, he thinks, at least some of his students) finds invaluable. 
Secondly, the theory concerning the sampling distributions of the estimators of 
/.I, p, and m is asymptotic, depending for good approximation on large total 
frequencies. We will discuss some of this theory, but will omit many proofs. 
For thorough discussions of this theory a student should see the books by 
Haberman (1974), Bishop, Fienberg, and Holland (1979, Aicken (1983), Agresti 
(1990), Santner and Duffy (1989), and Christensen (1990). Some books em- 
phasizing application are Everitt (1977), Haberman (1978, 1979), Fienberg 
(1977). and Hosmer and Lemeshow (1989). Also of interest, though we will 
discuss relatively little of this very general theory, is the book by McCullagh 
and Nelder (1990) on generalized linear models. 

We begin by giving some examples for which the methodology to be 
discussed will be useful, postponing the analysis until the theory has been 
discussed. Section 8.2 is devoted to a study of the Poisson, binomial, multi- 
nomial, and generalized hypergeometric distributions and their interrelation- 
ships. We will also discuss the Multivariate Central Limit Theorem (MCLT) 
as it applies to these distributions, and the &method which will be needed in 
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order to develop the asymptotic distributions of our estimators. Section 8.3 is 
concerned with inference on binomial and Poisson parameters p ,  p ,  - p 2 ,  A, 
and A 1 / i 2 .  Section 8.4 introduces some log-linear models, develops the notation 
needed for their analysis, and defines log-odds. Section 8.5 concerns the 
maximum likelihood estimation of the parameters. Section 8.6 discusses 
goodness-of-fit statistics. Section 8.7 is devoted to the asymptotic theory for the 
parameter estimators. And Section 8.8 discusses logistic regression, the case of 
one dichotomous dependent variable. 

8.1 EXAMPLES 

Example 8.1.1 (Haberman, 1974, p. 5): The drug digitalis was injected into 
the lymph nodes of 45 frogs, with each of the drug dosages d , ,  d , ,  d,,  where 
log(d,. d t .  d,) = (0.75,0.85,0.95). Each dosage was assigned to 15 frogs, chosen 
randomly. The numbers dying for these three dosages were respectively 2, 5, 
and 8. While it is fairly obvious that increasing dosage tends to kill more frogs, 
what can be said about the kill-rates for these or other dosages? 

Example 8.13: A report of the police department of East Lansing for 1990 
gave the numbers of fights and assaults for downtown and nondowntown for 
each of the months of the year. 

Jan. Feb. Mar. Apr. May June 

Downtown 62 44 46 46 64 43 
Nondowntown 24 25 19 30 34 40 

July Aug. Sept. Oct. Nov. Dec. 

Downtown 42 32 40 29 39 I 1  
Nondowntown 40 48 47 62 30 20 

East Lansing is the home of Michigan State University. It had about 25,000 
nonstudent residents, and 44,000 students, of which about 35,000 live in East 
Lansing in university dormitories and apartments and in rooms and apartments 
in the city. The university was in session Sept. 18 to Dec. 10, Jan. 3 to Mar. 
17, and Mar. 24 to June 10. A summer session June 21 to Aug. 30 had about 
15,000 students. Obviously the numbers downtown seemed to vary with the 
number of students in East Lansing, while being somewhat steady for non- 
downtown areas (though the number in October seems strangely high). Is there 
a relatively simple few-parameter model which fits these data? 
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Example 8.13: A doctor did a study of osteopathic hospitals in the Detroit 
area to see whether there was any relationship between cancer and multiple 
sclerosis. He found 

Cancer Not Cancer 

MS 5 225 
Not MS 14,286 1 19,696 

The usual chi-square statistic was 17.4, so the observed significance level for 
the null hypothesis of independence was extremely small. Was he correct in 
suspecting that there might be something in the biochemistry of the two diseases 
which prevents the other? He argued that the age distributions for the two 
diseases seemed to be about the same. 

Example 8.1.4: A report of the National Center for Health Statistics for 
1970 classified 13,832 homicides in the U.S. by the race and sex of the victim 
and by the murder weapon used (Table 8.1.1). Is instrument used independent 
of the sex and race of the victim, or of either? If the instrument does depend 
on race or sex, how strong is the relationship? 

Example 8.15 (Bickel, Hammel, and OConnel, 1975): The authors studied 
the rates of admission to graduate school by sex and department at the 
University of California at Berkeley. To make their point they invented the 
following data for the departments of "Machismatics" and "Social Warfare." 
For the combined departments their data were 

Admit Deny Percentage 

Men 250 300 45.5 
Women 250 400 38.5 

Table 81.1 Type of Assault 

Firearms and Cutting and Piercing 
Race Sex Explosives Instruments Total 

White Male 3,9 10 
Female 1,050 

Black Male 5,218 
Female 929 

808 
234 

1,385 
298 

4,7 I8 
1,284 
6,603 
1,227 

Total 11,107 2,725 13,832 
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Assuming relatively equal ability for men and women, there seems to be 
discrimination against women. Frequencies for individual departments were 

Machismatics Social Warfare 

Admit Deny 7; Admitted Admit Deny 9,; Admitted 

Men 200 200 50.0 M 100 33.3 
Women 100 100 50.0 150 300 33.3 

These data seem to indicate that the two departments are each acting fairly, 
yet the university seems to be acting unfairly. Which is true? Or are both 
true'! 

8.2 DISTRIBUTION THEORY 

In this section we study three discrete distributions, Poisson, multinomial, and 
generalized hypergeometric, which serve as models for frequency data. We also 
discuss interrelationships among these distributions given by conditioning. the 
Multivariate Central Limit Theorem, the approximations of these discrete 
distributions it provides, and the multivariate delta method, which provides 
approximations for the distributions of functions of the vector Y of observed 
freq uencies. 

The observation vector Y will always have T components, with each having 
a discrete distribution taking only nonnegative integer values. T will be fixed 
throughout any discussion on the properties of Y and functions of Y. In most 
of the asymptotic theory we will discuss, certain other parameters will change 
but not T. For that reason we have chosen T rather than n to represent the 
number of components. The index set will be called .f. We can always take ,f 
to be { I ,  2,. , . , TI, but in the case of two or multiway tables we will let 9 be 
a Cartesian product. For a 2 x 3 x 4 table we could, for example, take 
4=(1 ,2 )  x {1.2,3} x (1,2,3,4}. 

Definition 8.2.1: Let Y have T components indexed by 9, and let p be a 
probability vector with components indexed by 9 with component i denoted 
by pi. Let ui be the indicator of component i for each i E 4, and suppose that 
Y takes the value ui with probability pi for each i ~ 9 .  Then Y is said to have 
the yenerdbed Bernoulli distribution with parameter p. 

Thus, for example, if .P = { 1,2,3}, and p = (0.3,0.2,0.5), then Y takes 
the values ( l ,O ,O) ,  (0, 1,O) and (O,O, 1) with probabilities 0.3, 0.2, and 0.5. 
If T =  2, we can let Y take the values ( L O )  and (0, 1) with probabilities 
p1 and p 2  = 1 - p i ,  or, for simplicity, only record the first component 
Y, of Y. In that case we say that Y ,  has the Bernoulli distribution with 
parameter p,.  



308 ANALYSIS OF FREQUENCY DATA 

I t  is, of course, easy to determine the moments of the generalized Bernoulli 
distribution. Since the k th  power of any unit vector is still the same unit vector 
E ( Y k )  = E(Y) = p. (By xk  for any vector x we mean the vector obtained by 
replacing each component by its kth power.) If q and 5 are components 
of Y for i # i‘, then & E;. = 0, so cov( q, q,) = 0 - pipi. = - p i p r . .  Of course, 
Var( x )  = pi - p l  = pi ( ]  - pi). If p is a column vector we can write the 
covariance matrix for Y in a convenient way: C, E D[Y-J = d(p) - pp’, where 
d(u) for any vector u is the square matrix with diagonal u. Since the components 
of p sum to one we have ZyJ = p - p(p‘J) = p - p = 0. Thus, I;, has rank at 
most T - 1. We will show later that the rank of I;, is always one less than the 
number of positive components of p. Since the writing of Y and p as column 
vectors was merely a notational convenience, the same statements remain true 
when these vectors are written in other shapes. If p is not written as a column, 
then simply interpret pp’ as the T x T matrix with ij element pipj ,  the outer 
product of p and p under multiplication. 

Just as a binomial r.v. is the sum of independent Bernoulli r.v.’s with the 
same parameter p, the multinomial distribution is defined similarly as the sum 
of independent generalized Bernoulli random vectors. 

Definition 8.22: Let Y,, . . . , Y, be independent generalized Bernoulli ran- 

dom vectors, all with the same parameter vector p. Then Y = 1 Y, is said to 

have the multinomial distribution with parameters n and p. We will denote this 
distribution by .,KT(n, p). 

, 
I =  1 

If a fair die is tossed 10 times, the vector (Y,, . . . , Y,) denoting the frequencies 
of occurrence of the six numbers has the multinomial distribution with 
parameters n = 10, and p = (1/6,. . . , 1/6). If a pair of fair dice are thrown 20 
times and the total of the two dice recorded for each then 9 = 12,. . . , 12}, and 
Y = ( Yz, . . . , Y12), the vector of frequencies of occurrence of these possible 
totals, has the multinomial distribution with parameters n = 20, and p = 
( p 2 , .  . . , p12), where pi = [6 - Ii - 71]/36. 

If .$ = {4,7,9}, n = 4, and p = (0.2,0.3, O S ) ,  then such a random vector Y 

takes the value (1,2, I )  with probability (,, l, 1)(0.21, 0.32, 0.5’) = 6(0.009) = 

0.054. The coefficient ( I ,  i, ,) is the number of ways in which the four trials 

can be assigned to receive one 4, two 7’s, and one 9. The other factor in 
parentheses is the probability four trials will produce one 4, two 7’s, and one 
9 in a particular order. Of course, the components of Y must sum to n. In 
general, if y is any vector of nonnegative integers adding to n, 
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Recall that the multinomial coefficient may be evaluated by 

In the case that T = 2, we need not keep a record of the value of Y,, since 
T2 = n - Y,, We therefore say that Y, has a binomial distribution with 
parameters n and p,. Thus, if p = (p,  1 - p), then a(n, p) is the distribution of 
the first component of the &(n, p) distribution. The probability function for 
the binomial distribution specializes from the multinomial to 

for k = 0,. . . , n. 

The mean vector and covariance matrix for the multinomial can be computed 
easily from the representation as a sum. Thus, 

E(Y) = np and D[Y] = n[d(p) - pp']. 

(Recall that d(u) is the diagonal matrix with u on the diagonal.) For the 
binomial distribution (the marginal distribution of the first component of the 
A& (p, 1 - p)) distribution), 

E( Y) = np and Var( Y) = np( I - p). 

We will often use models in which Y is a k-tuple of independent multinomial 
random vectors. Consider, for example, a study in which random samples of 
100 each are taken from the six combinations of the two sexes and three 
age-groups in order to determine the opinions of these six groups on abortion, 
with the opinion having three possible values. If Y, is the 3-tuple of frequencies 
of opinion for sex i and age-groupj, then a reasonable model would suppose 
that Y is the &tuple of independent multinomial vectors Y,,, . . . , YZ3. 

Definition 8.23: Let Y, - A&, pi) for i E 9, be independent random 
vectors. Then Y = (Yi, i E 9 )  is said to satisfy the product (or independent) 
multinomial model. 

ri components, with mean vector the 
T-tuple with ith component vector nipi. The covariance matrix consists of 
blocks of size ri x ri on the diagonal. Usually the r ,  will be the same, though 
that is not necessary. We will refer to the case that 9 has only one element as the 
single multinomial model, to distinguish it from the product multinomial 
model, for which 9 will have at least two elements. 

A random variable X is said to have a Poisson distribution if it takes only 
nonnegative integer values with probabilities p ( k ;  A) = e-'AP/k! for k = 0, 1, . . . . 

Such a random vector Y has T = 
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We will refer to this as the .c30(1) distribution. Recall that E ( X )  = 2, and 
Var(X) = I.. The moment-generating function is m(t) = e-i(e'-  '). The m.g.f. or 
an inductive argument can be used to prove that the sum of independent 
Poisson r.v.'s is itself Poisson, with parameter equal to the sum of the 
parameters of the r.v.'s summed. Our first limit theorem suggests the approxi- 
mation of binomial by Poisson probabilities in some situations. 

Theorem 8.2.1: Let {p , , )  be a sequence of probabilities satisfying np,' -, 0 
as n + z. Then lim [b(k; n, p,,)jp(k; np,,)] = 1 for k = 0, 1,. . . . 

n-m 

h.ooJ: r (k;  n) = b(k;  n, p , ) /p (k ;  np,,) is the product of the three factors: 

These three factors each have the limit one. To see that F3,, + I as n -+ a, 
note that log F3,, = n[log( 1 - p,,) + p,,)] = n[ -p,, + o(p:) + p,,] -+ 0 as n -+ m, 
since np; 3 ,CG as n -+ 00. (The notation o(p:) denotes a function of p," having 
the property o(p,")/p," + 0 as n + co.) c 

We can therefore expect the approximation of a binomial distribution by 
the Poisson distribution with the same mean to be good if np2  is small. A more 
general result, and of great practical value is the following theorem, due to 
LeCam (1960). For a very interesting and relatively simple discussion of this 
see the paper by T. W. Brown (1984). We do not prove the theorem here. 

Theorem 8.2.2 (LeCam): Let Yl, . . . , be independent, with - @(l, pi). 
pi. Let T = 

Then, for any subset A of the real line, G(A) = I P( T E  A )  - P( W E  A)I I 
X i .  Let W' have the Poisson distribution with parameter i. = 

p l .  

Comments: Since Var( 7') = pi( 1 - pi) and Var( W )  = J. = pi, pf = 
Var( W) - Var(7'). If all p i  are equal to p = kjn, we get the upper bound i2/n 
on G(A) ,  so that as n -, co, C ( A )  -+ 0 uniformly in A. If, for example, we observe 
the number of deaths due to cancer over a large population, it may be 
reasonable to adopt a model in which different people die from cancer 
independently, with small probabilities which differ across people. Still, the 
Poisson distribution can serve as a good approximation of the distribution of 
T, the total number of people who die. 

Example 8.2.1: Let Y,, Y,, & be independent Bernoulli r.v.'s with p ,  = 0.01, 
and a Poisson r.v. W with mean 1 = 0.06 p2 = 0.02. p 3  = 0.03. Then T = 
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have probability distributions, accurate to  five decimal places, as follows 

k 0 1 2 3 

P(T = k )  0.941 09 0.057 82 0.001 08 O.OOOO1 
P( W = k )  0.941 76 0.056 51 0.001 70 0.00003 

P ( W  > 3) is positive but less than IP(TE A )  - G(A)J is maximum for 
A = { I } ,  with value 0.001 31. The upper bound given by LeCam’s theorem is 
0.001 40. In general, the approximating Poisson distribution puts greater mass 
on the left and right tails. 

The simplest model we will consider, and therefore the starting point for the 
discussion of estimation for log-linear models will be the independent Poisson 
model. 

Definition 82.4: Let the components of Y be independent, - Y(Li), 
i = 1,. . . , T. Then Y is said to satisfy the independent Poisson model with 
parameter 5 E E(Y), where 5 = (d l , .  . . , ir). 

The models we have considered so far are tied together through conditioning. 
Beginning with the simplest model, the independent Poisson model, we 
condition on the total to get the multinomial. By conditioning the multinomial 
random vector on the totals of subsets of components, we get the product 
multinomial model. 

Theorem 8.23: Let Y satisfy the independent Poisson model with para- 
meter vector L. Let S be the sum of the components of Y, and I be the sum of 
the components of 5. Then, conditional on S = s, Y has the multinomial 
distribution with parameters n = s, and p = A/;,. 

Proof: Details of the proof are left to the student. Consider any fixed 
vector y with components adding to s, and express the conditional probability 
function as the ratio of two probabilities. The denominator is determined using 
the fact that the sum of independent Poisson r.v.’s also has a Poisson 
distribution. U 

In particular, if & and Y, are independent Poisson r.v.3 with means L1 and 
A,, then, conditionally on & + Y2 = s, & has a binomial distribution with 
parameters n = s and p = + AZ). We will exploit this to develop a formula 
for a confidence interval on the ratio R = % , / I z  on Poisson parameters. 

The following theorem implies that we can construct the product multi- 
nomial model by conditioning the single multinomial model. 
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Theorem 8.2.4: Let Y have index set .9 = ./, u 9, u . . . u .%k, where index 
set c< has K .  Let Y - &(n, p), 
and partition p in the same way that 4 is partitioned, so that p is the &-tuple 
(p,, . . . , pk), the components in .9, having corresponding probability vector pi. 
Let S, be the sum of the components of Y corresponding to index set .$. Let 
S be the k-vector of sums, and let s be a k-vector of nonnegative integers with 
sum n. Then, the conditional distribution of Y, given S =s. is product 
multinomial with ith component vector Yi h- AT,&, pi/&), where pi is the sum 
of the components of pi). 

elements and the S, are disjoint. Let T = 

Comments: To see that this theorem says, consider the index sets M = 
R x C for R = {1,2,3) and C = {1,2,3,4f. Then Y is a 3 x 4 table of 
frequencies. Let .Ai be the set of indices corresponding to the ith row. Suppose 
that Y has the multinomial distribution with n = 20, and 

0.1 0.2 0.15 0.05 

Then, conditionally on the three row sums S,, S,, S,  being 12, 5, and 3, Y 
satisfies the product multinomial model with the ith row Y, having the 
multinomial distribution with parameter n,, where n, = 12, n2 = 5, n3 = 3, 
and probability vector pi  for p1 = (0.2,0.4,0.3,0.1), p2 = (1/3,2/3,0, O), p3 = 
(0,0.5,0.5,0). Here P, = 0.5, P, = 0.3, and P3 = 0.2. 

Proof: Again we will avoid the messy details by leaving them to the 
student. The crucial point is that the vector S of sums has a multinomial 
distribution with parameters n and p-vector, having ith component pi. This 
follows directly from the definition of the multinomial distribution, since Si is 
the frequency of occurrence of observations in index set .Hi. rl 

One more discrete multivariate distribution arises frequently in the analysis 
of categorical data. To make the definition to follow more intuitive, consider 
a box of 20 marbles of three colors, with 8 red, 7 white, and 5 blue. Suppose 
that four people A, B, C, and D randomly partition the marbles by carefully 
mixing and drawing with eyes shut tightly, with A drawing 7, B drawing 6, C 
drawing 4, D drawing 3. Let Y i  = ( x , ,  &, x3)  be the numbers of marbles of 
the three colors drawn by person i, and let Y = (x , )  be the 4 x 3 matrix 
of counts. What is the distribution of Y'? The generalized hypergeometric 
distribution. 

Anyone who has played a card game in which all the 52 cards are dealt can 
think of other examples. If xj  is the the number of rank j cards received by 
player i for i = I, 2,3,4 then the table Y also has a generalized hypergeometric 
distribution, with index set (1,2,3,4} x (Ace, 2,. . . , 10, J, Q, K]. 
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Definition 8.25: Let a set B of N elements be partitioned into k subsets 
B , ,  . . . , 4, with Nj = N ( B j ) .  Suppose that B is randomly partitioned into 
subsets A,,  . . . , A,, with Mi = N(Ai). Let qj be the number of elements in 
Ai n Bj.  Then the random vector Y = (q,) is said to have the generalized 
hypergeometric distribution with parameter vectors N = (Nl,. . . , Nk) and 
M = ( M I , .  . . , M,). 

In the marble example above k = 3, r = 4, N = (8,7,5) and M = (7,6,4,3). 

A possible observation on Y is [ i i il, so, for example, person B drew 2 

red, 3 white, and 1 blue marble. 
Since the number of ways in which a set of N = c Mi = c Nj elements can 

i i 
N 

M i , .  . ., M. 
be partitioned into the subsets A i  of sizes M , ,  . . . , M, is ( ), the 

number of ways in which this can be done so that y ,  elements are contained 
in A, n Bj for all i and j is 

Thus 

for all tables y for which the ith row total is Mi and the j t h  column is Nj  for 
all i and j .  

For the 4 x 3 table with y as indicated 

P(Y = y) = [(8!)(7!)(5!)][(7!)(6!)(4!)(3!)]/[20!] y,! 
[ i j  1 

= 1.2746 x 10"/[2.4329 x 10"][1,152J = 0.0045. 

In order to perform certain tests for two-way tables, we may wish to compute 
these probabilities, rather than relying on the asymptotic results. 
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The marginal distribution of K j  is the hypergeometric distribution, with 
parameters Nj, M i ,  and N, with 

Indicators may be used to show that 

E ( K , )  = ( M i N j ) / N ,  Var( K j )  = M i N j ( N  - M i ) ( N  - N j ) / [ N 2 ( N  - l)] 

= [Mi][pj(l - p j ) ] [ ( N  - M i ) / ( N  - l)], for pi = Nj;'n. 

The factors within the first two brackets of the last term give the variance for 
the case that a sample of Mi is taken with replacement. The third factor is the 
finite correction factor, since sampling is without replacement. More generally, 
the ith row Yi of Y has covariance matrix [d(p) - pp'], where p = (p,, . . . , pJ, 
and d(p) is the k x k diagonal matrix with p on the diagonal (see Problem 2.2.4). 

If Y satisfies the product multinomial model, with rows independent, with 
the ith row Yi - . pC,(Mi, p), p the same for each i ,  then conditioned on column 
totals (N1,. . . , Nk), Y has the generalized hypergeometric distribution with 
parameter vectors given by row and column sums. Again, details are left to the 
hard-working student. 

Looking back at the discussion of the Poisson, multinomial, product 
multinomial, and generalized hypergeometric models, we see that by con- 
ditioning in various ways and determining the parameters from the conditions, 
we 3rc lead from the relatively simple independent Poisson model to these more 
"dependent '* models. 

We now turn to the limit theory which we will need for statistical inference 
for loy-linear models. We remind students of the meaning of convergence in 
distribution. 

Definition 8.2.6: Let {Z, = (Znl , .  . . , Z, , ) )  be a sequence of random 
vectors. Let F be a c.d.f. defined on R,. {Z,,) is said to converge in distribution 
to F if 

lim I"(& S zi for i = I , .  . , , T )  = F(z) 
n + J o  

for every z = ( z I , .  , . , z,) at which F is continuous. If  Z has c.d.f. F, then we 
also say that {Z,} converges in distribution to Z. We will write Z, 2 F, or 
z, r: 2. 

The definition does not demand convergence for all z, but only for those z 
at which F, the limiting distribution, is continuous. To see the need for this 
definition, consider the uniform distribution on the interval (0, l/n). A reason- 
able definition would allow this sequence to converge to  the distribution with 
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mass one at  0. Under this definition it  does, though F,(O) = 0 docs not converge 
to F(0) = 1. In the case that the limiting distribution is continuous, as it is for 
the multivariate normal, for example, the convergence must hold for all z. 

Theorem 8.25: Z, 5 Z ifand only if E[g(Z,)] to E b ( Z ) ]  for all continuous 

Convergence in probability of (2,) to Z, which demands that 
real-valued functions g which are zero outside a bounded set in T-space. 

lim P(llZ,-Zfl > E ) = O  forall E > O ,  
n - a. 

implies convergence in distribution, but the converse is not true. 

This definition immediately produces the following useful limit therems, 
which we give without proof. 

Theorem 8.2.6: Let {Z"} tlc a sequence of random vectors of Tcomponents, 
converging in distribution to Z, which has c.d.f. F. Let y be a function on R ,  
into R, ,  which is continuous on a set A, such that P(Z E A) = 1. Let G be the 
c.d.f. of y(Z). Then fg(Z,)} 5 G. 

Theorem 8.2.7: Let (Z,) ?+ Z, where each Z, has T components. Then, 
for any Borel subset A of R ,  for which 

P(Z E Bdy(A)) = 0. lim P(Z ,  E A )  = P(Z E A). 
n -, I. 

Students who have not studied real analysis should interpret a Borel subset 
of R ,  as a reasonable subset, certainly including all those in which we would 
normally be interested. Bdy(A) is the boundary of A,  the closure of A minus 
the interior of A. 

Moment-generating functions (or characteristic functions for those who 
understand complex variables) may be used to establish convergence in dis- 
tribution. Recall that the m.g.f. of an r.v. X is m,(t) = E ( P ) .  defined at least 
for t in some neighborhood of 0. Not all r.v.'s possess m.g.f.3. If t on the right 
is replaced by r, we get the characteristic function, which is always defined 
for all t .  If two r.v.'s possess the same m.g.f., defined for all t in some 
neighborhood of the origin. then the two r.v.'s must have the same distribution. 
(Actually it is enough that two m.g.f.3 agree on any interval.) The m.g.f. of the 
standard normal distribution is e"!2, defined for all t .  The log-normal distribution 
(the distribution of 8 for 2 normal), does not possess a m.g.f. 

Theorem 8.2.8, The Continuity Theorem (Billingsley 1986, 408): Let F, 
have m.g.f. m,. Let F be a c.d.f. with m.g.f. m. Then convergence of m,(r) to m(t)  
for t in a neighborhood of 0 implies F, -, F. D 
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In the case that a Poisson parameter is large we will want a convenient 
approximation. Moment-generating functions can be used to prove the following 
limit theorem for Poisson r.v.'s for which the parameter 1 converges to infinity. 

Theorem 8.2.9: Let { U.) be a sequence of Poisson r.v.'s with E(Y,)  = A,,. 
Define Z ,  = (K - A,)/J&. Suppose that ( I . , , }  + a. Then Z ,  5 N(0,l). 

- 
Pruvf: The m.g.f. of Z,, is m,,(t) = e - ' ~ ' ' n m , n ( t / ~ / & ) .  so that log(m,,(t)) = 

-rJi. + j.,,(ef"fin - I ) .  Expanding the second term in a power series about 0, 
we find the limit t2 /2  as n 4 m. Continuity of the exponential function (inverse 
of the log) then implies that mJt) + for every t .  Since this is the m.g.f. of 
the standard normal distribution, Theorem 8.2.8 then implies the conclusion of 
Theorem 8.2.9. 0 

The fact that Z,, as defined above converges to standard normal is useful 
because the probabilities provided by the normal are close to those provided 
by the Poisson for even moderate A. We can improve the approximation by 
using the 1/2 correction. Thus, if Y - Poisson, mean j., then we approximate 

Y - 1 ,  k +  1 / 2 - 1  k + 1/2 - i. 
P(Y I k) = p(_. I 

~~ t 

where Q, is the c.d.f. for the standard normal distribution. Consider the 
approximations of Table 8.2.1 given for some selected values of j. and k. We 

Table 8 2 1  

k P(Y I k )  Normal Approx. P(Y = k )  Normal Approx. 

Poinsoo Probabilities and Tbeir Normal Approximations* 

A =  16 

0.021 68 
12 0.193 12 0.190 79 0.066 13 0.075 19 
16 0.565 96 0.549 74 0.099 22 0.096 43 
20 0.868 17 0.869 71 0.055 92 0.045 73 
24 0.977 68 0.983 21 0.014 37 0.008 02 

8 0.02 1 99 0.030 40 0.01 1 y9 

E. = 64 

48 0.022 59 0.026 34 0.006 43 0.008 6 1 
56 0.174 78 0.174 25 0.031 58 0.034 00 
64 0.533 18 0.524 92 0.049 80 0.04945 
72 0.855 57 0.85600 0.029 05 0.026 49 
80 0.977 37 0.980 42 0.007 00 0.005 23 

* The normal approximations for P( Y = k )  were found by taking differences of approximations of 
P(Y 9 k) and P(Y 5 k - 1). 
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will need to study the behavior of a sequence of random vectors. Fortunately, 
we have the Multivariate Central Limit Theorem, which follows directly from 
the univariate theorem by considering linear combinations of components. 
Recall (Section 2.4) that a random vector Z has the NT(O, C) distribution if and 
only if its m.g.f. is m(t) = et'ztjz. 

Theorem 8.2.10 (The Multivariate Central Limit Theorem): k t  { Y,.} be a 
sequence of T-component independent identically distributed random vectors, 
with means p and common covariance matrices C. Let 

S,  = f Yk and Z, = (S, - np)/Jn 
k = i  

Then Z, % NT(O, C). 

Comment: We will refer to this theorem as the MCLT. The sample mean 
4 .  
I .. 
nk=1 

Vector iS ii, = - Y& = S,/n. Then z, = (i?, - p)fi. If has rank r, and B 

is an r x T matrix such that BCB' = I,, then W, = BZ, % N,(O, I,). 

Our most important application of the MCLT is to the multinomial 
distribution. 

Theorem 8.2.11: Let Y, - "#An, p). Then Z, = (Y, - np)/& 3 N,(O, Q,), 
where Q, = d(p) - pp'. 

Comment: Let fin = Y,/n, the vector of proportions. Then Z, = (B, - p)&. 
In particular, the i th component of Z, converges in distribution to 
N(O, Pi(1 - Pi)). 

Proof: Y, has the distribution of the sum of n independent generalized 
Bernoulli random vectors, each with parameter p. These Bernoulli r.v.'s have 

0 mean p and covariance matrix Q,. The result follows by the MCLT. 

We are now in position to consider Karl Pearson's chi-square goodness-of-fit 

statistic C, = ( Ki - npi)2/(npi) .  Karl Pearson, the leading statistician of the 

period 1890-1910 and the founder of the journal Biometrika in 1901, was the 
father of Egon Pearson, who along with Jerzy Neyman developed the theories 
of testing hypotheses and confidence intervals in about 1933. Karl Pearson 
invented the statistic C, as a measure of the deviation of an observed vector of 
frequencies from their expectations. 

n 

it= 1 
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Theorem 8.2.12: Let Y, = ( K l . .  . . , &.) - ..dfT(n. p). where all the com- 
ponents of p have positive components. Let C, be defined as above. Then 

D 2  C, XT-1. 

Proof: Let Z, be defined as in Theorem 8.2.1 1 .  Let P ’ ! ~  be the vector 
of square roots of the elements of p. Then W, = ~ ( P - ” ~ ) Z  has covariance 

D” 
matrix M, = d(p- “’)Qpd(p l ” )  = I T  - p1”2p’/2‘. Thus, W, 3 N(0,  IM~).  M, is 
the projection matrix onto Y l ,  for V = X ( P ” ~ ) .  If 2 - N(0,  IT), and Z = 

Since W, 5 Z, and squared length is a continuous function of its argument, 
it follows from Theorem 8.2.6 that !IW,l12 = C, converges in distribution to 

p(ZJ V ) ,  then Z - NAO, Mp), and, from Theorem 2.5.3, 11&11* - &,,,y,) = x ~ - ~ .  2 

1 I _- 2 
X T -  1’ 

There is a rough rule often suggested that the chi-square approximation of 
the distribution of C, is adequate if all expectations are at least 5. Actually, the 
approximation seems to be quite good even in cases in which some of 
these expectations are considerably smaller. Consider the case that T = 3, 
p = (0.2,0.3,0.5). Figure 8.1 presents the cumulative chi-square distribution for 
2 d.f. (which is the exponential with mean 2), and the c.d.f. of the Pearson 
chi-square statistics for n = 6 and n = 10. Most of the expectations are less than 
5 .  Notice the closeness of the approximations. The 95th percentile of thc x: 
distribution is -2 log 0.05 = 5.99, while the the true probabilities of exceeding 
5.99 are 0.0527 for n = 6, and 0.0502 for n = 10. The approximation is not 
always quite this good. 

We will be interested in the estimation of p for the case that p = p@), where 
p is a vector with fewer than Tparameters. If 6 = p(@) replaces p in the definition 
of C,, the distribution of C, changes. For some functions p(p) and estimators 
6, C, is asymptotically distributed as chi-square with T - 1 - ( #  components 
of B). 

We will also be interested in the distributions of logs and exponentials of 
random variables and random vectors whose asymptotic distribtions we know. 
For example, we know that Z, = &(Y. - np) 5 N,(O, d(p) - pp‘), if Y, - 
-&,(n, p). What happens to the distribution of W, = Iog(Y,/n) as n -+ cc? 
(If any component of Y, is 0, replace it by 1/2, so that W, is defined.) 
Fortunately, every smooth function is approximately linear over small intervals, 
and with high probability the random vector of interest (Y,/n in this case) will 
for large n be confined to a small interval. This, together with the fact that 
linear functions of normally distributed random vectors are still normally 
distributed, provides us with the very useful multivariate 8-method. 

Theorem 8.2.13: Let U, be a sequence of T-component random vectors, 
with the same mean po = E(U,). Suppose that Z, = &(U, - PO) 4 N#, E)- 
Let g = (gl , .  . . , &) be a function from R T  into Rk. Suppose that the partial 
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FIGURE 8.1 Sample c.d.f. for I,OOO chi-square statistics and the chi-square c.d.f. 

a 
derivatives yf(p) = - g l @ )  exist at po for each i and j. Let A be the T x k 

matrix with Q element g&). Then 
aPi 

We will only outline a proof here. The essential idea is that by Taylor's 
Theorem g(u) = h(u) + e(u - po), where h(u) = g&) + A(u - po), e(0) = 0, 
and Ile(x)ll/lfxll --* 0 as x + 0. Then 
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The second term on the right converges in probability to 0, so that the first 
term AZ, has the same limiting distribution as does W,. By Theorem 8.2.6 it 
follows that W, 5 Nk(0, AXA'). 

The existence of first partial derivatives guarantees the breakup of g into 
the sum of the linear function h and the error function e, with satisfactory 
properties. 

Example 822: Let Y, - A&, po), with all components of p positive, and 
let p, = Y,/n. Let g(y) = log y for y E Rf. Then U, = p, satisfies the conditions 
of Theorem 8.2.11 with po = po, Z = d(p,) - pop&, and k = T. The matrix of 
partial derivatives defined in Theorem 8.2.12 is A = d(p-'), the diagonal matrix 
of reciprocals. Thus, W, = Jn [log in - log pol 5 NT($ d(p- ') - JT), where 
JT is the T x T matrix of all 1's. A less rigorous but more intuitive way to say 

this is that log fin is approximately NT 

We will be particularly interested in contrasts among these logs, inner 
products of the form q = (c, log p), where the components of c add to one. Our 
estimator of will be rj,, 3 (c, p,,). Then the estimator fin is asymptotically 
normally distributed with mean q, and variance 

where mi = E( K i )  = np,. 
Often a random variable whose distribution we are able to determine for 

finite n or asymptotically depends on one or more unknown parameters and 
we would like to replace one or more of the unknown parameters by an 
estimator, which we expect to be close to the unknown parameter if the sample 
size is large. Consider the r.v. 

where x, is the mean for a random sample from a distribution with mean p, 
variance 0'. If n is large then by the CLT Z ,  is approximately distributed as 
standard normal, no matter what the distribution sampled. If the distribution 
sampled is normal then 2, has a standard normal distribution for every positive 
n. These facts allow us to make probability statements about the error (x - p), 
and to give confidence intervals on p. However, c i s  usually unknown, and it 
is tempting to simply substitute the sample standard deviation S, for 0, and to 
assume that the distribution of Z,, is not changed. The following theorem implies 
that under certain circumstances the substitution is valid in approximation. 
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Slutsky’s Tbeorem (Fabian and Hannan, 1985, p. 144): Let c be a constant 
and let h(x, y) be a function on a subset of R,  x R,, continuous on the straight 
line ((x, c)lx E A c R , ) .  Let { T,,} and { W,} be sequences of r.v.‘s. Suppose that 
T,, converges in distribution to a r.v. T, that h(T,,, c) converges in distribution, 
and that { Wn} converges in probability to c. Suppose P ( T E  A) = 1. Then 
h(T,, W,) converges in distribution to h(T, c). 

In the example above take c = 6, h(x, y )  = x/y, A = R , ,  T,, = n’’*(x,, - p), 
and W ,  = S,. IS,) is consistent for a. We conclude that h(T,,, 4) = ($ - p)/ 
( ~ , , / n 1 / 2 )  i: N(O, 1). Since a sample proportion is a special case of a sample 
mean, with p = p, %,, = p,, and a2 = p(I - p), with a change in notation we 
get (t,, - p)/[@,(I - jn)/n]”2 5 N(0 ,  I). We can use n or n - 1 in the de- 
nominator of the denominator with impunity. 

In Example 8.2.2, we showed that for @,, = (c, log fin) 

We can replace the p i  in the denominator by the consistent estimators 
tin, and, by Slutsky’s Theorem, get the same limiting distribution. Hence 
it, _+ z ( ,  +7),2/&q/Gji,,) is an approximate loot,% confidence interval on q. 

We have not given limit theorems for the generalized or univarjate hyper- 
geometric distribution, and will only present results without proof. Consider a 
finite population B of N elements, with disjoint subsets B,, . . . , Bk of sizes 
N, ,  . . . , Nk. Suppose a simple random sample (without replacement) of size n 
is taken. Let yi be the number of elements chosen from subset B, and let 
Y = (Y,, . . . , 5). In order to apply limit theory we must let the population size 
grow as well as the sample size. To indicate this growth add the superscript N 
to n and the N,, Yr, and to Y. Thus, for example, Nr is the size of B, when N 
is the population size. Define N N  = (IVY,. . . , NF). The superscript N is not an 
exponent. Then as N -+ 03: 

(1) Y N  3 &An, p) as N N / N  -, p = (p l , .  . . , pk) ,  and nN FE n remains fixed. 
(2) 

(3) ZN = (YN - n N N N / N ) / , / Z  3 Nk(O, [d(p) - p‘p](l - r)) as N N / N  + p, 
n N / N  --* r,  0 5 r c 1. 

.% 9(1) as nN --* cc, n N N y / N  -, 1 > 0 for N + cg. 

r is the asymptotic sumplingfiuction. The limit would be the same if N N / N  in 
the numerator of ZN were replaced by p. 

These limit theorems become useful when we replace the distribution of the 
r.v. on the left by the more tractable distribution on the right for finite N .  The 
approximations provided are surprisingly good, particularly if the 1/2 correction 
is used. Consider, for example, the normal approximation of the hypergeometric 
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distribution with N = 10, N, = 6, and sample size n = 5. Then E ( Y 1 )  = 

n N , j N  = 3, Var(Y,) = [nN,/N] -__ = 2/3. We find P(Yl = 2) = 0.238 10, 

and by the normal approximation of P(1.5 I Yl I, 2.5), 0.237. Similarly, 
P( Y, I 2) = 0.261 9 and the normal approximation gives 0.270. I t  would be silly 
to use the normal approximation in such a case, of course, but such calculations 
should give us great faith that these limit theorems are indeed useful. 

Nl - n 

N - 1  

Problem 8.2.1: Let Yt,  Y,, Y, be independent, with I: - S(ili). 
(a) Prove that S, = Y, + & -t y3 - Y(A1 + j., + A3). 
(b) Show that, conditionally on S, = s, Y = ( Yl, Y,, Y,) has a multinomial 

(c) For A ,  = 2, A, = 5, A, = 3, find P(Y, 2 SlS3 = 6), P( E; = 2, Y2 = 3/S3 = 6). 

(d) Find D[Y] and D[Y IS, = s], the conditional covariance matrix. 

distribution. 

and P(Y,  + Y, 2 51S3 = 6 ) .  

Problem 8.2.2: Perform calculations similar to those of Example 8.2.1, 
illustrating LeCam's upper bound (Theorem 8.2.2) for the case n = 2, p1 = 0.02, 
p ,  = 0.03. Determine G(A)  and the upper bound given by the LeCam theorem 
for the case A = (1 ,2 , .  . .',. 

Problem 8.2.3: Let 4 = { I ,  2) x { I ,  2,3), and let Y be a random vector 
indexed by 9. Suppose that Yi is the ith row of Y, Yi - ,#,(ni, pi), and Y,,  Y, 
are independent. 

(a) For n, = 10, n, = 20, p, = (0.2,0.3, OS), and p, = (0.4,0.5,0.1), give the 
mean vector and covariance matrix for Y. 

iat me conaitionai aistrioution 01 w, gven rne 

row sums for W are 10 and 20, is the distribution of Y in (a). 

Problem 8.2.4: The members of a large population of voters were asked to 
select among candidates A, B, C. For the population 4074 favored A, 307i 
favored B, and 30% favored C. A pollster took a random sample of 200. Assume 
for simplicity that sampling was with replacement. 

(a) What is the distribution of Y = (Y,, Y,, Yc). the numbers in the sample 
voting for the three candidates'! 

(b) Find E(Y) and DCY]. 
(c) Find an approximation for the probability that A loses in the sample 

(that Y, < Y, or Y, < q.), Hinrs: The event of interest can be written in 
the form E ,  u E,, where El = [Wl E a ,  Y, + b,  YR + c, Yc < 01 and E,  = 
[W2 = a, YA + h, YB + b, Y, -= 01. Find an approximation for the distribution 
of (Wl ,  W2). You will have to use tables of or a computer program for the 
bivariate normal distribution. 
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Problem 8.2.5: A class of 14 students sit in four rows of 2, 3, 4 and 5. The 
instructor decides to grade the class randomly, giving three A's, five C's, 
and six F's. Find the probability that the observed table of frequencies is 
r l  2 o 01 

1 1 2 1 . What is the probability that both of the A's are given to 

1 0 0 2 J  
students in the same row? 

Problem 8.2.6: A, B, and C each throw two coins three times, resulting in 
9 throws of two coins. Among these 9 throws, 3 resulted in two heads, 5 in one 
head, and 1 in no heads. What is the conditional probability that A had two 
heads each time, and B had one head each time? 

Problem 8.2.7: Let Y - #(n, p). Let 8 = Y/n. Use the &method to find an 
approximation for the distribution of arcsin +',!I Hints: The variance of the 

d 
limiting distribution does not depend on p .  And arcsin 14 = (1  - u2)-lI2. Use 

du 
this limiting distribution to find a 95% confidence interval on p for n = 1,OOO 
and Y = 84. Compare its length to that of the interval 0 k 1.96Jfi( 1 - fij/n. 

Problem 8.28: In 250 days the number of accidents at a large automobile 
manufacturing plant was 579. It Seems reasonable to suppose that the number 
of accidents on each day has a Poisson distribution with mean 1, and that the 
numbers on different days are independent. Use the asymptotic normality of 
Poisson r.v.'s to find a 98% confidence interval on the daily rate. 

Problem 8.2.9: Let - Poisson(n/,), for d > 0 fixed. Define R, = Y,/n, and 
for a smooth function g define U, = g(R,,). Find a function g such that the 
asymptotic distribution of W, = Jn[g(R,) - y(4] does not depend on I.. The 
function g is often called a variance-stabilizing transfbnnation. What is the 
variance-stabilizing transformation for the binomial distribution? See Problem 
8.2.7). 

Problem 8.2.10: (a) Let L' have the uniform distribution on [O,  I]. Show 
that X = -log U has the exponential distribution with mean 1. 

(b) Let X,, X,,  . . . be independent, each with the exponential distribution 

with mean one. For 2. > 0 let Y be the smallest value n satisfying S, = c X i  > 1. 

Show that Y has the Poisson distribution with mean 3,. Hint: Use the properties 
of the Poisson process. or prove directly using the fact that S,, has a 

gamma distribution and integration by parts that P( Y 2 k )  = 1 e-'L'/i!. (a) and 

n 

i =  1 

a 

k 
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(b) together may be used to generate an observation Y from the Poisson 
distribution with mean 3.. 

Problem 8.2.11: Let U,, . . . , U, be a random sample from the uniform 
distribution on 10, 11. Let M,, = max(X,, . . . , X"). Does M,,, or z,, = (M,, - a,)/b,, 
for some a, and b,, converge in distribution? To what distribution? 

Problem 8.2.12: Suppose that events occur in time in a Poisson process 
with mean 1. n nonoverlapping intervals of time, each of length T, are chosen 
and the number of intervals Y, the Hansenfiequency, for which there is no 
Occurrence is recorded. Then Y has the binomial distribution with parameters n 
and p = e - A T .  Since the maximum likelihood estimator (MLE) of p ,  based on 
Y, is fi = Y / n ,  the MLE for A is the solution to e - Z T  = b, or ,! = -[log bJ/T.  

(a) Find an approximation for P( 12 - 3.1 < 0.3) if n = 100, T = 0.4, and 
3. = 2. 

(b) Suppose the actual numbers XI,. . . , X, of Occurrences in these intervals 
were observed. Let f*  be the MLE of 2, based on these Xi. Find an 
approximation for P(l1  - 2.1 < 0.3). 

(c) The asymptotic relative efficiency of 1 = 1, to that of f*  = 2: is e ,  = 
lim Var(j,,)/Var(&. Show that eT 3 1 as T 0, and eT + 0 as T 4 m. 
I)-+ w 

Problem 8.2.13: A tree has unknown height h. In order to estimate h, a 
surveyor writes h = S tan a, where 6 is the distance on the ground from the 
base of the tree to the surveying instrument, and ct is the angle between ground 
level and the top of the tree. The surveyor measures the distance and the angle 
independently, with estimators d - N(d, 0:) and a - N(a, 0:). Use the S- 
method to find an approximation to the distribution of h = d tan a, and to 
P(lh  - hi s 0.2) if a = 4 6 ,  S = 50, u, = 0.002 radians, and ug = 0.02 meters? 
Hint: In LOO0 computer simulations the mean was 28.881 7. the sample s.d. was 
0.1323, the largest was 29.29 and the smallest 28.46. The event of interest 
occurred 867 times. 

8.3 CONFIDENCE INTERVALS ON POISSON AND BINOMIAL 
PARAMETERS 

In this section we will be concerned exclusively with the estimation of binomial 
and Poisson parameters. Situations arise frequently in which the observed 
random variables may reasonably be assumed to have one of these relatively 
simple distributions, yet, sadly, many introductory texts and courses provide 
only cursory discussion. The methodology discussed will depend on both small 
and large sample theory. It is this small sample theory (really any size sample 
theory), which provides confidence intervals on the binomial parameter p ,  on 
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the Poisson parameter A, and on a ratio ,I,/A.* of two Poisson parameters, which 
will probably be new to many students. 

We will use a(n, p) and 9(2) respectively to denote the binomial and Poisson 
distributions. We begin by developing confidence intervals on the parameters 
p and 1. We need two very simple inequalities. 

Lemma 8.3.1: Let X be a random variable with c.d.f. F. Define F(x) = 
P ( X  r x )  for each x. Then, for O <  a <  1, (1) P ( F ( X ) S a ) S a  and (2) 
P ( F ( x )  I a) I Q. 

Pruof: Let Mu = {x lF(x )  5 a). Mu is an interval (see Figure 8.2). Let x, 
be the least upper bound of Mu, the right endpoint of Mu. If X~EM,, then 
P ( F ( X )  I a) = P ( X  i; xu) = F(x,) = a. If xu # Mu, then there exists a mono- 
tone increasing sequence of points x,,, with F(x,,) 15; a, converging to x,. Then 

Mu = 
Lc 

(-  co, x,,], so that 
n -  1 

P ( F ( X )  5 a) = P ( X  E Mu) = lim P ( X  E ( -  co, x,,]) = lim F(x,,) 5 a. 
n+ m n-in 

To prove the other inequality coasider the random variable Y = - X ,  
which has c.d.f. G(y)  = P ( Y  s y )  = P ( X  2 - y )  = F( -y). Then P ( F ( X )  5 a )  = 
P(G( - X )  I a) = P(G( Y )  I ct )  I a. The last inequality follows from (1) by 
replacing F by G. 0 

The lemma allows us to use F ( X ; p )  and F ( X ; p )  as pivotal quantities in 
order to find confidence limits on p, since the probability inequalities hold for 
all p. 

1 

.6 

.2 
a 

7 
X 

- M (4-4 2 4 5 

FIGURE 8 2  Cumulative distribution function. 
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Let F(k;  p) be the A?(n, p) cumulative distribution. For fixed k ,  F(k;  p )  
is a monotone decreasing continuous function of p. To prove monotinicity, 
let Ul, .  . . , U,, be independent U(0, 1) random variables. Then, for any p ,  
X ,  = IIUi 5; p] - @(n. p). For p’ > p, Xb 2 X,, so that F ( k ;  p) = 

P ( X ,  5; k) 2 P(Xb 5; k )  = F ( k ;  p’).  
For k < n, let p 2 ( k )  be the solution p of F ( k ;  p) = a. The subscript 2 is used 

because we will later define pl, which will be less than p 2 .  The solution exists 
because F(k;  p) is continuous in p ,  F(k; 0) = 1, and F(k;  I )  = 0. Define p,(n) = 1. 
Then p , (k )  I, p if and only if a = F ( k ;  p , (k ) )  2 F ( k ;  p), so that P ( p 2 ( X )  s; p) = 
P(a 2 F ( X ;  p) )  I a. The last inequality follows from Lemma 8.3.1. The r.v. 
p 2 ( X )  is therefore an upper lOO(1 - a)o/;, confidence limit for p ,  in the Sense 
that the probability is at least 1 - a that p 2  exceeds p. 

Since the distribution of X is discrete, the probability of coverage will be 
exactly 1 - z2 only for those p for which there is a k such that F ( k ;  p)  = a. 

i 

Example 8.3.1: Suppose n = 20 and we observe X = 0. Since F ( 0 ;  p)  = 
(1  - p)” = a, p = p,(O) = 1 - !x1’20 is an upper lOO(1 - a)% confidence limit 
on p .  For a = 0.05, we find p2 = 0.1391. If we instead observed X = I, 
then p2 is the solution to F(1; p) = 4’’ + 2Opq1’ for q = 1 - p. We find 
p 2  = 0.216 1 ,  so that we have 95% confidence that p 5 0.216 1. For X = 2, we 
solve F ( 2 ;  p) = 0.05 to find p 2  = 0.282 6. Graphs of the functions F ( 0 ;  p). F( 1 ; p) 
and F(2; p) are given in Figure 8.3. 

The function F(k; p), giving right tail probabilities, is a monotone increasing 
continuous function of p for each k. For k > 0 let p 1  = p,(k) be the solution 
to F(k; p) = a. Let p , ( O )  = 0. Then in a argument similar to that for p 2  we can 
show that P ( p , ( X )  2 p) S a. Therefore, p1 is a lower lOO(1 - a)”/;, confidence 

P 

0 .I39 .4 .6 .8 1 .o 
FIGURE 8.3 The functions F(0; p) ,  F( 1 ; p) ,  b‘(2; p) .  
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1 
P 

.057 .437 .700 

FIGURE 8.4 F(4; p ) ,  F(4; p) and corresponding 9Su,J confidence interval. 

limit for p. For example, if n = 20, and we observe X = 20, then p1 is the 
solution to F(20; p )  = pzo = a. so p1 = . For z = 0.05 we get p1 = 0.86089, 
so that we have 95% confidence that p > 0.86089. 

If we want a two-sided confidence interval on p we can use both p1 and p 2 .  
Let p 2  be the solution to F ( X ;  p) = r 2 ,  and let p1 be the solution to 
F ( X ;  p) = Q,.  Then P ( p ,  < p < p z )  2 1 - (aI + az)+ If a,  and a2 are chosen to 
add to z, then the interval (pl,  p 2 )  is a (1 - a)100% confidence interval on p. 
For example, if n = 20, we observe X = 4, and we want a 95"; confidence 
interval on p, then we can choose r l  = x2  = 0.025, and we find pl = 0.0573, 
p z  = 0.436 6, so that we have 950/, confidence that 0.057 3 < p c 0.436 6 (Figure 
8.4). These values p1 and pz can be found with a computer program generating 
binomial probabilities, or by using a connection to the F distribution which 
we give now. 

Binomial tail probabilities are related to the beta distribution through the 
equality 

This can be proved by integrating by parts on the right n - k times. The right 
side is the c.d.f. of a Reta(k, P I  + 1 - k) r.v. U. There is a connection between 

"2 

\'I 1 - (i 
the beta and F distributions: If U - Beta(v,, be2), then F = - -- has an 

F(2v1,  2v,) distribution. This relationship can then be exploited to give, for 
observed X = k: 

Fl-a,(vl, v z )  for v l  = 2(n + I - k), tiz = 2k. 1 
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F-table values may not be easily available for large v I  or v2, though most 
statistical computer packages now provide them. If v 2  is large and v 1  relatively 
small then F,(v,, v2) = &/v,. If v, is large and v2 small then F,(P,, v2) = 
v2/x:2.1-y. If both v l  and v2 are large we can instead use the fact that 
2 = ($ - p)/a(fi) for ~ ( f i )  = Jp(1 - p)/n, is approximately distributed as 
standard normal. Take p1 and p2 to be the solutions to Z = z8, and to 
2 = zl  The solution offered in most introductory texts on statistics is 
obtained by replacing p under the square root by its estimator p = X/n,  to 
obtain fl  - z,,B,, and fi + z1 -u2cf,,. Usually, too often in the author's opinion, 
people take, r l  = a2 = r/2, so that the interval is symmetric about fi. In many 
applications it makes more sense to take a, = 0 to get an interval (pl,  13 or 
a2 = 0 to get an interval [O,  p2). 

We sometimes are interested on the odds for success 6 = p/(l - p). or 
loy-odds p = log 0 = log p - log(1 - p)  = g(p). As will be shown as we develop 
the theory and applications over the next few sections, this scale turns out to 
be very convenient for the analysis of frequency data. We begin with one p 
only, though the principal application will be to the comparison of two or many 
p's. Since the log-odds function has derivatives of all orders, except at zero and 
one, with g'(p) = l/[p(l - p)], we can apply the &method to conclude that 
W, = &[g(@,,) - y(p)J % N ( 0 ,  I/p(l - p)). That is, for large n, the sample 
log-odds ,6 = y(0,) = log[fi,,/(l - fi,)] is approximately normally distributed 
with mean p = log[p/(l - p)] and variance l/[np(l - p)] 3 02(fi) for large 
n, p not too close to 0 or 1. Since p is unknown, with consistent estimator fin, 
we can replace p by B,, in a@), let B(P) = l/[nB,(! - fin)], and use @ - p]/c?(P) 
as a pivotal quantity to obtain the approximate 1oOy% confidence interval 
(L, U ) =  [ ~ ~ + ~ ~ ~ + . / , , ~ 8 ( , 6 ) ] o n 1 ~ . S i n c e ~ = = , a n d e = p / ( l  -p ) ,p=9 / (1  +e'), 
we therefore have the 100% confidence interval (&/(1 + t?), e"l(1 + e')) on p. 
This interval will not be symmetric about fin. These intervals are shown in 
Figure 8.5. 

Suppose n = 20 and we observe X = 4. Then fin = 0.20, f i  = - 1.386 3, 
S@) = 0.5590 and, for y = 0.95, L = -2.481 9, U = -0.2907. The 95% 
confidence interval on p is (0.077,0.428). The corresponding intervals found by 
the exact and more direct large-sample method are (0.0866,0.436 6) and 
(0.025), 0.375), all roughly of the same length, but of different shape. 

These large sample methods work quite well, even for small n, and p 
surprisingly close to 0 or 1. Table 8.3.1 presents probabilities of coverage of p 
for various p for nominal 95% confidence intervals on p found by the direct 
{method # 1 ,  PI) and log-odds (method 12, P2) large sample methods for 
samples of size 20. Also given are mean lengths L, and L ,  of these confidence 
intervals. lntervals with endpoints less than 0 or greater than 1 were truncated 

__ - - 
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4 

FIGURE 8.5 95% confidence intervals on p = log(p/(I - p)) and on p. 

back to the interval [0, I]. Values for p > 0.50 are the same, except that 

For the case of two independent binomial random variables X ,  - B(n,,  p , )  
and X, - .g(n,, p,), there i s  no good small sample confidence interval on 
A = p, - p,. For large n ,  and n,, with p,  and p, not too close to 0 or 1, we 
can use the fact that 2 = (A - A)/&(&) 3 N ( 0 ,  I),  for A = p, - fiz, and 

P(1 - P) = -P(P) .  

B l ( l  - B I )  + 82(1  - f i2)  @(A) = -- -- 
n ,  n2 

A lOO(1 - a)?; confidence interval on A is given by 6 k z,  -0,28($). A slightly 
better approximation can be obtained by adjusting &(I - bi)  in the estimate 
of the variance to ( X i  + O.5)(nj - Xi + 0.5)/$ for i = 1, 2. The approximation 
works surprisingly well, even when n, and n, are very small. For example, for 

Table 83.1 

P P 4 p2 L,  L2 
0.01 - 4.60 1 .Ooo 0.983 0.104 0.293 
0.05 -2.94 0.997 0.984 0.156 0292 
0.10 2.20 0.876 0.957 0.223 0.305 
0.20 - 1.39 0.921 0.968 0.327 0.345 
0.30 -0.85 0.947 0.975 0.387 0.378 
0.40 0.4 1 0.928 0.963 0.418 0.398 
0.50 0.00 0.959 0.959 0.427 0.404 
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n, = 8, n, = 7, p ,  = 0.5, p ,  = 0.3 the adjusted and unadjusted coverage prob- 
abilities for nominal 95% confidence intervals on A = 0.2 are 0.967 and 0.895. 
The mean lengths are 0.70 and 0.89, very long, and therefore of not much value. 
For the same p-values, but )I, = n2 = 20, these probabilities are 0.947 and 0.942, 
with average lengths 0.48 and 0.46. The lesson is that we should not fear the 
use of the large sample approximation for relatively small sample sizes, though, 
their usefulness is limited because of their excessive length. 

We can extend the usefulness of log-odds to the comparison of two 
proportions p1 and p , .  Let qi = 1 - pi, 1), = pi/qr .  pi = log 61, for I = 1,2. Then 

R = 0,/61, = -- -- is the odds-ratio and 6 = p, - p 2  is the loy odds-ratio. The P142 
~~ 

p2q1 
sample odds-ratio is fi is obtained by replacing each pi by Bi = Xi/ni. p s log ff 
is the sample log odds-ratio. Using the 8-method again, we find that 

1 1 
Ijl - p]jB(fl) 5 N ( 0 ,  l), where = -* - + - - .  It  follows that 

nlBl4,  n*B& 
12 f q1 +r),Z8(12) is a loO./o/, confidence interval on p. Of course, this interval 
can be transformed into an interval on R. 

Estimation of Poisson Parameters: If X has a Poisson distribution the 
functions F ( X ;  %) and F ( X ;  A) can again be used as pivotal quantities. For 
observed X, the solution l2 = A2(X)  to F ( X ;  %) = 0.05 is an upper 95% 
confidence limit on i.. Similarly, the solution A,  = i l ( X )  to &X; i.) = 0.05 is 
a lower 95% confidence limit for 1.. (If X = 0, the lower limit is taken to be 0.) 
The relationship between the Poisson distribution and the chi-square distribu- 
tion can be exploited to find explicit formulas for A, and A,. If Y - then 
P( Y 2 21) = F(k; i), the Poisson c.d.f. (see Problem 3.8.5). 

Take A, (X)  = ziX..,/2 and &(X) = ~ ~ c x c l , . l  -J2. Then il is a IOO(1 - a,)?; 
lower confidence limit on I and i-, is a IOO(1  - a2)o/u upper confidence 
limit on 1. For example, if we observe X = 2, and we want a 95:4 confidence 
interval on i., take z l  = a2 = 0.025. Then A, = ~ j . - , ~ , ~ / 2  = 0.242 and I., = 

= 7.22, so that (0.242,7.22) is a 957; confidence interval on A. 
For large X. we can use the cube-root transformation to find quantiles of 

the chi-square distribution (Section 2.5) for which table values are not available, 
or we can use the fact that Z 3 (X - i.)/,,;l is approximately standard normal. 
We find that i., and i, are the solutions to Z = z,, and Z = z,-.~. A still 
rougher approximation is given by replacing 3, under the square root by X to 
give A, = X + z , , JX  = X - z1 -,,dX and A ,  = X + z, -m2dX. For large X 
the three methods will provide approximately the same answers. 

Suppose now that X ,  and X, have Poisson distributions with parameters 
i., and A,, and X, and X, are independent. We would like to construct a 
confidence interval on R = i1,/A,. We will use the fact that. conditionally on 
their sum, X, + X, = n, X, has  a O ( n , p )  distribution with parameters n and 
p = A J ( A ,  + A,) = R/(1 + R) (see Theorem 8.2.3). 

I ”  f- r- 
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Let (pt = pl(X,), p z  = p 2 ( X 1 ) )  be a lW;% confidence interval on p. That is, 

P(pt < p < p21X,  + X ,  = n) 2 y for all p and n. 

Replacing p by R/(1 + R), and manipulating the inequalities, we get 

Since this is true conditionally for every n, it must therefore hold unconditionally, 
so that (p,,/(l - pl), pz/(l - p , ) )  is a lW,t?< confidence interval on R.  

Example 8.3.2: Suppose that the number of highway deaths in July of 1998 
in Michigan was 145. After a concerted safety campaign, the number of deaths 
in 1999 in July was 121. Assuming that the numbers of miles driven in the two 
years were the same, find a 95% confidence interval on the ratio R = %Ji, of 
the rates for the two years. 

We will suppose that the numbers of deaths A‘, and X, by highway accident 
have Poisson distributions with parameters I, and I,. This model may not be 
realistic, since accidents often kill more than one person. It would probably be 
better to deal with accidents in which deaths occur rather than with numbers 
of deaths. Conditionally on the total number n = X ,  + X, = 266 deaths, X ,  
has a binomial distribution with parameters n = 266, and p = I , / ( I ,  + I,). We 
first find a 950/, confidence interval on p7 given by 

Then a 950/;, confidence interval on R is (p,/(l - p , ) ,  p,/(I - p,)) = (0.942 77, 
1.531 33). We are presenting more decimal places than are warranted by the 
methods. In a report to the possibly statistically naive, it would be better to 
give (0.94, 1.53). The fact that the interval includes 1 should lead us to be 
cautious about claiming that the safety campaign was a success. 

Suppose now that X ,  and X ,  are independent Poisson r.v.3 with parameters 
i ,  = O , t , ,  and i., = f?,t,, where t ,  and t ,  and known constants. To find a 
confidence interval on the ratio p = O1/O2 we can simply first find a confidence 
interval on R = IJ i . ,  and, since p = O , / O ,  = (~l/fl)~(I,/c,) = ( t z / t l ) R ,  multiply 
the confidence interval for R,:I, through by t , j t ,  to get an interval for p. 

We can use the log method to find confidence intervals on R = i.,/A,. Define 
p = log R, k = X l / X , ,  fi = log k. Then, for R fixed, with p2 = Rp, ,  and 

D I 1  

Xl x2 
p1 4 m, Cp - p] /d( f l )  3 N ( 0 , l ) .  where &2) = + -- . The approximation 

improves as I, and i2 become large. The resulting lo@% confidence interval 
on P is P f q 1  +r,,2a(P). 
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For the highway accident example above with XI = 145, and X2 = 121, 
we find f i  = 0.078 58, ci(ji) = 0. I23 13, and the 95% confidence interval on 
p (-0.163,0.320). The resulting 957; confidence interval on R = A l / i 2  is 
(0.850, 1.377). 

Odds and Log-Odds: Suppose that you, as a statistician, are asked to design 
a study to determine whether residence near a high-voltage power line raises 
the probability that a child will have cancer. Let populations # 1 and 1 2  be 
the collections of children living ( # 1) and not living (#  2) within 400 yards of 
a power line. Let pi be the conditional probability that a child in population i 
is diagnosed with cancer during a three-year period. We would like to compare 
p1 to p z ,  Let us ignore for the moment the possibility that a lurking variable, 
say poverty, may cause children both to live near power lines and also to have 
cancer. Suppose also for simplicity that children do not change residence during 
the three-year period of interest. 

Consider the two-way table: 

Cancer No Cancer 

Population 1 

Population 2 

Here p i j  is the proportion of children in the entire population who would fall 
in row i, columnj of the table. You would like to do a prospective study. That 
is, you would like to choose random samples of children from each of the two 
population, or one from the entire population of children in the region of 
interest, then estimate both pi = piI/(pil + p i z )  for i = 1, 2, and compare these 
estimates. However, the usual cancer rate is 0.2 per 1,OOO children per year, and 
in order to estimate probabilities and to make comparisons which have any 
reasonable chance of separating real from chance differences, samples of the 
order of 100,OOO and more are required. Since no records are kept of residence 
near power lines, identification of a large number of children in population # 1 
seems practically very difficult. 

If a random sample were taken from the population of all children in the 
region of interest then pr j  is the probability that a child would fall in cell ij. The 
conditional probabilities of interest are p1 and p z .  Since pil << pi2, p ,  = 
pil/p12 = Ri = pi/(l - p i ) .  In fact, Ri/pi = 1/(1 - pi) = (pi,/pI2) + 1. R,  is the 
odds for cancer in population i. The ratio R = R , / R 2  = plipzz/p12p21 = 
pl(l  - p , ) / [ p , ( l  - p,)] is called the odds-ratio. This odds-ratio, for the 
case that each pr is small, can serve as a stand-in for B 5 p1/p2, since 

The benefit of the use of R, rather than 8, to compare rates for cancer in the 
two populations is most evident when we consider that we can estimate R by 
doing a rerrospectiue study. That is, we can randomly sample the cancer and 

Rl8= [(pi ~ ' ~ 1 2 )  + ~I /C(PZI /P~J  + 13 = (1 - ~2)/(1 - pi). 
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noncancer populations and still estimate R, since R is symmetric in row and 
column probabilities. Since such records are kept, we may have access to files 
of addresses of such children. Suppose that after three years we choose a random 
sample of nc (say 400) such children, and another random sample of nNC (say 
500) children from the population NC who were not diagnosed to have cancer. 
Identifying the children in this noncancer population may not be easy, and we 
may need to confine the study to school-age children, since school records could 
then be used. Suppose we then use maps to identify whether each of the n, + nNC 
children live near a power line. 

Let 5 be the number among the sample of n j  who live near a power line. 
Then Y, - 9(n1, pc) and Y2 - W(n,, pNC) in good approximation, where 
pc = p1,/(pI1 + pzl) is the conditional probability that a child with cancer is 
in population # I ,  and pNC = pI2/(pl2 + p Z 2 )  is the conditional probability that 
a noncancer child is in population # 1. Let qc = 1 - pc ,  qNC = 1 - pNc, 
pc = Yl/nl, QC = 1 - Cc, bNC = Y2/n2, and dNC = I - pNC. Then and BNC are 
independent unbiased estimators of pc and pNC. Notice that R = pcqNC/pNCqc- 
It is this feature of R that allows us to estimate R, despite the fact that sampling 
is retrospective, rather than prospective. 

Define k = fiC&,C/flNC& = r1(n2 - Y , ) / [ Y , ( ~ ,  - YJJ, and 4 = log R = 

Section 8.2 qC is approximately distributed as N(qc  5 log(pc/qc), & = 
( l/n,pcqc)), and dNC is approximately distributed as N(tfNC = bg(pNC/qNC), 
V,, = ( l /nzpNCqNc)) ,  if nip,, n141, n,p,, n,q, are not too close to zero. An 
approximate IOOf?; confidence interval on R is therefore given by (qL, &,) = 

(4 zt l  + y ) , 2 ~ ~ ) ,  where c. and vNc are obtained by replacing 
the proportions by their estimates. Note that 6 = l/Yl + l/(nl - &) and 
vNC = I / &  + 1/(n2 - Y2). The corresponding confidence interval on R is 

4C - dNC* where 4C = Dog PC - log d C l  and 9NC = PNC - log d N C l *  From 

(&, @). 
For example, suppose we observe the table Y = ( qj)  = y = 

That is, we sampled 400 children with cancer, 47 lived near power lines, and 
we sampled 500 children who did not have cancer, and determined that 34 lived 
near power lines. Then, pc = 0.1 175, fiNc = 0.068, R  ̂ = 1.8249, t j  = 0.601 5, 
qL = 0. I39 1, &, = 1.063 9 for 7 = 0.95, so that (1.149 2,2.897 8) is a 95% con- 
fidence interval on R. There seems to be some relationship between residence 
near a power line and the incidence of cancer. We are not justified in saying 
that power lines cause cancer. 

If we know the overall rate of cancer in these children is 0.2 per 1,000 per 
year (60 per 100,OOO over three years), then we can estimate the two-way 
probability table (pij). The estimate of p l ,  is f i l l  = ~c(0.0006) = 0.0000705 
(7 per iO0,OOO). Similarly, we obtain, 
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If the overall rate were unknown, then we could not estimate the conditional 
probabilities p , ,  p , .  or the unconditional probabilities p i j .  

Problem 83.1: (a) Let X have a binomial distribution with n = 50, and p. 
Suppose X = 0 is observed. Find an upper 99% confidence limit U on p. 

(b) If X = 0, how large must n be in order to have upper 99% confidence 
limit less than 0.001? This sort of question is vital to the developers of vaccines, 
who fear recipients will acquire a disease from the vaccine, or automobile 
manufacturers, who must guarantee the safety of airbags. 

(c) To be extra careful, perhaps the automobile maker should prepare for 
the event that X = 1 of the airbags fails. What should n be in order to have 
upper 991;; confidence less than 0.001? 

Problem 8.3.2: Suppose X has a binomial distribution with parameters 
n = 30 and p. If X = 4. Find a 90;d Confidence interval on p. 

Problem 8.33: (a) Let X have a Poisson distribution with parameter A. 
Suppose we observe X = 10. Find a 90”/, confidence interval on I, using the 
exact method. 

(b) Suppose X = 383. Find a 90% confidence interval on i using three 
methods. (i) Use Z = (X - i.)iv/i, as a pivotal quantity. (ii) Use 2 = 
(X - as a pivotal quantity. (iii) Use the fact that the chi-square 
distribution for v d.f. is close to the normal with mean v and variance 2v. 

Problem 8.3.4: The number of cases of lung cancer reported among 8,791 
men of ages 50-59 living in a county in which a nuclear reactor was located 
over a three-year period was 81. During that same time period in other counties 
in that same state there were 62,547 men of ages 50- 59, of which 483 were 
reported to have lung cancer. 

(a) State a reasonable model. 
(b) Give point estimates of the rates 6 ,  aEd 6, per 1,OOO such men per year 

for the county and for the other counties. Estimate the standard error of your 
estimators and use these to find a 90% confidence intervals on O1 - 8,. 

(c) Find 90% confidence interval on fll/6, using the binomial method. 
(d) Find a 90% confidence interval on R = 8,/8,. 

Problem 8.3.5: The following properties of the Poisson process are often 
established in introductory courses in probability. Suppose that events occur 
at random points in time 0 < X, < X ,  < . . .. Let Y(0) E 0, and let Y( t )  be the 
number of occurrences in the time interval (0, t}. Y(t)  is said to be a Poisson 
process with parameter I > 0 if 

(1) For each I > 0, Y ( t )  - 9(l.t). 
(2) The numbers of occurrences in nonoverlapping time intervals are 

independent r.v.’s. 
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Let X,, = 0, and Dj = X j  - X i -  for j = 1,2,. . . Then X j  = D, + . . . + Dj 
and Y(t)  = max{nlX, 5 t }  for t 2 0. The waiting times D,, D2,. . . are inde- 
pendent, each with an exponential distribution with mean 1/11. The process 
{ Y(r), r 2 0} can therefore be simulated by first generating the waiting times Dj 
between events. 

(a) Prove that Dj - exponential, with mean l/L. Hint: P(Dj > d) = P(no 
occurrences in an interval of length d). 

(b) Use induction or moment-generating functions to prove that Xj/A ‘c 

gamma, with scale parameter 1,  power parameter j. 
(c) Show that U - gamma, with scale parameter 1. power parameter v, for 

v a positive integer, implies that 2U - x:,. 
(d) For U as in (c), prove that P(U > A )  = 1 p ( j ;  J.), where p ( j ;  3.) is the 

Poisson probability function. (Either differentiate by parts on the left v - 1 
times or use the relationships among U ,  X,, and Y(i.) to rewrite P(U > I.). The 
second method is more elegant.) 

(e) Derive the formulas for the lower and upper confidence limits 1, and 1, 
on 11. 

” -  1 

i = o  

Problem 83.6: In order to investigate the effects of smoking on lung 
cancer, the files of the hospitals in a large metropolitan area wen. searched. It 
was found that 867 patients (all adults) had been diagnosed for lung cancer 
during the year 1990. From these 867, a random sample of 393 was chosen, 
of which 261 patients were found to have been smokers for at least 10 
years in their lifetimes. Another random sample of 612 adults (the controls) 
was taken from among the residents of the area, using telephone directories. 
Among these, 197 were found to have been smokers according to the same 
definition. 

(a) Find a 95% confidence interval on the odds-ratio R for cancer -smoking. 
(b) The lung cancer rate in this area was known to be 1.2 per 1,OOO adults 

per year. Estimate the probability table p = ( p i j )  and the conditional prob- 
abilities for cancer among the smoking and nonsmoking populations. Give a 
95”/, confidence interval on p1 ,. 

(c) Suppose that the control population used was the collection of people 
who were admitted to one of these hospitals in 1990. Does that cause any 
problems in the interpretation? 

Problem 83.7: The Doll and Hi11 (1950) study of 709 lung cancer patients 
and 709 patients without lung cancer in 20 London hospitals in 1948-49 was 
one the most important in determining government policy with respect to 
smoking. In that study only 69 were women smokers (at least once a day for 
a year), of whom 41 had cancer. Among 51 nonsmoking women, 19 had cancer. 
Give a 95% confidence interval on the odds-ratio for cancer among women, 
and state your conclusions. Sir Ronald Fisher warned strongly against the 
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conclusion that smoking caused cancer, though R for men was even more 
extreme. Among other things he pointed out that inhaling seemed to result in 
lower rates of cancer. See “Smoking and Lung Cancer” in Fienberg and 
Hinckley ( I  980). 

8.4 LOGLINEAR MODELS 

We will begin by considering some relatively simple log-linear models, delaying 
their analysis until Section 8.5. These models will be written in the vector space 
form. We will use such notation as log Y or 8 to mean that these functions 
operate componentwise, so that, for example, log( Y,. Y,) = (log &, log &). 
Differences between the theories for linear and log-linear models occur largely 
because (1) the log of the mean vector m = E(Y), rather than m itself, will be 
assumed to lie in a linear subspace, and (2) the distributional properties of Y 
are more complex for frequency data. Most of the difficulties imposed by (1) 
and (2) will be postponed to later sections. 

There are interesting correspondences between the explanatory (also design, 
independent, or regressor) vectors xi which we will choose and independence 
or conditional independence. We will wish to test for independence or 
conditional independence, but we shall also wish to measure the strength of 
the dependencies which do occur. These measures of dcpendence will usually 
be odds, odds-ratios, or log odds-ratios. 

Example 8.4.1: In order to determine the effect of the length of traffic light 
cycle on the accident rate at an intersection, four cycle lengths were used, each 
for one year. The numbers of accidents were 

Year I 2 4 4 
Cycle length (s) 40 50 60 70 
Number of accidents 149 1 29 112 112 

Assume for simplicity that the traffic each year is approximately the same. 
It seems reasonable to suppose that the number of accidents in year i 
has a Poisson distribution with mean mi, and that Y,, Y,, Y3, Y, are independ- 
ent. Can we find a simpler model? Longer cycle times might be expected to 
decrease the numbers of accidents. with m decreasing with increasing cycle time 
t .  Suppose that m = m(r) = expu, + &t), or equivalently, p = p( t )  = 
logm(t)=~o+~lt.Wntingt=(40,50,60,70),J=(l,1,l,1),Y = ( Y , , Y , , Y , ,  
Y,), p = poJ + Pit, we can state the model as follows: Y satisfies the 
independent Poisson model with m = E(Y) = expb), p E V = Y’(J, t). Increas- 
ing the cycle time by d will multiply the accident rate by the factor @ I d .  If we 
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decide that p1 is positive or only slightly negative, we might wish to keep t near 
40 or even less. More negative values of B1 suggest that we should be willing 
to put up with some of the inconveniences of longer cycles in the interest of 
safety. 

Actually these frequencies were generated by a computer with Po = 8, 
B1 = -0.8, so that m = (155.9, 130.4, 112.7,99.6). 

Example 8.4.2: In order to investigate the effect of a poison on rats, the 
poison was fed to the rats in four different dosages: 0 < dl < d ,  < d ,  < d4. 
The numbers of rats and the numbers dying at these dosages were 

Dosage d ,  4 d3 54 
Log-dosage x, = 0.5 xt = 1 x3 = 1.5 x4 = 4 
Number of rats 15 17 19 16 
Number dying 2 6 I 1  13 

Let 
# living when the dosage is d j  and i = 1 

# dying when the dosage is d j  and i = 2. 
I;i = 

Y = (G j ) ,  the 2 x 4 table of observed frequencies. Suppose that (K,, G j )  - 
A2(p,, n j )  and that these columns of Y are independent, where p, = (1 - pi, p,) 
forj = I ,  2, 3, 4 and n,  = 15, n2 = 17, n3 = 19, n4 = 16. Thus, Y satisfies the 
independent multinomial model. Of course, it is equivalent to say that 
( G1, G2, K 3 ,  Y24) are independent with Y,, - i#(ni, p,), and YIj = n, - Y2,. 
Define m = E(Y) = (mdj), where mij = n,(l - p,) for i = 1 and mi, = njpj for 
i = 2. Let p = log m = (pij). Suppose that the log-odds for death under dosage 
j is yxj.  for xi = log(dj) for each j .  The odds for death under dosage d j  are 
exp(yxj) = d;. Positive values of y correspond to increasing probability of dying 

with increasing dosage. Solving for p,, we get pj  = -- - = J - . Notice 

that when xi = 0, equivalently when d j  = 1, i t  follows that pi = 1/2. This model 
forces the probability of death at dosage 1.0 to be 1/2. 

Let Jj be the 2 x 4 indicator of columnj, and let w be the array with zeros 
in the first row, and xi as thejth term in the second row. Then log m = p = 

pljJj + yw. Thus, m satisfies the log-linear model. However, not all 

vectors p E Y ( J , ,  . . . , J4, w) = Y are possible. In fact, the requirement that the 
column sums of M = E(Y) be the constants nj determines the restrictions 
&“J( I + eyrJ) = njr so that p1 = log[nj/( 1 + e9”)]. Since we are interested in y, 
rather than the pj ,  we can reduce the dimensionality of the model by 
concentrating on the logits L j  = log[pj/( I - p j )3  = yxj .  The two statements 

p I  dy 
1 + eYx’ 1 + d,’ 

4 

j =  1 
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p E V, and Lj = y.vj for each j are equivalent, but the second statement, called 
a lugir model, seems to be simpler. 

This model requires that the death rate for d = 0 be zero. We could relax 
this by taking L, = y o  + y1xj, or, equivalently, adding the indicator R, of the 
second row to the subspace V.  

Example 8.4.3: Consider the index set .f = { 1,2,3) x { 1,2,3,4) for 3 x 4 
tables of frequencies. Suppose that I;i is the observed frequency in cell ij, and 
let Y = ( &,j. Suppose that Y has a Poisson distribution with parameter 
m = (mij) .  With no further restrictions on m, this is the saturared model because 
the model allows the estimates hi, = x,, so that the model fits with no residuals. 
We can state the model in its vector space form by defining Cij to be the 
indicator of cell ij. Then p = log m = pi,C,j E V = Y(C,,, . . . , C,,), a 12- 
dimensional subspace of 12-space. ' j  

We should always seek simpler models, for which the subspace V has smaller 
dimension. Let Ri and Cj be the indicators of the i th  row and j t h  column. One 
such model supposes instead that p E .!?(R,, R,, R,, C,, C,, C,, C,) = V,, a 
6-dimensional subspace of 12-space. This model implies that there exist 
parameters pi and y j  such that pi, = p i  + '/i and mij = ePley~, so that the Poisson 
parameters mij satisfy a multiplicative model. 

If we replace the Poisson model by Y - AfI2(n, p), then the mean vector 
M = np and the observation vector Y must have inner product n with the vector 
J of all ones. For both the saturated and multiplicative models p may take 
only those values in V for which (8, J) = n. If we begin with the inde- 
pendent Poisson model, but condition on x x j  = (Y, J) = n, then, conditionally, 

Y - .d,2(n, p), with pi ,  = &/x i.,, (see Theorem 8.2.2). The multiplicative 

model p E V' is equivalent to p i j  = pi.p.,, the independence of the row and 
column factors. 

By expanding the pi, as we did in two-way analysis of variance, we can more 

i j  

li 

1 I 
systematically study two-way tables. Define p = - 1 pi,, pi.  = - 

1 12 i i  4 , .  
Piji ji., = 

A p i j ,  xi = f i r .  - 11, Pj = ji., - p3 (ap), = pi ,  - C/t + tli + D,]. Then pi, = 

11 + xi + pi + (ap)i j ,  and the parameters xi, /Ij, (aBjij satisfy the familiar 
zero-sum restrictions of the analysis of variance. The statement that (ZS)~, = 0 
for all i and j is equivalent to the multiplicative model for Poisson Y or 
independence of row and column effects for the multinomial model. 

3 i  

In the case that one of the factors has ordered levels, it may be possible to 
find a model which has interaction effects, but is still smaller than the saturated 
model. Suppose, for example, that a random sample of 400 adults was chosen 
from the telephone subscribers in Frequency City. Those sampled were asked 
their view on a law before Congress which would increase social security (SS) 
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benefits. Their choices were ( 1 )  favor, (2) neutral. (3) against. They were 
classified by age: ( 1 )  18-35, (2) 36-50, (3) 51-65, (4) 66-99. The results were 

Age 
I 2 3 4  

View Agree 

Bill 

127 112 85 76 400 

I t  is reasonable to expect that as people age their view towards increases in SS 
benefits should become increasingly favorable. We can quantify this by 
replacing the interaction term (which might better be called (as)ij or ( a ~ ) ~ ~  
for this example) by a multiplicative term y(i - 2)(j - 2.5) = ywij, chosen so 
that the vector w = (wij) is orthogonal to the row and column indicators. Since 
we expect frequencies to be higher for small i and large j ,  and for large i, small 
j .  we should expect to obtain an estimate y < 0. The model can now be written 
as p E V, = V, @ Y(w),  a subspace of dimension 7. We will later develop means 
of fitting this and the other models, and discuss measures of their goodness-of- 
tit. 

We will be interested in odds-ratios and log odds-ratios: 

and 

L is the inner product of p with the vector v having ones at indices (il,  j l )  and 
( i z , j z ) ,  minus ones at indices ( i lr j2)  and ( i , , j l ) .  The vector V E  CB, the 
interaction subspace, and the collection of all such vectors corresponding to all 
possible choices of i ,  # i, and j, # j z  span Ka. For the independence model L 
is zero for all choices of the indices. That is, independence is equivalent to 
p I V,. If the interaction term is ywij, L reduces to y ( i ,  - i,)(j, - j,). For 
example, for the four extreme corners of the table L(1,3, 1,4) = 6y, which can 
be expected to be quite negative, corresponding to a small odds-ratio 

[P(Favorl Young)/P(Oppose I Young)]/[P(Favor 1 Elderly)/P(OpposeI Elderly)]. 

Example 8.4.4: Consider the Table 8.4.1 of frequencies and percentages, 
taken originally from National Opinion Research Center, 1975 General Social 
Survey, University of Chicago, excerpted from Haberman (1978, p. 183). 
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Table 8.4.1 
Toward Women Staying Home, Sex of Respolldeet, and Education of Respocrdent 

Respondent Agree Disagree 

Subjects in the 1975 General Social Suney, C d p s s i f i e d  by Attitude 

Sex Education (Years) No. Percent. No. Percent. Total 

Male 5 8  72 60.5 47 39.5 1 I9 
9-- 12 110 35.9 196 64.1 306 
2 13 44 19.7 179 80.3 223 

Female 

Total 226 34.9 422 65.1 648 

1 8  86 69.4 38 30.6 124 
9-12 173 37.9 283 62.1 456 
L 13 28 13.0 187 87.0 215 

~~~ 

Total 287 36.1 508 63.9 795 

Total 1 8  158 65.0 a5 35.0 243 
9-12 283 37.1 479 62.9 762 
L 13 72 16.4 366 83.6 43a 

Total 513 35.6 930 64.4 1,443 

Subjects were asked the question, “Do you agree with this statement- 
Women should take care of running their homes and leave running the country 
up to men?” 

This is a three-way table, with three categorical variables: sex at two levels, 
education at three levels, and response at  two levels. Sampling was done by 
choosing independent random samples of 648 men and 795 women, then 
determining their ages and responses. Let xfi be the frequency observed for 
sex level i, education levelj, response level k. Then the index set is 9 = { 1,2) x 
{ 1,2,3) x (1,2). The observation vector Y = ( K j k )  is made up of the two 
random vectors Y = ( & j k )  for men and Y2 = ( K p )  for women. A reasonable 
model is: Y,, Y, are independent with Yi + .M6(ni, pi), for i = 1, 2, n, = 648, 
n2 = 795. Then m = E(Y) = E(Y,, Y2) = (nip,, n,p,). 

We would like to find a simple model for m. Let (I = log m = ( p i j k ) .  As for 
the three-way analysis of variance we can write p i j k  as the sum of its effects: 

p i j k  = p + si + e j  + r k  + (se)ij + (ST)* + (er)jk + (ser)ijk. (8.4.1) 

As for the ANOVA, the 12-dimensional sample space V can be broken into the 
mutually orthogonal subspaces &, V,, V,, V, ,  F<e, V,, V,,, V,,. Because of the 
restriclion that m i l k  = n,,  p cannot take all possible values in V. In fact, p 

ik  

and s,, s2 = I - s ,  are uniquely determined by the other parameters and these 
two linear restrictions on the mijk. 
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We have chosen to use symbols sI, e j ,  rk, etc., which remind us of the meaning 
of these variables. It is common in the literature of log-linear models, to use 
the symbol 1.. rather than pijr ,  and write kijk = 1 + 1: + >.f + 1: + 1.;' + 
A:: + A;: + where the meanings are the same as for the corresponding 
symbols in (8.4.1). 

With all terms of the representation of p(jk present the model is saturated. 
We would like to find a simpler model. The model with the three-way 
interaction term (ser)iR missing is at least a little bit simpler. This model is 
often indicated in shorthand form as (1 2 3 12 13 23), corresponding to the three 
main effects and the three two-way interactions. I t  is easy to show that the log 
odds-ratios for men and for women in the saturated model are 

'ik ' 

For this example (kl, k,) may be taken to be (1,2), since response has only two 
levels. The more general notation is used so that the ideas may be generalized 
to factors with more than two levels. These log-odds ratios are the same for 
men and women if and only if the three-way interaction terms are all zero. If 
this were the case then the interrelationship between education and response, 
as measured by odds-ratios, are the same for men and women. By the symmetry 
of the roles of the indices, we could also conclude that the interrelationship 
between sex and response is the same for each level of education. 

The difference D = D(J1,j2, k,, k,)  = L , ( j  I,jz, k , ,  k2) - W,&, k,, kJ is 
zero if and only if the two corresponding odds ratios are equal. D is the inner 
product of p with the vector v of ones and minus ones corresponding to the 
indices. The vector v E V , , ,  the three-way interaction subspace, and the 
collection of all such vectors, for all choices of subscripts, span V,=. Thus, 
equality of the odds-ratios for men and women is equivalent to p l  V,-. 
For these data L,(l ,  2, 1,2) = log(72 x 196)/(110 x 47) = 1.004 15 and 
L,(l, 2. 1,2) = log(86 x 283)/(173 x 38) = 1.308 92, so that D(1,Z 1,2) = 
-0.30477. Similarly, we find &I, 3, 1,2) = 1.82971 - 2.71567 = -0.88596. 
We will have to decide later whether these is too far from zero for us too discard 
the three-way interaction term in the model. 

Both the (St'r)ijk and the (er)jk terms are missing (corresponding to the 
( I  2 3 12 13) model if and only if the log odds-ratios LXj,, j , ,  k, ,  k,) are both 
zero, equivalently the odds-ratios R i ( j l , j , ,  k , ,  k , )  are all one. This, in turn, is 
equivalent to conditional independence of education and response, separately 
for men and for women. The estimates from the data given above indicate that 
this model surely would be a poor fit. The model with the terms (ser)i,k and 
(Sr)ik missing, called the (1 2 3 12 23) model, would therefore correspond to 
conditional independence of sex and response for each level of education. 
Perusal of the data indicates that this model may fit well. 
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Let Rij(k,, k2) = m i j k , / m i j k 2  = p i J k l / p i / k 2  be the odds for level k l  Of the 
response factor for a given combination ij of the levels of sex and education. Let 

The functions L,, are the same for all ij if and only if the interaction terms 
(ser)i,k, (er),,, and (sr)ik are zero for all i , j .  k. But Li.i.(kl, k2) = Ll,(k,, k,) for 
all i, i’, j , j ’ ,  k l ,  k, corresponds to independence of factor 3 from the combination 
of factors 1, 2. For our example that would mean sex and education do not 
affect the probability of agreement, obviously not the case. Similarly, absence 
of the terms (ser)ijk, (sr)&, and (se)ij,  the model (1 2 3 23) corresponds to 
independence of the sex factor from the combination of education and response. 
Since sampling was done independently for men and women, it would be better 
to say that the vectors pi  (3 x 2 arrays) are identical. Had sampling been done 
instead by taking one random sample of 1,443 people, with 648 turning out to 
be the number of men, then pi  would represent the conditional probability 
vector for the categories of education and response, given level i of the sex factor. 

Absence of all interaction terms is equivalent to p E Yo @ V, CB V,  8 V, ,  to 
(r I (5, @ V, @ V, @ V,,), and to the representation of mi# as a product Agjhk .  
In the case of independent sampling for men and women this means pI = p2 and 
independence of the factors education and response. With respect to the one 
muitinomial model, the absence of any interaction terms implies independence 
of all three factors. 

Complete absence of a subscript, say j, in the model, implies that the 
conclusions of the preceding paragraph hold, plus the equality of expectations 
and probabilities with respect to the levels ofj, education. The same proportion 
of the population would have to belong to each of the three levels of education. 

Table 8.4.1 summarizes the relationships among the terms in the log-linear 
model and independence or conditional independence in a three-way table. 
Suppose that the log of the expected frequency in cell ijk is 

i =  1, ..., 1 

flLijr: = log mijk = I, + >.,! + A; + A: + >.? + A,’: + Lj: + for 

k =  1, ..., K 

This is the unique representation of p i j k  as the sum of terms, each of which 
sums to zero over any one of its subscripts. We will use the notation [123] = 0 
to mean that all the terms are zero. Similarly, {[I231 = 0, [23) = 0) means 
that all the terms = 0, .ii3 = 0. In Table 8.4.1 each row corresponds to a 
set of model terms which are zero, as indicated in the first column. Equivalently, 
each row corresponds to the statement that p lies in a certain subspace, with 
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subspaces becoming smaller as additional terms become zero. These are the 
same subspaces defined in Chapter 6 for the three-way analysis of variance. 
The second column gives the equivalent statement in terms of odds ratios, which 
hold for any selection of subscripts. We define 

Ri(j , j’ ,  k, k ’ )  = [mi~k/mi~’l / [mii , /mij’k’l  

and 
Li(j , j‘ ,  k, k’) = log Ri( j , j ’ ,  k, k’) .  

For all but the first row these smaller models produce representations of 
mijk in terms of sums of mijk across one or more subscripts. Replacement of a 
subscript by a ”+” means that the subscript has been summed over. Thus, 
mitk  = C m i f i  and m + j t  = mijk. Column 4 gives the interpretation of the 

model in terms of independence or conditional independence. Equivalent 
statements for models not considered in Table 8.4.2 may be found by 
interchanging subscripts. Let us prove the statements of the second row of the 
table. Others are left to students. [123] = 0, [23] = 0 is equivalent to pi# = 
i + 1; + i.; +- 1: + i y  + A:,. Computation gives Li(j, j‘, k, k‘) = Aijk - 2ii .k  - 
i , i jk* + A. I J  ., k , = (p, x), where x = c i j k  - cifk - CijknCiyk’, and Ci,k is the indicator 
of cell ijk. If V = Vo @ 5 @ V, @ V, @ V, ,  GI V,, is the subspace in which p 
lies under this model then such vectors x, for all choices of i, j, j’, k, k‘ span 
VL. Applying the function exp(.) on each side of Li(j , j’ ,  k ,  k’) z 0, we get 
Ri( j , j ’ ,  k, k’) f 1. This establishes the equivalence between the first and second 
columns. In fact, each of the statements in column 2 is simply a translation of 
the statement p I VI ,  where Yis the subspace in which p lies under the model. 

To get the representation given in the columns, write ffli,kmiyk* = mirkff l i jke .  

Summing across both j ’  and k‘, we get mi,kmi+ + = mij+ mi+ j .  This representa- 
tion implies the identity of column 2, so the statements of the first three 
columns are equivalent. To demonstrate the interpretation of the column 4, let 
p i j k  = mij$m+ + . Then conditional independence of the second and third 
factors, gwen the level of the first means that 

i ik 

Pijk/Pi+ + = [ P i j + / P i +  + l [ P i + k / P i +  +I, 

equivalent to mijkmi+ + = mi,+mi+k, which is the identity of column 3. 

Example 8.45: Consider Example 8.1.5 again, which presents frequencies 
of admission to graduate school for men and women for two fictitious 
departments. Supposing an equal distribution of credentials for men and 
women, is there discrimination against women? When the admission rates are 
the same for men and women in each department, why is the admission rate 
lower for women in the university? The answer of course is that women applied 
in larger numbers to the department which admits a smaller percentage of 
students. This tended to be the case at Berkeley, with men tending to apply to 
departments which are more technical. The higher admission rates in more 



344 ANALYSIS OF FREQUENCY DATA 

Table 8.4.2 Relationship Among &Terms and Means mi,, in Tbree-Wsy Contingency 
Tablea 

- -~ 

Corresponding Equivalent 
Model Terms Equalities for Expression for 
Set to Zero for Odds Ratios map Interpretation 

mijk = i. or 

mi,Jmi,Tk, = 1 

m+ + k m i j +  -- 
m + + +  

None 

Independence of factors 
2, 3, conditionally on 
levels of factor 1 

Independence of factor 
3 and combination of 
factors 1 and 2 

Independence of factors 
1, 2, 3 

Factor 3 has no effect 
and factors 2 and 3 
are independent 

Factors 2 and 3 have 
no effect 

None of the factors 
have an effect 

technical departments seems either to indicate that such departments take the 
view that students should have the “right to fail,” or that only students with 
high ability in those subjects apply to such departments. What does this example 
say about two- and three-way contingency tables? 

This is an example of Simpson’s Paradox (Simpson 1951). Let M, W, A, D, 
and D, be the events that a person is a man, a woman, admitted, applies to 
Dept. # 1, and to Dept. #2, respectively. In our example rn, 5 P ( A ) M D , )  = 
P(AI WD,) I w1 and rn, 3 P ( A ) M D , )  = P(AI WD,) = w 2 ,  but m = P ( A [ M )  > 
P(AI W) 3 w. Since m = m,P(D, IM) + m,P(D, (M)  = w,P(D, IM) + w2P(D21 M) 
and w = w ~ P ( D , I  W) + w,P(D,I W), 
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The second term before the last equality follows because P(D21M) = 1 - 
P(D, IM), and P(D2 I W) = 1 - P(D, 1 W). Since both factors of the last term are 
positive, rn > w. Men simply applied to the department with the higher 
admission rate. 

This is also an example of the danger in collapsing rables. A table of 
frequencies is collapsed across a factor F if frequencies for each category of the 
other variables are added across all levels of F. The relationships among the 
other variables in the collapsed table, as measured by odds-ratios may change 
completely, as they did for the Berkeley admission data. A factor, say 1, in a 
three-way table with factors 1, 2, and 3 is said to be collapsible with respect to 
the 23 interaction term if the 23 interaction term in the collapsed two-way table 
(determined by summing across factor 1) is the same as it was for the three-way 
table. In general, this will hold for either of the models (1 2 3 13 23), which is 
conditional independence of factors 1 and 2, given factor 3, or (1 2 3 12 23), 
which is conditional independence of factor 1 and 3, given factor 2. This can 
be verified by computing log odds-ratios for the collapsed table for these models 
(see Problem 8.4.3). For the Berkeley data, we have conditional independence 
of the factors sex and admission given department, so we can collapse across 
sex, while still preserving the interaction term for department with admission, 
or we can collapse across admission, while preserving the interaction term for 
department with sex. We cannot collapse with respect to department without 
changing the interaction term for sex with admission, and it is this term in 
which we are interested. 

In general, the lesson is that tables are to be collapsed with great care. 
Students may recall the height-reading score example used to demonstrate 
the need for a partial correlation coefficient in Section 3.7. Age was said to be 
a lurking variable. In this example, department is the lurking variable, and we 
should study the odds-ratios for the separate departments, rather than the 
odds-ratios for the collapsed table, the frequency table for the entire university. 

Problem 8.4.1: Prove the implications of the third row of Table 8.4.1. 

Problem 8.4.2: Make up some data for the three-way table of Example 8.4.5 
so that there seems to be bias against females within each department, but, 
when the tables are collapsed across departments, there seems to be bias against 
men. 

Problem 8.43: (a) Prove that a three-way table can be collapsed across 
factor 3, with the interaction terms Ah2 preserved, if the model of the second 
line of Table 8.4.1 holds, conditional independence of factors 2 and 3, given the 
levels of factor 1. Suppose that, instead, the model (1 2 3 12 23) holds (indicated 
by [123] = [13] = 0). Does this also imply that the terms ,I,!; are preserved by 
collapsing across factor 3? 

(b) Give an example of a 2 x 2 x 2 table which is collapsible across factor 
1, but does not satisfy the model ( 1  2 3 13 23) or the model ( 1  2 3 12 23). 
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Hint: To make things easier let 1 = 2; = 1.: = 2; = 0. This reduces the model 
(1  2 3 13 23) so that it can be expressed in terms of just two parameters. 

Problem 8.4.4: Consider four tennis players-Abe, Bob, Carl, and Dan- 
numbered 1, 2, 3.4 for simplicity. Suppose that there exist numbers A,, A,, 
and A,, the strengths of these four players, so that the probability that player 
i beats player j is p i j ,  where pij = log[pij/(l - pi,)] = Ai - l j  for each i and j. 
Each pair of players plays one set on five different occasions, so that a total of 30 
sets are played, with the outcomes of different sets being independent. Let K j  
be the number of times that player i beats j ,  and let 

(a) Write this as a log-linear model. What is the dimension of the subspace 
c/? Note that K j  = 5 - qi. 

(b) Suppose that an expert has determined that pij = $/(wf + $), for 
w, = 5 - i, though the expert does not know what /3 should be. Write this as 
a log-linear model. (The author has applied this model with reasonable success 
to analyze the records of college basketball teams playing in the National 
Collegiate Athletic Association Tournament each year. In that case wi was 
17 - s,, where si was the seed of a team. In each of four regions, one team 
receives each possible seed number j = 1, .  . . , 16. Over nine seasons and 567 
games the best estimate of /3 seems to be about 1.34.) 

Problem 8.45: Consider a three-way model with three factors, 1 at two 

(a) Which model corresponds to conditional independence of factors 1 and 

(b) For which model are factors 1 and 3 jointly independent of factor 2? 
(c) Give two 2 x 3 x 4 tables x1 and x2, consisting only of - l’s, 0’s and l’s, 

which span the interaction space V12, corresponding to the terms A!;. Express 
A::, A;:, and E.1: in terms of 6, x) and 61, x,). 

levels, 2 at three levels, and 3 at four levels. 

3, for each level of factor 2? 

Problem 84.6: Let Y be a k x k table. The following discussion is partic- 
ularly useful in the situation in which row and column classifications are the 
same, though that need not be the case. We might, for example, classify 1,OOO 
father-son pairs, drawn at random from the population in which the sons 
graduate from the high schools of a large city in 1980. The education of father 
and son might be classified into El, E, ,  E3, E,, E,, where a person in E,  has 
more education than a person in E ,  if i < j .  Obviously the education of fathers 
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and their sons are not independent. The saturated model has k2 parameters. 
We would like to find a model in which the number of parameters is smaller. 
Suppose pij = log mij = 1. + A,! + 1.; + ki j .  

As will be evident the definitions and relationships to be demonstrated in 
this problem are applicable any time the classifications of the rows and columns 
and rows of a two-way table are the same. Examples: (1) The members of a 
panel of people are asked their opinions on some issue at  two points in time; 
(2) matched pairs, say husbands and wives, each classified by religion; (3) 
people, animals, or things are paired so that they might be expected to produce 
similar results when treatments are applied. One member of each pair is chosen 
randomly to receive treatment #1, the other to receive treatment #2. All 
pairs are then classified according to the reactions of their members, rows 
corresponding to the member receiving treatment # I ,  columns to the 
other. 

(a) The table m of expected frequencies is said to be symmetric if mlj = mil 
(or pij = pj i )  for all i and j. Show that m is symmetric if and only if A: = A: 
and kij  = for all i and j. Let V ,  be the collection of vectors p corresponding 
to symmetric tables m. 

(b) Let B,j for i < j be the indicator of the pair of cells ( i , j )  and (j, i )  and 
let Dj be the indicator of cell ( j , j ) .  Express a symmetric table p as a linear 
combination of the D,, and Bij .  

(c) The table m is quasi-symmerric if I, = Aji for all i < j. Let V, be the 
collection of all vectors p corresponding to quasi-symmetric tables m. Give an 
example of a quasi-symmetric table which is not symmetric. 

(d) Let R, and C, be row and column indicators. Show that 

What is dim(V,,)? Hint: Let the subspace on the right be V*. First show that 
a vector v E is in V+. To show this, show that each C E P. Next, show that 
v E Y* implies v E I$. To do  this let p = c yiDj + 'f aiRi + c PijBij, and 

express i, A,!, 23, and A,  in terms of the y I ,  x i ,  and /Iij. 
(e) A table m satisfies marginal homogeneity if mi+ = m,, holds for each i. 

Marginal homogeneity does not correspond to a log-linear model. However, if 
a table is quasi-symmetric and has marginal homogeneity then it must be 
symmetric. Prove this. 

(f) Give an example of a 4 x 4 table which has (1) marginal homogeneity 
but does not have symmetry, and (2) I ;  = A: for all i. Give another table which 
satisfies (2) but not (1). 

(g) A table is quasi-independent with respect to a subset S of index pairs ( i , j )  
if there exist constants ai, b, such that mij = a,bi for all {i,j) E S. Show that 
quasi-independence with respect to the offdiagonal terms implies quasi- 
symmetry. 

1 i { < j  
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8.5 ESTIMATION FOR THE LOG-LINEAR MODEL 

We will begin our discussion of estimation with the simplest of our models, 
those for which Y satisfies the independent Poisson model, with mean m 

satisfying p = log m = pixj, where xl,. . . , xk are fixed known vectors of 

constants, chosen by the analyst (or statistician, or student, or political scientist, 
or . . .). All vectors indicated in the discussion have T components, indexed by 
a set .f, which is fixed throughout the discussion. Let V = 9'(xl,. . . . xk). We 
will always assume that the vector J of all ones is in V. We will not always 
assume that these xj are linearly independent. They might, for example, be the 
row and column indicators for a two-way table. Later we will wish to consider 
various possible multinomial models, but they cause some complications. We 
must learn to walk before we can run. 

For convenience we will sometimes want to think of Y and the xi as 
T-component column vectors. In this case we can write p = Xp, where 
p = (p,, . . . , f i r ) ' .  We will see that the maximum likelihood estimators (MLEs) 
of fl, p, and m satisfy certain geometric properties, so much of the intuitive 
appeal of linear models remains. 

We will confine ourselves to MLEs for which we have nice asymptotic 
properties. For the Poisson model the likelihood function is L(p; y) = 

[e-"'rn{'/yi!]. The log likelihood function is 

k 

j =  1 

i 

where C does not depend on g. The partial derivative of m with respect to f l j  
is xjm, where multiplication of two vectors is componentwise. That is, x,m has 
ith term xiinti. Since (J, x p )  = (m, xj), and the partial derivative of (y, p) with 

respect to pi is (y, xJ, we find that - I @ ;  y) = (y - m, xj), for j = I, . . . , k. We 

seek a solution fl = 6 to the likelihood equations: 

(? 

J S j  

c7 - I @ ;  y) = (y - m, xj) = 0 
2B 

for j =  1, . . .  9 k, (8.5.1) 

where m = exp(x Iy,xj). Let g = 6 be a solution to (SS.I), and define P = 
exp(z B j x j ) .  Equation (8.5.1) requires that the residual vector e = y - P be 
orthogonal to the subspace I/. This, of course, was the condition required of 
the least squares solution for linear models. The difference is that in this case 
X$ = fi = log m, rather than m, must lie in V (see Figure 8.6). 

We will need to demonstrate that a solution 1 to (8.5.1) exists (it usually 
does) and that the likelihood function is maximized for this choice. We find 
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FIGURE 8.6 The log-linear model and estimates. 

az 
8 P j  2SY 
-- l(b; y) = -(x,, x/.m). If we momentarily write m and the x, as column 

vectors, and let X = (xl,. , . , x k ) ,  then the matrix of second partial derivatives 
is -X'd(m)X, where d(m) is the T x Tdiagonal matrix with m on the diagonal. 
X'd(rn)X is nonnegative definite in general, and is positive definite if the xi are 
linearly independent and each component of m is positive. Hence, if a solution 
to the likelihood equation exists, it is unique. 

Example 8.5.1: Consider the accident data of Example 8.4.1. For cycle 
lengths of 40, SO, 60, and 70 the numbers of accidents were 149, 129, 112, 112. 
Represent Y as a 4-component column vector, and suppose that Y satisfies 
the independent Poisson model with p E V(J, x), where x = (40,SO. 60,70)'. 
We seek- 6 =.QO, 8,) such that for y = (149,129,)12,112)', 0, - I& J) = 

yi - eBO @lr( = 0, and (y - h, x) = xiyi  - ,ao x id l lXc  = 0. Letting 

b = PI, solving the first equation for b0, and substituting in the second, we get 

26,970 - SO*[ 7 . x i e b x i ] / [ r  PI] = 0. Since x = (40,50,60, 70)', and q = eb, 
we get 

i i i 

26,970 - 502[40t]"' + 50qs0 + 60e6* + 70q70]/[q4" + qso + q60 + q70] = 0. 

This equation cannot be solved explicitly for q, but can be solved with 
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patience and a $20 calculator. We find, with the aid of a personal computer 
(the author's calculator costs $65, so that it could not be used), q = 0.98982, 
b = 8, = -0.01023 and Po = 5.3884. Then ji = BoJ + ),x = (4.9792,4.8769, 
4.7746, 4.6723)', and rfi = (145.36, 131.23, 118.44, 106.95)'. The residual vector 
e = y - m = (3.639 5, - 2.226 2, - 6.466 3, 5.052 9)' may easily be verified to 
be orthogonal to J and x. Pearson and log chi-square statistics for (4 - 2) 
d.f., to be introduced in Section 8.6 as measures of the distance between m 
and y, are 0.721 and 0.723, so the fit of the model is quite good. We were a 
little lucky. 

The Newton-Raphson Algorithm: This algorithm provides a technique 
which will almost always converge to the unique solution B. The idea is to find 
a sequence of approximate solutions @")} which will eventually change so little 
with r that we can be confident that p"' is close to b. For each the function 

h(p)  = l ( p ;  y) is approximated by its Taylor linear approximation about B(') 
(its differential). We have already shown that h(p) = X'(y - m). Where each 
vector is in column vector form, and, of course, X is the T x k design matrix. 
The matrix of first partials of the vector h(p)  (second partials of [(y, p), the 
Hessian) is - I @ )  = -X'd(m)X. We therefye approximate h(p) at the (r + 1)th 
iteration by h,+ = h(B(')) - I@('))@ - p"'). We then define 6"' ') to be that 
value of fl for which h,,  

a 
a$ 

= 0. We find fi - B(r) = 'h,(@r)) ,  

where mtr) = exp($")), jP) = Xb"', and d(m"') is the corresponding diagonal 
matrix. Sometimes the sequence may fail to converge because the jumps are 
too big. A good algorithm can produce shorter increments by multip1ying:hem 
by constants a(') c 1. The criterion for stopping can be small changes in p('), in 
$,), or in m"). A good starting point Po) is usually obtained by use of least 
squares on log y. That is, = (X'X)-'X' log y. To avoid zeros in y. replace 
any zeros by 1/2. 

The method produced by the Newton-Raphson procedure is often called 
iterative weighted least squares. The change p"' - p(') is the generalized least 
squares estimate of the coeficient vector corresponding to observation vector 
(y - m(')), with weight matrix d(m(')), design matrix X. 

Example 8.5.2: Babe Ruth ("the Sultan of Swat") was probably the 
most famous baseball player of all time. He began as a pitcher with the 
Boston Red Sox at 19 in 1914, was traded to the New York Yankees in 
1919, and, because of his home run hitting, became a full-time outfielder in 
1920, at the same time that the baseball was made more "lively," to increase 
the number of home runs. His at bats (ABs) and home runs until the end of 
his career were 
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Year AB HR 

1920 
1921 
1922 
1923 
1924 
1925 
1926 
I927 
1928 
1929 
1930 
1931 
1932 
1933 
1934 

458 
540 
406 
522 
529 
359 
495 
540 
536 
499 
518 
534 
457 
459 
365 

54 
59 
35 
41 
46 
25 
47 
60 
54 
46 
49 
46 
41 
34 
22 

It seems reasonable to suppose that the number of home runs in the ith 
year should have a Poisson distribution with mean mi, which is a multiple of 
the number zi of ABs. Ruth was 38 years old in 1933, and it is not surprising 
that his HR production decreased in 1933 and 1934. How can we model this 
to allow for some deterioration with time? 

Let i be the index for year 1920 + i. If mi = zi expo?, + Bli ) ,  for i = 0, 
1,. ~ , , 14, then p i  E log mi = log zi + fi0 + f i l i ,  so that, strictly speaking, these 
mi do not obey a log-linear model. However, we can, put the model in a form 
which will allow us to use the methods developed for the log-linear model. Let 
xo be the vector of ones. Let x = (1,. . . , 15). p* = poxo + pix, and m* = 
exp(p*). Then the log likelihood function is l ( P ;  y) = (y, log z + p*) - (m*, z) + C, 
where C does not depend on 8. The ML equations are therefore 01, xi) - 
(m*xj, z) = (y - zm*, xi) = 0. The matrix of second partial derivatives, the 
Hessian, is - Z(P) = (X'd(mz)X). The Newton-Raphson algorithm defines 

Using an APL function of the author, checked using S-Plus, we have: 
= (-2.269, -0.01841). The coefficient b, = -0.01841 can be interpreted to 

mean that the model predicts that Ruth's HR production per time at bat in 
year ( i  + 1)  could be expected to be 100e-0.01841% = 98.18% of that predicted 
for year i. 

A commonly used statistic in baseball is the number of times at bat per HR, 
or wi = zi/x. The smoothed wi  for year i is $ti = z i / f i i  = exp( -8, - ),i). This 
is analysed in Table 8.5.1. Pearson and log chi-square values are: 12.90 and 
13.24 for (15 - 2) d.f., so the fit is quite good. The estimate of the standard error 
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Table 8.5.1 Analysis of tbe Babe Rotb Home Run Data 

1920 
1921 
1922 
1923 
1924 
1925 
I926 
1927 
1928 
1929 
1930 
1931 
1932 
1933 
1934 

458 54 
540 59 
406 35 
522 41 
529 46 
359 25 
495 47 
540 60 
536 54 
499 46 
518 49 
534 46 
457 41 
459 34 
365 22 

47.36 
54.83 
40.47 
5 1.08 
50.82 
33.86 
45.84 
49.09 
47.84 
43.72 
44.56 
45.10 
37.89 
37.36 
29.17 

6.64 
4.18 

- 5.47 
10.08 
- 4.82 
- 8.86 

1.16 
10.91 
6.16 
2.28 
4.44 
0.9 1 
3.1 I 

- 3.36 
-7.17 

8.48 9.67 
9.15 9.85 

11.60 10.03 
12.73 10.22 
11.50 10.4 1 
14.36 10.60 
10.53 10.80 
9.00 11.00 
9.93 11.20 

10.85 11.41 
10.57 11.62 
11.61 11.84 
11.15 12.06 
13.50 12.28 
16.59 12.51 

of ), is 0.009 24, so a 95% confidence interval on PI is 8,  k 1.96(0.009 24) = 
-0.01841 0.018 11,just missing zero. 

Sufficiency for tbe Poisson Model: For the independent Poisson model the 
log likelihood function is 

where Py is orthogonal projection onto V, since p~ V. Therefore, P v y  is 
sufficient for p, p, and m. Since P,y is a function of the inner products (y, xi),  
the vector of these inner products is sufficient for 6, p, and m. 

Example 8.53: Let 9 = { 1.2,. . . , r} x (1,2,. . . ,c}, so that Y is an r x c 
table of frequencies. Let Ri and C j  be the indicators of the ith row and 
jth column. Let xo be the vector of all ones, let Vo = U(xo), V R =  
IP(R,, . . . , R,) n Vk, V, = Y ( C , ,  . . . , C,) n V i ,  and V = Vo @ V, Q Vc. Sup- 
pose that p = log E(Y) E V.  As noted in Example 8.4.3, p E V is equivalent to 
the multiplicative model: mri = (mi .  m . i ) / m . .  for all i andj. The vector of inner 
products of any set of spanning vectors for V is sufficient for the parameters 
of this model. The inner products of the row and column indicators are the 
corresponding row and column sums. If we were to suppose instead that 
p E Y(R,, . . . , R,), then the vector of row sums would be sufficient. 

For observed y = (yii) it is easy to verify that the array hi, = - = I ( y ; y 9  
is the MLE of m, and that ji = 1 [logy,. JR, + Uog y.,]Cj - y . .  J. 

1 i 
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We have yet to prove that the MLE always exist. In fact, the MLE need not 
exist if some component of Y is zero. For all the models we will consider there 
is always a positive probability that the MLE does not exist. Fortunately, the 
probability is usually extremely small. For a simple example, let Y = (Y , ,  Yz) 
satisfy the independent Poisson model with p = (PI, Bz). The likelihood function 
is&fl,y)= - ( J , m ) + ( y , p ) + C =  -[@I + e ? I + v l D ,  +y ,B ,+C.I fy ,=O,  
then I(B, y) is a decreasing function of &, taking its maximum at - 00. We 
insist that the values of estimators be real numbers. Fortunately, this is the only 
kind of situation for which the MLE does not exist. 

Whenever all components of m are positive, as we always assume, the vector 
p exists. The vector fl is not uniquely defined unless the vectors x, are linearly 
independent. To avoid this assumption we will show that the MLE for p (and 
therefore for m) exists whepever all components of y are positive. If the xi are 
linearly independent then fl = (X'X)-'Xfi is the MLE for fl. 

Theorem 85.1: If every component of y is positive, then the MLE of p 
exists. More generally, if there exists a vector 6 I V, such that y + 6 has 
components which are all positive, then the MLE for p exists. 

Proof: Suppose all components of y are positive. The likelihood function 
minus C is g(p) = -(J. 8') + (y, p) = hi(pi), for hka) = 

y ,a  - 8. Each hi is continuous, lim hi@) = -x, iim hi@) = 30, so that 

each hi has a finite maximum (at log yi). It follows that there exists a constant 
c such that, whenever lpil < c for all i ,  g(p) < g ( 0 )  = - T, where Tis the number 
of components of y. Thus, F = {plg(p) 2 - T, p E R , )  is closed and bounded. 
It follows that G = {ply@) 2 - T, p E V} is closed and bounded. Since g is 
continuous this implies that there exists a fi at which g takes its maximum on 
C. Since g is smaller for all p E ( V  - G), this proves that g is maximized on V 
by P. 

If 6 I V, then g(p) = -(J, m) + (y + 6, p) = -(J, m) + (y, p). If all com- 
ponents of y + 6 are positive then g has a maximum at some point jl by the 
first part of the theorem. Since the likelihood functions for y + 6 and for y are 

[ -fYi + yipi] = 
i i 

o - - m  a-m 

the same, fi also is the MLE corresponding to y. 0 

Continuation of Example 85.3: Suppose that r = 2, c = 3, and that we 
6 3 0  '3. Then 6 1  V,  since it is 
0 1 2  0 - 1  

observe y = [ 1. Let 6 = [ -; 
orthogonal to the row and column indicators. Since all the components 
of y + 6 are positive, the MLE for p and m exists. It is easy to verify that 

& = - [ 1, has the same inner products with these indicators as does 

y. A two-way table has an MLE for the multiplicative model p E V if and only 
if all row and column sums are positive. (Why?) 

1 1 8 9 9  
4 6 3 3  
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The Independent Multinomial Model: Suppose that .f = 9, u .F2 u . . . 
u ,Yk, where these index sets Sj are disjoint. Let Yj have elements, and let 
T = c q. For each j let j j  be the index set for Yj, and let Y = (Y,, . . . , Yk). 

Suppose that these Yj are independent, and that Y, - .&.,(nj, pi). That is, Y 
satisfies the product multinomial model. Let mi = E(Y,) = n,p, and m = 
E ( Y )  = (m1, .  . . , mk). Let wj be the indicator of index set .flj. and suppose the 
subspace V of the sample space R ,  of possible vectors y includes each of these 

WJ.  

j 

Example 8.5.4: Suppose a random sample of 400 adults is chosen from 
among the residents of Lansing, Michigan, and that they are classified into 
four age-groups, corresponding to the rows, and three political categories: 
Republican, Democratic, and Independent, corresponding to the columns. In 
this case k = 1.  Then V must include the vector J = x1 of all ones. On the other 
hand, if we sample by choosing 100 people randomly from each of the four 
age-groups, k = 4, 9i = ((i, l), ( i ,  2), (i, 3)), each ni is 100, and wi is the indicator 
of the ith row. 

If we classify by sex as well, with sex as the first factor, age-group as the 
second, political party the third, then .f, = (1,2), .S2 = { 1,2,3,4}, S3 = 
{ 1,2,3),  4 = #, x .y2 x j 3 ,  If we sample again by taking 100 people randomly 
from the j th  age-group, then wj, the indicator of the j th  level of age-group, 
must bc included in V. If we sample by taking 50 of each sex-age-group 
combination, then we must include the indicator w;, of the indices with level i 
for sex and level j for age-group in V. 

If p = log m = c D j x j  = Xfl for the product multinomial model, the like- 
lihood function is 

where yl = (yj l , .  . . , yjn,) is the vector of values taken by Yj. The log likelihood 
function is 

l m n ( k  Y) = 1 C ~ j i  log(Pji) + C*, 
j i  

where C* does not depend on p. Since mji = nipji, and yIi = nj, this is 
i 

The log likelihood for the Poisson model was: 
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Hence 

where C** does not depend on 8. Since the conditional distribution of Y,, gwen 
Sj  = c yii = nj is multinomial with parameters nj and pi = mi/",, C** is the 

negative of the log likelihood of (n , ,  . . . , nk).  Since fi maximizes IP@, y) and C** 
does not depend on p. 

1 

fmn(p; y) I /,@; y) + c** for ail P. 

f! must be chosen so that mji = (m, wj) = nj for each j. However, since w, E V 

for each j .  (m, k j )  = (y, &,) = n, for the MLE m c9rresponding to B under the 
Poisson model. Therefore, the Poisson solution automatically satisfies the 
restrictions of the multinomial model, and is a solution which makes the 
inequality an equality. That is, the Poisson solution is also the multinomial 
solution. 

Though the solution @s for the Poisson and multinomial models are the 
same, 8, fi, and m will have different distributions under different models. As 
we will indicate, 8, fi, and m are all (in a certain sense) asymptotically unbiased. 
Each will be less variable under the multinomial model than under the Poisson 
model. 

i 

Example 8.55: Consider the rat data of Example 8.4.2: 

Dosage d ,  d2 d3 d4 
Log-dosage -r I -x 2 x3 x4 
Number of rats 15 17 19 16 
Number dying 2 6 1 1  13 

For xj  as defined in that example the observed Y is y = 

The model states that Yzj - a(n, pZi), where log[p,j/(l - p 2 j ) ]  = p,. Equi- 
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the same equality holds i f f  and 4, are substituted for y and pj ,  We will use 
the log-linear approach rather than the logit approach to fit the model. This 
means that we will fit the model with the five parameters p, ,  . . . , p4, y even 
though the first four are functions of the last. In this sense the model is 
overparameterized. In the logit approach we consider instead only the second 
row of Y. This second row, conditionally on the column totals, has a distribution 
which depends only on the parameter y. The estimators fl,, being simple 
functions off, are easily determined from 9. 

The Newton-Raphson method produced the MLE 

1 11.98 8.50 5.87 3.22 
3.02 8.50 13.13 12.78 

m = [  

for d ,  = 0.5, d ,  = 1.0, d3 = 1.5, d4 = 2.0, and therefore 

x = [  0 0 0  
-0.693 1 0 0.405 5 0.693 1 

The estimate of p was ) = (2.483,2.140, 1.770, 1.171, 1.986)’, and 

1 2.483 2.140 1.770 1.171 
1.106 2.140 2.575 2.548 

fi = C bjJ, + PX = 
i 

The estimate of the probability matrix is obtained by dividing the j t h  column 

. As noted earlier, this 1 0.799 0.500 0.309 0.201 
0.201 0.500 0.691 0.799 

of m by nj ,  to obtain = 

model forces the probability of death for dosage 1.0 to-be 1/2. 

] is 
orthogonal to the column indicators and to x. The Pearson and log chi-square 
values, measures of the distance of y from A were x2  = (yij - rhij)2/&ij = 3.044 
and G‘ = 2 1 yij log(yij/&ij) = 3.053. We will discuss the properties of these 
statistics later. Under the hypothesis that this model holds, these statistics 
should each be approximately distributed as x’ with (8 - 5) = 3 d.f. Thus, 
the model fits quite well. Each of b, 8, A has an approximate multivariate 
normal distribution with mean given by the corresponding parameter, and 
covariance matrix given by formulas presented in Section 8.6. Estimates 

1.023 2.5 2.132 -0.224 
0.224 [ - 1.023 -2.5 -2.132 

The residual vector e = y - m = 

I. 0.956 0 0.940 1.020 
0.956 0 0.940 1.020 

of the standard deviation of the elements of A are 

Since y Z j  = nj - Y,,, Var(rA,,) = Var(rh2,), Since x2 = log d, = 0, rhlZ = 
rh22 = ( K 2  + YZ2)/2 = n2/2 = 8.5, so that Var(rhI2) = Var(rh,,) = 0. 

Estimates of the standard deviations of the terms of ) are given by taking 
the square roots of the diagonal elements of the estimate of the covariance 
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matrix: (0.270 3,0.242 5,0.279 8.0.403 1,0.57 1 3). Only f is of real interest. 
f * 1.96 a(?) = 1.986 & 1.120 is an approximate 95% confidence interval on y. 
Since this interval does not include zero, we can be quite confident that y is 
greater than zero. 
- The model log[p,,/(l - = yo + ylxj was also fit, resulting in f? = 

13.40 10.51 7.27 3.821 [ 1.60 6.49 11.73 12.18 ’ 

. Pearson chi-square and Log chi-square 

values were 0.520, 0.525, certainly smaller, indicating a very good fit. The 

(2.595,2.352, 1.984, 1.341, -0.482,2.367)’, rir = 

1 0.893 0.618 0.404 0.239 
0.107 0.382 0.596 0.761 

smaller model with yo necessarily zero fits quite well and the improvement 
in the fit probably does not warrant the increased complexity. The estimate 
of the standard deviation of f o  is 0.3165, so that -0.482 & 0.620. If we let 
gi(d) be the probability of death for dosage d for model i(i = 1,2) then 
&(d) = df/( 1 + d f )  = d1.986 /(1 + d1.’”9 &(d) = e9vdf1/[1 + efodt’ J = 
0.617 6d2.367/( 1 + 0.617 6d2.367). These functions are graphed in Figure 8.7. 

and 

Sufficient Statistics for the Independent Multinombl Model: Suppose 
Y = (Y, . . . , Yb) satisfies the independent multinomial model with 

1 

0.75 

0.5 

0.25 

0 

0 2 4 6 8 10 

d=dosage 

FIGURE a7 Estimates of the probability of death. 
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p = ( p l , . .  . , pb) = log(m) = iog(ml. . . . , mkJ = log(n) + log(p). 

Let T = c q. Y takes values in R,. Let J, be the indicator of the cells 

(l,j), . . . , ( k , , j ) .  Then 1 J, = J, the T-component vector of all ones. 

Let V, = Y(J1,. . . , J,.,), and suppose that p E V = Vo 8 9 ( x k , +  l,. . . , xk), 
where xi is not contained in V, forj  > ko. Let V, = V n V& and p, = p(pl VL) = 

p - p(p( Vo) = p - 1 pjJj, where pj = pjJj + p,. The 

kernel of the log likelihood function (the part which depends on p) for the 
product multinomial model is 

i 

i 

pij /?. Then p = 
i ( i  ) I 

Let y1 = p(y( Vl). Then (y, pL) = (y,, pl), so that the likelihood function may 
be expressed as a function of yl. Thus, we have Theorem 8.5.2. 

Theorem 85.2: 3, = p ~ y l  v,) is a sufficient statistic for 8. If x,.,,+ . . , xk 
span Vl, then the (k - k,)-tuple ((xi, Y), j = k, + 1,. . . , k) is sufficient for fi. 

Proof: The second sentence follows from the fact that Y, is a function of 
the inner products (Y, xj) for j > k,. We are supposing that V has dimension 
k ,  so that and fi are uniquely defined. 0 

The representation p = po + p,, with p, = pjJj E V, is also useful in 

providing an understanding of the relationship among the parameters for the 
multinomiai model. Since 

i 

m = exp(p) = expb, + pL) = 1 PJJ, P1, [, 3 (8.5.2) 

we have n, = (m, J,) = @J c +j, so that pi = log n, - lo 
i 

coefficients p j  of the indicators Jj are determined by pL, which - in turn - is a 

function of the parameters &,+ l , .  . . , flk, and pi = exp(pLj)/ c exp(pLij) I 

l i  1 
Put another way, all the vectors in A = (mlp = log m E V, (m, J,) = ti,, 

j = I , .  . . , k ) ,  the set of all possible m, have the same projection m, = (n,/7j)Jj 
onto V,. The orthogonal part m - m, is determined uniquely by pI. Figure 
8.8 may provide some intuition. In Figure 8.8, of T-space, fi = log(rfi) E V, is 
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Y 

FlGURE 8.8 

359 

not pictured so as not to cause even more clutter. The case pL = 0 corresponds 
to the case p = cpjJ j .  In this case all the cells of the table corresponding to 
the same j have the same expected value expbj) = nil?. 

In the rat poison example, we considered the model p = 1 pjCi + yx, for x 

the 2 x 4 array with 0's in the first row and (xI,. . . , x4) = log(d,, d,, d,, d,) in 
the second row. For the notation above pj = Bj for 1 5 j 5 4, and 

i 

Then p, = log nj - log[e-Y"J + eYXJ]. 

Example 8.5.6: Reconsider Example 8.4.4. Here we will discuss only two 
models, using S-Plus, rather than the procedure CATMOD in the statistical 
computer language SAS, or the command LOGLINEAR in SPSS. 

Usually we will wish to fit the saturated model, for which m = Y, then do 
an ANOVA-type breakup of the Pijk = log f i i j k  to obtain estimates of p, si, e j ,  
etc. Estimates of the standard errors of these parameter estimators and x 2  
statistics can then be used to decide if these estimates are sufficiently close to 
zero to omit them from the model They will require estimates of the standard 
errors of these terms, and some chi-square statistics. so we postpone that until 
these topics have been discussed. We first discuss the model which differs from 
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the saturated model only in that the term (ser)ijk is missing, the (1 2 3 12 13 23) 
model. The x-vectors can be taken to be 

1 for age level 1 

, el = 0 foragelevel2 1 - 1 for age level 3 

1 formen 
- 1  forwomen 

x,,, the vector of all ones, s = 

0 for age level I 

1 forageicvel2, r = { 1 for response agree 
- 1  otherwise 

- 1 for age level 3 

and vectors corresponding to interaction terms, which are their componentwise 
product: (W,,, (=h2, (srhlr WIl. (erIz1. For example, 

1 1  

1 1  

1 1  

- 1  - 1  

- 1  - 1  I - 1  - 1  

S =  , el = 

0 

1 

- 1  

0 

1 

I -  1 

-!, - 1  

1 

1 1  

0 0  

- 1  - 1  

1 1  

0 0  

- 1  -1.  

and Y =  

1 1  

0 0  

- 1  - 1  

- 1  - I  

0 0  

, 1 1. 

86 38 

173 283 

, 28 187 

, 

The choices of the spanning vectors are somewhat arbitrary. These have been 
chosen to be linearly independent and to span the orthogonal subspaces V,, 
5, V, ,  cc, V',, v,. The coefficients Po, .  . . , p9 are, in the usual notation of 
the analysis of variance p, sl, el, e,, r , ,  (se),,, (se)12, (sr), , ,  (erll1, and (er),,. 
The other terms can be found from the additive property. For example, 
(se)ll + ( ~ e ) , ~  + 

This is the only model for three categorical models with no explicit formulas 
for the d~,,~. We seek m having the same inner products with these independent 
vectors as does y. That is, the marginal totals for r6 and y across all 
combinations of any two factors must be the same. For example, the 2 x 2 
table of sex and response combinations determined by adding across education 

= 0, so that = -(se),, - (se)12. 
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must be [226 ‘”1. The Newton-Raphson method was used to find the 
287 508 - 

solution. The coefficient vector is /I = 01, s,, e , ,  e2, rl,  (se),,, ( ~ e ) , ~ ,  (sr),  ,, 
( 4 1  1 9  ( e h ) ’ .  

To facilitate the use of matrix algebra these 2 x 3 x 2 arrays were rewritten 
as columns of 12, so that the design matrix X was 12 x 10. After the 
computations for fi were completed, ji = X@ was determined as a column vector 
of 12 components, then rewritten as a 2 x 3 x 2 array for improved under- 
standing. All of this was carried out using the S-Plus function “glm.” That 
function provides options (using a contrast option) which determine various 
spanning vectors. The choice made here deviates in sign only from those given 
by the contrast = “contrsum” option. Other contrast choices provides the same 
h, but different 6. The solution was 

fi = (4.550, -0.068, -0.491, -0.645, -0.256,0.050, -0.132, 

- 0.006,0.566, - 0.00s)’. 

4.344 3.736 77.05 41.95 

14.724 5.2651 1 112.64 193.36 

3.592 5.229 36.31 186.69 

m = I 80.95 43.05 ’ = I 4.394 5.229 

5.138 5.655 170.36 285.64 

L 3 . m  5.1891 1 35.69 179.31. 
and 

e = y - - m =  

For example, 

- 5.05 

- 2.64 

7.69 

5.05 

2.64 

- 7.69 

- 7.69 

- 5.05 

- 2.64 

7.69 

1 

p i l l  = p + J, + 61 + P, + (G),, + (G),, + @),1 

= s o  + 8 1  + s, + 84 + 8, + P 7  + 8,. 
To verify that m e  V, check all the two-way marginal totals. For example, 

summing m across educational levels, we get [ ii; ;‘::I, as for y. To see that 

j i ~  V, check that fi is orthogonal to each of the vectors in the three-way 
interaction subspace V,,. We can do this by showing that jl is orthogonal to the 
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two spanning vectors 

- 1  

1 ’  

- 1  0 i! and 
0 -:1. - 1  1 

These vectors define contrasts, Li = (Ii, p), whose estimates under the saturated 
model are L ,  = (ll,p) = -0.3048 and L,  = (12,p) = -0.8860. Estimates of 
the standard errors of these &, assuming only the saturated model, are 
8,  = (Il, l/y)*” = 0.317 5, and (9, = (I2, I/Y)’;~ = 0.377 5. The z-values are 
therefore zL = 0.960 and i2 = 2.347, and the Pearson x z  value is 5.948 for 2 
d.f. (,&,, = 5.991), indicating that this model may be barely believable. Still, 
the fit is quite good, and we may be satisfied with it. The contrasts L ,  and L, 
are zero for the model with three-way interactions zero. The same is therefore 
true for the estimates L ,  and 2, under this model. 

Estimates of odds-ratios are obtained by taking the antilogs of these 
contrast estimates Li. Confidence limits may be obtained from the antilogs of 
the endpoints of confidence intervals on the Li.  

The estimate f i i i  for the conditional probabilities pi! = rn,,,/(m,,, + mv,) of 
agreement for the sex-education classification i j  is obtained by substituting mi& 

. Notice that sex seems to play for milk. We obtain: fi = 

little role, and that the probability p i j  is a decreasing function ofj. This suggests 
that we try a model with no sex-response interaction, and that we replace the 
terms (er),k by a covariate which is linear in k. 

1 0.647 0.368 0.197 [ 0.653 0.374 0.166 

Consider the vector 

W =  

- 1  1 

0 0  

1 - 1  

- 1  1 

0 0  

1 -1. 

This vector should serve as a good stand-in for the two vectors (er), I and (er), 
The resulting subspace Y = Y ( x , ,  sl, el, e2, r l ,  (se), (w)~~, w) is 9-dimen- 
sional. We obtain, using the Newton-Raphson method, after three iterations: 



ESTIMATION FOR THE LOG-LINEAR MODEL 363 

and 

4.339 3.7461, ~ = ~ 76.65 42.35 

4.731 5.260 1 13.46 192.54 

3.581 5.232 35.89 187.1 1 

4.388 3.774 80.47 43.53 

5.145 5.651 171.31 284.69 

,3.562 5.192 35.22 179.78 

-4.65 4.65 

-3.46 3.46 

8.11 -8.11 

4.65 -4.65 

3.46 -3.46 

,-8.11 8.11. 

P $1 8, 8 2  f l  

6 j  4.550 - 0.068 - 0.488 -0.647 -0.259 

z; 135.7 - 2.28 - 9.85 - 16.45 -8.81 
46,) 0.034 0.030 0.050 0.039 0.029 

0.049 -0.132 - 0.005 -0.561 
0.047 

B j  

&,I 0.050 
ZJ 

0.036 0.029 
-0.18 - 12.04 3.65 1.00 

The standard error estimates given here were obtained under the assumption 
that the observed frequencies are independent Poisson r.v.3. For the independent 
multinomial model, the standard errors for S, is actually a bit smaller. However, 
since 3, is of no interest, its value being determined by the numbers of men and 
women sampled, no harm is done by the inclusion of a poor estimate. This will 
be discussed further in Section 8.7. 

Under the null hypothesis that /?, = 0, Zj = fij/d(),) is approximately 
distributed as standard normal. The only Zj not significantly far from zero 
corresponds to (se) ,* .  We are not tempted to drop this term from the model 
because (se)l , obviously should be included. Of course, the coefficient -0.561 
of w is of most interest. We estimate that the logit log(pij/(l - prj)) decreases 
0.561 for each step upward in educational level. That is, the odds for agreement 
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are multiplied by the factor e-0.561 = 0.571 for each step upward in educational 
level. The Pearson and log chi-square values, measures of the distance from Y 
to m for this model were 6.03 and 6.06 for (12 - 8) d.f., indicating a reasonably 
good fit. Estimates of the probability of the response "Yes" are given, under 
this model, by f l i j  = thijl/(fiij1 -#- fiijz) = fiuI/xit. These are 

Men Women 

1 r 0 . 6 ~  0.6491 

2 I 0.371 0.376 1 Education 
Level 

3 L0.161 0.164J 

Problem 8.5.1: Let Y = (Yl,  Yz. Y3) have a multinomial distribution with 
n = 150, p = (pl,  p2, p3), where log pI = p1 = P1 + B2, log PZ = P Z  = 8, + P z -  
log P 3  = P 3  = P I .  

(a) Give explicit expressions for the MLE's b of fl, ji of p, and m of m, p of 
p. H i n t :  P1 and /I2 m,ay be expressed very simply in terms of m,, m2, m3. The 
relationship between fl and m must be the same. Remember that (Y, xl) = (I% x,) 
and (Y, xz) = (m, x2), where p E V = 9 ( x I ,  xz). 

(b) For Y = (80,60, 10) find b, $, h, a. 
(c) Use the Newton-Raphson algorithm to find 1, beginning with b'"' = (0, 1). 

Problem 8.5.2: Find the MLE of (PI. &) in Example 8.4.1. 

Problem 8.5.3: Find the MLE of B = &, p 2 ,  p,, p4, y)' in Example 8.4.2. 
Also find the MLE of fl = (p,, p z ,  p 3 ,  p4, yo ,  yl). Compare the corresponding 
estimates of rn. 

Problem 8.5.4: Suppose the 1,OOO father-son pairs of Problem 8.4.6 are 
classified as follows: 

El E ,  E ,  E4 E ,  

E l  52 45 21 9 131 

Education of Father :: [ :: :: 9 2 ]  :i: 
E4 19 51 82 42 217 

E5 12 38 50 84 194 

181 222 238 194 165 1,OOO 

(a) Suppose that p E V,. That is, p and m are symmetric. Find the MLE's of 
p and rn. 
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(b) Suppose that p E b,. That is, p is quasi-symmetric (see Problem 8.4.6). 
Show that for this model the MLE is 

'52.00 45.56 19.35 10.07 4.02 

63.44 87.00 46.25 12.49 6.83 

33.65 57.75 83.00 40.41 27.18 

21.93 19.51 50.59 82.00 42.97 

, 9.98 12.17 38.82 49.03 84.00. 

(c) Determine the Pearson and log likelihood goodness-of-fit statistics 
x2  = 1 ( K j  - hij)/rftij and G2 = 2 for the models of (a) 

and (b). If prz V, these x2 statistics are approximately distributed as x 2  
with d.f. = (n - dim( V , ) )  = (25 - 15) = 10. Similarly, if p E V,,, then d.f. = 
(25 - 19) = 6. Would you reject either of the null hypotheses p E V,  or p E Vq 
at level a = 0,05? 

I;i log( 
i j  il 

Problem 8.55: The numbers of cases of a rare cancer among the residents 
of a state in one year, broken down by county were as follows: 

1 2 3 4 5 6 
County population in 1,OOO's 213 147 89 190 284 126 
No. of cases 14 25 26 22 38 45 
No. of people over 50 in 1,OOO's 58 49 34 56 83 49 

Let 
in different counties. 

population. Find the MLE's of 8 and m, both in symbolic and numerical form. 

over 50 in the population. Find the MLE's of 1 = (Po. pl) and m. 

be the number of cases in county i. Suppose that - P(mmi),  independent 

(a) Suppose mi = 8zi, where t i  is the number of people (in 1,OOO's) in the 

(b) Suppose that mi = zi exp(B, + B , p i ) ,  where p i  is the proportion of people 

Problem 8.4.6: Consider a 2 x 4 table Y with row vectors Y l, Y, satisfying 
the independent multinomial model, Yi - d ( p i ,  ni) for i = 1, 2. Let R ( j )  = 
pIj/pzj and H(jl,j,) = R ( j , ) / R ( j z ) .  Let d be the model for which 
log[H(j , , j , ) ]  = p(jz  - j l )  for some parameter B, and eachj,, j , .  

(a) Express the interaction terms Lij in terms of /I for the model A. Use this 
to write the model in vector form, using just one vector to represent interaction. 
Why must row effects be included in the model? What is dim( V)? 
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(b) For Y = [37 47 83 133] find the MLE of m under model 4. You 
62 52 68 68 

will need a computer, or much patience. For those without a computer, we give 
f i l l  = 36.833, f i , ,  = 46.195. Thought and a $10 calculator should be enough 
now. Verify that G 2  = 0.176, indicating a very good fit. 

(c) Why must each rn under this model satisfy 

Cm 1 11112 2 M23 m, 41 Cm2 1 m, 2 m, 3 111243 = 1 9 

Cm 1 1 4  2 m: 3 m24l/ Cm, 1 m? 2 m: 3 m 141 = 1 ? 
and 

(d) Let the model A* correspond to p1 = p2. Find the MLE of m for this 
model. Which model, AY or A*, seems most appropriate? What is the 
subspace v* corresponding to A* and its dimension? Verify that G' = 24.97 
for A*, indicating a rather poor fit. 

8.6 THE CHI-SQUARE STATISTICS 

For linear models F-statistics were used to measure the adequacy of the fit of 
a model. We always had to begin with a model, called the full model, and used 
the F-statistic to help decide whether some smaller linear model was adequate. 
For log-linear models, with Poisson or multinomial sampling, we use chi-square 
statistics, the general name for statistics which are asymptotically distributed 
as x 2  under the null hypothesis. These statistics are measures of distance 
between two vectors, either between Y and h, or between m and another 
estimate of m, say $lo. 

We will be particularly interested in two distance measures: 

Pearson chi-square: x2(x, y) = ( y ,  - X ~ ) ~ / X ~ ,  defined for all 
i 

y, 2 0, xi > 0. 

Log chi-square or deviance: G2(x, y) = 2 1 y, log(y,/x,), 
i 

defined for all y, > 0, x I  > 0. 

x, = (J, x) = (5, y) = Let J be the vector of all ones. In most applications 

y, = n. In this case these statistics can be written as inner products. 
i 

i 

x2(x, Y) = 1 Y:/-x, - n = (Y/x. y) - (J, Y) = (Y/X - J, Y), 
1 

and 
G2(x, Y) = 2(Y, log(y/x)) = 2C(Y, log Y) - 0 . 7  log 703. 

x2(x, y) obviously takes its minimum value for x = y. To see that this 
is also true for G2, use Lagrangian multipliers. For fixed y let H(x, I.) = 
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d 
dX 

(y, log y - log x) + A[(x, J) - n]. Then -- H(x, A) = - y/x + 1.J. Setting this 

equal to the zero vector, and using the fact that (x, J) = n, we get x = y. The 
matrix of second partial derivatives is diag(y/x), which is positive definite, so 
that this is a minimum. Since G2(x, x) = 0, G2(x, y) 2 0 whenever y i .  

It is easy to show that for constants c,, c2: x2(c,x, c,y) = c,xz(x, y) + 
(cl - c2)n and GZ(clx, c2y) = c,G2(x, y) + c2n log(c,/c,). Notice that if c = 
cI  = c z  then x2(cx, cy) = cxz(x, y) and G2(cx, cy) = cCz(x, y). 

xi  = 

Another useful identity: 

This last term will be much smaller than either x2 if x and y are close, so that 
x2(x, y) and x2(y, x) will often be relatively close. 

The distance measures G2(x, y) and x2(x, y) will be close whenever x and y 
are close in a sense to be discussed. By Taylor’s Theorem for 161 < I ,  
log(1 - 6) = -6  - (1/2)S2 + o(S2), where lim o(S2)/S2 = 0. For a pair of 

numbers (x, y) let A = (y - x) /y  = 1 - x/y. Then log(y/x) = -iog(x/y) = 

Let A, = ( y i  - xi ) /y , .  Then G2(x, y) = 2(y, log(y/x)) = 2[O., A) + (y, A2/2) + 
o(A.2)yJ = C ( y i  - x i )  + xz(y, x) + yi = 

d+O 

-log( 1 - A) = A + A2/2 + o(A2). 

yio(A:). In most application 
i i i 

C x1 = n, so that the first term on the right is zero, and 

After all this preparatory work we are ready to replace x and y by estimators. 
Let p be a T-component probability vector and let { f in = m,/n) and@: = m:/n} 
be two sequences of estimators of p, with components summing to one for each 
n. Let 

2, = (h, - np)/Jn = (in - p)Jn, and Z,* = (fi: - np)/& = ($: - p),/n. 

Then A,, - m: = (Z, - Z,*)Jn. Suppose that the sequences {Z,} and {Z:} are 
each tight. A sequence of random variables { W,) is right if for every E > 0 there 
exists a constant K, such that P( I W,l > K,) < E for all n. A sequence of random 
vectors is tight if each component is tight. The tightness of the sequences {Z,) 
and (Z:} implies that there is a cube in T-space within which all these random 
vectors will lie with probability close to one. Tightness is implied by the 
convergence in distribution of the sequence. For our two sequences it implies 
that {p,) and {p:} both converge in probability to p. 



368 ANALYSIS OF FREQUENCY DATA 

Theorem 8.6.1 

(2) D J ~ , , ,  m:) = [G2(fi,, m:) - ~’(fi,,, I&:)] converges in 
probability to zero. 

(3) D3(m:, m,) = [Cz(mn, m:) - G’(m:, m,,)] converges in 
probability to zero. 

Proof: From (8.6.1) 

which converges in probability to zero. From (8.6.2) 

The second term converges in probability to zero by (I). The third term is 
1 nfini(Zn, - Z:i)3n”2/n3P:i, which also converges in probability to zero. 
i 

To prove (3) note that 

and that each of the terms within brackets converges in probability to zero by 
(1) and (2). 0 

For simplicity of the discussion and proof we have defined Z, = (fin - p)&, 
and Z: = (p: - p)& However, p can be replaced by pn = p + a/&, for a 
constant vector d with (d, J) = 0, so that p, remains a probability vector, and 
the theorem still holds. The limiting distributions of x’ and G’ will be depend 
on d, in a way to be discussed later. 

Notice that we can take hpln* E np, and, from (l), conclude that 
p lim[x2(m,, p) - x2(p, m,,)] = 0, (limit in probability) if {Z,} is tight. In 

particular, if Y, - p), then, as shown in Section 8.2, x2(p, Y,,) is asymp- 
totically distributed as so that xz(Y,,, p) = (xi - npi ) ’ /q i  differs from 

x2(p,Y,) by a random amount which converges in probability to zero as 
n 3 a. 

n 

I 
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GZ and x2 are measures of distance, though they are not metrics because 
they are not symmetric in their two arguments. Theorem 8.6.1 shows that when 
(2,) and {Zz} are tight, as will be the case if the model used to determine m,, 
and m: is true, G2 and x 2  are almost symmetric, and therefore"a1most" metrics. 

G 2  possesses two other useful properties. Consider the product multinomial 
model, with parameter vectors p = b1,. . . , pk) and n = (nl,. . . , n r )  as defined 
earlier. Suppose that log m = p = log(n,p,, . . . , qp,). The log likelihood func- 
tion for the multinomial model is [,,,,,(PI y) = (y, p) - nj log(nj) + C*, where 
C* does not depend on P. But, G2(m, y) = 2(y, log y/m) = -2(y, p - log y) = 
- 21,,,,,(& y) + 2(y, log y) - 2 n, log n, + 2C*. As a function of p, G'(m, y) 
takes its minimum value when P =  b, the MLE for P. Thus, in this sense, (b, fi, m) 
is the minimum distance estimator, as well as the MLE of (p, p, m). 

Another useful property of GZ is its additivity as a measure of distance. First 
consider any subspace V of Rr and let @,m) be the MLE for @,m) 
corresponding to an observation Y = y and the subspace V. Then (y - m) I V, 
so that (m, v) = (y, v) for all v E V. If V, 3 V,, with corresponding MLE's m,, 
m2 then for any v E V,, (Al. v) = (y, v) = (h,, v). Now consider three subspaces 
V, 3 V, I> V3 of R ,  of dimensions k, > k, > k 3 .  Let Mi, mi) be the maximum 
likelihood estimator of (p, m) under the model which states that pr  E K. (We 
will shorten this to "the model and will write G i  to denote Gz(mi, mi)). 
Then 

The third equality holds because (Ei, - fi3) E V, and, from the previous sentence, 
m, and m, have the same inner product with all vectors in 4. 

If we wish to test the hypothesis that p E V3, assuming the model V,, we can 
take V, = R r ,  so the model V, is saturated and m, = y. Then G2(P,,&,) = 
Gz(m3, y) - G2(m,, y). For this reason, the "distances" G2(& y) can be 
conveniently combined to test various hypotheses as appropriate models are 
sought. The same additivity does not hold for x 2 ,  though Theorem 8.6.1 
indicates that when a null hypothesis p~ V3 holds, the additivity holds in 
approximation. See Figure 8.9, where Ai = {mlm = exp(p), p E F). 

Example 8.6.1: Consider the sample space of 2 x 3 tables. Suppose that 
[,.30 0.18 0.121. Notice 

the random variable Y = ( Kj) - A6(40, p) for p = 
0.20 0.12 0.08 

that rows and columns are independent, so that p E V = Y(R,, R,, C,, C,, C3), 
a Cdimensional subspace. Then m = 4Op and 

- 1.204 -1.715 -2.120 
-1.609 -2.120 -2.526 

p = logm = log40 + 
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FIGURE 8.9 T-space. 

Notice that p has additivity. That is, pij - pi]. = piej - pir j , ,  which is equivalent 
to the corresponding odds-ratios being one. 

One thousand observations were taken on Y, then x 2  = x 2 ( 4  Y) and 
G2 = G2(m, Y) were determined for each. Figure 8.10 contains a histogram of 
the x z  values obtained and a scatterplot of the pairs (x ' ,  G'). These pairs had 
mean (2.009,2.147), variances 3.480 and 4.503, and correlation 0.987. The 
limiting distribution has 90th and 95th percentiles 4.605 and 5.991. The 
x2-statistic exceeded these values 93 and 44 times, while the G2-statistic exceeded 
them 1 1  1 and 65 times. 

[,.,5 

0.13 0.121 
0.15 0.17 0.08 

Continuing with the example, suppose that we let p = 

Independence of row and columns no longer holds. In fact, p = log40 + 
. The vector of interaction terms is pI = 1 -1.050 -2.040 -2.120 

- 1.897 - 1.772 -2.526 

. Again we fit the independence model and 

determine x z  = x2(m, Y) and G2 = G2(m, Y) for 1,OOO observations on Y. As 
0.0391 

0.260 -0.298 
-0.240 0.298 -0.039 

shown in Figure 8.1 1, x 2  and G2 are still close. The histogram for x z  has moved 
to the right. We will indicate later than both x z  and GZ are asymptotically 
distributed as noncentral x z  under certain conditions. x 2  and G2 had means 
4.288 and 4.482, variances 11.85 and 13.97, and correlation 0.995. They exceeded 
xi.po = 4.61 by 365 and 377 times among the 1.0o0 Y's, and exceeded 
xi.us = 5.99 by 262 and 275 times, indicating that the power for each test is 
approximately 0.37 for the a = 0.10 test and 0.27 for the a = 0.05 test. As 
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0 5 10 15 

0 5 10 15 

FIGURE 810 Histogram of Pearson chi-squares and scatterplot of (Pearson, log) chi-squares 
for 1,OOO experiments for the case of independence. 

will be shown later, the power may be determined in approximation from the 
Pearson-Hartley charts for the noncentrality parameter 6 = G2(m,, m) = 2.222, 
where m, is the MLE of m corresponding to the observation m = 4op, and 
v l  = 2, v 2  = infinity. 

The Weld Statistic: Still another goodness-of-fit statistic is sometimes used. 
Let Y satisfy a log-linear model with p = log m = Xp, where X is T x k, of 
rank k. Let V be the column space of X Let Vo and V, be subspaces of V of 
dimensions ko and k,, Vo c V,, where k, < k, 2 k. Let A. and ml be the MLEs 
of m corresponding to Vo and V,. Let m be a consistent estimator of m. Ifi could 
be the MLE of m corresponding to V, or ho, or h1 as long as m is consistent. 
Define I(&) = X'd(m)X, the estimator of information matrix for the model 
m E V. Define W(u, v) = u'I(v)-'u. Then 

w = W(&, - m,, A) = (m, - moyxl(m)-'x'(ml - mo) (8.6.3) 

is called Wuld's statistic. In more generality, Wald's statistic W is of the form 
W(f)  = ?'j-'t, where 4 is the vector of first partial derivatives of the log 
likelihood, and j is a consistent estimator of the information matrix, the negative 
of the matrix of the expectations of second partial derivatives of the likelihood 
function. If 9 is asymptotically multivariate normal with mean vector y, 
covariance matrix C, then W is asymptotically noncentral x2 with k degrees of 
freedom and noncentrality parameter y'Cy. It can be shown that W(&, - &,, th) 
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l 

Pearson Chi-square 

0 5 10 15 20 25 

0 5 10 15 20 

FIGURE 811 
for 1,000 experiments for a case of dependenm. 

Histogram of Pearson chi-squares and scatterplot of (Pearson, log) chi-squares 

is close to G2( Io ,  11) and xz(mo, ml) if m1 - I, is reasonably close to 0, and 
that W(m, - m,, m) has the same asymptotic distribution as do G2(I,, ml) 
and xz(h,,,hl) under the conditions given in Theorem 8.6.1. Notice that 
when I = Y, W(m, - ml, m) = xz(ml, m,J. Note also that if V = &, then 
W(m, - I,, h) = W(m, - Y, m). We omit proofs. 

The Power Divergence Statistic: Read and Cressie (1988), in their book on 
goodness-of-fit statistics, discuss a statistic they introduced in 1984, the power 
divergence statistic: 

1°K y) = [ 2 / 4  1 + l.)](y, (y/xy - 1). 

Ii is defined for all real A by assigning the values I' = lim I A  and 

I- '  = lim 1'. Then, lo = G2 and I-' = x z  (see Problem 8.6.6). f-'12 = 

4 1 (y,Yz - x,! '~)~ = K ( x ,  y) is called the Freeman-Tukey statistic. Read and 

i - 0  

1 + - 1  
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Cressie show that Z A  behaves asymptotically as do Gz and x2.  They recommend 
use of P3 as a test against general alternatives. 

ProMem 8.6.1: Let y, = (25,20, 15, lo), y2 = (22.522.5, 15, lo), y3 = 

(a) Verify that G2(y3, yl) = GZ(yz, yl) + G2(y3, y2). Is this true for any three 

(b) Determine whether the equality of (a) holds when GZ is replaced by xz. 

(20,20,20, 10). 

vectors y,, y2, y3? If not, why is it true in this case? 

Problem 8.6.2: Let y, = (358,245,417), y, = (367,233,420). Compare the 
vahes of G2(Yl, Y2)r GZ(Y,, Yl) ,  X2(Yl. Yz), X2(Yz. Y J t  W Y Z ,  Yl), QY,, Y2). 

Problem 8.63: Consider Problem 8.5.6. Let m be the MLE of m under 

(a) Why should G2(m*, Y) = G 2 ( h  Y) + Gz(m*, m)? 
(b) Verify this equality for Y = y, m, m* as determined in Problem 8.5.6. 

model A, and let m* be the MLE of m under A* (equivalently, p = 0). 

Problem 8.6.4: Prove that $(x, y) = ((y/x - J), y) = y:/xi - n whenever 
1 xi = 1 yi = n. 

Problem 8.65: Prove the statements concerning the Wald statistic W made 
in the next to last sentence and the previous sentence of the paragraph preceding 
the discussion of the power divergence statistics. 

Problem 8.6.6: Show that lim IA(x, y) = G2(s y), lim IA(x ,  y) = x2(x, y), 
a+o 1+-1 

f - ’ ( x ,  y) = ,&y, x), and l-Ii2(x, y) = K(x ,  y). 

8.7 THE ASYMPTOTIC DISTRIBUTIONS OF 1, fi, A N D  m 

Under suitable conditions each of the parameter vectors b, 9, and m are 
asymptotically distributed as multivariate normal with mean vectors p, p, and 
m, and covariance matrices which depend on the space V, and on the subspace 
Vo of V corresponding to the probability model chosen: Poisson, multinomial, 
or product multinomial. We will present the results of this asymptotic theory 
with only a hint of the proofs. In general, the proofs depend on the asymptotic 
normality of the multinomial distribution plus the delta method, which exploits 
the fact that for large n smooth functions are almost linear. With the exception 
of a few exact probability statements (the packages StatXact and LogXact are 
exceptions), all probability statements found in computer software packages for 
the analysis of frequency data use the approximations given by this asymptotic 
theory. 

Let {Y(”), n = 1,2, .  . .) be a sequence of T-component random vectors with 
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respective mean vectors m'") and log means p'") = log rn'"). We suppose that $") 

lies in a subspace V of the space of all T-component vectors and that the vector 
J lies in V. To get asymptotic results for multinomial and Poisson models, we 
suppose that m'")/n 4 rn* as n -+ 03. Thus, log m'") - log n = p(") - log n 4 

log m* = p* E V. 
For multinomial models we have the following. Let .Yl,.. .,& be a 

partitioning of the index set 9 of the vector Y("). Let wl, ..., wku be the 
indicators of 4,, . . . , y k o  and suppose that these k, vectors are contained in V. 
Let Yy) be the vector of components of Y(") corresponding to 4, and suppose 
Yy) - .M&, pi), where ki is the number of elements of Si. Then E(Yy)) = $)pi, 
so that m'") = (ny)pl,. . . , nt'pk,). The sequence m(")/n converges to a constant 
vector m* if and only if ny)/n converges to a constant for each i. The 
approximations given by the asymptotic theory to be discussed here will be 
best when all n, are large. The index n in the superscript can usually be 
considered to be the total sample size, though this cannot be the case for the 
Poisson model. If n is the total sample size, then m* = (PI,. . . ,pLo), so 
that the components of m* add to k,. We suppose also that Y'f), . . . , YE are 
independent. 

In the following let each vector be written as a T-component column vector, 
so that we can use matrix algebra. Suppose that X =(xi,. . .,xk), and 
X,, = (w,, . . . , wko), and suppose that both matrices have full column rank. 
Often, but not necessarily, wi = xi for i = 1,. . . , k,. We do suppose that 

Define D* = diag(rn*) = d(rn*), the T x T diagonal matrix with diagonal 
elements m*. We will not in general know m*, but will be able to estimate 
it. Let 

E p ( w 1 , .  s wko) c y(x1,. 9 xk) V. 

H = [X'D+X]-' and H, = [X&D*X,]-'. 

Py = XHX'D* and Py, = XoHoX&D*. 

H is the negative inverse of the Hessian matrix of the Poisson likelihood 
function I(y, b). Py and Py, are orthogonal projections onto V and onto V, 
with respect to the inner product ((x. y)) = x'D*y. For example, if x E V, then 
x = Xb for some b, so that ((x, P,y)) = bX'D*XHX'D*y = b'X'D*y = x'D*y = 
((x, y)). We use the subscripts V and V, because these projections depend on the 
subspaces and not upon the spanning vectors for these subspaces. To see this, 
replace X by XA for A a k x k nonsingular matrix. 

In the case that X, = J, it follows that P,, = Jp*', where p* = m*/J'm* is 
a probability vector. In the case of 3 x 4 tables with row sums fixed, the product 
multinomial model, the columns of X, span the row space, P y o  is the 3-block 
diagonal matrix with ith block Jp:', where pi = m:/J'mf, a 4-component 
probability vector. For the Poisson model V, = Y(0)  and Xo is the T x 1 0 
matrix. 

In the following or)(1) for n = 1, 2,. . . is a sequence of random vectors 
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converging to zero in probability. Then l (" ) /n + m* in probability implies 
that 

m'"') + oF'(l), CIy'"' - 1 
&(p - fj) = 

J;; 
where 

so that 

for 

Q reduces to 

C = (X'X)-'X'(Py - Pvo)D*-', 

J'n(fi'") - B) 5 N,(O, H - Q), 

Q = M-'X'PyoD*-'XM-', M = X'X. 
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These results are proved in Haberman (1974, Ch. 4) and a less abstract proof 
is given in Cox (1984); the original result in a less general form is due to Birch 
( 1964). 

Part (2) follows from the multivariate central limit theorem. Part (3) can be 
credited to Birch, though it follows from general results on MLEs (Cox 1984). 
The other results follow from (3) through the relations $(") = XI("), W" = 
exp(jV"), and the multivariate S-method. Notice from (3) that the variances of 
the Bj are proportional to the diagonal elements of H - Q. If X = (X,, X,), 

then Q = [ 1, so that the coefficients corresponding to the vectors making 

up the columns of X, have variances which become smaller as the sampling is 
confined to smaller subsets of the populations. If the model is independent 
Poisson, then H, is the zero matrix, so there is no reduction. Under the single 
multinomial model, H, is the 1 x 1 matrix l/trace(D*) = l /xp ,*  = 1. 

The coefficients corresponding to the columns of X,, those for which the 
inner products with m are not fixed by the sampling, have distributions which 
are asymptotically unaffected by the sampling scheme. That is, their asymptotic 
variances are the same whether or not sampling is Poisson, or single multi- 
nomial, or even product multinomial. Since we are usually interested in these 
coefficients, we can in a sense be a bit careless in specifying X,, so long as the 
vectors corresponding to these coefficients are not included in X,. In fact, some 
software packages ignore the restrictions implied by multinomial models and 
present estimates of standard errors which are those given by the Poisson model. 
These estimates are therefore too large in the case that sampling is multinomial 
for the coefficients corresponding to X,, but are the correct estimates for other 
coefficients. 

Ho 0 
0 0  

Example 87.1: Let Y, - -M3(100, p) and Y, - 4 2 0 0 ,  p) be independent, 

, a 2 x 3 table. Then m = with p = (0.2,0.3,0.5). Let Y = 
2.996 3.401 3.912 

c=[  3.689 4.094 4.605 
, and in the usual notation for log-linear models, 

1 = 3.783, = -0.346, A; = -0.441, A; = -0.035. For example, p2, = 
L + ,I: + A: = 3.783 + 0.346 - 0.035 = 4.094. These are the coefficients of x,. 

the table of ones, r = [ '1, c ,= [ i  -'I, and c 2 =  

[: : I :] in the representation of )I. That is, p = Axo + Air + A:cl + 1;~~. 
Let X be the 6 x 4 matrix obtained by writing these vectors as columns. The 

- 1  - 1  - 1  0 - 1  

second column of X becomes (1, 1, 1, - 1 ,  - 1, -1)'. Since n = 300, m* = [z :: 1E]/300, and D* is the diagonal matrix with diagonal 
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(20,30,50,40,60,100)/300. Then 

1 r 1.273 0.375 0.519 -0.037 

2.815 - 1.630 
0.375 1.125 0 

0.519 0 

L -0.037 0 - 1.630 2.259J 

Since row totals are fixed by the multinomial sampling, X, = (x,, r), written 

as a 6 x 2 matrix. Then H, = [ 1:3 '?I-' = [3/8 8p 8/91 3/8 , and Q is the 4 by 

4 matrix with H, in the upper-left corner, zeros elsewhere. The asymptotic 
covariance matrix for B is 

0.00049 0 0.001 73 -0.OOO 12 

0 0  0 

0.001 73 0 0.009 38 -0.00543 
(1/3fW(H - Q) = 

L -0.00012 o -0.00543 0.00753J 

Y was observed independently 500 times. The observed sample variances were 
O.OO0 51, 3.6 x 0.00904, 0.008 21, in close approximation to that given 
by the theory. The observe mean vector was (3 780, -0.347, - 0.440, -0.033), 
indicating that the estimators are almost unbiased. The variances for and 1; 
are considerably smaller than those given by (1/300)H, the asymptotic 
covariance matrix for Poisson sampling. The asymptotic variances for and 

are the same for Poisson and multinomial sampling. The asymptotic 
variances for the components of Ifi, the diagonal elements of 300 D*(Py - Pya), 
are considerably smaller for the multinomial model. 

The asymptotic distribution of the G2 and x2 statistics are easy to deter- 
mine from parts (6) and (7). Let W, = D*-"z(X, - m("))/&. Then by (6) 
W, 4 NT(0, IT - PB), where B = D*lf2X, and PB = B(B'B)-'B is projection 
onto the column space 5 of B. Theorem 2.5.2 then implies that llW,1I2 = 
xZ(m('), Yen)) converges in distribution to xi, where v = dim( V i )  = T - k. 
Applying Theorem 8.6.1 with m, = Y(") and ni,* = rn'"), we conclude from (2) 
that G2(m("), Yen)) has the same limiting distribution. 

Similarly from (4), we conclude that X2(m(n), Ih'")) and Gz(mfn), m(")) are each 
asymptotically distributed as xz with (k - k,) degrees of freedom. 

From (7) we conclude that the statistics in this and the previous paragraph 
are asymptotically independent. Further, under the notation of Theorem 8.6.1, 
with V, 3 V2 13 V,, the statistics ~'(ib?), Yen)), X~(I€I?), a';)), and x*(m'f), mf)) 
are asymptotically independent, and the same result holds if G2 is substituted 
for xz .  Even more generally, we can consider a sequence of nested subspaces 
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Yo = R r  3 4 2 . . . 3 K, and the resulting X2-statistics QY' = ~~(1?), my?,) 
are asymptotically independent, with Qj asymptotically 1' with 
dim(%) - dim( vj- ,) d.f. if m* E 4- ,. Of course, the same result holds if G2 
replaces x2.  

In applications the covariance matrices given by ( I )  to (7) are unknown. For 
example, we will suppose that fi - fl is approximately distributed as 
y ( 0 ,  (l/n)(H - Q)). H and Q depend on m* = lim m(")/n. However, a,, zi  

m'")/n is consistent form*, so that we can replace ( I  /n)(H - Q) by (l/n)(H - Q), 
where H and Q are obtained by replacing m* by a, in the definition of D*. 
H / n  is obtained in the last step of the Newton-Raphson algorithm used to 
compute b. The constant (l/n) may be absorbed into H - Q, if we replace 
D = d(m+) by d(m). Similarly, for large n, we can approximate the distribution 
of (h'") - m'"') by the Ivr(0, nD*(P, - Pv,)) distribution, and replace each 
occurrence of D* = d(m*) by d(m), to get estimators Py and P,, of P, 
and P,,. Then the distribution of m'"' - m'") is approximated by 
NT(O, d(m)(Py - P,,)). In estimating the covariance matrix of any of the 
estimators @("), fi("), or IW) the rule is therefore simple: replace D* whenever it 
occurs by d(m), and don't worry about the factor n. 

n-cv 

Proportional Iterated Fitting (Tbe Stepban-Deming Method: Consider the 
four-way table indexed by i , ,  i 2 ,  i,, i,, with 1 5 i j  I T,, T, = 2, T2 = 3, T3 = 4, 
T4 = 5. The model (1 2 3 4 12 13 124). The model (1 2 3 4 12 13 124) may be 
written in the reduced form [13], [124], since, assuming the model is heier- 
archical, the presence of the terms 1.2.3.4, 12 is implied by the presence of 13 
and 124. Similarly, the saturated model may be written as [ 12341, and the model 
( 1  2 3 4 12 23 34 124 234) may be written as [124], 12331. The reduced form 
makes it easy to determine a set of sufficient statistics. From Theorem 8.7. I for 
the model 1131, El243 the collection of sums { K+&+, X j + , }  is sufficient. For 
the model [124], [234] the collection { Kj+,, Y+,,} is sufficient. For the 
saturated model f K j k , }  is sufficient, as it is for all smaller models. If a collection 
of statistics is sufficient for a model V, then it is sufficient for a smaller model 
6 c v. 

In general, consider a d-dimensional table indexed by i , ,  i,, . . . , id ,  with 
1 -< i j  s 7;forj = 1 , .  . . , d .  Let B , , .  . . ,B ,  be subsets of the integers { l , .  . . ,d}  
corresponding to the reduced form of the model under consideration. For 
the four-way table with the model [13], [I243 above r = 2, B1 = {1,3}, B, = 

Let .% = {Aij, j = 1,. . . , d i )  be the partitioning of the cells defined by the 
indices in Bi.  All cells in any Aij have the same levels for all indices in Bi. B, 
defines a partitioning 9, of the 120 cells into d ,  = 2 x 4 = 8 subsets, each 
of 3 x 5 = 15 cells. B, defines a partitioning 9' of the 120 cells into d, = 
2 x 3 x 5 = 30 subsets, each of 4 cells. A1, is the collection of cells for which 

{1,2,4). 
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i, = 2, and i, = 3. Let xij be the indicator of Aij. In general, di = n 7;, and 
C xij = J. j s e ,  

j r R 8  

The likelihood equations (also called the normal equations) are 

mij+ = (dr, Xij) = (Y, X i j )  = & j+ (condition Cij) 

for all i and j .  Proportional iterated fitting adjusts each mij+ in turn by 
multiplication so that condition Cij is satisfied. These adjustments continue 
until all conditions are at least approximately satisfied. 

Suppose m has been chosen as a starting point. This means that ji = 
log m E V,  the space spanned by the xij. If J E V then one choice is J or any 
multiple. Suppose. also that m does not satisfy Ci,. Consider a new approxi- 
mation v b  = meh+. v b  differs from m only in the cells in Aij. For the cells in 
A,, the components of m have been multiplied by 8. But log V b  = log m + bxij, 
so that V b  is still contained in V. Thus vh remains a possible solution to the 
likelihood equations. 

Proportional iterated fitting chooses b = b,,, so that condition Cij is 
satisfied. To determine the value of b,, let c = eb. In order that vb satisfy 
condition Cij we need ( v b ,  xij) = (Y, xij) = x i + .  But the first inner product is 
c(h, x i j )  = crAij+. Thus, we should take cij = c = (Y, xi,)/@, xi,) = x,+ / f i i j+ .  
That is, multiply all components of m in the cells in Aij by x,+/rAij+. Con- 
tinue across all combinations of i and j .  Later adjustments, as i changes, will 
in general cause conditions Crj to fail. If 1.0, perform another round of 
adjustments. 

If the MLE has a closed form, then one round of adjustments will suffice. 
Otherwise, several round will be necessary. In general, however, proportional 
iterated fitting will converge relatively quickly, with the procedure stopping 
whenever the likelihood equations hold in good approximation. 

In terms of 3, the adjustment is one of addition, as indicated by v b  above. 
v b  is adjusted in one of the fixed directions given by the xij. This is the idea 
behind the proportional iterated fitting, which, considered as a technique in 
numerical analysis, is called the Deming-Stephan algorithm. 

Example 8.7.2: Consider a 2 x 2 x 2 table, and the model (1  2 3 12 13 23) = 
([12], [13], [23)). Then B, = {1,2}, B2 = { I ,  3}, B, = {2,3}. and d, = d, = 
J3 = 4. Written in their table form, with the first factor corresponding to layers, 
the second to rows, and the third to columns, some of the twelve xij are 

X I 1  = Y X I 2  = 

0 0  

0 0  

0 0  

1 1  

0 0  

0 0. 

0 0  

1 1  3~ 
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l o '  

1 0  

0 0  

~ 0 0. 

xz1 = 

After adjustments for xlj, j = 1 , .  . . ,4, we get I l o  l o  

10.8 19.2' 

7.2 12.8 

for x2j, j = I , .  . . ,4, we get 

we get 

8.397 22.657 

8.897 9.952 

7.603 7.343 

15.103 6.048 

8819 5619 

110/9 7019. 

l 8  10 lo. 

. After adjustments 

. After adjusting for x3,, . . . , xS4 

. Notice that after the third cycle of adjustments, 

inner products which had previously been adjusted to be the same as for y, no 
longer have this property. For example, 8.397 + 22.657 = 31.053 # 30, and 
8.397 + 8.897 = 17.294 # 18. After another complete round of adjustments, the 

vector is 

8.163 21.811 

9.806 10.216 

7.837 8.189 

14.194 5.734 

8.187 21.805 

9.813 10.195 

7.813 8.195 

14.187 5.805 

After still another round it is 
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Notice that all 12 inner products are almost the same as for y. After seven 
rounds the change from one round to another is less than in any 
component of m. The final solution, to three decimal places, is 

8.191 21.809 

9.809 10.191 

8.809 8.191 [ 14.191 5 . 8 1  

the effort. The chi-square values were GZ = 2.872 and x2 = 2.816, roughly the 
58th percentile for 1 d.f., indicating a reasonably good fit. 

. The extra rounds aftcr the first or sccond werc hardly worth 

Example 8.7.3: Suppose a study is conducled to determine the opinions of 
men and of women on a proposed abortion law, which would limit the freedom 
of women to choose abortion. Random samples of 300 women and 200 men 
were chosen. Each person was then asked to choose one of the options. ( 1 )  
strongly favor, (2) slightly favor, (3) slightly against, (4) strongly against. Let 
x, be the number choosing response j ,  i = 1 for women, and i = 2 for men. Let 
Y = (&), let xo be the identity vector, let 

1. 0 1 0  - 1  

0 1 0 - 1  
r = [  1 1 1  '1, c, =" O O -7, c2 =[ 

- 1  -I -I - 1  1 0 0 -1. 

c3=[" 0 0 1 - 1  ' - 1 1 ,  w = [  - 3  3 - 1  1 - 1  1 -31. 3 

The vector w has been chosen in order to model the different opinions of men 
and women. Suppose that p = px, + slr + Plcl + p2cz + pJcJ + yw, where 
p,  = -0.2, Bz = 0.2, & = 0.1, 'J = 0.10. Let p = 4.080378 and s, = 0.206 254 be 
chosen so that the 2 x 4 matrix m = expb) hiis row sums 300 and 200. 

. 1xt p, and p2 be the probability 1 80.37 98.16 72.72 48.75 
29.20 53.20 58.80 58.80 

Then m = 

vectcjrs obtained by dividing the first and second rows of m by 300 and 200, 
respectively, Let Y, - .&(p,, 300) and Y2 - A'4(p2r 200) be independent. Then 
Y, the 2 x 4 table formed by Y, and Y2 as the first and second row, has the 
product multinomial distribution, and E(Y) = m. The coefficients p, sl ,  fll, p2,  
/I3, p4 = -(PI + p 2  + &) may be determined from the usual ANOVA expan- 
sion of p - yw. 
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Since p l j  - p z j  = 2s1 - 2y(4 - j ) ,  log odds-ratios are L. ( j , , j 2 )  = 

losC(m2j,/mlj,)/(mzj,/m,i,)3 = ~ 1 2 j Z  - p 1 j z  - pijl + V l j ,  = 2 ~ ( j 2  -j1)- Since 
y > 0, men are more likely to favor such a law. 

An observation was simulated on a computer, producing Y = y = 

[zi :i zz Such multinomial random vectors may be generated 

by summing independent generalized Bernoulli random vectors (GBRVs). 
Thus, the first row of Y is the sum of 300 such GBRVs, with, for example 
(0, 0,1,0) being taken with probability 72.72/300. The author used S-Plus to 
do this. 

Using the S-Plus function "glm" the model p E Y = Y(x,, c, c1, c2, c,) 
(equivalent to p1 = p2) was fit, providing the chi-square statistics C2 = 25.62, 
1' = 24.80, for (8 - 5 )  = 3 d.f., indicating a rather poor fit, as should be 
expected. 

The model p E Y ( x , ,  r, c , ,  c 2 ,  c,,  w), the correct model, was then fit, giving 
GZ = 1.657, 1' = 1.651, for (8 - 6) = 2 d.f,, indicating a good fit, as should be 
expected. S-Plus provided Table 8.7.1. 

The matrix X corresponding to this model is the 8 x 6 matrix formed by 
writing spanning vectors x, r, cl, cz. c,, w as columns. We can estimate H = 
X D * X  by H = XD*X,  where D* = d(m/500). Similarly, let Xo consist of the 
first two columns of X, corresponding lo x, and r. Let H, = XbD*X,. By 
replacing H and H, by H and H, in the definitions of P, and P,, we get 
estimates p, and @,, of these projection matrices. The estimate of Q is 8, 
formed by placing the 2 x 2 matrix H, in the upper left corner, zeros in the 
other 32 places. The estimate of the covariance matrix of @ is D[P] = 
(1/300)(H - Q}. The square roots of the diagonal of D[&, estimates of the 
standard errors. as well as components of 6 are given in Table 8.7.2. Notice 
that the estimates of the standard errors of ji and 5 ,  are considerably smaller 
than those given by S-Plus as shown in Table 8.7.1. This is because the S-Plus 
routine used assumes Poisson, rather than multinomial sampling, and the 

Table 87.1 

Coef. Est. Est. of Std. Error z = (Fst./(Est. of Std. Error) 

iJ 4.08 1 0.0472 86.47 1 
SI 0.194 0.0468 4.155 

P 2  0.1 78 0.0739 2.41 1 
B., 0.050 0.0789 0.632 
r 0.106 0.022 1 4.795 

B1 - 0.080 0.08 I6 -0.985 
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Table 8.7.2 

P s* P I  8 2  8 3  3 
4.081 0.194 -0.084 0.178 0.050 0.106 
0.012 0.011 0.082 0.074 0.079 0.022 

matrix Q is therefore omitted in the computation of covariance matrices. The 
estimates of other standard errors are the same. 

Estimates of the covariance matrices of lit, fi, and e are given by D[mJ = 300 
D*(Pv - Pvo), DU] = (1/300)(Pv - Pvo)D*- ’, and D[e] = 300 D*(18 - Pv). 
All these estimates were close to those obtained using D* = d(m)/300 rather 
than D*. 

An approximate 957; confidence interval on y is given by [f & 1.96 d(?)] = 
[O. 106 & 1.96(0.022)] = [0.063,0.149]. Since we know p = 0.10, we were correct 
this time. Since the log odds-ratios are multiples of y, confidence intervals on 
these or on odds-ratios are easy to determine. Individual 95% confidence 
intervals on a contrast q = cjPj among PI, p2, p3,  and B4 = -@, + Jy2 + /I3) 
are determined by [ 9  f 1.96d(d)J, where d(9) = c’D[b]c, where c is the vector 
of coefficients. For example, for q = /I, - b3, c = (O,O, l , O ,  - l , O ,  O)’, we find 
[ - 0.130 & (1.96)(0.132)] = [ - 0.39 1,O. 13 13. To get a confidence interval on 
- B4, we can either express p4 in terms of the other (rs or we can determine 

the covariance matrix of all four /?s by using the fact that row and column 
sums must be zero. 

Table 8.7.3 gives some of the estimates, together with estimates of their 
standard errors, obtained from the estimates of the covariance matrices. The 
Pearson chi-square statistic is x 2  = e$thij = 1.651. 

i i  

Table 8.73 

I 1  
1 2  
1 3  
1 4  
2 1  
2 2  
2 3  
2 4  

95 91.27 7.40 3.73 4.51 
91 95.59 6.60 -4.59 4.56 
66 68.00 5.64 -2.00 4.22 
48 45.14 5.47 2.86 3.81 
29 32.73 4.32 -3.73 3.49 
57 52.41 4.14 4.59 3.96 
59 57.00 4.47 2.00 4.04 
5s 57.86 5.72 -2.86 4.06 

0.004 7 
0.004 0 

0.007 0 
0.007 6 
0.004 6 
0.004 5 
0.005 7 

0.004 a 

2.95 1.263‘ 
4.64 -0.989 
4.55 -0.438 
2.91 0.985 

4.64 0.989 
2.95 - 1.263 

4.55 0.438 
2.91 -0.985- 
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Confidence Intervals: We should be particularly interested in estimating odds 
and log-odds. Since log-odds are of thc form q = c lpl  + * * + c T p T  = (c, p), 
with c 1 x,. so that q is a contrast, we can first determine a confidence interval 
( L ,  U )  on q, then determine an interval (eL, e’) on the corresponding odds. We 
are usually interested in cocficient vectors c for which c is orthogonal to the 
columns of X,. For example, for two-way tables and an independent multi- 
nomial model for row vectors k;, the columns of X, are the row indicators, 
and we will want the rows of c to add to zero. Since the row totals of m are 
fixed. the row effects i.! are nuisance parameters, there to adjust the rows of m 
so that the row totals are correct. We therefore do not want comparisons 
among the row effects 1.:. 

In the case that c is orthogonal to the columns of X,, the second term of D[$] 
disappears, and we get in approximation: t j  - q = (c, fi - p) - N ( 0 ,  a’(tj)) for 
~ ’ ( 3 )  = c‘hlc, and M = X(X’d(m)X) . ‘X‘. Therefore, 

is an approximate 100( 1 - z):,, confidence interval on q = (c, p), in the case 
that c I V,, the subspace spanned by the columns of X,. The Scheffe method 
may be used to provide simultaneous confidence intervals on q = qc for all 
c E C, where C is a subspace orthogonal to V,: 

9, & K&q,), for all c E C,  (8.7.2) 

__ 
where K = Jx;. and v = dim(C). The proof is only outlined here. See 
Habcrman (1974, 131). Let Z ,  = (0, - q,)/d(tj,) = (c,@ - p)/[c’Mc]”’. Now 
apply Theorem 3.8.2, with b = fi - p, 11.1 = M. We conclude that sup 2,‘ = 

(fi - p>’M ’($ - p). By Theorcm 3.8.1 and Slutsky’s Theorem this last r.v. is 
asymptotically distributed as x 2  with q = dini(C) d.f. 

In the case that only a few confidence intervals are desired, they will be 
shorter if the Bonferroni inequality is exploited. If, for example, we wish intervals 
on ‘1, = (cl. p). . . . , t i s  = (cs, p) then we use (8.7.1) on each for z = 0.01. and 
then have 95?/, confidence that all are correct. 

In  the case that the model is saturated, so that P” RT,  X = IT, m = Y, 
M = d(Y)-’,  and S2(tj)  = c‘d(Y)-’c = c f i x .  This is an upper bound on 

Ci2(tj), which will be smaller when nonsaturated models are considered. Of 
course, when non-saturated models are considered, the risk is always present 
that t j  is biased for ‘1. 

ctc 

L 

Example 8.7.4: Consider 13,832 homicides in 1970, as reported by the 
National Center for Health Statistics (Table 8.7.4), in which the victim was 
classified by race (white or black), sex, and by the method (firearms and 
explosives, or cutting and piercing instruments). 
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Table 8.7.4 Reported Homicides in 1970, Classified by Race of Victim, Sex, and Type 
of Assault 

Type of Assault 

Firearms and Cutting and 
Race Sex Explosives Piercing Instruments Total 

White Male 3,910 
Female 1,050 

Black Male 5.2 18 
Female 929 

808 
234 

1,385 
298 

4,7 I8 
1,284 
6,603 
1.227 

Total 11,107 2,725 13,832 

Within each of the races let us estimate the log-odds for use of these two 
methods for males and females. Index race by i, sex by j ,  method by k. The 
independent Poisson model seems to be appropriate. Let pijk = j. + i: + if + 
;.: + i,!: + + A;: + j . : i 3 ,  where each of the terms add to zero across any 
subscript. Define R ,  = ( m i l  l/mi,2)/(mi21/miz2) = (n~i,,mi22)~(mi,Lmi,I) and qi = 
log Ri = pil  - p i I 2  - p i Z 1  + pi2, = 4(l.f: + &’::). The estimate of q ,  under the 
saturated model is 4,  = log[(3,910)(234)]/[(1,050)(808)] = 0.075 5. Similarly, 
4, = 0. I89 4. Under the saturated model d(Q1 1 = (1  / Y, I + ( 1 ! U, I J + 1 / Yl , I )  + 
( 1,’K2,) = 0.006 72 so that a 95% confidence interval on q ,  is 0.075 5 If: 
( 1.96)(0.O06 72) 1;2 = 0-075 5 It 0.160 7. A 95‘770 confidence interval of q2 i s  
0. I89 4 & (1.96)(0.005 35)’;’ = 0.189 4 0.143 3 I .  Since this confidence interval 
is to the right of zero, we can conclude with 957; confidence that when blacks 
were the victims, males were more likely than were females to have been killed 
by firearms and explosives. For whites. though the estimate f i l  = 0.0755 
indicates a slight tendency in that direction, the interval covers zero, so that it 
is possible that 4, is negative. 

We should compare the log-odds ratios by estimating q = q ,  - q ,  = 8A:::. 
We get 4 = Q 1  - ij2 = -0.1 13 9. Since the vectors (, Y1,k) and ( Yzjk) are indepen- 
dent, we get d2(i j )  = ( I /  qjk) = 0.006 72 + 0.005 35 = 0.01207, so that the 

95f4 confidence interval on rl is - 0.1 13 9 ? ( I  .Y6)(0.0 12 07) ’” = - 0.1 13 9 k 
0.215 3. The fact that this interval includes zero suggests that we fit the model 
( I  2 3 12 13 23), equivalently ;.if; = 0, or R ,  = R,. A more formal test of 
H,: R , = R,  o i. :: = 0 rejects H,, at level 0.05 for 2 = tj/6(rj), when I Z I > 1.96. 
In  this case we get Z = 1.037, so we do not reject H,. The corresponding 
test statistic is  Zz = 1.076, for one d.f. 

i jk 

For the model ( I  2 3  12 1323) we find m =  . The 
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corresponding goodness-of-fit statistics are G2 = 1.077, and x 2  = 1.075, as was 
promised in the last paragraph above. The log-odds ratio for blacks and for 
whites is q* = qi = log Ri = 4i.::, which is the same for i = 1, 2. The estimate 
is rj* = pill - - fi,,, + pi22 = 0.1386, which is the same for each i (why?). 
M was used to determine &(rj*) = [C’MC]’’~ = 0.043 9, so that a 95% confidence 
interval on q* is 0.1386 1: (1.96)(0.0439) = 0.1386 & 0.086 1. 

The z-statistic for H,: q* = 0-A:: = 0, is 2 = 0.1386/0.0439 = 3.16, so 
that it does not seem reasonable to drop the 23 interaction term from the model, 
equivalently to suppose independence of method and sex, conditionally on race. 
Similar tests on other log-odds provided Z-statistics even further from zero, so 
no smaller model than (1 2 3 12 13 23) seems appropriate. 

Power: For given parameter values, we can determine the approximate 
power for any hypothesis of the form H,: p E V2, as follows. Consider the model 
p E Vl, with dim( V,) = d , ,  and let V, be a subspace of 6 ,  with dim( &) = d ,  c d,. 
Let m, and m, be the MLEs corresponding to the observation m for the models 
Vl and V’. Then G2 = G2(rh2, h,) and x2 E x2(m2, m,) are approximately 
distributed as noncentral chi-square with d ,  - d, degrees of freedom, and 
noncentrality parameter 6 = G2(m2, m,). A more precise statement of the 
limit theory justifying the approximation is contained in Bishop, Fienberg, 
and Holland (1975, Ch. 14) and Haberman (1974, 103). The asymptotic 
theory requires that as sample sizes increase the probability vectors converge 
to I$ at the rate proportional to the square roots of sample sizes. If the 
logs of the probability vectors remain fixed, not contained in V,, then the 
powers of the x 2  and G2 tests converge to one. That is, the tests are 
consistent. 

Pearson-Hartley charts, or computer packages producing noncentral x 2  
cumulative probability values may be used to evaluate power. Consider the 
example concerning opinion on an abortion law, Example 8.7.2. Let V, = 
-%(x,, c, c lr  c2, c3), the subspace corresponding to equality of the probability 
vectors for men and women of dimension d ,  = 5. Let V, = v* @ Ip(w), which 
has dimension d = 6. If m E Vl, the MLE of m corresponding to observation 
m and subspace V, is m. The MLE corresponding to m and V, is m2 = 

. The “distance” of m2 from m i + m + j / m + +  = 

m = m, may be measured by G2(m,, ml) = 20.69. We conclude that the 
statistic G*(m,, m,) has an approximate noncentral x z  distribution with one 
d.f. and noncentrality parameter 20.69, indicating that the power of the test 
H,: y = 0 is approximately 0.995 2. The experiment was repeated using S-Plus 
500 times, each time with 300 men and 200 women, resulting in estimates 
with mean 0.100 1, variance O.OO0 86, indicating no or very little bias, and 
that the estimate of the variance provided by the asymptotic theory (0.000497) 
is quite good. The 500 trials resulted in 496 rejections for the SI = 0.05 
level test, indicating approximately the same power as that given by the theory. 

1 65.74 90.82 78.91 64.53 [ 43.82 60.54 52.61 43.02 
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The 500 trials were repeated with y set equal to 0.05. The 500 9 values 
averaged 0.051, with variance 0.000480, again very close to that given by the 
theory. The noncentral X2-statistic for the test of H,: y = 0 was 3.851, indicating 
power of 0.501 for the a = 0.05 level test. The test rejected 323 times among 
the 500, indicating somewhat larger power than that suggested by the theory. 
The a = 0.05 level tests of the correct model rejected 30 and 35 times for y = 0.10 
and y = 0.05, indicated that the significance levels are reasonably close to those 
claimed. 

Whenever the number of degrees of freedom is one, the chi-square statistic 
is the square of a N ( 0 ,  1) r.v., (of the form (Z + S)2 )  with O2 = 6 at least in 
approximation. In this case the r.v. is U = j/d(-J), and 0 = y/a(f). Thus, in the 
case y = 0.10, the test is equivalent to rejection for IVl 2 1.96, and the power 
is approximately P( I V (  L 1.96) = 1 - P( - 1.96 - y/.(f) c (f - y ) / ~ ( f )  < 1.96 - 

a(2.527) = 0.994. However, since E(.;) seems to be approximately 0.088 6, 
computations with that value replacing y. give power approximately 0.978 1, 
close to the power achieved. Results for y = 0.05 were similar. 

If one were to first test for the adequacy of the model corresponding to Vl 
at level a = 0.05, then test H,: y = 0, the correct decision, nonrejection, then 
rejection, occurs with probability approximately 0.95(0.995 2) = 0.945, since the 
statistics G2(Y, m,) and G L ( m , ,  m,) are asymptotically independent. The 500 
trials with y = 0.10 resulted in 466 correct decisions. In general, if a sequence 
of nested models dl c -#I2 c . * - t ”#k is chosen for consideration, with 
corresponding subspaces V, c 4 c . . . c V,, of dimensions d ,  > d ,  > . . . > dk,  
and differences v 1  = di+ , - di ,  if Hi: “Mi is rejected for Gi = G2(mi. mi+ ,) > 
x:L,-ae, the probability of choosing the correct model can be determined in 
approximation because the statistics Gi are asymptotically independent (see 
Section 4.5). 

y / ~ ( f ) )  = 1 - o(1.96 - Y / O ( ~ ) )  - o(- 1.96 - r /~(f))  = @(- 1.96 + 7/0(y )̂) = 

Example 8.75: Consider a three-way table with three factors of 2, 3, and 
4 levels. Suppose the model (1 2 3 12 I3), independence of factors 2 and 3, given 
the level of factor 1, and that the parameter values are as follows: 

2:  = -0.5, i; = 0.5, .it = -0.2, n; = 0, 2.: = 0.2, 

i:= -0.2, A;= -0.1, 2.;=0.1, i:=0.2, 

(&y) [ -O.* O O.I 1, 
0.1 0 - 0.1 

and 

0.12 0.04 -0.04 -0.12- “.”1. [ 
-0.12 -0.04 0.04 

(2;;) = 

Then pig = ;. + if + A; + A: + 2:; + A i 3 ,  with R chosen to be 3.598 29 so that 
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E m i p  = 1,OOo. Then 
ij  

m = exp(p) = 

- 11.81 14.14 18.71 22.40’ 

15.94 19.08 25.25 30.23 

21.52 25.76 34.09 40.81 

49.84 50.85 57.33 58.49 

55.08 56.20 63.36 64.64 

- 60.88 62.11 70.03 71.44, 

Suppose that Y has the M(p, 1,OOO) distribution with p = m/1,000. If we observe 
Y we could, not knowing m, or any of the parameters, proceed by performing 
sequential 31’ tests on the models A, = ( I  2 3 12 13 23), then .nY, = ( 1  2 3 12 13), 
then d2 = (1 2 3 12), then = (1  2 3). For simplicity we will suppose that we 
would not proceed further. Let J?~ be the saturated model. We could, then, 
decide upon any of the five models J Y ~ ,  . . . , A?l. Let mi be the MLE corre- 
sponding to the observation m, and model =Al. Since m satisfies models .A3, 
A4, 4, it follows that mi = m for i = 3, 4, 5. The vectors m2 and m, were 
computed using proportional iterated fitting, though a hand calculator can be 
used for models and .dl since, m2 = (mi j ,m+ + k / l , m ) ,  and m, = 
(mi+ +m+j+m+ + k , / ~ , ~ ’ ) .  Let yi = G2(m,, m), and Si = yi - y i+  ,. Similarly, let 
hi be the MLE corresponding to observation Y and model Mi, Gi = G2(mi, Y), 
and Di = Gi - Gi+ 1. Then, asymptotically G, - xz,(yi), and Di - xj,(Si), where 
v5 = 0, v4 = 6, v j  = 12, v 2  = 15, v1 = 17, and di = vi - v i + , .  Of course, ifs = 
;1, = y, = 0 and computation determined y 2  = 6.29, y I  = 11.53. Thus 6, = 6, = 
0, 6, = 6.29, and b ,  = 5.24, d ,  = d3 = 6, d ,  = 3, d ,  = 2. These d,‘s are the 
degrees of frecdom in the usual three-way analysis of variance, and the Di 
correspond to the sums of squares. If 4 is the subspace corresponding to the 
model Mi and & = 6 n V:+ ,, then di = dim( m. The vectors mi may be 
considered as (nonlinear) “projections” of m on the spaces F. Similarly for the 
mi relative to Y. In this sense mi - m i + l  is the projection of Y on K, and 
mi - mi+ is the projection of m on F. Asymptotically the measures Di of the 
“lengths” of these projections are independent. 

The hypothesis H,: (m satisfies A i )  o (log m) E 6 is rejected when Di > ci = 
x ~ ~ , ~ - ~ ~ .  We choose zi = 0.10 for each i, so that c, = cj = 10.64, c2 = 6.25, and 
c, = 4.61. The sequential procedure chooses model .Mi if Hi is accepted for j 2 i, 
but Hi- , is rejected. For example, the correct model .AV, is chosen only if 
D4 s 10.64, 4 s 10.64, and Dt > 6.25. Computer computations showed that 
P(~f(6.29) > 6.25) = 0.662 3, and P(~i(5.24) > 4.61) = 0.715 3. Thus, the prob- 
ability that A, is chosen i s  (0.9)’(0.662 3) = 0.536. Similarly, P(.M5 chosen) 
= 0.10, P ( 4  chosen) = (0.90)(0.10) = 0.09, P ( d 1  chosen) = (0.9)’ 

2 
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(0.337 7)(0.715 3) = 0.195 7. P(. tV, chosen) = (0.9)'(0.337 7)(0.284 7) = 0.077 9. 
The experiment was simulated 500 times using Manugistics APL-Plus, of 

which 257 resulted in the choice of the correct model Ji2, the sample proportion 
0.514, close to 0.536. Similarly, the proportions of choices other models were 
0.092 for .KO. 0.206 for .A',, 0.086 for Jf3, 0.102 for .N4. The asymptotic theory 
seems to provide very good approximations, at least for n = 1,OOO. 

Problem 8.7.1: Let Y = (Y,, Y,, Y3), where Y - ..K,(p, n) and log m = 

(a) Suppose that PZ = 0.8 and 11 = 2,000. Find PI, m. and p. 
(b) What are the asymptotic covariance matrices for b, and m, fi? 
(c) Suppose we observe Y = 9 = (514,255.123 I ) .  Give 95% confidence 

(d) Estimate P ( I ~ ,  - fi21 < 005) for p2 = 0.8. 
(e) Suppose that Y satisfies the independent Poisson model rather than the 

log(np) = ( P I ,  8 1  - Bt. P I  + P 2 ) .  

intervals on Bz and on m,, supposing l j 2  to be unknown. Hint: ml = 541.7424. 

multinomial model. How is the asymptotic distribution of fi affected? 

Problem 8.7.2: Consider the 2 x 2 x 2 table 

.i -, 1 2 
& + l  2 1 2  

Y = y :  i 

(a) Find a 95% confidence interval on 1.:::. assuming the saturated 

(b) Use proportional iterated fitting until m does not change in any 

(c) Find a 95";, confidence interval on ;if. For simplicity use m as found in 

independent Poisson model. 

component by more than 0.5 to fit the model ( 1  2 3 12 13 23). 

(b) and d ( m )  as for the saturated model. 

Problem 8.7.3: (a) For the homicide data of Table 8.7.1 find a 957; 

(b) Verify that m as given is the MLE ofm under the model ( I  2 3 12 13 23). 
confidence intcrval on 1.; f ,  assuming the saturated model. 

Problem 8.7.4: Suppose that Y is 2 x 2 and has the ..d4(p, 500) distribution, 

. Find an approximation of the power of the 0.05 level 
0.20 0.20 

with p = 

Xz-test for independence. 

Problem 8.7.5: Suppose that you wanted 95Y0 simultaneous confidence 
intervals on all odds-ratios R ( i , ,  i,, j l ,  j 2 )  = (pi,jrpi2jz)/(piljzpi2j,) for a 4 x 5 
table. Describe how you could do this. Would it be better to use the Bonferroni 
or the Scheffe method'? 
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Problem 8.7.6: Consider a stationary Markov chain W =  { W(t)lt =0, 1,. . .) 
having just two states 0 and I .  W is said to be a Markov chain of order k if, 
conditionally on W(t - I ) ,  W(r - 2), . . . , W(O), the distribution of W(t)  
depends only on W(t - I ) ,  . . . , W(t - k). Let W(t)  have order 2, and prh = 
P(W(t)  = k (  W(t - 2) = i ,  W(t - 1) = j ) ,  for i ,  j ,  k = 0 or 1. Suppose we 
observe W(t)  for t = 0, 1.2,. . . ,200. We would like to decide whether W is of 
order one. 

(a) Show that W is of order one if and only if p ( k  I i, j) is the same for i = 0 
and 1. 

(b) Show that W is of order one if and only if W(t - 1) and W(t i- 1) are 
conditionally independent given W(t)  for each t .  

(c) Classify a 3-tuple ( W(t - 2), W(t - l), W(t))  in cell ( i ,  j ,  k) if W(t - 2) = i, 
W(t - 1) = j ,  W(t) = k for t = 2, 3,. . . ,200. If x,k is the number of 3-tuples 
classified into cell (i, j, &), then Y = ( Kjk) satisfies the independent binomial 
model with parameters pij = pi j ,  and nij = xj+ for every ij pair, conditionally 
on vj+ = ni j .  See Bishop, Fienberg, and Holland (1975), page 267. The result 
of (b) implies that W is of order 1 if and only if the log-linear model for rn = 200 
p is ( I  2 3 12 23). The following table was produced by simulating the process 
for the case that 

k = O  k = l  

0.2 0.8 j = 0 

0.3 0.7 j = 1 
i = O  

j - 0  

0.5 0.5 j = 1 
i =  1 

Thus, for example, p l o l  = 0.7, and pool = 0.8, so that W is not of order one. 

This can also be verified through odds ratios. R, = - - - is one for each j 

if W has order one. In this case R, = 7/12, and R ,  = 3/1. The stationary 
probabilities that (W(t - l), W(t) )  = ( i ,  j) are 

P ~ j o l P o ~ ~  

p l j o I ~ l j l  

= P't 1 
Beginning with W(0) = 0 and W(1) = 0, the first 26 observations on W were 
0 0 1  1 0 0  1 1 1  10 1 1 0 1 0  1 1  101  1 1  10,Thefrequenciesofconsecutive 
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3-tuples (i, j ,  k) were 

r 4 191 

39 1 

Test at level ct = 0.05 the null hypothesis H, that W is of order one. 
(d) Find m, p, and the 2-terms: 1, R:, A:, A:, A::, A::, A::, A:::, supposing 

that the stationary probabilities were used to determine W(0) and W(1). 
(e) Find the noncentrality parameter and an approximation of the power of 

the test used in (c). (In 500 simulations Ho was rejected 293 times, indicating 
that the power is approximately 0.586.) 

88  LOGISTIC REGRESSION 

As in multiple regression we often wish to study the effects of one or more 
explanatory variables x,,. . . , x t  on a dependent variable Y, which takes 
only two values. Suppose that for I = 1,. . . , T, we independently observe 
x a ( n i ,  pi),  where pi depends on li = (xil,. . . , xi&, in the following way. 
Recall that the logit of any p, 0 < p c I, is L(p)  = log[p/(l - p)]. It has the 
inverse L - ’ ( u )  = e”/(l + e“). The logistic regression model supposes that 
L(pi)  = qi = 1 Pixij. Let Y, be the column vector ( Yl, . . . , Yr)’, n = (nl,. . . , nT)I, 

X, = (xIj, .  . . , xTj)I.  Since log E( Y;) = tog ni + log pi = log ni + log L-’(qi)  is 
not linear in the Fs, Y, does not satisfy a log-linear model. However, the T x 2 
array Y = (Y1, a - Yr) does, and we will show how that fact can be exploited. 

As usual let m = E(Y) and p = log m. Write pi = @‘/(I + eSt) = 
e‘”‘/(e” + e-”’I), where wi = qi/2. Then F~~ = log n, + wi - hi and piz = 
log ni - wi - hi, where hi = log[P”‘ + e-f’Ji]. Letting ai = log ni - hi, we get 
pi, = at + oi and pi2 = ai - ui. Define x j  = ( x , ~ ,  . . . , xTj)’,  and let xj’ be the 
T x 2 array with xi in the first column, -xi in the second column. Let Ri be 
the indicator of the ith row. Then p = 1 aiRi + P,X~, and (Y, Ri) = XI + 
x2 = ni = mi,  + mlZ. Therefore, Y satisfies the log-linear model. Let V = 
Y(R1,. . . , R,, x:, . . ., x:). 

The only difficulty caused by the consideration of Y, rather than Y, is that 
we introduced T additional parameters al,  . . . , aT.  In many applications T may 
be quite large. We will show that we can avoid use of numerical algorithms 
which solve for all T + k parameters. First notice that ai = log ni + hi, so that 
ai is determined by wit which depends only on P I , .  . . , /.Ih and n,. We seek the 

i 

i i 
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T x 2 array m with ith row (hil,mi2), such that @ = logme V,  and 
(Y - m. xi*) = 0 for each j .  Let m, be the first column of m. Then 
m = (m,, a - m,), and Y = (Y,, n - Yl). It  follows that (Y - m, xi*) = 
(Y, - ml,  xi) + (a - Y - h ~ ,  + a, x,) = 2(Y, - m,, x,). We seek = (b,, . . . , b,)' 
so that ml = n exp(Q)/[ 1 + exp(fi)], tj = Blx j ,  makes this last inner product 
zero. 

We can apply the Newton-Raphson method to find b. Let G(p) = 
X(Y, - m,), the vector of inner products. The matrix of partial derivatives 
H ( p )  has j ,  j '  element 

i 

so that H ( p )  = X'DX, where D = D(6) is the T x T diagonal matrix with ith 
term nipi( 1 - pi), where pi = mi/ni .  The Newton-Raphson algorithm therefore 
starts with some initial estimate p"', and iteratively takes 

where m ( f )  = exp(Xp)/[ 1 + exp(Xp)]. When b('+ ') - P('' is small, iterations 
stop and p = p('+ '), fi = Xb, and m = exp(@/[ 1 + exp(fi)]. 

Example 8.8.1: In an experiment designed to determine the aliect of poison 
on rats, male and female rats were fed various levels x of poison, and the 
numbers dying and surviving observed. 

Males Females 
x Die Live Die Live 

0.5 I 18 

Let Y, = ( Yl l , .  . . , Y18) be the 8-component column vector numbers of rats 
dying, the first 4 components corresponding to the males. Suppose that these 
8 components are independent, with corresponding parameters which are the 
components of a = (20,24,29,22,19,25,30,23)', and p = ( p l , .  . . , pa)'. Let 
xo = (1 , .  . . , 1)', let x1 be the indicator for males, and let x2 be the vector of 
poison dosages. Suppose also that L(p) = log(p/(l - p)) E 4 = poxo + /3,xl + 
P2x2. The vector Y was generated on a computer for n as given, Po = - 3, 8 ,  = 
0.5, /I, = 1.2, so that p = (0.130, 0.214, 0.475, 0.750, 0.083, 0.142,0.354, 0.646)'. 
The Newton-Raphson algorithm was used to find fi = (- 3.457,0.057 9, 1.405)', 
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with corresponding estimates 

m, = (2.045,4.487, 14.031, 17.437, 1.139,2.853, 10.330, 15.678). 

and 

p = m,/n = (0.102, 0.187, 0.484, 0.793, 0.060, 0.114, 0.344, 0.682)'. 

As before, let d(u) be the diagonal matrix with diagonal u and let X =(xo, x,, xz). 
Note that D[W], with square brackets, indicates the covariance matrix of a 
random vector W. Then the asymptotic covariance matrices were D[#J = 
[Xd(np(l - p))X]-', Dm] = XD[b]X', D[m) = d(np)D@]d(np), and D[p] = 
d(p)D Cjl]d(p). The corresponding estimates are obtained by substituting fi for 
p. For these data we find 

1 0.268 3 - 0.087 4 - 0.098 8 

-0.0874 0.1287 0.0109 

-0.0988 0.0109 0.048 1 

The estimates of the standard errors of the components of fi were (0.0367, 
0.0386, 0.0422, 0.062 1, 0.0308, 0.0339, 0.0399, 0.0604). 

An approximate 95% confidence interval on /I2 is given by (L, V )  = 
(1.4054 & (1.96)(0.048 1)'12) = (0.9755, 1.9355). If p,(x) is the probability of 
death of a male rat for dosage x, then &(x) = G(9(x)), where G(u) = 
exp(u)/[l + exp(u)], and t j  = /$ + 8,  + fix. The asymptotic variance of d(x) is 
Var(fi(.x)) = dD[)]d, where d = ( I ,  1, x)'. Using the b-method, we find that 
the asymptotic variance of &(x) is Var(&(x)) = h(x)  = [p,(x)(l - p,(x)J 
Var(tj(x)). To determine a confidence interval (L(x) ,  V ( x ) )  on p,(x) for any x,  
first determine one on ~ ( x ) .  Since the transformation q(.x) -+ G(q(x)) = p,(x) 
is monotone, (G(L(x)), G ( U ( x ) )  is then a confidence interval on p,(x). 
Corresponding confidence intervals on the probability p , ( x )  of a female dying 
are given by considering ~ ( x )  = Do + P2x, and t j (x )  = Po -t ),x. For these data 
and six choices of x, 95% individual confidence intervals were found on p , ( x )  
and p f ( x )  as presented in Table 8.8.1. Simultaneous Scheffe 95% confidence 
intervals on p,,,(x) and p , (x )  for all six choices of x were also found by replacing 
z0.975 = 1.96 by , , / x ~ , ~ . ~ ~  = ,;G9 = 2.447. If the Bonferroni method were used 
we would instead substitute z = z1 -o.05,24 = zo.99792 = 2.86, so Scheffk inter- 
vals are shorter. We were lucky; all the intervals covered the corresponding 
parameters. The goodness-of-fit statistics were G 2  = 2.004, the residual deviance, 
and x 2  = 1.996 for 2 d.f., so that the fit was good, as we should expect. 

The limit theory we have described has required that T be held fixed, while 
n or a vector of sample sizes approach infinity. In many applications we observe 
( x i ,  q, for i = I , .  . . , T, where xi = ( x i , ,  . . . , xa)  is a vector of constants, and 

-- 
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Table 8.8.1 Estimates and %yo Confidence Intervals on p&) and PAX) 
Upper Lower Upper 

Individual Simultaneous Simultaneous 
Lower Confidence Confidence Confidence 

x p(x)  Pm(x) Individual Limit Limit Limit 

Males 
0.5 0.130 0.110 0.056 0.205 0.047 0.236 
1.0 0.214 0.188 0.113 0.295 0.100 0.326 
2.0 0.475 0.448 0.335 0.567 0.309 0.596 
3.0 0.750 0.740 0.594 0.847 0.554 0.867 
4.0 0.909 0.787 0.787 0.964 0.742 0.972 
5.0 0.970 0.972 0.899 0.933 0.864 0.995 

Females 
0.5 0.083 0.075 0.035 0.151 0.029 0. I78 
1.0 0.142 0.131 0.073 0.223 0.063 0.252 
2.0 0.354 0.346 0.245 0.462 0.223 0.493 
3.0 0.646 0.649 0.497 0.777 0.458 0.803 
4.0 0.858 0.867 0.717 0.943 0.667 0.955 
5.0 0.953 0.953 0.860 0.988 0.816 0.99 I 

a reasonable model, as before, states that - @(pi, nJ, independently 
for differing i. and that log(pi/(l - p i ) )  = xis. However, the asymptotic 
theory would not seem appropriate in cases for which ni is small for most i ,  
particularly, as is often the case, aU ni are one. This will occur when some of 
the components of xi take values on a continuous scale. Fortunately, theory 
has been developed over the last 20 years which shows that even in the case, 
if T becomes large, while the individual x, are not too far from the others and 
the matrix X'd(pq)X not too close to singularity. The conditions are similar to 
those for linear models, as stated in Eicher's Theorem 4.8.1. See Santner 
and Duffy (1989, Section 5.3) and the paper by Fahrmeir and Kaufmann 
( 1  985). 

Example 8.8.2: Reconsider Examples 8.4.4, and 8.5.7. As before let pi/ be 
the probability that a subject of sex i (1 for men, 2 for women), and educational 
level j ( j  = I ,  2, 3) would respond "Yes." Suppose that xjl - .49(nij, pij) for 
nij = Y l j ,  + xjzt are independent for the six combinations of i and j. Corre- 
sponding to the model of (8.4.4) the model (1 2 3 12 1323), p i ,  = 

pijz = 2[r, + (s& + (er)jl]. In terms of the bj defined in Example 8.5.7, we 
can write qi j  = b., + &hil + a,hj ,  + &hit, where 6," is 1 if u = u, zero 
otherwise. Therefore the design matrix for the logistic model is 

exP(Pijl)/"exPtPijl) + ex~(~ i j , ) l  = exP(tlij)/C1 + exNttij)I, where tlij = Pij l  - 
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and the vector fl* of the model (we use the symbol * to distinguish it from the 
fl of the log-linear form of the model in Example 8.5.7) is ( IJ5,  /1,, &). 

5 -1.614 0.142 11.36 

8 2.245 0.150 15.00 
9 1.097 0.150 7.33 

7 -0.0235 0.118 0.20 

The z-statistics indicate that a model without the sex variable might be 
adequate. We found G2(m, Y) = 6.22, and x2(& Y) = 5.95 for 6 - 4 = 2 d.f., 
with corresponding p-values 0.045 and 0.051. We fit the model with the last 
two columns of X replaced by the single column x5 = (4 I ,  2,0, 1,2)’, allowing 
for the log-linear effect of education, getting G2 = 6.27, x2  = 6.02 for 3 d.f., 
indicating a reasonably good fit. A z-value of -0.0179 again suggested that 
the sex variable might be omitted. We then fit the model with J6 and x5 only, 
getting C2 = 6.30 and x 2  = 6.05 for 4 d.f. This resulted in the estimates 0.647, 
0.373, 0.162 for the probabilities of the “Yes” answer for educational levels 1, 
2,3. These are, of course, the same as those obtained under the log-linear model 
discussed in Example 8.5.7. Responses seemed to be little affected by the sex of 
the subject. 

Example 8.8.3: This example is taken from Lee (1974) and from SAS (1990, 
1101-1 108). The data (Table 8.8.2) consist of 27 vectors (Y, x,, . . . , x6) of 
observations on 27 cancer patients, where Y is the indicator of remission, and 
xl,. . . , x6 are patient characteristics. The same example is discussed by Santner 
and Duffy (1989, 230). For the purposes of this example, we will confine the 
analysis to the explanatory variables Li, Temp., and Cell, which we call x,, x2, 
and x3, respectively. Actually, these variables were the first three chosen in 
applying stepwise regression from among six explanatory variables, including 
these thrce. We will discuss the fits produced using these three variables only, 
ignoring the fact they were obtained by stepwise procedures. 

We consider four models Mk for k = 0, 1,2, 3. For each model U, - 9#( 1, p i ) ,  
independent for i = I , .  . . ,27. Let qi = log(pi/(l - pi)). For .&Yo, qi = P o .  For 
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Table 8.8.2 

ANALYSIS OF FREQUENCY DATA 

Patient i Remiss & Li x i ,  Temp. x i 2  Cell x , ~  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

1 
1 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
1 
0 
0 
1 
0 
1 
1 
0 

1.9 
1.4 
0.8 
0.7 
1.3 
0.6 
1 .o 
1.9 
0.8 
0.5 
0.7 
1.2 
0.4 
0.8 
1.1 
I .9 
0.5 
I .o 
0.6 
1.1 
0.4 
0.6 
1 .o 
I .6 
1.7 
0.9 
0.7 

0.996 
0.992 
0.982 
0.986 
0.980 
0.982 
0.982 
1.020 
0.999 
1.038 
0.988 
0.982 
1.006 
0.990 
0.990 
I .020 
1.014 
I .004 
0.990 
0.986 
1.010 
1.020 
1.002 
0.988 
0.990 
0.986 
0.986 

0.80 
0.90 
0.80 
1 .oo 
0.90 
I .00 
0.95 
0.95 
1 .oo 
0.95 
0.85 
0.70 
0.80 
0.20 
1 .oo 
I .00 
0.65 
1 .00 
0.55 
1 .oo 
1 .oo 
0.90 
I .oo 
0.95 
I .oo 
1 .oo 
I .oo 

k 

.M,, k = 1,. . . , 6 ,  ‘I, = ,!I, + 1 fi,xi,. Table 8.8.3 contains estimates of these 

parameters, and Wald’s goodness-of-fit statistic W k  = W ( h ,  - m6, m,) as given 
in the SAS manual. m k  is the MLE of m for the model A k .  The /?’s given here 
have the opposite sign than those given in the SAS manual because the Y-values 
were coded as 1’s and 2’s there rather than as 1’s and O’s, as they are here. 

If we accept the model A,,, the Wald statistics provide measures of the 
adequacy of these smaller models. It is tempting to use W(mk - Y, Y) or 
w ( m k  - Y, m,) as measures of the adequacy of the model .,&k. However, when 
Y is a vector of ones and zeros, or even when Y is a vector of binomial r.v.3 
with very small n-values, the statistics x2(m,, Y), GZ(m,, Y), W(m, - Y, Y), and 
W ( m k  - Y, m k )  are not approximately distributed as x z  under the model d k .  

The asymptotic theory discussed earlier applies only for the case n large, T 
fixed. The statistic W, = 0.183 indicates that relative to the model d6, the model 

j -  1 
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0 

0 
1 

0 
I 
2 

Model A0: q1 = Bo 

Wo = 9.46 for 6 d.f. 

Model -MI : 'ti = Bo + B , x i ,  

0.692 0.408 - 1.6946 0.09 

- 3.77 1.38 2.74 0.006 1 
2.90 1.19 2.44 0.014 6 

W, = 3.1 174 for 5 df. 

Model "42:  '11 = Bo + B l x l l  + &xtr 
47.86 46.44 1.03 0.303 

3.30 1.359 2.43 0.01 5 
- 52.43 47.49 1.10 0.270 

W, = 2. I43 I for 4 d.f. 

Model "43: '11 = Bo + B t x i l  + br12xi2 + B 3 x i 3  

-67.63 56.89 1.19 0.234 
- 9.65 7.75 1.25 0.2 13 
- 3.87 I .78 2.17 0.030 

2.01 61.71 1.33 0.184 
W, = 0.183 1 for 3 d.f. 

A3 fits almost as well. The statistic W, - W, is (in approximation) independent 
of W, and is approximately distributed as x:  if m E  V,. This statistic can 
therefore be used to test b3 = 0. In approximation (W, - W,) = Z : ,  where 
Z ,  = ),/&~,), another possible test statistic. In this case the model A, 
seems to be quite adequate, with the resulting estimate o(x,) = 
exp(3.777 1 + 2.897 3x,)/[l + exp(3.771 f 2.897 h,)] of the probability of re- 
mission. The positive coefficient for xt  indicates that increasing amounts of Li 
tend to increase the probability of remission. 

"be Case of a Multinomial Response Variable: We have been studying the 
case in which the response variable has a binomial distribution. The response 
variable may instead take r > 2 values. The rats in Example 8.8.1 might be 
classified as dead, sick, and well. As with the case r = 2 we can again reduce 
the dimensionality from the full log-linear model with T + qk parameters to 
(r - 1)k parameters by using a logistic approach. Let Yi - &,(pi, ni), indepen- 
dent for i = 1,. . . , T, with pi  = ( p : ,  . . . , pi ) .  Suppose that log(pf/pi) = /?3xij. 

The rth response category has been chosen as a baseline. As for the case r = 2, 
this model can again be shown to be log-linear. Another response category 
could be chosen as the baseline. The log likelihood is a function (r - 1 ) k  
parameters, and can be fit using the Newton-Raphson method. The 

j 
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corresponding vector space is spanned by the vectors x3, h = 1,. . . , r - 1, 
defined to take the value xij in cell (i. h), - x i j  in cell (i, r), zero elsewhere. For 
a full discussion of this and other models see Agresti (I990 Ch. 9). 

Problem 8.8.1: In his first four years as a major league baseball player, 
Hank Aaron, the leading home run hitter of all time, had the following record: 

Year No. of At Bats No. of Home Runs 

1954 468 13 
1955 602 27 
1956 609 26 
1957 615 44 

(a) State an appropriate model, using only two parameters to model the 
probability pj of a home run in a time at bat in year j ,  j = 1, 2, 3, 4. One 
x-variable should reflect experience. 

(b) Fit the model, and determine the goodness-of-fit statistics G z ( ~  y) and 
xz(m, y). Estimate the covariance matrix of fi for the model of (a) and use the 
estimate to test the null hypothesis that pj was the same every year. Also test 
the hypothesis using the G2-statistic. 

Problem 8.8.2: In an experiment to determine the effectiveness of insecticide 
XXX, 60 cockroaches were divided randomly into three sets of 100. The sets 
of 100 were exposed to three different doses: d ,  = 1.0, d ,  = 1.5, and d ,  = 2.0. 
The numbers of deaths were 15,36, and 79. Let p(d)  be the probability of death 
with dosage d. Suppose that the log-odds for death at dosage d is flo + P,d. 

(a) Find the MLE of p = (Po, PI)’ and estimate its covariance matrix. 
(b) Sketch your estimate h(d)  of p ( d )  as a function of d. 
(c) Give a 95% confidence interval on ~(3 .0) .  
(d) Estimate the dosage do.5 for which p ( d )  = 1/2 and give an approximate 

95% confidence interval. 

Problem 8.8.3: Let - 9 ( n i ,  pi) independently for i = 1,. . . , T. Let .A be 
a log-linear model for the table Y = ( x j ,  i = 1,. . . , T, and j = 1,2), where 

= x and x2 = ni - q. Let h be the MLE of m = E(Y) under model A!. 
Let f i i  = m,,/n, and fi: = Y,/ni. Show that 

(a) x2(&Y) = C ni(K - hii)’/C&il(ni - f i t , ) ]  

= 1 - B J 2 / C B i ( 1  - BJI, 
and 

(b) Gz(h, Y) = C & log[( x(n, - f i i ) / ( t i i  - VfiJ 
= C niO? logCpf(1 - Bl)/(1 - B:)fiiI* 



UxiISTlC REGRESSION 399 

Problem 884: The experiment described in Problem 8.8.2 was also con- 
ducted for the insecticide Super-XXX, using 93, 97, and 95 cockroaches with 
the results that 18, 43, and 83 cockroaches died. Give an appropriate model, 
then use it to give a confidence interval on a parameter which measures the 
difference in effectiveness in thc two insecticides. 

Problem 8.85 Questions concerning Example 8.8.1 : 
(a) Use the results to give 95% confidence intervals on the dosages x, and 

(b) Find a 95% confidence interval on PI, the “male effect.” Do males and 

(c) How could you test the null hypothesis that the regression effect of the 

(d) Give 95”/, confidence intervals on the dosages d ,  and d, necessary to kill 

xf for which 50% of rats will die for males and for females. 

females seem to respond in the same way? 

dosage is the same for females as for males? 

99% of all male and female rats. 

Problem 8.8.6: (See Problem 8.4.4.) The following table contains the results 
of the games played among four teams in a basketball league. Each team played 
16 games against each of the opponent, 8 on their home court and 8 at the 
other team’s court. The table below presents the number of games won by the 
home team. For example, team # 2 won 3 games over team # 3 while playing 
on team # 2’s court, and team # 3 won 5 games over team # 2 when the games 
were played on #3’s court. 

Away Team 
1 2 3 4  

Thus, Team # 1 won 20 games, # 2 won 12, # 3 won 28, and # 4  won 36. 
(a) Let pij be the probability that team i wins over team j in games played 

on team Ts  court. Let qi, = 1 - p l j .  One possible model 4* assumes the 
existence of strength parameters I,. A,, I,, A4 such that log(pii/yij) = I i  - Ai. 
Define the vector Y and matrix X corresponding to this model. 

(b) Show that the matrix X has rank 3, so that one of the strength parameters, 
say ,il, can be arbitrarily set to zero, so that X becomes a 12 x 3 matrix. 

(c) Fit the model in (a), comment on how well it fits, and draw conclusions. 
(d) Actually the data presented were generated on a computer for the case 
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that pij = Po + Izi  - ,Ij, so that Po is the “home field effect.” The parameters 
chosen were Po = 0.6, 1, = -0.5, d, = 0.5, L4 = 1.0. Determine p = (p i j ) ,  m (a 
12 x 2 matrix), and D[vJ (in 500 simulations the standard deviations of the 
components of 6 were 0.254,0.420,0.418,0.433; the means were 0.623, - 0.543, 
0.536, 1.034). 

(e) Fit the model A actually used to determine the data. Present = 

(lo, I,, A,, A,) and Gz(m, y), the residual deviance. 
(f) Assuming the model A, test the null hypothesis that A* holds (a = 0.05, 

as usual). 
(g) Find an approximation Tor the power of the test in (0. For 500 simulations 

the test rejected 371 times. 
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0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 

0.8 
0.9 

0.7 

Table 1.1 

0.5OOO 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.5396 0.5438 0.5478 0.5517 0.5567 0.5596 0.5636 0.5675 0.57t4 0.5753 
0.5793 0.5032 0.5871 0.5910 0.5948 0.5987 0.6026 0.8084 0.6103 0.6141 
0.61?!3 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.8808 0.6844 0.6879 

0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

0.7580 0.7611 0.7642 0.7673 on04 0.7734 0.7764 0.~794 0.7823 0 . m ~  
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1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2 

Standard Normal C.D.F. 
W )  

0.8413 0.8438 
0.8643 0.8665 
0.8849 0.8869 
0.9032 0.9049 
0.9192 0.9207 

0.9332 0.9345 
0.9452 0.9463 
0.9554 0.9564 
0.9641 0.9649 
0.9713 0.9719 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9806 0.9812 0.9817 
0.9821 0.9826 0.9830 0.9834 0.9638 0.9842 0.9846 0.9850 0.9854 0.9857 
0.9861 0.9864 0.9868 0.9871 0.9075 0.9878 0.9881 0.9884 0.9887 0.9890 
0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9881 
0.Ml 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.- 0.9986 0.9986 

0.8461 
0.8686 
0.8888 
0.9066 
0.9222 

0.9357 
0.9474 
0.9573 
0.9656 
0.9726 

0.8485 
0.8708 
0.8907 
0.9082 
0.9236 

0.9370 
0.9484 
0.9582 
0.9664 
0.9732 

0.8508 
0.8729 
0.8925 
0.9099 
0.9251 

0.9382 
0.9495 
0.9591 
0.9671 
0.9738 

0.8531 
0.8749 
0.8944 
0.91 15 
0.9285 

0.9394 
0.9505 
0.9599 
0.9678 
0.9744 

0.8554 0.8577 
0.8770 0.8790 
0.6962 0.8980 
0.9131 0.9147 
0.9279 0.9292 

0.9406 0.9418 
0.9515 0.9525 
0.9608 0.9616 
0.9686 0.9693 
0.9750 0.9756 

0.8599 
0.8810 
0.8997 
0.9162 
0.9308 

0.9629 
0.9535 
0.9625 
0.9699 
0.9761 

0.8621 
0.8830 
0.9015 
0.9177 
0.9319 

0.9441 
0.9545 
0.9633 
0.9706 
0.9767 
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2 
3 
4 
5 

6 
7 
8 
9 

10 

41 I 

0.142 0.289 0.445 0.617 0.811 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.33 
0.137 0.277 0.424 0.584 0.785 0.979 1.250 1.638 2.353 3.182 4.541 5.841 10.21 
0.134 0.271 0.414 0.569 0.741 0.941 1190 1.533 2.132 2.776 3.747 4.604 7.173 
0.132 0.261 0.400 0.559 0.727 0.920 1.156 1.476 2.015 2.571 3.385 4.032 5.893 

' 0.131 0.265 0.404 0.553 0.718 0.908 1.134 1.440 1.943 2.447 3.143 3.707 5.206 
0.130 0.263 0.402 0.549 0.711 0.896 1.119 1.415 1.695 2.385 2.891) 3.500 4.785 
0.130 0.262 0.400 0.546 0.706 0.889 1.108 1.397 1860 2.306 2.897 3.355 4.501 
0.129 0.261 0.398 0.544 0.103 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 
0.129 0.280 0.397 0.542 0.700 0.819 1.093 1.372 1.813 2.228 2.764 3.169 4.144 

Table 2.1 Studenfs-t YQuantiles for v d.f. 
'y 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

V 

0.550 0.600 0.650 0.700 0.150 0.kO 0.850 0.900 0.950 0.915 0.990 0.995 0.999 
11 0.158 0.325 0.510 0.727 1.OOO 1.316 1.983 3.078 6.314 12.71 31.82 63.66 318.d 

0.129 0.280 0.396 0.540 0.697 0.876 
0.128 0.259 0.395 0.539 0.696 0.873 
0.128 0.259 0.394 0.536 0.694 0.810 
0.120 0.258 0.393 0.537 0.692 0.868 
0.128 0.258 0.393 0.536 0.691 0.886 

0.128 0.258 0.392 0.535 0.690 0.865 
0.128 0.257 .0.392 0.534 0.689 0.863 
0.127 0.257 0.392 0.534 0.688 0.862 
0.127 0.257 0.391 0.533 0.688 0.861 
0.127 0.257 0.391 0.533 0.687 0.860 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

35 
40 
50 
60 
90 

120 

0.127 0.257 0.391 0.533 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 
0.127 0.256 0.390 0.532 0.686 0.858 1.081 1.321 1.717 2.074 2.508 2.819 3.505 
0.127 0.256 0.390 0.532 0.685 0.858 1.oBO 1.320 1.714 2.069 2.500 2.807 3.485 
0.127 0.256 0.390 0.531 0.685 0.857 1.059 1.318 1.111 2.064 2.492 2.797 3.467 
0.127 0.256 0.390 0.531 0.684 0.856 1.058 1.316 1.706 2.080 2.485 2.787 3.450 

0.127 0.256 0.390 0.531 0.684 0.858 1.058 1.315 1.706 2.056 2.479 2.779 3.435 
0.127 0.256 0.389 0.531 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.ll1 3.421 
0.127 0.256 0.389 0.530 0.683 0.855 1.056 1.313 1.101 2.048 2.467 2.763 3.408 
0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 
0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 

0.127 0.255 0.389 0.529 0.682 0.852 1.052 1.306 1.690 2.030 2.438 2.724 3.340 
0 127 0.255 0.388 0.529 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.705 3.307 
0.126 0.255 0.388 0.528 0.679 0.849 1.047 1.299 1.676 2.609 2.403 2.678 3.261 
0.126 0.255 0.387 0.527 0.679 0.848 1.046 1.286 1.671 2.000 2.390 2.660 3.232 
0.126 0.254 0.381 0.528 0.677 0.846 1.042 1.291 1.662 1.987 2.369 2.632 3.183 
0.126 0.254 0.386 0.526 0.6ll 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.160 

1 .oea 
1.083 
1.080 
1.016 
1.074 

1 .on 
1.089 
1.061 
1 .om 
1.064 

1.363 
1.356 
1.350 
1.345 
1.341 

1.337 
1.333 
1.330 
1.328 
1.325 

1.796 2.201 2.718 3.108 4.025 
1.782 2.179 2.681 3.055 3.930 
1.771 2.160 2.650 3.012 3.652 
1.761 2.145 2625 2.977 3.787 
1.753 2.131 2.603 2.947 3.733 

1.746 2 120 2.584 2.921 3.686 
1.740 2.110 2.567 2.898 3.816 
1.734 2.101 2.552 2.878 3.611 
1.729 2.093 2.540 2.861 3.579 
1.725 2.086 2.528 2.845 3.552 

InfinityL0.1256 0.2533 0.3853 0.5244 0.6745 0.8416 1.0364 1.2816 1.6449 1.9560 2.3263 2.576 3.0901 
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6.205 
4.177 
3.495 
3.163 

2.969 
2.841 
2.752 
2.685 
2.634 

2.593 
2.560 
2.533 
2.510 
2.490 

2.473 
2.458 
2.445 
2.433 
2.423 

2.414 
2.406 
2.398 
2.301 
2.385 

2.379 
2.373 
2.369 
2.364 
2.360 

2.342 
2.329 
2.311 
2.299 
2.280 

Table 2.2 Student's-t y-Quantiles for 
y = 0.05/(2k), v d.f. 

k 
2 3 4 5 6 7 8 9 10 

11 25.452 38.189 50.923 63.657 76.390 89.123 101.856 114.589 127.3211 
7.649 
4.857 
3.961 
3.534 

3.288 
3.128 
3.016 
2.933 
2.870 

2.820 
2.780 
2.746 
2.718 
2.694 

2.673 
2.655 
2.639 
2.625 
2.613 

2.601 
2.591 
2.582 
2.574 
2.566 

2.559 
2.553 
2.547 
2.541 
2.536 

2.515 
2.499 
2.477 
2.463 
2.440 

8.W 
5.392 
4.315 
3.810 

3.521 
3.335 
3.206 
3.111 
3.038 

2.981 
2.935 
2.896 
2.864 
2.837 

2.813 
2.793 
2.775 
2.759 
2.744 

2.732 
2.720 
2.710 
2.700 
2.692 

2.684 
2.676 
2.670 
2.663 
2.657 

2.633 
2.616 
2.591 
2575 
2.549 

9.925 
5.841 
4.604 
4.032 

3.707 
3.500 
3.355 
3250 
3.169 

3.106 
3.055 
3.012 
2.977 
2.947 

2.921 
2.898 
2.878 
2.861 
2.845 

2.831 
2.819 
2.807 
2.797 
2.787 

2.779 

2.763 
2.756 
2.750 

2724 
2.705 
2.678 
2860 
2.632 

2.771 

10.886 
6.232 
4.851 
4.219 

3.863 
3.636 
3.479 
3.364 
3.277 

3.208 
3.153 
3.107 
3.069 
3.036 

3.008 
2.984 
2.963 
2.944 
2.927 

2.912 
2.899 
2.886 
2.875 
2.865 

2.858 
2.847 
2.839 
2.832 
2.825 

2.797 
2.?76 

2729 
2.698 

2,747 

1 1.769 
6.580 
5.088 
4.382 

3.997 
3.753 
3.584 
3.462 
3.368 

3.295 
3.238 
3.187 
3.146 
3.112 

3.082 
3.056 
3 . m  
3.014 
2.996 

2.980 
2.968 
2.953 
2.941 
2.930 

2.920 
2.91 1 
2.902 
2.895 
2.887 

2.858 
2.836 
2.805 
2.786 
2.753 

12.590 
6.895 
5.261 
4.526 

4.115 
3.855 
3.877 
3.547 
3.448 

3.370 
3.30% 
3.257 
3.214 
3.177 

3.146 
3.119 
3.095 
3.074 
3.055 

3.038 
3.023 
3.010 
2.997 
2.986 

2.975 
2.966 
2.957 
2.949 
2.941 

2.910 
2.887 
2.855 
2.834 
2.800 

13.360 
7.185 
5.437 
4.655 

4,221 
3,947 
3.759 
3.622 
3.518 

3.437 
3.371 
3.318 
3.273 
3.235 

3202 
3.174 
3.149 
3.127 
3.107 

3.080 
3.074 
3.060 
3.047 
3 . w  

3.024 
3.014 
3.005 
2.996 
2.988 

2.955 
2.931 
2.898 
2.877 
2.841 

14.089 
7.453 
5.598 
4.773 

4.317 
4.029 
3.833 
3.690 
3.581 

3.497 
3.428 
3.373 
3.326 
3.286 

3.252 
3.222 
3.197 
3.174 
3.153 

3.135 
3.119 
3.104 
3.091 
3.078 

3.067 
3.057 
3.047 
3.038 
3.030 

2.996 
2.971 
2.937 
2.915 
2.878 

1201 2.270 2.428 2.536 2.817 2.883 2.737 2.784 2.824 2.8601 
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2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

35 
40 
50 
60 
90 

120 

V 

413 

7.669 
4.857 
3.961 
3.534 

3.288 
3.128 
3.016 
2.933 
2.870 

2.820 
2.780 
2.746 
2.718 
2.694 

2.673 
2.655 
2.639 
2.625 
2.613 

2.601 
2.591 
2.582 
2.574 
2.566 

2.559 
2.553 
2.547 
2.541 
2.536 

2.515 
2.499 
2.477 
2.463 
2.440 
2.428 

Tibk 2.3 Student's-t yQuantiles for 
y=  1 - 0.05/jk(k - l)], v d.f. 

k 
3 4 5 6 7 8 

11 38.189 76.390 127.321 1 m . m  267.379 358.506 
10.886 
6.232 
4.851 
4.219 

3.863 
3.636 
3.479 
3.364 
3.277 

3.208 
3.153 
3.107 
3.069 
3.036 

3.008 
2.984 
2.963 
2.944 
2.927 

2.912 
2.899 
2.888 
2.875 
2.865 

2.856 
2.647 
2.839 
2.832 
2.825 

2.797 
2.776 
2.747 
2.729 
2.698 
2.883 

14.089 
7.453 
5.598 
4.773 

4.317 
4.029 
3.833 
3.690 
3.581 

3.497 
3.428 
3.373 
3.326 
3.286 

3.252 
3.222 
3.197 
3.174 
3.153 

3.135 
3.119 
3.104 
3.091 
3.078 

3.067 
3.057 
3.047 
3.038 
3.030 

2.996 
2.971 
2.837 
2.915 
2.878 
2.860 

17.277 
8.575 
6.254 
5.247 

4.698 
4.355 
4.122 
3.954 
3.821 

3.728 
3.649 
3.504 
3.530 
3.484 

3.444 
3.410 
3.380 
3.354 
3.331 

3.310 
3.291 
3.274 
3.259 
3.244 

3231 
3.219 
3238 
3.198 
3.168 

3.150 
3.122 
3.083 
3.057 
3.016 
2.995 

20.457 
9.624 
6.847 
5.667 

5.030 
4.636 
4.370 
4.179 
4.035 

3.923 
3.833 
3.760 
3.688 
3.648 

3.604 
3.565 
3.532 
3.503 
3.477 

3.453 
3.432 
3.413 
3.396 
3.380 

3.366 
3.353 
3.340 
3.329 
3.319 

3.276 
3.244 
3.201 
3. t 73 
3.127 
3.104 

23.833 
10.617 
7.392 
6.045 

5.326 
4.884 
4.587 
4.374 
4.215 

4.091 
3.993 
3.912 
3.845 
3.788 

3.740 
3.698 
3.661 
3.629 
3.601 

3.575 
3.552 
3.531 
3.513 
3.496 

3.480 
3.465 
3.452 
3.440 
3.428 

3.382 
3.347 
3.300 
3.270 
3.220 
3.195 

Infinity( 2.394 2.639 2.807 2.835 3.038 3.124 
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8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49 
5.54 5.46 5.39 5.34 5.31 5.28 527 5.25 524 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13 
4.54 4.32 4.19 4.11 4.M 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76 
4.06 3.78 3.82 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.11 

3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 294 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72 
3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47 
3.46 3.11 2.92 2.81 2.73 2.67 262 2.59 258 2-54 2.50 2.46 2.42 2.40 2.38 2.38 2.34 2.32 2.29 
3.36 3.01 281 2.69 2.61 2.55 2.51 2.47 244 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16 
3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06 

Tdde 4.1 0.90 - Quantiles of the F-Distribution 

! 

i 

i 
' 
I 

) 

1 2 3 4 5 6 7 8 9 10 12 15 2 0 2 4  30 40 60120Inf .  

1139.9 49.5 53.6 56.8 57.2 58.2 58.9 59.4 59.9 60.2 60.7 61.2 61.7 62.0 62.3 62.5 62.8 63.1 63.31 

3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 227 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97 
3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90 

13.14 2.76 2.56 2.43 2.35 2.26 2.23 2 2 0  2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85 
13.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80 

3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.67 1.85 1.82 1.79 1.76 

3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72 
3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69 
3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66 
2.99 2.61 2.40 2.27 2.18 2.11 2.06 202 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63 
2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61 

21 
22 
23 
24 
25 

30 
40 
60 

Inf. 
120 

11 
12 
12 
14 
18 

If 
17 
lE 
1$ 
x 

v2 

2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59 
2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57 
294 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55 
2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53 
292 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52 

2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46 
2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38 
2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.86 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29 

2.71 2.30 2.09 1.95 1.85 1.78 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.39 1.34 1.30 1.24 1.17 1.00 
2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1 . 6  1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19 
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v1 

1 2  3 4 5 6 7 8 9 1 0 1 2  1 5 2 0 2 4 3 0 4 0 6 0 1 2 0 I n f .  

1 162 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254 

2 16.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 18.5 19.5 19.5 19.5 19.5 19.5 19.5 

3 10.1 9.55 8.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.62 4.77 4.74 4.88 4.62 4.58 4.53 4.50 4.46 4.43 4.40 4.37 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 

7 5.59 4.74 4.36 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 327 3.23 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 328 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 

9 5.12 4.26 3.86 3.63 3.48 3.37 329 323 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 

11 4.84 3.88 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.65 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 

12 4.75 3.69 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.87 2.60 2.53 2.46 2.42 2.38 2.34 2.30 225 221 

14 4.60 3.74 3.34 3.11 2.96 2.65 2.76 2.70 2.05 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 

"2 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 223 2.19 2.15 2.10 2.06 2.01 1.96 

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.46 2.42 2.38 2.31 223 2.16 2.11 2.07 2.03 1.98 1.93 1.88 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 228 220 2.12 2.08 2.04 1.99 1.95 1.90 1.84 

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 225 2.16 2.10 2.05 2.01 1.96 1.92 1.87 1.61 

22 4.30 3.44 3.05 2.82 2.88 2.55 2.46 2.40 2.34 2.30 223 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.76 

23 4.28 3.42 3.03 2.60 2.84 2.53 2.44 2.37 2.32 227 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 

24 4.26 3.40 3.01 2.76 2.62 2.51 2.42 2.36 2.30 2.26 2.18 2.11 2.03 1.98 1.94 1.89 1.W 1.79 1.73 

25 424 3.39 2.99 2.76 2.60 2.49 2.40 2.34 228 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 

30 4.17 3.32 2.92 2.69 2.63 2.42 2.33 2.27 221 2.16 2.09 2.01 1.93 1.69 1.84 1.79 1.74 1.68 1.62 

40 4.08 323 2.84 2.61 2.45 2.34 225 2.16 2.12 2.06 2.00 1.92 1.64 1.79 1.74 1.69 1.64 1.58 1.51 

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.85 1.59 1.53 1.47 1.39 

120 3.92 3.07 2.68 2.45 2.29 2.16 2.09 2.02 1.96 1.91 1.83 1.75 1.88 1.61 1.55 1.50 1.43 1.35 1.25 

Inf. 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 122 1.00 
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vt 

1 2 3 4 5 8 7 8 9 10 12 15 20 24 30 40 6 0 1 2 0 I n f .  

648 800 864 900 922 937 94-9 957 963 969 977 w15 993 249 250 251 252 253 254 

38.5 39.0 392 39.3 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.5 19.5 19.5 19.5 19.5 19.5 19.5 

17.4 16.0 15.4 15.1 14.9 14.7 14.8 14.5 14.5 14.4 14.3 14.3 14.2 8.64 8.62 8.59 8.57 8.55 8.53 

122 10.7 9.98 9.60 9.36 9.20 9.07 6.98 8.90 8.84 8.75 8.66 8.56 5.77 5.75 5.72 5.69 5.66 5.83 

10.0 8.43 7.76 7.39 7.15 6.98 8.85 6.76 6.68 6.82 6.52 6.43 633 4.53 4.50 4.46 4.43 4.40 4.37 

8.81 7.26 6.60 623 5.99 5.82 5.70 5.60 5.52 5.46 5.37 527 5.17 3.84 3.81 3.77 3.74 3.70 3.67 

8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 3.41 3.38 3.34 3.30 327 3.23 

7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.12 3.08 3.04 3.01 2.97 2.93 

7.21 5.71 5.08 4.72 4.40 4.32 4.20 4.10 4.03 3.98 3.87 3.77 3.67 2.90 2.86 2.83 2.79 2.75 2.71 

6.94 5.46 4.83 4.47 424 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 2.74 2.70 2.68 2.62 2.58 2.54 

6.72 526 4.63 428  4.04 3.68 3.76 3.66 3.59 3.53 3.43 3.33 323 2.61 2.57 2.53 2.49 2.45 2.40 

8.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 2.51 2.47 2.43 2.38 2.34 2.30 

6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.42 2.38 2.34 2.30 225 2.21 

8.30 4.86 4.24 3.89 3.06 3.50 3.38 329 3.21 3.15 3.05 2.95 2.84 2.35 2.31 2.27 2.22 2.18 2.13 

6.20 4.77 4.15 3.80 3.58 3.41 3.29 320 3.12 3.06 2.96 2.86 2.78 2.29 2.25 2.20 2.16 2.11 2.07 

6.12 4.89 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.24 2.19 2.15 2.11 2.06 2.01 

8.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.19 2.15 2.10 2.08 2.01 1.96 

5.96 4.5% 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.15 2.11 2.06 2.02 1.97 t.92 

5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.62 2.72 2.82 2.51 2.11 2.07 2.03 1.98 1.93 1.88 

5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.08 2.04 1.99 1.95 1.90 1.84 

5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.05 2.01 1.96 1.92 1.87 1.81 

5.79 4.38 3.78 3.44 322 3.05 2.93 2.84 2.76 2.70 2.80 2.50 2.39 2.03 1.98 1.94 1.89 1.84 1.78 

5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.01 1.96 1.91 1.86 1.81 1.76 

5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 1.98 1.94 1.89 1.84 1.79 1.73 

5.69 429 3.89 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 1.95 1.92 1.87 1.82 1.77 1.71 

5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 220 1.89 1.84 1.79 1.74 1.68 1.62 

5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 1.79 1.74 1.69 1.64 1.58 1.51 

5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 227 2.17 2.06 1.94 1.70 1.65 1.59 1.53 1.47 1.39 

5.15 3.80 323 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.61 1.55 1.50 1.43 1.35 1.25 

5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 t.94 1.83 1.71 1.52 1.46 1.39 1.32 1.22 1.00 
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1 2  3 4 5 6 7 8 9 1 0 1 2 1 5 2 0 2 4 3 0 4 0 8 0 1 2 0 I n f .  

1 4052 5000 5403 5625 5764 6859 5928 5981 6022 6056 6106 6 l V  6209 6235 6261 6287 6313 6339 6386 

2 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 e9.5 99.5 

3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.4 272 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2 26.1 

4 21.2 18.0 16.7 16.0 15.5 152 15.0 14.8 14.7 14.6 14.4 14.2 14.0 13.9 13.0 13.8 13.7 13.6 13.5 

5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 929 9.20 9.11 9.46 

6 13.8 10.9 9.78 9.15 8.75 6.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88 

7 12.3 9.55 8.45 7.65 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65 

0 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 528 5.20 5.12 5.03 4.95 4.86 

9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 526 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31 

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91 

1 1  9.65 7.21 8.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.06 3.78 3.69 3.60 

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36 

13 9.07 6.70 5.74 5.21 4.06 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17 

14 8.86 6.51 5.56 5.04 4.69 4.48 428 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 327 3.18 3.09 3.00 

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 329 3.21 3.13 3.05 2.96 2.87 

vz 

16 8.53 6.23 5.20 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75 

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65 

18 829 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57 

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49 

20 8.10 5.85 4.94 4.43 4.10 3.07 3.70 3.56 3.48 3.37 323 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42 

21 8.02 5.76 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36 

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31 

23 7.88 5.66 4.76 426 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26 

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 326 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21 

25 7.77 5.57 4.68 4.18 3.85 3.63 3.48 3.32 3.22 3.13 2.99 2.65 2.70 2.62 2.54 2.45 2.36 2.27 2.17 

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.99 2.84 2.70 2.55 2.47 2.39 2.30 221 2.11 2.01 

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80 

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.03 2.50 2.35 220 2.12 2.03 1.94 1.84 1.73 1.80 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 203 1.95 1.86 1.76 1.66 1.53 1.38 
Inf. 6.64 4.61 3.78 3.32 3.02 2.80 2.6) 2.51 2.41 2.32 2.19 2.04 1.88 1.79 1.70 1.59 1.48 1.33 1.00 

419 

Table 4.4 0.99 - Quantiles of the F-Distribution 
vt 
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1 0.95 
0.99 

2 0.95 
0.99 

3 0.95 
0.99 

4 0.95 
0.99 

5 0.95 
0.99 

6 0.95 
0.99 

7 0.95 
0.99 

8 0.95 
0.99 

9 0.95 
0.99 

10 0.95 
0.99 

11 0.95 
0.99 

12 0.95 
0.99 

13 0.95 
0.99 

14 0.95 
0.99 

V 
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Table 6 

2 3 4 5 6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5  
18.00 27.00 32.80 37.10 40.40 43.10 45.40 47.40 49.10 50.60 52.00 53.20 54.30 55.40 
90.0 135.0 184.0 186.0 202.0 218.0 227.0 237.0 248.0 253.0 260.0 286.0 272.0 277.0 

6.09 8.30 9.80 10.90 11.70 12.40 13.00 13.50 14.00 14.40 14.70 15.10 15.40 15.70 
14.00 19.00 22.30 24.70 26.60 26.20 29.50 30.70 31.70 32.60 33.40 34.10 34.80 3.40 

4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.20 10.40 10.50 
8.26 1O.w) 12.20 13.30 14.20 15.00 15.60 16.20 16.70 17.10 17.50 17.90 18.20 18.50 

3.93 5.04 5.76 8.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66 
6.51 8.12 9.17 9.96 10.60 11.10 11.50 11.90 1230 12.60 12.80 13.10 13.30 13.50 

3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 
5.70 6.97 7.80 8.42 8.91 9.32 9.67 9.97 10.20 10.50 10.70 10.90 11.10 11.20 

3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14 
5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.49 9.65 9.81 9.95 

3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76 
4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.88 9.00 9.12 

3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 
4.74 5.63 6.20 6.63 6.96 7.24 7.47 7.68 7.87 8.03 8.18 8.31 8.44 8.55 

3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87 5.98 6.09 6.19 6.28 
4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.32 7.49 7.65 7.78 7.91 8.03 8.13 

3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.11 
4.48 5.27 5.77 6.14 6.43 8.67 6.87 7.05 7.21 7.36 7.48 7.60 7.71 7.81 

3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.80 5.99 
4.39 5.14 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56 

3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51 5.62 5.71 5.80 5.88 
4.32 5.04 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.08 7.17 7.26 7.36 

3.0-6 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 
4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19 

3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.72 
4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 8.54 6.66 6.77 6.87 6.96 7.05 

0.95 and 0.99 Quantiles of the 
Studentized Range Distribution for Parameters k, v 

k 
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15 0.95 
0.99 

429 

3.01 3.67 4.08 4.37 4.60 4.78 4.94 5.06 5.20 5.31 5.40 5.49 5.58 5. 
4.17 4.83 5.25 5.56 5.80 5.90 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6. 

Tibk 6 ( c o d )  0.95 and 0.99 Quantiles of the 
Studentized Range Distribution for Parameters k, v 

k 

i s  0.95 
0.99 

17 0.95 
0.99 

18 0.95 
0.99 

3.00 3.65 4.05 4.33 4.56' 4.74 4.90 5.03 5.15 5.26 5.36 5.44 5.52 5.59 
4.13 4.78 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82 

2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.55 
4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73 

2.97 3.61 4.00 4.28 4.49 4.67 4.02 4.96 5.07 5.17 5.27 5.35 5.43 5.50 
4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65 

Infinity 0.95 
0.99 

19 0.95 
0.99 

20 0.95 
0.99 

24 0.95 
0.99 

30 0.95 
0.99 

40 0.95 
0.99 

60 0.95 
0.99 

120 0.95 
0.99 

V 

2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 
3.84 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45 

2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.32 5.39 5.46 
4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58 

2.95 3.58 3.96 423 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 
4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.29 6.37 6.45 6.52 

2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 
3.96 4.54 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11 6.19 6.26 6.33 

2.89 3.49 3.84 4.10 4.30 4.46 4.60 4.72 4.03 4.92 5.00 5.08 5.15 5.21 
3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 

2.86 3.44 3.7'9 4.04 4.23 4.39 4.52 4.63 4.74 4.82 4.91 4.98 5.05 5.11 
3.82 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.80 5.69 5.77 5.84 5.90 5.96 

2.63 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.80 4.94 5.00 
3.76 4.28 4.60 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60 5.67 5.73 5.79 

2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.48 4.56 4.64 4.72 4.78 4.84 4.90 
3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.38 5.44 5.51 5.56 5.61 
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120 
Infinity 
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2.35 2.73 2.94 3.08 3.20 3.28 3.35 3.41 3.46 
2.33 2.71 2.92 3.06 3.15 3.24 3.31 3.37 3.42 

T a k  7 yQuantiles of Bechhofer's Statistic D 
for Parameters k and v 

y = 0.95 
k 

5 
6 
8 
10 
12 
14 
is 
18 
20 
30 
60 
120 

lnlinily 

3 
3.45 
3.31 
3.14 
3.04 
2.98 
2.94 
2.91 
2.88 
2.87 
2.81 
2.76 

- 

4.77 5.52 5.95 6.26 6.51 6.69 6.86 6.99 7.11 
4.44 5.11 5.49 5.76 5.95 6.12 6.26 6.38 6.49 
4.10 4.65 4.96 5.19 5.36 5.49 5.60 5.70 5.78 
3.90 4.40 4.68 4.88 5.03 5.15 5.25 5.35 5.42 
3.79 4.26 4.51 4.70 4.84 4.95 5.03 5.12 5.19 
3.71 4.16 4.40 4.57 4-70 4.81 4.89 4.96 5.03 
3.85 4.07 4.31 4.48 4.61 4.71 4.79 4.66 4.92 
3.61 4.02 4.26 4.41 4.54 4.62 4.71 4.78 4.04 
3.58 3.97 4.20 4.26 4.48 4.57 4.65 4.72 4.78 
3.48 3.85 4.06 4.20 4.31 4.40 4.47 4.54 4.58 
3.38 3.73 3.93 4.06 4.16 4.24 4.30 4.36 4.41 
3.34 3.68 3.66 3.99 4.09 4.16 4.23 4.29 4.33 
329 3.62 3.80 3.92 4.01 4.09 4.14 4.20 4.25 

4 5 6 7 8 9 10 
3.79 4.03 4.21 4.36 4.47 4.58 4.67 
3.62 3.03 4.00 4.13 4.24 4.34 4.41 
3.42 3.61 3.76 3.87 3.97 4.06 4.13 
3-31 3.49 3.62 3.73 3.82 3.90 3.97 
3.24 3.41 3.54 3.65 3.73 3.80 3.87 
3.18 3.34 3.48 3.58 3.66 3.73 3.80 
3.15 3.31 3.44 3.54 3.82 3.69 3.75 
3.13 328 3.41 3.51 3.58 3.65 3.71 
3.10 3.25 3.38 3.48 3.55 3.62 3.60 
3.04 3.18 3.30 3.39 3.46 3.54 3.59 
2.97 3.13 3.22 3.32 3.30 3.45 3.51 

0.80 
0.90 
0.95 
0.99 

0.995 
0.999 

1.1902 1.6524 1.8932 2.0528 2.1709 2.2639 2.3404 2.4049 2.4608 
1.8124 2.2302 24516 2.5997 2.7100 2.7872 2.8691 2.m1 2.9829 
23262 2.7101 2.9162 3.0552 3.1591 3.2417 3.3099 3.3679 3.4182 
3.2900 3.6173 3.7870 3.9196 4.0121 4.0861 4.1475 4.1999 4.2456 
3.6428 3.9517 4.1224 4.2394 4.3280 4.3989 4.4579 4.5063 4.5523 
4.3703 4.- 4.7987 4.9949 4.9856 5.0505 5.1047 5.1511 5.1917 



Answers 

CHAPTER 1 

1.21: (a) 60, 15, 244, (4, 0, 8, 4, 12), (1,  1, 1, 0, - l ) ,  244 = 240 + 4. 
0 2.5 

1.3.1: (a) 2 and 3; (b) & = U((1, 1, 0, 0), (0, 0, I ,  I)), & = 9 ( ( l ,  I ,  0, 0), 
(O,O,  1, 1),(1,0, l ,O));(c)z= ( I ,  - 1 ,  - 1 ,  l)(oranyrnultiple);(d)dim(V4)=3, 
(e) V3 is the collection of all vectors orthogonal to z. That is, the sum of the 
first and fourth components is the same as the sum of the second and third 
components. 

1.33: (a) [: 9 1, (-p - 2  *I, 290,274, 16; (b) 9 = jiCi. 

1.3.4: (a) (3, 9, 5, 31, (-2,  0, 0, 2); (b) 3x,, (8/7)x2, 3x, + (8/7)x2 # y; 
(c) (e, xI )  = 0, (e, x2) = 0; (d) 132, 124, 8, 132 = 124 + 8; (e) Example: 

(1, 1, -3, 1); (f) 9 = 5v, - 2v,, y = 9 - 2v3 - Ov,; (g) w = 4v, - 2v2 = 
4x, - 2(x2 - 3x4  = lox, - 2x2, 12 = 8 + 4. (y - 9 )  I V,  and (9  - w) E V, so 
that the Pythagorean Theorem applies; (h) true, true; (i) all true. 
1.35: (a) Let x* = x - XJ, so V =  Y(J, x*); (b) a, = Sxv/Sxx, a, = j ;  
(c) h,  = al = Sxr/Sxx, bo = 1 - b , f ;  (d) S$/S,, and S,,,. - S$/Sxx; ( f )  6, 2, 
(3, 5, 7, 9), 3, 2, 168, 164, 4. 

4 9 8  2 

V 1  = (1, 1, 1, I), v2 = x2 - 3x1 = ( I ,  -2, 0, I), V-j  = (1, 0, 0, - I ) ,  v4 = 

[I," 9' 13.6: 9 = 

1 1  

1 1  

3 3  

0 0  

1.63: (1/11) 

'1, e = 
5 

9 0  

0 0  

-'3, 1 lly1l2 = 272, 

0 2 0  

0 0 2  

lljii12 = 268, llell' = 4. 

1 9 9 - 6  0 

9 9 - 6  0 

-6  -6  4 0 ' 

0 0 0 2 2  

431 



432 ANSWERS 

(4, 4, 12, 0)'. (-3, -3, 2, l)', (1, 1, 14, 1)'. 

I 0 -1  1 0 1  

1.6.4: (a) (1/2)[ -: :], (b) (1/2)[ 0 2 01. 

1 0 1  
2 2 2 3 - 4  1 1 3 6 1 1  [i ~] , [ -2  -2 -2]9[3 -4 I].[ 9 2 7]9[-: -: :]* 

464 = 384 + 24 + 52 + 4. 
1.6.9: (a) ((2, 1, -1)}. 

1.7.1: (a)& = l 5 ,& = 10 ,v l  = (2, - l)'/ 5, v2 = (1,2)'/J5. (b) U = (vl ,vz),  

1.6.10: (b) 43 = (16)(7)/3 + ( - 2)( 1)/2 + ( - 8)( - 5)/6. 

A = diag(4, A d .  (4 Pl = ( 1 4  4 -2 l f P ~  = (1/5)[2 1 2  4]. 
- 

1.7.7: The matrix of the quadratic form has diagonal terms 2, 2, 11, above 
diagonal terms 8, - 1, - 1. The eigenvalues are 12, 9, -6. The quadratic form 
is nol nonnegative definite. 

1.78: B = [ "1. 
-2 4 

1.7.9: G-' = (1/17) - 4  7 -1 [ l: -I :1 

CHAPTER 2 

8 0 6  

1 36 -20 
-3 17 

2.1.1: (a) The 3 x 3 zero matrix, (b) 

6 3 13 

L0.469 0.973 0.3731' 
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0.060 0.938 -0.602 0.4 3 31. 

- 1 / 2 3  17/24 J34 ] = [ -0.289 0.708 

1/2,/% 9/,./% -5/J69 
2.12: D[Y] = (cij), where ci, = min(i, j ) .  R[Y-J = (pi,), where prj = 
Jmin(i, j)/max(i, j ) .  

2.15: Diagonal terms of D[Y] are of; + a:, off-diagonal terms are of;. 
OR-diagonal terms of R[Y] are cE/[uf; + uf]. Var(Y, + Y, + Y,) = 
9 4  + 3u;. 
2.2.1: 6. 

23.2: (a) n(n - l)u2, (b) Q2(X) = nQ1(X), (c )  1/[n(n - l)]. 
2.23: (a) u:/n2, (b) l/[n(n - l)]. 
23.1: 

E[h(X)] = 0.7, Var(g(X)) = 5/12 - 0.29, E[Y - g(X)]' = 1/12, Var( 9) = 
0.10, E [  Y - 
235: (a) 68.30, 68.09, 1.811, 2.541, 0.4602, P= 68.09 + 0.6457(X - 68.30); 
(b) 21/22; (c )  13/14. 
2.45: 0.9602. 
2.55: K = 213, n, = 3, n, = 2, S = 7719. 

- 

(d) 9 = (4x2 + 7X3)/7, (b) 4, 0.4, J6.9. 
23.4: ~(0) = 1, ~ ( 1 )  = 516, g(2) = 0, h(X) = 0.7 - (X - 1)/2, E[g(X)] = 

= 0.1 1. 

CHAPTER 3 

3.1.1: (d) q = (5, -1, 4, 6)', S2 = 15, S2(B) = 

3.1.2: (b) fi = [-:I, e = (-3, -4, 3, 1, l)', S2 = 12. 

5 - 1  

3.13: (b) @ =  (100/12) [ - 1  5 'I[ 2 ~ ] ;  (c) (0.36'/24)[ - , 5 ] ;  
(d) b = [:I, Sz = 96 x lo-". y3 

70 70 130 130 

3.1.4: (b) 6 = (100, 1, 2, 3)'; (c) , SSE = 616, S2 = 77, 

10 10 190 190 

66 66 126 126 
23,100 0 0 0 

~~(b)=(lp,W)[ 77 0 77 0 0 0 1; (d) q= [  39 39 159 1.91, 

15 15 195 195 
0 0 77 

SSE = 448. 
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3.2.3: (b) (4.84, 25.19) and (- 5.37, 35.37). 
3.2.4: (52.15, 64.19). (42.63, 49.40), and (1.24, 25.96). 
3.2.6: (c) 8, = 1.5. 
3.3.4: For y(x) = 1, 1 = 0.684, S z ( b )  = 0.000325. For g(x) = x, b =  0.688, 
S2@) = 0.003 58. For g(x) = x2, = 0.692 5, S2(j?) = 0.031 2. 

6 1  

35.2: -2, -3, 4, [ 2: :], [j 1~1, 3.5,0.0972. 

22 25 
3.6.1: R,’ x 2  = 0.099265, RS x2x, = 0.485 294, t = - 1.224745, d = 0.75. 
3.6.3: ESS3 = 16, EES, = 80, f i3 = 8, lIxJll1’ = 1, t = 2J2. 
3.7.1: rI2  = 0.38966, r 1 3  = 0.48038, r23 = 0.63481, r12.3 = 0.125. 
3.73: R:.23 = 7/16. 
3.75: 95% Confidence Interval on py: (0.1209, 0.4774), 95% C.I. on px:  
(0.064 7, 0.350 9). 

3.8.1: (a) A = [: y - y  A]; (b) (41, -3, -8, 3)’, (0, 32. 40, 8, 20, 20)’, 

(3, -8)’; (c) q o  = (4, 36, 20, 20, 20, 20)’, Y - Vo = (0, 0, 24, -8, -4)‘. 
Y1 = (-4, - 4.20, - 12,0,0)’; (d) SSE,, = 224, SSE,, = 800, llQ - gall = 576, 
F = 2.571 4; (9 c = (0.0, 0, 192)’, a, = (-4, -4, 20, - 12, 0, O)’, t, = 2.26779, 
s2 = 112. 
3.8.2: V = 35, + J 2  + 5J3 + 2x, 
IIQlIl’ = 26.7429, F = 5.0143, F2,6,0,95 = 5.14. 
3.8.3: S2 = 34.8, F = 2.155 for 2 and 5 d.f.. 

3.8.4: (a) 0.84; (b) F = 2.0 for 2 and 16 d.f.; (c) A = 

3.8.7: (e) (-8.567,0.567), f = -2.071 5 ;  (f) (-9.147, 1.1466). 

3.10.1: (b) 6 = [l8(P2 - f13)2 + 1148; - 6Ofl,(#?, - #?2)]/02, (c) 6 = 18, 
power = 0.5004. 
3.10.3: (a) 0.3, (b) no = 10, (c) no = 62. 
3.10.4: (a) 0.4, (b) 9. 
3.10.5: (b) 0.3, (c) 7. 
3.11.1: (a) ?= 0.5189 + 0.807x2, S2 = 0.1800, ryxz = 0.5759; (b) For x2 = 2.74 
the interval is (2.607, 2.854), (c) For x2 = 2.74, the interval is (1.869, 3.593), 
(d) r, , , ,  = 0.703 6. 
3.11.2: (b) (10.05, 19.98), (22.35, 37.65); (c) (11.65, 18.35), (23.29, 36.71); 
(d) (2.18, 3.44). 
3.11.4: For i = 1 and 2, the 95% confidence intervals are (-6.60, 6.60) and 
(25.40.38.60). The 95% prediction intervals are ( - 7.94,7.94) and (24.06.39.94). 

*o = 2.085 75 + 2.285 7x, Sz = 2.666 7, 

[:: :: ;I- 
3.8.9: ~=0.8397,b=3.3647,(-10.649,2.649).  
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3.11.5: (a) The endpoints of the interval are the roots of a quadratic equation 
in x,; (b) (7.769, 9.090); (c) (7.487, 9.350). 
3.121: P = 62.2206 - 0.31 14 (age), S2 = 772.39, (46.35, 53.18), (38.67, 60.86). 
3.122: 
3.35. 
3.123: -0.265 2, -0.0847. 
3.12.4: -0.4209. 

P = 88.46 - 3 . 2 0 4 0 ~ ~  - o.1504x2, S2 = 7.168, SSE = 200.7158, F = 

3.12.5: 0.107 5. 
3.12.6: 0.788 7. 
3.13.1: (a) P = 3 - 2x, + 1.5X2; (b) (-8.45,4.45); (c) g2 = 2.2 - x1 + 0 . 2 ~ ~ ;  
(d) f i . j ,  r2 = fil(l/ij); (e) P = 15.83 + 2 9 . 1 6 ~ ~  + 3.65x2, S(1,) = 7.147, 
t ,  = 4.992. 
3.13.2: CT = 4.17, power = 0.4. 
3.13.3: (a) = 61,771.7 - 7,252.02f+ 282.43x2, S ( b , )  = 3,685.56; 
(b) -7,252.05 & 7,223.7; (c) R = 0.238. 

CHAPTER 4 

4.1.1: (8.049,9.097) and (7.365,9.782), for the model & = Po + #?, log(x,) + El, 

t i ’ s  independent N ( 0 ,  d). 
4.1.2: (0.402, 0.482) for the model Z, = log( x )  = Po + ?,xi + ci, ei’s 
independent N(0,  a’). 
4.1.3: The best two fits seem to be 9 = 8.724~-’ . ’~*~,  (R2 = 0.988 I), and 
9 = -1.4549 + 11.1155/~ ,  (R2 = 0.9845). 
4.2.1: (2829 3.483)‘- BZ(2, -1, -2, -1, 2)’ + I.2#?3(- 1, 2, 0, -2, I)’. 
(14#?f + 1083)/3. 
4.2.2: a2(34/70 + (130/144)x2) > 02(1/5 + x’/lO). 
4.23: C ,  = 148.67, C2 = 34.0, C3 = 2.67, C, = 6.33, C,  = 6.67. 
4.24: (a) 139.07 (with) and 142.97 (without); (b) 3 = (121/202)/3, = 11.96; 
(c) (&/a) < 1.251 3; (d) 76.01. 
4.3.3.1: F = 1 ( K / W i > / C  ( V W i ) .  

43.2: a, = (3, -3, 5) ‘ /8 ,  a2 = (3, 5, -3)‘/8, [-: - ; I ~ ~ / ~ ~ .  

43.4: It = 

Zi = K/dx. Var(bl) = 0’(76,035/137~) = 0.246802, Var(8,) = 0.30’. 

4.41: (a) @ =  (6, -2)‘, 3 = (12, 10, 8, 6, 4. 2, 0)’, SSE = 32; (b) 

u,+ f x  u:, where ui = (xi - x*)/JkT,, x* = ( x i / k i ) / [ x  (l/k,)], 

43.5: g ( y )  = log(y). 
= 

(82, -36)‘/15, q* = (170, 146, 122, 98, 74, 50, 26)’/15, SSE* = 368/15; 
(c) B = (6.5, -lS)‘, P = (66, 57, 48, 39, 30, 21, 12, 3)’/6, SSE = 53; 
(d) B = (265, - 111)‘/45, * = (13.29, 10.82, 8.36, 5.89, 3.42, 0.96, -1.51, 15.76, 
- 3.98). SSE = 43.82. 
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4.5.1: (a) The consecutive F-ratios are 1/3, 12/7, lSOjl1, Ieading to the choice 
of the model 4,) (b) 0.05, 0.097 5, 0.649 8, 0.202 7, (c) 0.05, 0.16, 0.62, 0.17. 

9 (b) c = 1 
0.8667 1.4000 -0.2000 20.333 1 

-0.2000 -0.257 1 0.057 1 -2.0404 [ -20.3331 0.1170 2.0404 0.0465 

1.4000 0.3429 0.257 1 0.1170 
45.2: S(3) A = 

(20.333 1, -2.0404)', [-2.112, - 1.9691, C2.257, 9.8431, (c) 0.99974. 
49.1: (a) For i = I ,  2, 3, 4 the ith row is (1, i, iz, 0, 0). For i = 5, 6, 7, 8, the 
ith row is (1, i, i2, ( i  - 4)2, 0). For i = 9, 10, the ith row is (1,  i, i', (i - 4)2, 
(i - 8)2); (b) (19.583, -9.795, 2.932, -3.832, 5.073); (c) (59.412, 61.007); (d) 
I: = 89.205, reject. 
4.10.1: 
410.2: 
4.103: /? = 0.5. 
4.10.4: 
(1.383, 4.317, -2.924)', Q ( @ )  = 0 (to 4 decimals). 
4.11.1: (a) 9, 6 + 7(9/14), 1 + 43/4; (b) 5 and 8. 
4.11.2: Yes, = (- 8, 9)'. 
4.115: Huber estimate = 4, least squares estimate = 9, 7 I y3 I 17. 

f l  = 0.7307, 9 = (2.0765, 4.311 9, 8.9536)'. 
fi = (0.462, 1.073)', 9 = (1.352, 3.956, 11.572)'. 

fi' = (4.990, 3.4402 -5.939)', Q(P) = 766.15, Q(B') = 727.87, B = 

4.12.1: (a) m 3 4 5 6 7 8 9  
27P(X*=m) 3 6 6 7 6 3 1 

(c) m 3 6 9  (dl 14/3 
27P(k* = m) 7 13 7 

4.12.3: (a) U - 1 0 1 2  
27P( j*- /?=u)  8 12 6 1 

(b) (1, 3), (c) 1/3 probability on - 1,0, 1. 

CHAPTER 5 

5.2.1: (a) (-8.78, 18.78), (- 12.78, 14.78), (- 15.49,23.49); (b)(-  12.10,22.10), 
(-16.10, 18.10), (-20.19, 28.19); (c) F = 39/15, c = (15, 3)', a, = 9 = 
(5, -1, 4, 6)'; (d) the set {@I(& - 5)' + (p2  - 1)2 I; 190) (a circle of radius 
4'190 about (5, 1) and its interior). 

since (7, - 1) E A. 
5.2.2: A = (@lQ(@) =2(& - 8)' + 7(8, + 2)2 + 6(/3, - 8)(8, + 2) 538). NO, 



ANSWERS 437 

5.23: (a) Treatment SSqs. = 42.1, Error SSqs. = 20, F = 4.21, do not reject. 
(b) The Scheffe confidence intervals on p, - p 2  and pi - p 3  are (- 8.30,4.30) 
and ( -  10.63, 0.63). (c) c has ith term ( x  - P .)ni. 

5.2.4: 
2.045h(~,)*/~, and k 2 ( x , )  = 2.580h(x,)’”’, where h ( x J  = [1/3 + (xi - 10.586)’/ 
57.7 1. 

53.1: 0.951 and 1.036. 

 XI) = 47.376 + [( -0.862)(5.327)/1.387](~1 - 10.586), k,(xd = 

53.2: (- 2.07, 12.1 1). 

533: 

5.35: 0.01. 

53.6: An example: 3p1 - ( p ,  + p 3  + p4), relative lengths 0.89. 

5.4.1: For n, = 5, 0.919, 0.965, 0.952. For n1 = 10, 0.919, 0.952, 0.964. 

5.5.1: (a) Cable MSq. = 1,923.65, EMSq. = 26.53, F = 9.06; (b) K, = 1.343, 
Ks = 1.646, K, = 1.299; (d) Bonferroni; (e) py L p, - 5.086; (f) Scheffk: 
x j  - xj ,  & 7.626, Bonferroni: xj  - x j ,  & 8.673. 

(I0.9s.z.10 = 3-15, t10,0.y75 = 2-228. 

CHAPTER 6 

61.1: (b) Training SSqs. = 26.650, Length SSqs. = 15.699, T x L SSqs. = 4.761, 
Error SSqs. = 32.038, (Corr.) Total SSqs. = 79.148. (c) On training differences 
ai - ai,: 8. .  - t,. . & 0.883. On length differences Sj - 6,. k 1.125. (d) For 
training: 6 = 30.625, power = 0.999; for length: 6 = 18.75, power = 0.951. (e) 
p = 0.03825, S2(,i) = 88.99 x 0.03825 & 0.0190. (f) New Error SQs. = 
29.626, New S2 = 0.644. 

6.2.1: (b) Table of /Iu is [s /I = 11,  6 7 ,  = 5, 8 ,  = 6, 8, = -2, 

(q)ij: [ -“I, S2 = 8/3, F = 1161/56 for 2 and 6 d.f.; (c) F = 
-2 -2 4 

(31,618/105)/ (886/56) = 19.033 for 1 and 8 d.f.; (d) SSE = 16, SSA = 270, 
SSB = 201.6, SSAB = 86.4, F = 16.2 for 2 and 6 d.f.. 
6.3.1: (a) MSG = 0.0900, MSA = 0.923 7, MSResid. = 0.0709; (b) 2, = 
-0.152, d ,  = 0.658, 2, = -0.665, 8,  = 0.158, Tukey intervals on aj - a,. are 
F, - Ti. 0.753 3; (c) Use Sf = 0.028 5 for 6 d.f., FGA = 2.488, FG = 3.16, 

F‘ = 1.859; (e) (-0.422, 0.502) and (-0.823, 0.209). 

65.1: (a) p = 15, a ,  = 5,  8, = 8, = 4, (aP)ll = 2, = 0, = 1, 
(aSg),,, = 0; (b) 0.633. 
65.2: fl = 15.9375, dl  = 5.8125, 8, = 7.8125, f ,  = 2.0625, = 1.6875, 
(ay)ik = -0.562 5, ( P V ) ~ ~  = 1.687 5,  (a@y)u = 1.062 5, MSA = 540.56, MSB = 
976.56, MSC = 68-06, MSAB = 45.56, MSAC = 5.06, MSBC = 45.56, 

FA = 32.41 ; (c) y 3 ,  = 8.927, S2 = 0.064 5, MSG = 0.144. MSA = 0.959, 

n 

n n n 
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MSABC = 18.06, MSE = 29.69; (b) for example, for VAB, .-[ 1 1 -  

- 1  - 1  
-1 - 1  

(c) 57.95 and 43.15; (d) jiI L z  = 27.5, Var(fil12) = 02/4, (21.22, 33.78); (e) 

6.6.1 : (a) Analysis of Covariance Table 
- 1.062 5. 

SSqs. MSqs. Y 
~ 

A 96.00 96.00 0.333 
B 271.06 271.06 0.882 
AB 26.18 26.18 -1.ooO 
Error 8.00 8.00 - 1.ooO 

n 
fi = 20, 61, = 6, 8, = 8, ( L X ~ ) ~ ~  = 2, 9 = -1. (c) 3a2/2, d/2,  (-0.512, 12.510), 
(5.636, 18.364). (d) (-1.866, -0.134). 

CHAPTER 7 

7.1.3: (b) Squares MSq. = 63,034.79, Residual MSq. = 802.88, (Corr.) Total 
SSqs. = 3,249,266. (c) (10.16, 25.08) and (8,159.79, 20,137.32). (d) Reject for 
F > 36.87, F = 78.51, Reject. Power > 0.999. (f) Estimates are Squares 
MSqL5 = 12,606.9, 2(12,606.9), and 12,606.9/50. (g) For I = 50, J = 5,  
Var(Y ) = 203.6. For I = 54. J = 2, Var(8.) = 193.5, for I = 56, J = 1 
(unsuitable) Var( .) = 194.2. 
7.2.1: (b) Machine SSqs. = 45.075, Heads SSqs. = 282.875, Error SSqs. = 
642.00, FM = 0.598, Ff, = 1.762; (c) (0, 0.862) and (0, 9.227). 
7.2.2: 0.95. 
7-43: (a) a = (1.114, -1.196, -0.400, 3.557, -2.886, 4.100, -3.500)’, 
Q = 1.521; (b) FA = 19.40 for 6 and 8 d.f.; (c) for j = 3, A,[& 31 = 

( 2.839 for i = 2 

0.445 for i = 3, tB[i, 33 = 10.433 

-3.284 for i = 5 

1 - 1/3 for i = 2 
-1/3 for i = 3,5’ 

13.272 for 2 

for i = 2, 3, 5, q[i, 31 = 10.888 for i = 3; (d) 7/9. I 7.149 for i = 5 
7.4.5: (b) a = (1/6)(-66, -11, 8, 16, 31, 22). SSA = 520.17, SSB = 20,763.5, 
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SSE = 77.33, S2 = 7.733; (c) F,, = 13.45 for 5 and 10 d.E; (d) confidence 
intervals have the form (ui - a;)  k 7.833; (e) SSRep = 298.5, (SS for blocks 
within replicates, after removal of storage effects) = 213.4, FRrpr = 3.497 for 4 
and 10 d.f.. 

CHAPTER 8 

8.2.1 : (c) 7/64, 0.09, 0.420 2. 
8.2.2: G(A) = 0.00063. The LeCam upper bound is 0.001 3, 

1 6.4 -4.6 - 1.8 

-4.6 7.1 -2.5 , 

- 1.8 -2.5 4.3 

2 3 2  

48 -24 -24 

8.2.4: (b) E(Y) = [I] 60 , D[Y] = [ I:: 4; -::I, (c) Exact answer = 

0.072 86, bivariate normal approximation 0.070. 
8.25: 45/42,042, 20/9 1. 
8.2.6: 1/168. 
8.2.7: (0.0676, 0.1020) and (0.0668, 0.101 2). 
8.2.8: (2.127, 2.50 5). 

9.2.9: g(x) = ,/x, and arcsin(&). 
8.2.12: 0.7126, 0.8203, er = IZTe-"/[l - e - A T ] .  
8.2.13: Var(h) = 0.0179, P( lh  - hl I 0 . 2 )  = 0.865. 
83.1: (a) 0.0880, (b) 4,603, (c) 6,636. 
83.2: (0.046 9, 0.279 6) for a! = z2 = 0.05. 
833: (a) (5.432, 18.410), (b) (i) 352.13, 416.57), (ii) (350.81, 415.19), 
(iii) (350.81, 416.24). 
8.3.4: (b) 6, = 3.071, 4, = 2.574, s(d,) = 0.341, S(8 , )  = 0.1 17,90"/, confidence 
interval (-0.096, 1.091), (c) (0.969, 1.459). 

1.2.479 x 
7.969 x 4.03 I x W4 

10.321 5 0.677 3 
8.3.6: (a) (3.182, 5.453), (b) fi = 

85.2: 

8.53: 

fi = (5.388 4, - 0.010 22). 

S = (2.140, 2.016, 1.211, 0.452, 0.724), I = 1- 8.50 7.51 3.07 1.57 
8.50 15.49 26.93 28.43 
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85.4: (a) m = 

(b) m = 

(b) For (a): GZ 

-52.0 54.5 26.5 16.0 7.0' 

54.5 87.0 52.0 16.0 9.5 

26.5 52.0 83.0 45.5 33.0 

16.0 16.0 45.5 82.0 46.0 

7.0 9.5 33.0 46.0 84.0, 
-52.00 45.56 19.35 10.07 4.02 

63.44 87.00 46.25 12.48 6.83 

33.65 57.75 83.00 40.41 27.18 

21.93 19.52 50.59 82.00 42.97 

9.98 12.17 38.82 49.03 84.00 
r22.53, xz = 22.16. For (b) GZ = 0.5s 1, = 0.594. 

85.5: (a) 8 = 170/1,049, m = 8(213. 147, 89, 190, 284, 126). (b) @ = (-5.612, 
11.685), 16 = (18.75, 26.40, 28.24, 21.74, 31.56, 43.31). 

85.6: (a) pij = i, + A: + 2; + /?wij, where w = (1/4) [-: -; -; -3 
1 , ) = -0.3896. 

36.83 46.20 85.11 131.86 
62.17 52.80 65.89 69.14 
54 54 82.36 109.64 [ 45 45 68.64 91.36 1- 

[ (b) h = 

(d) I = 

8.6.1: GZ(yz, yl) = 0.5567, G2(y3, y2) = 1.9700, C2(y3, y l )  = 2.5267, 
x2(y2, YI) = 0.5556, xZ(yj, y2) = 1.8750, x2(y3, ~ 1 )  = 2.5000. 
86.2: GZ(yz, y I )  = 0.851 7, GZ(y,, y2) = 0.843 5, x2(y2, y l )  = 0.8602, 
x2(yI, yz) = 0.8356, K(yz,  y1) = K(y1, yz) = 0.8476- 
8.6.3: (b) G2(m, y) = 0.175 7, GZ(h*, m) = 24.80, C2(h*, y) = 24.97. 
8.7.1: (a) PI = 6.299385, m = (544.237, 244.541, 121 1.222), (b D[$] = 

x lo-", D[m] = 96.53 113.11 -229.63 , D[p] = 

(1 /2 ,~2)D[mJ,  (c) b2 = 0.809 5, a(&) = 0.001 018'", (0.747, 0.872), (d) 0.886, 
(e) Var(),) = 7.36 x lo-", other terms in D[$] don't change. 

I 69.99 96.53 - 166.53 

[ - 166.53 -229.63 386,16 
1 2.36 -4.89 [ -4.89 10.12 

197.23 302.77 502.77 797.231, 

302.77 397.23 297.23 402.77 
8.7.2: (a) (-0.2359, 0.3650), (b) m = 

(c) (-0.538, 0.060). 
8.73: ( - 0.304, 0.127). 

180 120 168 132 1, m, = [ 100 100 112 88 
8.7.4: m = [ 3.6 = G2(mz, m) = 4.864, power i 

0.597. 
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8.7.5: (Scheffk interval length)/(Bonferroni interval length) = 4.585/3.48, so 
use the Bonferroni method. 

8.7.6: (c G2(m, y) = 7.483 for 2 d.f., p-value = exp( - 7.483/2) = 0.023 7, 
5.32 26.19 

13.68 31.81 
(d) m = 1 1, p = log@). 1 = 5.322, = -0.385, A: = -0.385, 

15.68 29.81 
40.32 36.19 

0.038 5, (e) 6 = 5.93, power = 0.579. 
A: = -0.385,1:: = -0.173, A:: = -0.173, A:: = -0.173, -0.173,A;:: = 

8.8.1: 

G2(* y) = 1.73, x 2  = (h, y) = 1.707, (c) S[S] = 

(b) b = (-3.504, 0.2943)', rfi = (13.665, 23.357, 31.297, 41.685)', 
0.0400 -0.016 1 

-0.016 1 0.0084 
0.294 3/0.008 4':' = 3.13, p-value = 0.001 7, m2 = <r 10/2,294)n = (22.44,28.87, 
29.20, 29.49)', G2(m,, m) = 9.52, p-value = 0.0020. 

0.2189 -0.121 0 
-0.121 0 0.0693 

8.8.2: {a) = (-5.057, 3.122)', D [ b ]  = 

exp(G(d)/[l + exp(+(d)], where t ( d )  = --5.057 + 3.123, (c) (0.974, 0.993), 

8 = (-5.208, 3.219,0.397)', B = (0.120,0.406, G.774,0.169,0.504,0.836), 

(d) d, , ,  = 1.620, (1.061, 2.179). 

8.8.4: 
a( bj): 0.45 1, 0.274, 0.198, confidence interval is (0.008.0.786). 

8.8.5: (a) (1.695, 2.397) and (2.081, 2.835), (b) (-0.124, 1.282), (c) (Using 
4x-vectors) we get the 95% confidence interval on (male slope) - (female slope): 
(-0.551, 1.174), (d) (3.104, 7.528), (3.321, 8.135). 

0.643 0.365 0.242 

0.242 0.151 
8.8.6: (c) ) = (-0.587, 0.553, 1.141)', p* = 

0.635 0.758 - 
0.758 0.849 0.643 

0.750 0.525 0.401 

0.401 0.289 [ 0525 - G2(& y) = 18.63, (d) p = 
0.750 0.832 ~ 

0.832 0.891 0.750 - 
0.0566 -0.0063 0.006 1 0.0124 

-0.0063 0.1600 0.0688 0.0660 

0.006 1 0.0688 0.1495 0.0807 

0.0124 0.0659 0.0807 0.1718 
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0.739 0.464 0.319 

0.319 0.203 [ - (e)~=(0.4317,-0.6116,0.5767, 1.1844)’,p= 
0.733 0.835 - 
0.835 0.903 0.739 - 

@(A, y) = 15.22, (f) @m*, m) = 3.41 (or z = 1.82), (g) G2(m*, m) = 3.46, 
power = 0.229. 
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