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.' (

In March, 1903, the Worshipful Company of Drapers announced their iJitention

of granting £1,000 to the University of London to he devoted to the furtherance of

research and higher work at University College. After consultation between the

University and College authorities, the Drapers Company presented £1 ,000 to the

University to assist the statistical work and higher teaching of the Department of

Applied Mathematics. It seemed desirable to commemorate this—probably, first

occasion on which a great City Company has directly endowed higher research work

in mathematical science—by the issue of a special series of raemoirs in the

preparation of which the Department has been largely assisted by the grant. Such

is the aim of the present series of
'' Draper.'i' Company Research Memoirs."

K.P.
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(1.) Introduction.

In dealing with the problem of the relationship of attributes, not capable ol

quantitative measurement, it has been usual to classify the two attributes into a

number of groups, Aj, Aj, A3, ... A, and B^, B^, Bg, . . . B^. In this manner a table

has been formed containing s columns and t rows, or s X ^ compartments. The total

frequency of the population, or of the " universe " under consideration, to use the

logician's phrase, is then distributed into sub-groups corresponding to these s X t

compartments. In simple cases of association, as in that of the presence of the

vaccination cicatrix and the recovery from an attack of smallpox, s and t are both

equal to two, and we have a simple four-fold division of the universe. In other cases

we have higher numbers, as when we classify the human eye into eight colour classes

and correlate these classes with six or more classes for hair colour. We may even

run up to as many as 18 to 25 classes for each attribute when we table the coat

colours of thoroughbred horses or pedigree dogs in the case of pairs of blood relatives,

A 2



4 PROFESSOR K. PEARSON ON THE THEORY OF CONTINGENCY AND ITS

Hitherto, in order to obtain a measure of the degree of correlation or association, we

have proceeded on the assumption that it was necessary to arrange the system^ ot

classes like A„ A., ... A, in some order, which corresponded to a real quarititative

scale in the attribute, although we were unable to use this scale directly. .Thus one

arranged eye-colours in what appeared to correspond to a scale of varymg amounts

of orange pigment ; the coat colours of horses were arranged in an order correspondmg

fairly to what an artist would call their " value." I even analysed hair tints by

photographic processes. In all such cases the order seemed of vital importance.

Once this order was settled, the methods of my memoir* on the correlation of

characters not quantitatively measurable could be applied—the actual scale corre-

sponding to the classification could be deduced, and we were able, on the assumption

of normal frequency, to actually plot the regression lines for the correlation of a

variety of attributes.! The conception, however, of order in the classification Avas

at times very hampering. Take three broad classes like those for human t.emper

—

quick tempered, good natured, and sullen ; it is difiicult to grasp the exact meaning

of a quantitative scale at the basis of this classification, and it is not obvious that the

right order is necessarily that with good-natured in the middle. Or, again, take the

case of human hair ; omitting the brown reds, we can get a practically continuous series

of shades from jet black to flaxen, and from flaxen with increasing red up to the

deepest reds. Only the brown reds come in and upset the system ! We seem,

therefore, forced to take a double scale, first one of black, and then one of red

pigment. Or, again, take the coat colour of greyhounds ; these are classified into as

many as 40 fairly narrow groups, and we can arrange these groups in ascending

order of red, or black, or other pigmentation. We have more than one possible scale.

Now in recent work on such things as temper in man, eye colour in man, and hair

colour in man or other animals, I have proceeded to arrange my groups in two or

three different orders, and to calculate the correlation on the basis of these,

different orders. The results for the different orders came out in rather striking

agreement, and the first sort of conclusion that one was tempted to draw was, for

example, that the inheritance of pigmentation was strikingly alike for all pigments.

But the agreement was in some cases far closer than one is accustomed to find when
one compares the inheritance of directly measurable characters, and I soon became
convinced that owing to some important theoretical law hitherto overlooked, the
order of the groups by which we classify our attributes is a matter of no importance
when we are determining correlation. The group order is all important for variation,

it has practically no influence on correlation. We may put sullen tempers where we
please in regard to quick and good-natured ; we may place the shades of red hair at
either end of the hair scale or in the middle, and the inheritance coefficient will come

* 'Pliil. Trans.,' A, vol. 195, pp. 1-47.

t For example, for health and ability and for the correlation of the psychical and physical characters,
see the " Fourth Annual Huxley Lecture," 'Journal of the Anthropological Institute,' vol. 33, pp. 194-195.'
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put nearly the same in value. Nay, we may go further, and classify finger prints

like Mr. Galton into "tents," " arches," "whorls," " croziers," &c., &c., and still be

able to find a numerical value of the degree of resemblance between two blood

relatives,, although any arrangements of such groups into a possible quantitative

scale may be inconceivable. The object of this present paper is to deal with this

novel conception of what I have termed contingency, and to see its relation to our

older notions of association and normal correlation. The great value of the idea ot

contingency for economic, social, and biometric statistics seems to me to lie in the

fact that it frees us from the need of determining scales before classifying our

attributes. I shall endeavour to illustrate the importance of this freedom in the

illustrations which follow the theoretical treatment of the subject.

(2.) On the Conception of Contingency.

In mathematical treatises on algebra a definition is usually given of independent

probability. If p be the probability of any event, and q the probability of a second

event, then the two events are said to be independent, if the probability of the

combined event he p X q. Now let A be any attribute or character and let it be

classified into the groups Aj, Aj, . . . A„ and let the total number of individuals

examined be N, and let the numbers which fall into these groups be
7'-i,

n.2, . . . ng

respectively. Then the probability of an individual falling into one or other of these

groups is given by n^/N, 'i^/N, . . . nj,/N respectively. Now suppose the same

population to be classified by any other attribute into the groups B^, Bg, . . . B/, and

the group frequencies of the N individuals to be mj, wij, . . . m^ respectively. The

probability of an individual falling into these groups will be respectively Wj/N, m^/N,

wig/N, . . . m^/N. Accordingly the number of combinations of B„ with A„ to be

expected on the theory of independent probability if N pairs of attributes are

examined is

WW N^ ~
•^'

Let the number actually observed be n,,^. Then, allowing for the errors of random

sampling,

_ 7VW_„ _ _
'^ "vr — ?'y ^t'v

is the deviation from independent probability in the occurrence of the groups A„, B„.

Clearly the total deviation of the whole classification system from independent

probability must be some function of the n,„, — v„ quantities for the whole table. I

term any measure of the total deviation of the classification from independent

probability a measure of its contingeyicy. Clearly the greater the contingency, the

greater must be the amount of association or of correlation between the two
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attributes, for such association or correlation is solely a measure from another

standpoint of the degree of deviation from independence of occurrence.

Now it must be quite clea]> that if we make our measurement of contingency any

function whatever of such quantities as «„„ - z^„„, its magnitude will be absolutely

independent of the order of classification, i.e., its value will be unchanged if we

re-arrange the A's and the B's in any manner whatever. This is the fundamental

gain of this new conception of contingency. But precisely as we can measure

position or acceleration in a great variety of ways, so it is possible to measure

contingency. We must try to select out of these ways those which :
{a) bring

contingency into line with the customary notions of correlation and association
;
and

(&) permit of not too laborious calculations leading to the required measure.

We will consider these points at some length. I have shown in a paper,* " On

Deviations from the Probable in a Correlated System of Variables," that if m\,

m\, . . . m'„ be any system of observed frequencies and Wp m.^, . . . m„ be any system

of theoretical frequencies known a priori, then if

X^
= Sum |(!^~^^H from q = to n

be calculated, we can deduce a quantity P from x^ which is the probability that in

any trial a system m,'\, m'\, . .. . m"„ of observed frequencies will occur, which

deviates more from mj, wij, . . . m„ than the actually observed system does. Tables

have been worked out by Mr. Palin Elderton giving the value of P, for a

considerable range of values of ^^ and n, and have been published in ' Biometrika.'f

Now it will be obvious that if we want to measure contingency, we really want to

measure the deviation of the observed results from independent probability, and

therefore if we take m^, m^, . . . m,, to correspond to the system Vuv and m\, rr^^, . . . m'„

to correspond to the actually observed system «„„,

^2 ^^\{nu,-v„„f\
^.^^^

will be a proper quantity to calculate, and P would measure how far the observed

system is or is not compatible with a basis of independent probability. If P be large

the chances are in favour of the system arising from independent probability ; if P be

small there is certainly association between the attributes. Hence 1 — P would be a

proper measure of the contingency. 1 propose to call 1 — P the contingency grade.

Further, it is convenient to have a name for a function closely related to v^. I shall

call

f' = xVN (ii.)

.the xnean square contingency.

* • Phil. Mag.,' July, 1900, pp. 157-175.

t Vol. I., p. 155.
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It will be seen that, in the method by which we have approached the problem, we

have not had to consider the question of the sign of the contingency like '/i«„ — Vm;

our mean square contingency is based on a summation of squares extending to all the

A- X t compartments of the table. But if we treat now of quantities like «„„ — v„,

their total sum must be zero, since for the whole table

S(n„„) = N = ^{Vuv}-

Let us suppose that the symbol % refers to a summation of all the positive

contingencies, and let

t|/ = S (n„„ — i'„„)/N '
. . . (iii.),

then t/» shall be spoken of as the mean contingency. Clearly any functions of either

(fr' or xjt would serve to measure the contingency. We shall be guided in our choice

of such functions by considering what are the values of (jy^ and x}j in the case of normal

correlation.

(3.) On the Relation between Mean Square Contingency and Normal Correlation.

Let X and y denote the deviations from their respective means of two characters or

attributes, of which cr^, cr^ are the standard deviations and r is the correlation. Then

if we assume a normal distribution of frequency, Zg §« Sy would be the frequency ot

individual pairs falling between x and x -\- Sx, y and y + Sy, where

N
Zn =

on the assumption of independent probability, and z Sx Sy, where

*(5-$) (iv.),

N _, 1 / x^ 2rxi/
I

y' \ , V

^ = ~» T; 1 « *l-r=W^ <r.T/<r,// (V.),
27r\/ 1 — r^d^a-y

on the assumption of contingent probability.

We then have at once

,a _ g \ {zSxSy~z^SxSyY \ _ g |
(z - ^oF a^ §„

and we have only to insert the values of z and Zq, given by (iv.) and (v.), and integrate

all over the plane of x, y, to find the mean square contingency.

Now, if ac > W, we know that

1 p pg_j(a.-2te,+c,»)^jg^^^ _ _j^^ (vi.).
27rJ-=oJ_« ^ac — h^
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This is all A\e need, for if r = o-,..i', y = cr,y'

1 r 1 r+" r+=° -x^ x'^^i^.-'^^Lv' + ,i'-''^-±^\ i > , ,_ 1 ]___ g-i^T^^ i-'^ -' i-r'> dx dy
2tt\i - r2J_„ J_»

\/l r^ J_a> J-oo

f

+ oo f + oo 1

— 00 J —00 J

^ _JL_ J, __„J ^ + 1 . (vii.),

1 r^-2 + 1 =
1 — r^ 1 — r"

Thus the mean square contingency is simply r^l{l— r'^). • Or,

r = 4- a/—^ (viii.)-

Thus the relationship between mean square contingency and correlation in the case

of normal frequency is of an extremely simple character.

We see at once :
—

(i.) That since the mean square contingency is absolutely independent of the

arrangement of our classes, the coefficient of correlation is also entirely

independent of the arrangement of our classes on the basis of any assumed

order or scale.

(ii.) Provided our classes are sufficiently small to allow of us legitimately

replacing by groupings over small areas the theoretical integrations, the

coefficient of correlation can be found from the mean square contingency.

We have thus an entirely new method of finding correlation in the case of

quantitatively non-measurable characters. It assumes, however, that our classification-

groups are sufficiently numerous and their contents sufficiently small to justify us in

supposing that the contingency has reached a definite limit. Clearly in working in

the future by the contingency method, we shall have to adopt rather more numerous
classes, and they should not contain too iiregular proportions of individuals, but we
can then affi)rd to drop any question of scale or order of grouping.

It may be asked whether this method of deriving the correlation from the
contingency cannot replace the earlier method of deducing the correlation by the
fourfold division of the material. The answer is that in some cases it can do so very
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advantageousl}', but it is very far from doing so in all. The contingency found from

a fourfold table is a perfectly real and very proper measure of the deviation of its

material from independent probability. But if this mean square contingency be

substituted in equation (viii.), it will not give us the correlation. The proper mean

sqviare contingency to give us the correlation must be based on a sufficiently large

num|)er of classes. When, however, ^\'e take, say, 20 classes for each attribute, we
have 400 terms to deal with in calculating <j)^, and although the result might then

possibly give a more accurate value for the correlation than that found from a fourfold

division, yet the labour of determining it is far greater and may be excessive.

Further, the simple classification into two or three groups may be all we are able to

make at all, or all we can conveniently make. Hence the new conception of

contingency, while illuminating the whole subject—especially as demonstrating that

the correlation is independent of scale or grouping, does not do away with the older

method of the fourfold division, I propose to call the expression

v:
^'

i + <^2

the^7'.<;^ coefficient of contingency.

We note that with small enough classes the coefficient of contingency becomes the

coefficient of correlation. Accordingly, with a view of lessening the number of

coefficients in use, I adopt the following convention : Any expression or function of

either the mean square contingency (<^^) or the mean contingency (i|;) (or indeed of

any other measure of the contignency), which, when the grouping is sufficiently small,

is theoretically equal to the coefficient of correlation—on the hypothesis of normal

frequency—shall be termed a coefficient of contingency. All such coefficients of

contingency must, on the same hypothesis, become equal on a sufficiently small

grouping, and they will scarcely differ widely from each other when the frequency is

not absolutely normal and the grouping is merely moderately small. These points

will be illustrated later.

(4.) On the Relation of Mean Contingency to Normal Correlation.

A great deal of the labour of finding either the -coefficient of contingency or the

coefficient of correlation by the method of mean square contingency when the groups

are numerous, depends upon the squaring of the contingencies and dividing by the

frequency to be expected on the basis of independent probabilities. The whole of

this labour is escaped, if we work with the mean contingency instead of the mean

square contingency ; further, since in this case we only sum for the positive con-

tingencies, neglecting the negative, we have usually to deal with only, or. often less

than, a moiety of the terms involved in calculating ^^. On the other hand, there is no

simple relation between the correlation and the mean contingency such as we have

found between correlation and mean square contingency in equation (viii.) above.

B
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The relation is far more complex and is only expressible in the form of int^egrals

reducible by quadratures. Still for practical purposes we rarely svant the coetticient

of contingency to more than two decimal places. Hence, if the integral be evaluated

for the coefficient proceeding by equal intervals, we can plot a curve givmg the value

of the coefficient of contingency in terms of the mean contingency, and this will be

sufficiently accurate to enable us to read off the former in terms of the latter to the

required degree of accuracy. The enquiry also brings out some other points not

without interest.*

To investigate the curve ivhich in a normal correlation surface separates on the

plane of xy areas ofpositive from areas of negative contingency.

The frequency due to independent probability will be equal to that due to the

actual contingent probability when

-1-^ e~H^»+^=/ = -'-^ — e 1-'-' ^"'^ """' "''

,

2.'!T<T^cry 'iira^cO-y y^l — r'^

where r is the coefficient of correlation, or of contingency.

Clearly

(,-,..),„g.(i-,-) = -,.= {^-^+r}.
. . . (ix.);

Since r is always less than unity, this curve is clearly a hyperbola, which possesses

several interesting properties. We see at once that all the contingency of one sense

is grouped into the space between the two branches of this hyperbola, and that the

contingency of the other sense is grouped into the two sepai'ate spaces inside the two

branches. Thus contingency of either sense is for normal correlation continuous, and

abrupt changes of sign in the contingency—beyond the limits of random sampling

—

are not to be expected.

By testing on actual correlation tables I find this hyperbola comes out in a fairly

marked manner, in fact, quite as significantly as the elliptic contours of equal

frequency.

I propose to consider the properties of this zero contingency hyperbola—it forms

the curve along which two really contingent events have a frequency identical with

their independent probability.

Consider the two families of curves :

x^ Irxy . xP'

7-3 " + -3 = « (X.),

+h=^ (^i-)-r a-^a-y

* I have to heartily thank my assistant. Dr. L. N. G. Filon, for the substance of the first part of the
investigation given below, down to equation (xiii.). I owe the calculation and plotting of the curves
w = ^-«sece to tny assistant, Mr. J. C. M. Garneti'.
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Since r is always < 1, the a family form a set ot concentric, similar, and similarly-

situated ellipses, and the /3 family a set of concentric, similar, and similarly-situated

hyperbolas. Any conic having double contact with the hyperbola ySg, of zero

contingency defined by (ix.), at the ends of a diameter y = mx, has for its equation

If this be identical with an ellipse a, we have, by comparing coefficients and

eliminating X and m,

ySoVa^ = 1/rl

Consequently « = i r/3Q, the sign being determined from the fact that a must

always be positive for real ellipses.

Now the ordinate z of the normal frequency surface is given by

z =

N
^TTo-^ay \/\ — r

e 2(1-

and to find the mean contingency we must determine the whole volume lying inside

the two branches of the above hyperbola, integrating on hoth sides of the line of

contact of the families of hyperbolas and ellipses.*

We have U^ dx dy over this area

where

J ^ g («, IS) ^ _ 4 (1 - r^) f^ _ f\
8 (x, y) ra-^a-y V/ a-//

from (x.) and (xi.).

But from (x.) and (xi.)

{(4 + fJ- ;^1 (1 - ^^)^ = {-' - ^V) (1 - r^).

Or, choosing the signs to make J positive, we have

ra-^a-y

* The ellipses and hyperbolas have common pairs of conjugate diameters ; onB line of contact is one

of the asymptotes of the hyperbola -^ - ^— = 1 ; and tangents at an intersection point of any of the

family of ellipses with any of the family of hyperbolas are respectively parallel to conjugate diameters of

this hyperbola. These geometrical i^roperties, however, need not detain us here.

B 2
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Thus the required integral is

= ^
, f" cos-i ^0- e--^^) da.

277(1 -r^)irp, a

To simphfy put, using (ix.),

where k will always be positive, since r < 1.

We have

I, = ^ [^g-^seco ^ ggg ^ tan de,
ttJo

or, integrating by parts,

l, = ~['\-^''''de (xiii.).

TTJn

The curves u = e'''^"^ were then plotted with our coordinatograph for a series of

values of ^ or r on a large scale, drawn in with a spline and integrated with a Coradi

compensating planimeter. The values of I,, resulting are tabled on p. 15.

We have next to investigate what is the volume NQ,. of the surface of independent

probability

'ilT(Tx<Ti/

e

which falls within the same hyperbola of contingency. We shall then have in Q, — I;.

the required value of t/', the mean contingency on the basis of normal correlation. We
have

Qr =
^ j

I fi^H^'^i^) dx dy

taken over the space inside the two branches of the hyperbola

Write X = x'ctj:, y = y'cTy, and we have

Transform to polars, p cos 6 = x', p sin = y\

r — sin 26
'
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This shows us that the axes are given by ^ = - and -
- + -

, or are a and h, where

a^ = r;8o/(H- r), 6^ = r;8o/(l - r).

Take these axes as axes of coordinates. Then we have to integrate

Q, = i-|fe-*('=^+'^^>c^aj(^y,

over the area inside one branch of the hyperbola

(1 + r)x^ — (1 — r)y^ = r^Q (xiv.).

Let
gj2 _[_ ^2 _ gj^

(XV.),

x^ - 2/3 + r (x^ + f) = r/SJ

and let us transfer the integrations to a and /8.

We have
x^ =^{a — r{a — fi)},

?y' = i-{« + r(«-|S)},
and

over one-half one branch of the hyperbola.

dy dx dx dy r r / ^' '

Thus we have

The limits are obtained from the consideration, easily seen on a figure, that for a

1 4- r
given a we must integrate from fi — ySg, the given hyperbola, to ;8 = —^^^~— a, the

touching hyperbola ; and then for a we must take every circle from that touching /Sg,

i.e., a = r^J{\ + I") up to infinity.

We will first integrate with regard to yS, and put

?• (a — i8) = — a sin <^.

This gives, when /3 = (1 -{- r) a/i\ (jj = ^n ; and when
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cos
a

l + r

Take

then

Hence

cos X = *' (^0 - «)/«'

a = 00
,

cos X = - '=

« = ri8o/(l + r), cos x = 1-

= i- e *r+cosxax,
IT Jo

observbg that the term between the hmits vanishes at both.

Take
, v ,/ , , \

cos ^ = (r + cos x)/('- + !)•

Then „ „

X = 0, = 0,

^ = GOS-^{—r), 6 — ^1T.

Thus we find finally, after some reductions,

where
e = (l-r)/(l + r).

K = i^=-ii-Mog.(l-.-)
(xix.),

= (1 — 7-)k, of the integral I,.

Tables were now formed of e and k and the ordinates of the curves

-«sec« . /l + cos^ , .

^ e + cos 6'
'

calculated.* These ordinates were plotted on a large scale by aid of a Coradi

coordinatograph and the resulting curves integrated as before, the values of Q,. thus

found are given with the values of I,, and xjj in the table below. I believe this table

gives the mean contingency in terms of the correlation true to at least three places of

decimals. The u and v curves are both interesting analytically and subject to rather

curious changes of type. We were aided in plotting them by calculating, where

* I owe the calculation of lliese ordinates to Dr. Alice Lee.
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needful, -j^ and -,-
. Finally, the values of r were plotted by my demonstrator,

Mr. L. W- Atcheeley, to the corresponding values of i/(. Thus a curve was obtained,

which enables vis to read oft' the correlation from the contingency correct to at least

two places of decimals—sufficient for nearly all practical purposes.

Table I.—Table of Integrals I,., Q,., and the Contingency i/; for Values of r.

r.
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Auv one of tliese expressions is a measure of the deviation of the system from

independent probability, and therefore of the amount of association or correlation

between the characters or attributes involved. But any function of these expressions

Is also a proper measure. Sucli functions are :

—

(a.) The contingency grade. This is 1 - P, where P is to be found from x' by aid

of the tables for " goodness of fit." See ' Biometrika,' vol. I, pp. 155, et seq.

(b.) The mean square contingency coefficient = C,, where

P — a/ ^^ .... (xxi.).

(c.) The mean contingency coefficient = C., where Cj Is to be found from the table

on p. 1 f) or from Diagram I. at the end of this memoir.

In the case of sufficiently small grouping and normal correlation we have

Ci = Cj = coefficient of correlation.

But it must not be forgotten that this is essentially a limiting, not a general case.

Nevertheless the approach to equality of the two contingency coeflScients will be a

good measure of the normality of the distribution and the suitability as to smallness

of our elements, of grouping.

(6.) A little experience of actual working, however, shows that in practice it is

perfectly easy to overshoot the mark in fineness of grouping. Suppose that in

dealing with 1000 cattle we find a single Instance of a calf inscribed as " mulberry,"

say the offspring of a red cow by a dark fawn bull. Now if there be 30 dark fawn

Imlls, the independent probability of a dark fawn bull having a mulberry offspring

Is "03. Hence the sub-contingency for a c? parent-offispring table =1 — "03 = "97,

and the corresponding contribution to the squa,re contingency will be ("97)^/03, or

is upwards of 31. The fact is, that when we come to very fine groupings we get at

once into difficulties owing to our having to record by units only. Suppose
"mulberry" calves actually had no relation to any special parentage, but were rare

anomalies occurring once among 1000 calves, or perhaps were merely an odd breeder's

fancy description, then a unit cannot be divided in the proportions of the colour

parentage, it must fall into some one colour parentage group. The result is

that a few isolated individuals will give large contributions to the mean square
contingency. The above example is purely hypothetical, but similar cases have
actually occurred in dealing with colour problems by the contingency method. They
are exactly similar to those which occur when dealing with outlying individuals by
the te.st for " goodness of fit." In a frequency distribution we proceed only by units,
but the theory gives fractional values of the frequency ; hence in forming the value of

X^ to measure goodness of fit, one or two unit "outliers," although not improbable as
far as the whole of the tail of a curve is concerned, may be exceedingly improbable if
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considered from the standpoint of the actual group in which they do occur. This

point must be carefully borne in mind in actual practice, for by sufl5cient refinement

of grouping, i.e., till we reduce certain groups to a single individual or two, the mean
square contingency can be increased in a remarkable manner.

(7.) Of course this is merely saying that the probable errors of the sub-

contingencies increase largely when we make v„ very small. Unfortunately I have

not yet succeeded in determining the probable errors of the contingency coefficients.

If c™ be the contingency, determined by

^UV ' "itv

and %c„ its standard deviation for random sampling, I find

i.„. - n„, [\ - -~j +_ [n,, 4- n, ^j ~ ^
N^ V N~ / ' ^ '''

so that the probable error of any individual contingency = "67449 S(,„ is determined.

Further, if Rc„.<;„s,. be the correlation between errors due to random sampling in two

contingencies c„„ and c„,„/, not belonging to either the same row or column,

"f p *
ip

^xxm.;.

Similarly we find for the correlation of errors of two contingencies of the same

column, Rcc,,,', the result

*c„'4c„'-C>'c„„-t»'c„'
—

^^f 5V I
J- —N N \ N

+ W^/l_l!L«\ • (xxiv.),

and for errors of two contingencies of the same row,

^ •C D "^VAp'ti/v '^K'^ u'v ~r ^m'^to / -I
"^_«

^0„^(;^\^0„C„% TVT AT \
-^ ATN N \ N

. Eesults .(xxii.) to (xxv.) enable us to find the probable errors and the error

correlations for any individual contingencies which will arise from random sampling,

and are so far of value ; but when we attempt to find the general expression for the

probable error of either the mean or mean square contingency, it becomes so complex

c
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that there appears little hope of deducing a simple result. Arithmetically the

problem might be solved at the expense of rather troublesome numerical calculations

if the number of sub-groups was not very large. A general and simple expression for

the probable error of xjj or
(f>^

involving xjj or
<f>^

only does not appear likely to exist,

and an expression involving all the sub-group frequencies would be very troublesome

for computation. Practically the errors of the contingency coefficients may be fairly

reasonably taken to lie between the probable errors of r as found by a fourfold

division of a table and by the product method, approaching the latter more closely as

the number of sub-groups is sufficiently increased. With the experience of probable

errors of fourfold tables before us we may, I think, safely take the probable error of a

contingency coefficient C for rough judgments to be less than

2 X -67449
^

x/r

i.e., double the probable error of a correlation coefficient found from the product
moment. At the same time we must distinctly be cautious, remembering the difficulty

as to isolated units referred to in the previous section.

We may look at the probable error of the contingency from another standpoint.

Taking the mean squared contingency, we have

1 + f.2

1 —r^
Therefore

'^
(1 _ r^f

°'^'

and accordingly, if t^,_, tr be the standard deviations in errors of
<f,^

and r,

% — 2r ^ 2r i — y2 *

Hence if we were to determine ,^« from r, the probable error of d>^ would be
given by

Probable error of <^2 = -6/449 -^ ^(j ^_ ^2) ^2

Or, we can put it into the more useful form,

Percentage probable error of <l>^
= ^'^^^^

. /iT^ u^^i \

Thus the percentage probable error increases rapidly as the contingency gets smaller.
* 'Phil. Trans.,' A, vol. 191, p. 242.
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Of course, the probable error of (j>^ as found from r is not necessarily the same as

the probable error of «^* found directly, but it may serve as a guide to its approximate

value.

If it were the same, the probable error of r as found from ^^ would be

•67449/ {(1 + (j)^) v/N}, a result, as indicated in the previous paragraph, much too

small, except possibly for very successful systems of grouping.

(8.) To find under what other condition than normal correlation small changes in

the order of grouping will not affect the value of the correlation.

Let us assume the unit of grouping to be very small, but not necessarily the same

for all groups. Let the two characters or attributes be x and y, and suppose n, to

be the total frequency of individuals in the range y, — e to yj -\- c, and n,+i to be the

total frequency in the range y,+-i
— e' to 3/,+^ + e'. Let y,+i — y, = e -\- e' = h be so

small that its square may be neglected. Let x, y be the mean values of the

characters, N the total frequency. We will find the changes in the moments and

constants supposing the array m, and n,+^ interchanged in position.

Clearly 8x = and So-,, = 0.

N (^ + Sy) = S {y,n,) + h{n, — n,^{),

or,

Next if

Sy = h {n, — ri,+i)/N.

N (o-y + ^o-yY = S {yM) + 2^ {y,n, — y.+^n^+i) — N (^ + Syf*

2(Ty So-y = 2h (ysU, — «/,+iW,+i) — 2% S^,

^y _ A (y^ — y) ^'^ ~ (y^+i ~ y) ^^^+i
.

xTy a-/ N

P = S (xy) — 'Ny X,

P + SP = S (xy) + h {n,x, — ns^-^Xs^^) — N^ x — Na; hy,

or,

SP = ^ {n, {xs — x) — n,+i [xs+i — x)],

where x, and aj^+j are the means of the arrays Us and n^+j.

But if r be the correlation coefficient of x and y characters.

Therefore

* It must be noted here that the squares of the change in y and o-y are neglected. Hence the changes

must not be so great that Sy and ^y are sensibly as compared with y and vy,

C 2

NcTiO-j,
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and substituting the above values,

8r .in, (x, -x)- n,^, {x,^^ - x) _ {t^- y) n, - (y,^i -^y^n^j^ 1

7 = ^1 p^ ' " Ncr/ r

If this is to vanish for any value of s and h, it will be sufficient, since

P = r X No-:,(ry,

x, — x = -^-^
{y, — y),

and

x,+i -x = '^^{y,+i-y).

Or, if the mean x„ of any 7/„,-array of individuals be determined by

'x„, 33 = \ym y )•

But this is the condition for linear regression.

Hence we conclude that in any correlated system of variables, obeying the law of

linear regression, we can, without sensibly modifying the correlation, interchange two

adjacent ^/-arrays {e.g., two rows of the correlation table), provided the grouping be

fine. But if we can interchange any two adjacent y-arrays, we can, by a repetition

of such changes, interchange any two y-arrays whatever ; and a precisely similar

statement must be valid for any two .^-arrays {y.g., two columns of the correlation

table). Hence, given a sufficiently small system of grouping, we may state that in all

cases of linear regression the actual order of the scales is immaterial as far as the

determination of the correlation is concerned.

The practical importance of this result would ajapear to be great, for it frees us

when dealing with scale orders from the need for supposing normal frequency ; the

indifference of the scale order when determining correlation is still true, provided the

regression is linear ; and this linearity of regression is not only found from observation

to be very general—for example, in inheritance problems*—but follows from theory

itself in the case of various hypotheses.!

In actual practice, of course, the degree (>f fineness of the grouping is limited by
many considerations, and hence it will often be better to proceed by the fourfold

division method, taking that division where possible at a very distinct ckssification.

But the general principle now demonstrated will enable us in future to pay much less

* See " The Laws of Inheritance in Man.—I. Inheritance of the Physical Characters," ' Biometrika '

vol. 2, pp. 362-3; also "Inheritance of Mental and Moral Characters in Man," 'Huxley Memorial
Lecture,' 1903. ' Journal of the Anthropological Institute,' vol. 33, pp. 185-7.

t "Contributions to the Theory of Evolution.—XII. On a Generalised T^ory of Alternative
Inheritance, with special reference to Mendel's Laws." ' Phil. Trans.,' A, vol. 203, p. 85.
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attention to the actual order chosen for the scales if we are dealing with a class of

characters for which we may reasonably presume the regression to be sensibly linear.

(9.) If we take the crudest possible division of our material into only four groups,

thus :

—

a
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These give us (jy^ = '0845, x^ = 175 76, xjj = •0604. From these we find

Ci = -279, C, = -190.

Yule's coefficient of association = "803.

Coefficient of correlation by fourfold division = '595.

Grade of contingency = 1 - P,* where P = 718/10*°.

Now so far as numerical values go these things are all totally different. Cj, Cj,

and the coefficient of association depend very largely on where the fourfold division is

taken, t It is extremely difficult to use them therefore for comparative purposes. On

the other hand, the coefficient of correlation with the assumption, however, of

normality is free of this restriction ; it brings us into line with other things for

comparative purposes. The grade of contingency is also independent in a sense of

the division, i.e., it has a definite physical meaning. What it tells us is this, that the

deviation from independent probability in the relation between result, a case of

small-pox and presence or absence of cicatrix is such that the above table could only

arise 718 times in 1 0*° cases if the two events were absolutely independent.

If, instead of a table like the above, we take a number of alternative possibilities

for each attribute, the coefficient of association loses its uniqueness of meaning

;

Cj and Cn still retain their significance, and as the number of alternatives become

greater, merge in the coefficient of correlation. The grade of contingency, on the other

hand, retains the same perfectly definite meaning throughout. I think this statement

may serve as some warning of the caution needful in using the coefficients now
introduced. The degree of approach of both C^ and Co to the correlation must be

studied for each special class of cases, and only when this has been done will their

use be really legitimate and effective.

(10.) On. the Relation, between Multqylc Contingency and Multiple Normal
Correlation.

Suppose instead of a single correlation.table we have a multiple correlation system.

Such a system is well illustrated by the cabinet at Scotland Yard, which contains the

measurements of habitual criminals on the old system of body measurements, now
discarded in favour of a finger-print index. We have in this case a division of the

cabinet into 3 compartments, which mark a threefold division of long, medium, and

* When the number of groups = 4, we have ('Phil. Mag.,' vol. .50, p. 157 et seq.) :
—

P = ^/^r,-i^'dx+ J^e-^x.

whence P is easily found if x" be large,

t Yule, lor. rAt., p. 276.

^ L X- X* X' x^ J
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short head lengths. Each of these vertical divisions is then sub-divided horizontally

into three divisions giving the corresponding divisions for head breadth ; each of these

head-breadth divisions has three drawers for large, moderate, and small face breadths.

Each drawer is sub-divided into three sections for three finger groups, and these again

into compartments for cubit groups, and so on. If this be carried out for the seven

characters dealt with, we should have ultimately 3''' sub-groups forming a multiple

correlation system of the 7"" order.* We may ask what is the mean square

contingency of such a system and to what extent does it diverge from an independent

probability system ? Of course, for an ideal anthropometric index system the

divergence should be very slight.

Let x^, iCg . . . a;„ be the n variables of a multiple normal correlation surface, to which

the equation is

Z =
(27r)*" 0-10-2

pxnt, _ 1 is (^pp ^-i"
1 J- 2S5 (pi *"*'"

Here a-i, o-g . . . cr„ are the standard deviations of the n variables ; S^ denotes a sum

of all values of p from 1 to n, S^ a sum of all imlike values of ^ and q from 1 to'»!
;

while E, is the determinant

1 ,
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where

Now

where

Co=expt. -i{S,(x'/)}.

= {27ry"U/A (xxix.),

A = Cii, c12) "^13;

C2I, ^22, C2S,

Cal) ^32) ''33)

^nU *^!t2> ^ii3>

^2,1

We are now in a position to find all the integrals involved in the equation for
<f>^,

we have

«^' = i, -7=, - 2 + 1 - —^ - 1.

w;here

A' = 2Ru 1

R
2R21

R '

2R3,

R '

2Rj2

R '

Rn/A'

'"-tV22

"rT
- 1,

2R13

R '

R '

2R5

R
2R3;

R
- 1, . .

2Ri„

R
2R2.

R

2R3H

R

2Ra
R

2R,

R R
2R..

R

To evaluate this determinant, we notice that since r^j, =: 1, we have, if p and q be

difiierent,

-tVi'Vi I -tVa'Vz ~r Rjog'ps ~r • • • "r Rpn't'pn = R;

Hence
Rpl^n + Ri»2'V2 + Rps'^yS + • . • + 'RpnTgn =

2R, 2R^ 2R^3
, /2R^_i\,. , .

2R, _
R

and

2R,

R

2R,

R

2R,

n

RP^n +^ 'Vy2 + ^n,3 + . . . + ^^ - 1 r,, + . . . +R R
2R.

R
2R,'pn

R ' on — '^i/n-qn 9P-
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Now multiply the determinant A' by the determinant R, we find, using the above

relations,

A'E, = 1, — r,„ — ?',„ . . . — r,

''ai) 1) — ''23)

— »'3b — 1'
32: 1,

fV» ^^ '1'* ^^ 1''

' 2)1

— T-,,

1,

= R', say.

Here R' is R with the sign of all the correlations changed. Hence it follows that

^2 —
s/RR'

- 1 (xxx.).

Special Cases.

(i.) Simple correlation

R' = R = 1 — r^2^, and <jj^ = o\:^/{l — r^^), as before.

(ii.) Triple correlation

-t*- = 1 ~ '''zi ~ ''^'sr
~ ''12" + 2^'23''3i''i2)

-t*- ^ 1 ''23" ''31
'"l3 — 2r237'g[7'j2-

1

«^^ =
y(l - r^s^ - rsi^ - V)2 - 4ro,V,,V ^

— 1.

'23 '31 'n

(iii.) Quadruple correlation

RR'={l-ri., r^s'— r
14,

Tco-— ?-

24 '"34. + ''l3"'''34. "r''"23''l4 +''l3~''24, ^ V 12^'l4^23''3

+ ''l4,''l3'''23''24 + '']2*"l3'W34.)] ~ ^ 1 '^23''''24..'''34, + '*34,*''l4''l3 + '"l2'"l4''2.1. + '']2''l3^23}''>

and so on.

Clearly a condition has to be satisfied among the correlation coefficients, or the

process by which we have deduced <^^ is not legitimate. We must have A positive for

equation (xxix.) to be true. Now, for normal correlation R must be real and positive,

or the equation to the multiple correlation surfaces become imaginary. Hence it

follows that A' must be positive, and therefore R' must be positive. This seems to

give a definite condition to be satisfied by the correlation coefficients, and in some

cases rather narrow limits are enforced. For example, in the case of triple correlation

we must have
1 ~ ''23 — '''31" ~ ''13' " ^rggrg^^'ij

positive, and this appears to reduce very considerably the possible values for the

D
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correlationship of three characters.* The source of this novel condition appears to lie

in the integration of the term ^7Co> ^iid this is only possible by use of equation (i.),

provided the surface Z = t^jt^ has " ellipsoidal " contours. If it has not, we may get

the subject of integration becoming infinite with one or other of the aj's, and

consequently, although both I, and ^q vanish at oo, ^y^g may not do so, i.e., the mean
square contingency tends in certain tracks to become indefinitely large. In fact, our

method of deducing multiple contingency from the normal correlation coefficients is only

valid provided the system is not only a possible correlation system with the given values

of the coefficients, but also when these coefficients all have their signs reversed.

(11.) Illustrations. A.

—

Stature in Father and Son.

Table II. gives the distribution of 1078 cases of stature in father and son.f The

correlation r, as found from the product moment in the usual way, is '5 14.

I propose to consider the approach of Cj and Cj to r as we increase the fineness of

the grouping. Clearly it would involve extreme labour to work out the contingencies

—

especially the mean square contingency—for the table as it stands.

To begin with I classed in three inch groups and got the following .table, in which

the figures in brackets are the independent probabilities.

Table III.—Stature of Father and Son in Inches.
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The independent probabilities were found by multiplying the " chances " of a son

occurring in each group by the totals for each group of fathers. Taking the difference

of the observed sub-group frequencies and the independent probability frequencies, we

have N X V»
= 205-62 from the positive and = — 205-66 from the negative differences,

a quite good agreement. Hence we find \p = 'IQOS.

Using Diagram I. we have

Cj = -522.

Proceeding now to the mean square contingency obtained by squaring all the above

found contingencies, dividing each by the independent probability frequency and

summing, we find

<^2 = -2755,

whence

Ci = -465.

The value of C^ is clearly too small. We must infer that our grouping was not

fine enough. Accordingly in Table IV. I have re-arranged the matter in 2-inch

groupings, an4 have then in the same manner proceeded to find xjj and (j)^. In this

case I found t/» = -2013, and thus

C, = -542,

while

(j>^ = -3568,

and

Ci = -513.

I thus conclude that the grouping is now fine enough to give C^ and Cg

approximately equal to the correlation.*

«'.«., within the probable error of that result.
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Table IV.—Stature of Father and Son in Inches.
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Comparison of Methods of Finding Correlation.

No. of ' Mean
groupings. contingencj'.
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for the fourfold correlation results. The results reached are given in the accompanying

table. It is desirable to state that the number dealt with was about 1000 pairs of

brethren in each case.

Table V.—Fraternal Resemblance of Greyhounds from Different Litters.

Character.
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Table VI.
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scale which will put the army, church, and bar in any special order. On the other

hand, it becomes of special interest to determine how far tastes and preferences for

particular callings in life run in families. Miss Emily Perein has undertaken a

lengthy investigation of this kind, and has provided me with the pure contingency

table given as Table YII, The occupations of 775 fathers and sons are here classed

in broad general groups, which can be arranged purely alphabetically. More minute

divisions and data for other series of relatives will be published later by Miss Perrin,

and it is not my present purpose to anticipate her conclusions, but merely to suggest

the valuable applications which may be made of the novel methods to pure

contingency results. What is the numerical measure of the relationship in pursuit

between father and son, and how far is it removed from a mere chance relationship ?

Table VII.—Contingency between Occupations of Fathers and Sons.
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for sons differs widely from that of the occupations for fathers. There has accord-

ingly been selection of the second generation, which undoubtedly must influence the

result, i.e., tend to weaken the observed relationship.

Working out the 196 contingencies, squaring, dividing by the independent

probability frequencies, summing and averaging, I find for the mean square

contingency
(^3=r: 1-299206,

whence

<^V(1 + <t>^)
= -393794,

and the coefficient of mean square contingency = -6275. This would correspond to

the correlation in occupation between father and son. Now if occupation were settled

solely by fitness or taste, and these characters were inherited as other human faculties,

we should expect the correlation, between father and son to be about '46.* Or,

roughly, the hereditary relationship is increased by about ^ in the matter of

occupation. Remembering Avhat we have noted as to selection above, the real

increment is probably somewhat larger than this. Roughly, however, we may
conclude from Miss Perrin's data that about f of the observed resemblance in

occupation between father and son is due to hereditary influences, and the remaining

^ to environmental effect. These numbers are subject to revision when Miss Perrin's

data are more ample and have been more fully analysed and discussed.

(12.) General Conclusions.

The general conception of contingency developed in this memoir I consider in the
first place of theoretical importance. Its practical applications are not negligible, but
are, for reasons given below, of less importance than might a priori be supposed.

(a.) In the first place, the conception of contingency enables us at once to generalise

the notion of the association of two attributes developed by Mr. Yule. "We can class

mdividuals not into two alternate groups, but into as many groups with exclusive
attributes as we please, and either the mean contingency or the mean square
contingency Avill enable us to see the extent to which two such systems are contingent
or non-contingent.

(b.) This result enables us to start from the mathematical theory of independent
probabihty as developed in the elementary text books, and build up from it a
generalised theory of association, or, as I term it, contingency. We reach the notion
of a pure contingency table, in which the order of the sub-groups is of no importance
whatevei'.

(c.) We then investigate the relation of contingency to normal correlation, and
find that with normal frequency distributions both contingency coefficients pass with
sufficiently fine grouping into the well-known correlation coefficient. Since, however,

* ' Biometrika,' vol. 2, p. 379.
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the contingency is independent of the order of grouping, we conclude that when we
are deahng with alternative and exclusive sub-attributes, we need not insist on the
importance of any particular order or scale for the arrangement of the sub-groups.

(d.) This conception can be extended from normal correlation to any distribution
with linear regression; small changes {i.e., such that the sum of their squares may
be neglected as compared with the square of mean or standard deviation) may be
made in the order of grouping without affecting the correlation coefficient.

(e.)^ The results (c) and (d) are not so fruitful for practical working as might at
first sight appear, for they depend in practice on the legitimacy of replacing finite

mtegrals by sums over a series of varying areas, where no quadrature formula is

available. If we, to meet the difficulty, make a very great number of small classes,

the calculation, especially of the mean square contingency, becomes excessively

laborious. Further, since in observation individuals go by units, casual individuals,

which may fairly represent the total frequency of a considerable area, will be found
on some one or other isolated small area, and thus increase out of all proportion the

contingency. The like difficulty occurs when we deal with outlying individuals in

the case of frequency curves, only it is immensely exaggerated in the case of

frequency surfaces.

(f.) It is thus not desirable in actual practice to take too many or too fine sub-

groupings. It is found, under these conditions, that the correlation coefficient as

determined by the product moment or fourfold division methods is approximated to

more closely in the case of the contingency coefficient found from mean square

contingency than in the case of that found from mean contingency. Probably

16 to 25 contingency sub-groups will give fairly good results in the case of mean

square contingency, but for each particular type of investigation it appears desirable

to check the number of groups proper for the purpose by comparison with the results

of test fourfold division correlations. Under such conditions it appears likely that

very steady and consistent results will be obtained from mean square contingency.

(g.) Finally, contingency may be applied—of course, at first tentatively and with

caution—in the consideration of a whole class of problems in which no attempt at a

scale or order of sub-groups is possible, in short, whe*re alphabetical order is as good

as any other. For example, it would seem to be available in a vast range of problems

of exclusive and alternative inheritance.
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