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Statistical Theory of Equations of State and Phase Transitions.
IL Lattice Gas and Ising Model
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The problems of an Ising model in a magnetic field and a lattice gas are proved mathematically equivalent.
From this equivalence an example of a two-dimensional lattice gas is given for which the phase transition
regions in the p —v diagram is exactly calculated.

A theorem is proved which states that under a class of general conditions the roots of the grand partition
function always lie on a circle. Consequences of this theorem and its relation with practical approximation
methods are discussed. All the known exact results about the two-dimensional square Ising lattice are
summarized, and some new results are quoted.

Ising model

No. of spins
No. of j spina

2/(1 —I)
—F—B

Lattice gas

volume
No. of atoms
specific volume v

pressure P

+ I, H. and F are respectively the intensity of magnetization, the mag-
netic field, and the free energy per spin in the Ising model problem.

' C. ¹ Yang and T. D. Lee, Phys. Rev. 87, 404 {1952).

INTRODUCTION

'N paper I' we have seen that the problem of a
- - statistical theory of phase transitions and equations
of state is closely connected with the distribution of
roots of the grand partition function. It was shown
there that the distribution of roots determines com-
pletely the equation of state, and in particular its
behavior near the positive real axis prescribes the prop-
erties of the system in relation to phase transitions. It
was also shown there that the equation of state of the
condensed phases as well as the gas phase can be cor-
rectly obtained from a knowledge of the distribution of
roots. While this general and abstract theory clarifies
the problems underlying the statistical theory of phase
transitions and condensed phases, it is natural to ask
whether it also provides us with a means of obtaining
practical approximation methods for calculating proper-
ties pertaining to phase transitions and condensed
phases.

The problem is clearly that of seeking for the proper-
ties of the distribution of roots of the grand partition
function. At first sight this appears to be a formidable
problem, as the roots are in general complex and would

naturally be expected to spread themselves for an
in6nite sample in the entire complex plane, or at least
regions of the complex plane, and make it very difFicult

to calculate their distribution. We were quite surprised,
therefore, to And that for a large class of problems of
practical interest, the roots behave remarkably well in
that they distribute themselves not all over the complex
plane, but only on a fixed circle. This fact will be stated

YAM,E I. Identification of corresponding quantities in Ising model
and lattice gas. '

as a theorem in Sec. IV of the present paper and proved
in the appendix. Implications of the theorem are dis-
cussed in Sec. V.

Also in this paper we shall give a proof (Sec. II) that
the problem of an Ising model with a magnetic field is
mathematically identical with that of a "lattice gas. "
From this identihcation we were able to trace exactly
the transition region in the p —e diagram of a two-
dimensional lattice gas in detail. This will be presented
in Sec. III and forms a clear illustration of the dis-
cussions of paper I and of Sec. V of the present paper.

At the end of Sec. V we give a summary of all the
exact knowledge known to us about the two-dimensional
Ising model in a magnetic Geld and its relationship with
the distribution of roots of the partition function.

II. ISING MODEL AND LATTICE GAS

We shall in this section show that the problems of an
Ising model in a magnetic Geld and of a lattice gas are
mathematically equivalent. In the former problem one
considers a lattice of interacting spins each of which can
assume two possible positions: t and g. In the latter,
one considers a corresponding lattice with each lattice
point either vacant or occupied by an atom. ' To each
configuration of the lattice of spins there corresponds
a conGguration of the lattice gas in which a lattice point
is vacant or occupied according as whether the corre-
sponding spin is f or g. Using this geometrical corre-
spondence, one could establish the mathematical
equivalence of the two problems.

For clarity of presentation we shall take as an
example a simple cubic lattice and consider first the
Ising model problem with nearest neighbor interaction.
The same treatment can be applied to any lattice with
arbitrary interaction between the spins. Denote by
[tt], [gQ, and [N] the total number of nearest
neighboring spins that are respectively parallel and
upward, parallel and downward, and antiparallel to
each other Also denote. by [t] and [g] the total
numbers of upward and downward spins in the lattice.

~ Similar ideas have been used in the "hole theory of liquids. "
See, e.g. , J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy.
Soc. (London) A169, 317 (1939);A170, 464 (1939).F. Cernuschi
and H. Eyring, J. Chem. Phys. 7, 547 (1939).
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Similarly

Evldcntly
2[v]+CN3=6[{j.

~=B1+CQ

(2)

is the total number of spins in the lattice.
The interaction energy of all the spins can be written

as [f$]e if the interaction energy between parallel spins
is taken to be zero. Here e is a constant and is positive
for ferromagnetic interactions and negative for anti-
ferromagnetic interactions. In an external magnetic
field H (measured in proper units), there is an additional
magnetic energy so that the total energy of the Ising
1Rttlcc ls

U.=&(CQ-Ct3)+[v{7'
The partition function is therefore

exp( —KP/k T) =P exp( —Ur/k T), (5)

where F is the free energy per spin and the summation
extends over all arrangements of the spins. F as a
function of the magnetic field H and the temperature T
defines completely the thermodynamic behavior of the
lattice. Its derivative with respect to H gives the
intensity of magnetization J,

where I is de6ned to be

~=~-'(C~3-C~3.

Now consider a lattice gas on the same simple cubic
lattice, According to the geometrical correspondence
discussed before, each downward spin g corresponds to
one gas atom, hence [g] is equal to the number of
atoms in the gas. Also the "volume" of the gas (in
proper units) is simply K. The specific volume e per
atom is, by Eqs. (3) and (7), related to the intensity of
magnetization I by

s= 2/(1 —I).
To pI'cvcQt Inox'c than one RtoIQ from occupying the
same lattice site and to correspond to the case of nearest
neighbor interaction in the Ising model problem, we
consider here the following potential energy N between
two atonis:

rt=+ ee if the two atoms. occupy the same lattice site,

N= —2e if the two atoms are nearest neighbors, (9)

N =0 otherwise.

It should be remarked that this interaction closely
simulates the actual interaction between atoms of a
atonatomic gas. For e)0 (ferromagnetic case), the gas
moms attract, each other at intermediate distances and

Counting the number of nearest neighbors of all the
upward spins, one arrives at the following identity:

2[f&3+[&{]=6[&1. (1)

T& Tc

C
I laas~ ~~ ~~ eaeay

l
I
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1
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FIG. j.. Geometrical construction of the thermodynamic func-
tions of the Ising model from the p —t~ diagram of the corresponding
lattice gas, Solid curves are isotherms. Given a point E the cor-
responding Ising mode1 has a magnetic 6eM H=q (area cPdf),
a iree energy per spin tr = —rr {area 0aM'df)

for e(0.(antiferromagnetic case) they repel each other.
Since [f$] is by the geometrical correspondence the
number of nearest neighboring pairs of atoms the
energy of the gas is

The grand partition function of the gas is

exp(pX/kT) =Q y& & i exp(2[gg]e/kT), (10)

where p is the pressure of the gas and y the fugacity
given by Eq. (3) in paper I. Now on using (2), (3), and
(4), one can write Eq. (5) in the form

exp( —X(P+H)/kT)
=Z -p((-»C~3-6 [~3+2 Cuj)/kT}.

Upon comparing this with Eq. (10), one concludes that
for a value of the fugacity given by

y= exp(( —2H —6e)/kT), (11}

the pressure p of the lattice gas is related to the free
energy F per spin of the Ising lattice by

p= P 8. — — '

The same treatment can be easily applied to any
general lattice With arbitrary interactions, yielding
results r'dentr'cat mr'tk Pqs. (8) and (12). These results
are compiled in Table I which lists the corresponding
quantities for the problems of an Ising model with a
magnetic field and of a lattice gas. The two problems
are completely equivalent; the thermodynamical prop-

t'e f e syte ca b d
'

cd ith th id f
Table I from those of the other and vice versa. In par-
ticular, the isotherms iri the I Hand p —e diagrams—
bear a very close relationsip to each other. VVC mention
speci6cally that a discontinuity in J corresponds to a
discontinuity in e. In the case of ferromagnetism, below
the Curie temperature T~, J has a discontinuity, and
this corresponds to a phase transition at the same tem-
pcI'Rtul'c ln thc 4,tticc gas. Above Tg thc lsothcI'Ins lQ
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T& Tc T&Tc extensively. It is known that the model exhibits ferro-
magnetism so that according to the discussion of Sec.
II the lattice gas has a phase transition. In the Ising
model, for temperatures lower than the Curie tem-
perature Tz which is given by

exp( —e/krc) =~2 —1, (13)

0 a the intensity of magnetization has a discontinuity at
JJ.=0. The corresponding phase transition of the
lattice gas occurs at a value of the fugacity4

(b)

where
x=exp( —e/kZ').

PIG. 2. Geometrical construction of the thermodynamic func-
tions of the lattice gas from the I—H diagram of the corresponding
Ising model. Solid curves are isotherms. Given a point P the cor-
responding lattice gas had a density p=-,' (length bP), a pressure
p=area Pdb. p can be obtained from the free energy of the Ising
model which is F= —area OaPdc.

both of the two diagrams become smooth, and we
therefore identify the Curie temperature with the
critical temperature of the lattice gas.

From the p —v diagram one can construct the ther-
modynamic properties of the Ising model in a simple
geometric manner and vice versa. These are illustrated
in Figs. 1 and 2.

Since the free energy' and the spontaneous magnetiza-
tion6 of the Ising model problem are known exactly at
zero magnetic field, the transition region in the p —

w

diagram of the lattice gas can be mapped out com-
pletely with the aid of Table I. We list here the for-
mulas used for the vapor pressure p and specific volumes

v, and v~ of the equilibrium gas and liquid phases:

= log(1+x')+—,
kT 2m' ~p

&&log(~i[1+(1—ki2 sin'p)'j}dp, (14)

v -'=-' —-,'[( +x )(1—x'+x')~/( —x')'j:— ( 3)

III. AN EXAMPLE OF A TWO-DIMENSIONAL
LATTICE GAS

and
(16)

The question naturally arises as to the relationship
between a lattice gas and a real gas in which the atoms
are not confined to move on lattice points. If one
replaces the configurational integral in the partition
function of the real gas by a summation over lattice
sites, one would obtain the partition function of the
lattice gas. Theoretically speaking, by making the
lattice constant smaller and smaller one could, obtain
successively better approximations to the partition
function of the real gas. In practice this is a very dif-
ficult procedure. However, referring back to the simple
example discvssed in detail in Sec. II one sees that if
e&0 the interaction N there has all the characteristics of
the interaction between gas atoms that are usually con-
sidered responsible for the phenomenon of condensation,
namely, an attractive force with a finite range outside
of a strongly repulsive core. Thus one would expect that
the main features of the phenomenon of condensation
should be revealed even in this simple example.

It happens fortunately that in two dimensions this
example can be solved exactly in the transition region.
To be more specific, the problem is that of a two-dimen-
sional lattice gas with the interaction e specified in (9).
(A square lattice is considered. ) e is assumed to be
positive so that the gas atoms attract each other. The
corresponding Ising model problem has been studied

' See Appendix I for a simple illustration on this poig. t,

where
ki ——4x(1—x') (1+x')—'.

In Fig. 3 the transition region in the p —
w diagram

is plotted. The isotherms are calculated in the following
way:

(1) For small values of the fugacity y, one uses
Mayer's series expansion' in powers of y:

p (2 5) (6 16 31'
=y+~l ——l+~l +

kT Ex' 2J Ex4 x' 3 0

(1
+y'I —+ I+

EH )
The relation between the quantity exp( —2H/kT) of the two-

dimensional Ising model in a magnetic field and the fugacity y
of the corresponding lattice gas can be easily obtained by using
similar reasonings as that used in deriving Eq. (11).One obtains

y= x4 exp( —2H/kT). (A)

The fourth power in x comes from the fact that each lattice point
has four nearest neighbors. The corresponding equation for any
general lattice with arbitrary interaction can be written as

y=0. exp( —2H jkT), (&)

where r is a constant and is determined by the structure of the
lattice and the interaction between the atoms.

5 I . Onsager, Phys. Rev. 65, 117 (1944);B.Kaufman, Phys. Rev.
76, 1232 (1949).

C. N. Yang, Phys. Rev. 85, 808 (1952).' J. E. Mayer, J. Chem. Phys. 5, 67 (1937);J. E. Mayer and
Ph. G. Ackermann, J. Chem. Phys. 5, 74 (1937);J. E. Mayer and
S. F. Harrison, J. Chem. Phys, 6, 87, 101 (1938).
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1 Bt'p)
v ay Ekr)

We shall see in the next section that (18) is convergent
for all values of y less than x4.

(2) When y is equal to x', the gas undergoes a phase
transition at temperatures lower than the critical
temperature. The vapor pressure and specific volumes
of the gas and liquid at this value of y have been given
before in Eqs. (14), (15), and (16).

(3) At y= x', but above the critical temperature, the
pressure of the gas is still given by Eq. (14), but the
specific volume v now is a constant

(20)

This is so because the corresponding Ising model
problem has now, according to Eq. (A), ' zero magnetic
field and consequently zero intensity of magnetization.

(4) For y) x4, the Ising model problem has, according
to Eq. (A), 4 a negative magnetic field. Cha, nging the
sign of the magnetic field corresponds to changing the
fugacity to a value y' given by, according to Eq. (A), '

(21)

Since the free energy F is even in H and the intensity of
magnetization I is odd, one could express with the aid
of Table I the pressure and density in terms of their
values when the fugacity is equal to y'. But y' is less
than x'. On using (18) and Table I, one can therefore
expand the pressure and densityiri inverse powers of the

fugacity y:

Before closing this section we shall make the fol-
lowing remark. Equation (16) shows that the sum of
the densities of the vapor and liquid in equilibrium is
a constant independent of the temperature. ' This
closely resembles the behavior of a real gas where a
law called "Iaw of rectilinear diameter'" is known to
hold. It states that the sum of the densities of the vapor
and liquid in equilibrium increases linearly with de-
creasing temperature. This increment is, however, very
slow, being not more than 10 percent for a temperature
variation over a factor 2 for He near its critical tem-
perature. Now our model obeys what may be called the
"law of constant diameter, " which provides no incre-
ment of the sum of densities with decreasing tem-
perature and may be considered a first approximation
to the law of rectilinear diameter. The difference lies,
we believe, in the inadequacy of the lattice model (with
a 6nite lattice constant) as an approximation to a true
gas. One can formulate arguments which indicate that
the correction to the lattice model is in the right direc-
tion (i.e., it tends to make the sum of the densities of
the vapor and liquid in equilibrium increase with
decreasing temperature).

y= log—+y
—'x'+ y

—'(2x"—(5/2) x")
kT x4

and

+y '(6x"—16x"+(31/3)x'4)

+y'("+ )+ ( )

~/P't
v By EAT)

This series is convergent for all y&x4, which holds
everywhere in the liquid phase and also in part of the
gas phase above the critical temperature.

It is really quite remarkable that a model with so
many properties characteristic of a real gas should
allow of a complete and exact solution in the transition
region where the usual virial expansion does not apply.
A complete solution outside of the transition region is
related to the solution of an Ising model in a non-
vanishing magnetic field, which still remains unknown.
However, the problem can be reduced by the results of
paper I, to that of the distribution of roots of the grand
partition function; and although the complete dis-
tribution is not known, many of its properties have
been obtained. We shall return to this problem in Sec. V.

FIG. 3. p —v diagrams for a two-dimensional lattice gas. The
solid curve is the exact boundary of the two-phase region. The
dotted curves are the isotherms.

The constancy of the sum of the densities of the vapor and
liquid in equilibrium is true even for any general lattice. This can
be seen very easily since there exists a one to one correspondence
between the conhgurations of the vapor phase and that of the
liquid phase, which is obtained simply by replacing the lattice
sites occupied by the atoms in the former by vacant sites in the
latter and vice versa. Compare Cernuschi and Eyring's paper
quoted in footnote 2.' Mathias, Onnes, and Crommelin, Proc. Sect. Sci. Amsterdam
15, 96O (&9&3).
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IV. A THEOREM ON THE DISTRIBUTION OF ROOTS
OF THE GRAND PARTITION FUNCTION

%c shall now return to the general problem of.the
condensation of gases, arid shall in the following apply
the results of paper I to the problem of a lattice gas.
I'here is actually no loss of generality in confining our
attention to a lattice gas, as a real continuum gas can
be considered as the limit of a lattice gas as the lattice
constant becomes infinitesimally small.

The equivalence pmved in Sec. II states that the
problem of R 1Rttlce gRs 1s ldcntlcR1 with that of Rn

Ising model in a magnetic held, and that the grand
partition function in the former problem is proportional
to the partition function ig. the latter problem. It is
convenient to introduce in the Ising model problem the
variable

s= exp( —2II/kT), (23)

which is by Kq. (B),4 proportional to the fugacity y of
the lattice gas:

where 0 is R constant. In terms of s the partition func-
tion exp( —KF/kT) of the Ising lattice is equal to
exp(XZ/kT) times a polynomial 6' in s of degree X:

exp( JtP/k—T) = (P exp(XII/kT), (25)

tP=P P„s", (u=O, 1, K). (26)

The coefFicients I' are the contribution to the partition
function of the Ising lattice in zero cxtcrna]. 6eld from
con6gurations with the number of $ spins equal to n.
It shouM be noticed that

P =P„ if u+n'=K.

The I'„'s are, of course, real and positive.
Kvid. ently the roots of the polynomial (P are never on

the positive real 2' axis, arid are in general complex.
The results of paper I show that if at a given tem-

perature as X approaches in6nity, the roots of the
polynomial (P do not close in onto the positive real axis
in the complex s plane, the free energy F is an analytic
function of the positive real variable s. Physically this
means that the Ising model has a smooth isotherm in
the I—H diagram. and that the corresponding lattice
gas undergoes no phase transition at the given tem-
perature. If, on the other hand, the roots of the poly-
nomial 5' do close in onto the positive real 2; axis at the
points s= t1, t2 ~ „each of these points would correspond
to a discontinuity of the isotherm in the I—H diagram
of the Ising lattice and to a phase transition of the
lattice gas.

To study the problem of phase transitions of the
lattice gas (and of an Ising model), one therefore needs
only to study the distribution in the complex s plane
of the mots of the polynomial O'. The surprising thing
is that under quite general conditions this distribution

V. DISTRIBUTION OF ROOTS ON THE UNIT CIRCLE

A. Distribution Function g(8)

We have seen in the last section that for the inter-
action (27) the roots of (P lie on the unit circle; Its
distribution as X—+Co may be described by a density
function g(8)" so that Xg(8)dtt is the number of roots
with s between e" and e'&'+~' Evidently one has

g(t) =g(-0), (2g)

'0 The average density of a finite lattice gas is easily seen to be

Zl, s/t s—exp(i'll, )j,
vrhere a=exp(i8@) are the zeros of the grand partition function.
The results of paper I shove that this average density converges
to an analytic function in 8 both inside and outside of the uillt
circle as the size of the lattice approaches infinity. It seems
intuitively clear from this that the distribution of these roots
should also approach a limiting distribution on the unit circle for
an inhnite lattice. This is indeed the case and a rigorous mathe-
qiatical proof' exists in the literature. See A. Wintner, Monatsh.
Math. Phys. 4, 1 (1934). We are indebted to Professor Kac for
showering us the proof.

shows a remarkably simple regularity, which may be
stated in the form of the following theorem:

Theorem 3. If the interactiou u betweeu two gas
atoms is sech that

u=+ ~ if the two atoms occupy the same lattice

aud u~0 otherwise, (27)

thee all the roots of the polyuomial tP lie ou the meit
circle irt the complex s pia-ne

Tlis theorem will bc proved ln Appendix II. It shouM
be noticed that in the theorem no assumptions are made
about (1) the range of the interaction u, (2) the dimen-
sionality of the lattice, and (3) the size and structure
of the lattice. In fact, even the periodicity pmperty of
the lattice plays no part at all in the proof.

For the Ising model problem Kq. (27) means that the
interaction between all pairs of spins (not limited to
pairs of nearest neighbors) are ferromagnetic.

Some immediate consequences of theorem 3 may be
enumerated as follows:

(1) The lattice gas cannot undergo more than one
phase transition which IQust occul 1f Rt RII Rt R VRIuc
of the fugacity equal to o, which according to Eq. (24),
corresponds to a=1.The isotherms in the I—JI dia jram
of the corresponding Ising model problem is smooth
everywhere except possibly at zero magnetic field
(which occurs at s=1). This is usually believed to be
true but was not proved.

(2) Mayer's series expansions~ of the pressure p and
density 1/e in powers of the fugacity y [see, e.g., Eq.
(18)j are convergent for all values of y less than o. This
is easily proved by the ar jument used in footnote 9 of
paper I. On using the symmetry property of the Ising
model problem with respect to a reversal of sign of the
magnetic field, one obtains, for values of y greater than
o, convergent series expansions of p and 1/v in inverse
powers of the fugacity Lsee, e.g., Eq. (22)j.
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g(8)d8=-,'. (29)

Taking the logarithm of (25) and factorizing (P one
obtains for the Ising model

the lattice gas are analytic in the fugacity and the
system undergoes no phase transition. If, on the other
hand, g(0) does not vanish, the electric field has a dis-
continuity at s=1 as one goes along the positive real
s axis through the sheet of surface charge distribution.
Evidm. tly

—F B t»'

g(8) log(» —e@)d8
~0

+ ~l g(8) log(»' —2» cos8+1)d8.
~0

(30)

@»=1+)—Z(»=1 —)=4~g(0). (36)

This means of course that the speci6c volume e of the
lattice gas has a discontinuity at a=1, showing that
the system undergoes a phase transition. The speci6c
volumes e~ and v~ of the gas and liquid phases in equi-
librium are related to g(0) by

The intensity of magnetization is obtained from Eqs.
(6) and (30).

2 —cose
I=1—4» g(8) ——d8.

»' —2» cos8+1

For the lattice gas one has, on using Table I and Eqs.
(30) and (31),

g(8) log(»' —2» cos8+ 1)d8,

8—cosO
—=2» g(8) ——d8.
» "0»'—2» cos8+1

These equations enable one to calculate the isotherms
in the I Hand p —e d—iagrams from the distribution
function g(8). The isotherms thus obtained extend to
the condensed region, the two-phase region as well as
the gas region. They approximate very realistically the
isotherms of a real gas even for very simple distribution
functions g(8).

B. An Electrostatic Analog

A very simple analog of Eqs. (32) and (33) may be
found in electrostatics in the following way: Consider a
circular cylinder of unit radius perpendicular to the
complex s plane discussed above, cutting it at the unit
circle. Assume the cylinder to be charged with a surface
charge density dependent only on the angle 0 and equal
to g(8) per unit area. Denote the electrostatic potential
and the 6eld produced by this charge distribution at
any point on the real axis in the s' plane by @ and E.
Since g(8) =g(—8), the electric field E is evidently
parallel to the real s axis. One can easily verify the
following equations:

—2p/kT= electrostatic potential p, (34)

2/&» = —8$/8»= electric field E. (35)

If g(8) vanishes in the neighborhood of 8=0, the sheet
of charge has the shape "C"and the electric potential
and electric 6eld are well behaved for all real positive
values of s. Consequently the pressure and density of

1/»i —1/vg=2irg(0). (37)

Another relation between e~ and ~, is given by the "law
of constant diameter" discussed in Sec. 3 (see especially
footnote 8).

Equation (37) asserts that the value of the dis-
tribution function g at the transition point (8=0) is
equal to (2ir) ' times the difference of the densities of
the liquid and gas phases in equilibrium, which is a
directly physically observable quantity.

It should be emphasized that this relationship has
actually a much wider range of validity and holds even
when the roots are not necessarily on the unit circle.

It is evident that the variation of the pressure and
density near the point s= 1 depends very sensitively on
the behavior of g(8) near 8=0. One would for example
expect that the derivatives of g(8)- near 8=0 should
determine the derivatives of the isotherm in the p —»

diagram near the region of condensation. This is indeed
the case, as can be seen in the example: If for small
values of 8,

g(8) =r(O)+ol81-+ ~, (~&0)

the g(0) term, (if nonvanishing), will give rise to a flat
horizontal. portion on the p —v diagram. The next
term will give rise to a discontinuity in the Nth deriva-
tive of v with respect to p for integral values of e.
If n is a fraction between the integers, say, m and m —1
then the mth derivative of w with respect to p is dis-
continuous.

For the Ising model problem, the relation cor-'

responding to Eq. (37) can be obts, ined by using Table I.
The in.tensity of spontaneous magnetization I is thus
expressible in terms of g(0):

I=2mg(0).

C. Relationshiy betvreen the Cluster Integrals
and g(8)

If one expands (32) in powers of » and identifies the
coeKcient with Mayer's expansion, '

=P biy'=Q bio'»',
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where 0. is given by (24), one obtains the following ex-
pression for the cluster integrals bE.

g(8) cosl8d8, l =1.

In other words the b)'s are the Fourier coefficients of the
distribution function g(8). One has, of course, the inverse
relation,

g(8) =———p lo'bI cosl8,
2' x ~=1

which expresses the distribution. function. g(8) in terms
of the cluster integrals bl, which in turn are themselves
calculable from the virial coefficients.

Equations (40) and (37) enable one to make practical
approximate calculations of the distribution function
g(8) from the virial coefFicients and the change in

specific volume in the phase transition, both of which
are experimentally osbervable quantities.

—Lim - =2s g(8).
r~l+ P z=rete r-+1—P z reN

(41)

This equation can be proved by extending the reasoning
that led to Eq. (37) in the following way: Consider the
electric field at a point not necessarily on the real s axis
produced by th, e charge distribution discussed in sub-
section B. I.et E, and E„be the components of the
electric field

II
and J to the real s axis. Defining

8=E,+lE„h*=E, iE„, —

one can easily verify the identity

2/vs= h*

at every point in the complex s plane. The discontinuity
of h across the unit circle at any point z= e" is related
to the charge density g(8) by

h I.„„;„,—h I;„„„=4~g(8) s.

Taking the complex conjugate of this equation and
using (42) one obtains Eq. (41).

The corresponding equation for the Ising model
problem is

D. g(8) and the Analytical Behavior of the
Syeci6c Volume

Tlic dcllsi'ty 1/'v of tile lRttlcc gRs Is evidently RI1

analytic function of s both inside and outside of the
unit circle in the complex s plane. Its value is equal to
1 at s'= ~ where it is also analytic. All its singularities
lie on the unit circle, The values of 1/n on the two sides
of the unit circle are related to the distribution function

g(8) by

s= (1—2x') Wi2x(1 —x') I. (44)

For all values of x&0, the roots therefore do not close
in onto the positive real axis, con6rming the well-
established fact that a one-dimensional Ising model
does not exhibit ferromagnetism. The density of roots
is given by the distribution function

sln2 ~
g(8) =—,for cos8(1—2x'

2Ir (Sin'-', 8—X') &

(45)
for cose& 1—2x'.g(8) =o

Oll substltut1ng tllis 11ito Eq. (30), 011c obta1ns tile
correct free energy. The intensity of magnetization is
given by

I=
s&—2s(1—2x2)+1

This is ana1ytic everywhere except at the two points
given in Eq. (44). The cut between these two points
should be made along the unit circle toward the left of
the two points. One easily verifies that the discon-
tinuity across the cut is exactly 4sg(8), as given by
Eq. (41a).

For a two-dimensional ferromagnetic Ising square
lattice the problem with a 6nite magnetic field, to our
knowledge, has not been solved. However, the following
exact knowledge is available about the problem:

(1) The free energy F at zero magnetic field (i.e.,
s= 1) was obtained by Onsager' as

F(s= 1)= '

i logL11 2x(cos~+ costa')
J, J,

+2x' —2x'(cos(a+cos(o')+x']d(odko'. (46)

(2) The intensity of spontaneous magnetization at

E. Example of One- and Two-Dimensional
Ferromagnetic Ising Model

Ke shall illustrate the above discussion with the
problem of a one-dimensional ferromagnetic Ising
model with nearest neighbor interaction in an external
magnetic field. This problem can be rigorously solved
by the matrix method. "%e quote here only the results.
For a closed chain of R spins denote the roots of the
partition function by e+'& e+'2 . These roots are
given by

cos8, = —x'+(1—x') cosLs.(2J—1)/X], (43)

wlici'e x Is defined 'to bc cxp(—e/kT) Rnd J I'uIis 'tliioilgh
all integers 1, 2 less than or equal to -', (X+1).As
K—+ ~ these roots distribute themselves continuously
oil an arc of the unit circle lying to the left of the points

Llm I —Llm I
r-+1+ z r e t8 r-+1— z r e ill

= —4m g(8). (41a) "H. A. Kramers and G. H. %annier, Phys. Rev. 60, 252, 263
{1941).



I I. LATTI CE GAS AND ISING MODEL

zero magnetic field was obtained by one of us' as

1+x'
I(s=1)= (1—6x'+x4)' for x~v2 —1,

(1—x')'
(47)

for x)V2 —1.I(8=1)=0

(3) By an extension of a method due to Kac and
%ard" for obtaining a combinatorial solution of the
free energy of the Ising model problem in the absence
of a magnetic Qeld, one could obtain" the free energy
at s= —1 which corresponds to a pure imaginary mag-
netic field equal to i7r/2:

kT
F(s= —1)=—— log{(1—x') '

«'~0 ~0

X[1+(6—4 cos'~ —4 cos'&u') x'+ x'j) deed~'. (48)

(4) The intensity of magnetization at this imaginary
value" of the magnetic 6eld is

(1+x')'
I(s= —1)= (1+6x'+ x4)—l

1—x2
(49)

This can be verified by series expansion of both sides
in powers of x.

The results quoted above have direct bearing on the
distribution function g(8) of the zeros of the partition
function on the unit circle. In particular (47) and (49)
are precisely the value of g(0)/2~ at 8=0 and 8= m. It
is interesting to notice that g(0)/2~ is always less than
unity while g(m)/2n is always greater than unity. Also

g(0) increases with decreasing temperature while g(m.)
decreases with decreasing temperature. This shows the
motion of the roots toward the right along the unit
circle as the temperature decreases.

On the other hand, (46) and (48) give through Eq.
(30) certain averages with respect to the distribution
function g(0). The form of these averages are extremely
suggestive and we have tried to construct the distribu-
tion function from them, but without success.

VI. CONCLUDING REMARKS

The relation between the distribution of roots of a
polynomial and its coefficients is mathematically a very
complicated problem. It is therefore very surprising
that the distribution should exhibit such simple regu-
larities as proved in theorem 3 which applies, as re-
marked before, under very general conditions. One
cannot escape the feeling that there is a very simple
basis underlying the theorem, with much wider appli-
cation, which still has to be discovered.

It is a great pleasure to thank Professor M. Kac for
many stimulating and very pleasant discussions from
which we learned much in mathematics.
"M. Kac and J. C. Ward (to be published).
'3 We hope to publish in a future communication the details of

the steps that led to (48) and (49).

APPENDIX I. ONE-DIMENSIONAL HARD RODS
AND LATTICE GAS

A simple example that illustrates clearly the rela-
tionship between a continuum gas and a lattice gas is
the problem of one-dimensional hard, rods and the cor-
responding problem of a one-dimensional lattice gas,
as the problem can be exactly solved in both cases. To
be s'pecific, let us consider a lattice gas of n atoms dis-
tributed on a one-dimensional lattice of total length L
and lattice constant 5. The topi number of lattice sites
is clearly

(50)X=I./B.

The interaction potential u(r) between the gas atoms is

u(r) =+ ~ for r(m8, u(r) =0 for r m8,—(51)

where r is the distance between atoms and m is a
positive integer. Evidently, r can only be 0, 8, 2b, etc.

The evaluation of the spatial partition function Q
.can be reduced to that of a simple combinatorial problem
of distribution (X—mn) identical pieces into (n+1)
diferent bags. One easily obtains

Q/n! = [X—(m —1)nj!/(K—mn)!n!. (52)

The pressure p of the gas is related to Q through the
relation

P ~ (Ql
kT BI En!)

(53)

On using (50) and differentiating (52) one obtains

p 1 t nb
=-iogl 1+-

kT 5 0 I. mn5)— (54)

In the limit of an infinitesimal lattice constant 8 but a
6nite value D for mb, the pressure approaches a limit
given by

Llm
0 kT L—nDm6=D

(55)

which is precisely the expression for the pressure of a
system of n hard rods each of length D, enclosed in a
one-dimensional box of total length L. Thus one sees
that when the lattice constant b approaches zero the
thermodynamic functions of a lattice gas indeed
approach that of a continuum gas.

APPENDIX II. PROOF OF THEOREM 3

Theorem 3 is a special case of the following more
general theorem:

Theorem: Let x e
——xe (aWP, n, P=1, 2, n) be

real numbers @hose absolute values ure less thun or

equat to 1. Divide the integers 1, 2, n into two groups
u and b so that there are y integers in group u and
(n —y) in group b. Consider the product of all x e
where u belongs to group a and P to group b. We shall
denote bg I', the sum of all such products over all the
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28!/pp!(23 p)!j possible ways of dividing the 23 integers.
In other words

P.=Z LV!(~—V)!1 'll II $"3
j~1 i~»

(56)

where a» -a~, b» . .b„~ is any permutation of the
integers 1, 2, e and the summation extends over all
such permutations; e.g.,

I'p ——I'„=1, Pl Pn —1 . $12$13' ' '$ln+$21$23' ' '$2n

+ ' ' ' +$nl$n. 2' ' ' $n(n —1) ~

It is easy to verify that I' =I'„.Consider the poly-
nomial

61(z) =1+Plz+Plz'+ +P„ lz" '+z" (57)

The theorem asserts that att the roots of the eqlatiort

v=0
are oe the Neit circle.

To prove this theorem it is convenient to introduce
the following polynomials Q of the variables sl,
S2) Zrt ~

(2) We shall prove the lemma for general values of
n by induction. Assume it is true for n=m —2 and
n=m —1, but not true for e=m. %e shall call this
assumption hypothesis A and prove that it is self-
contradictory. Under hypothesis A there exists a set of
z's equal to s», s2, s such that

and
P„(zl, z2, z )=0 (59a)

fzll» and IZ2l, lz8l", iz-I «1 =1 (59b)

The subscript m in Q is to indicate that it has m
independent variables s.

(3) We now prove in this paragraph that keeping
z3, z4, s fixed and regarding z2 as a function of s»

de6ned by (59a) one obtains a limit h2 for Z2 as zl-+ ~
and that

i )2i &1. To prove this we take, say, m= 3 and
notice that

g3 1+S1$12$18+S2$21$28+S3$31$32+Zlz2$13$28

+Z2Z3$21$31+S8S1$32$12+Slz2Z3. (61)

As zl-+~, $3——0 gives

1.e.)

$12$13+h2$13$28+s3$82$12+$2S8= Oq (62)

where, as in the definition of I'~, a», a2, app b»p bQ 7
is any permutation of the integers 1, 2, m and the
summation extends over all such permutations and
over all y. It is clear that $2$12 i 2) S3$13 —t 8 (64)

!12— ($12$13+Z3$32$12)/(Z3+ $13$23)~ (63)

It is easy to prove that unless the denominator vanishes
this does give the correct limit for s2, But the denomi-
nator cannot vanish, as will be seen later. Hence the
limit )2 is correctly given by (62). Now write

Q (z, z, s, s) = (P(z). (58a) Equation (62) reduces to

To prove the theorem it is only necessary to prove
that there are no -roots of 5'=0 that have an absolute
value )1. Equation (58a) therefore shows that the
theorem is an immediate consequence of the following
lemma:

Lemma: If $(zl, Z2, z ) =0 and none of the z's

has an absolute value less than one, then

Proof: (1) We shall assume throughout the proof that
all the x's are diferent from zero and +1. The proof
can then be easily generalized to include the case when
one or more of the x's either vanish or are equal to ~1.

The lemma is clearly true when n=1, for which

$,=1+zl. For 28=2,

1)2 —1+$12(zl+S2)+Z1Z2.

$2——0 therefore implies

Zl (1+$12Z2)/(Z2+ $12)~

1+i2$23+08$28+02i 3=0.

But this is exactly an equation of the form

'P2(i 21 8) =o,

where $2 is a polynomial of the general form (58) with
23= 2. Now by condition (59b)

Hence hypothesis A asserts that [f'2i &1.Hence

IS i&if I&1.

We need now only prove that the denominator in (63)
does not vanish. This is evident in the present case of
m=3. We shall, however, give a formal proof which
holds in general for any value of ns. The denominator
in (63) is clearly the coefIicient of zlzl in $3 given in

(61), just as the left-hand side of (62) is the coefficient
of zl in $3. We therefore make a similar transformation
as (64):

It is easy to prove that for
i S2i )1 the right-hand side

of this equation always has an absolute magnitude &1.
Hence if

i zl
i
~1,

i Z2I —1, they must both be equal to 1,
proving the lemma for the case n= 2.

S3$13 $23 $3 p

and reduce the denominator in (63) into the form

+13+23 1 3 ~ (65)
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Clearly
I
fa'I )1 so that hypothesis A implies that (65)

does not vanish. The above arguments evidently hold
for any general value of m and this completes the proof
that as 2'I—+ ~, s2 approaches a limit smaller than unity
in absolute value.

(4) Keeping sp, s4 s„ fixed one can increase Is, l

and define 2'2 as a continuous function of 2'&. Since by
(59b), I spl starts to be =1 in absolute magnitude and
tends to a limit &1 in absolute magnitude as si—+ ~,
there must be a value of si equal to si' so that s2 assumes
a value 2'~' equal. to 1 in absolute magnitude, i.e.,

Q (si', sp', sp, s„)=0 (66a)

Continuing this way we finally get a set of values z&",
z2", s„"such that

Q (si", sp", . s ")=0, (67a)

But Q is linear in si". Writing Q =Bsi"+C where
8 and C are independent of si one verifies easily that

B=sg"s" ~ s "6,
where 6 is the complex conjugate of C under the con-
dition (67b). Hence

lzi'l)1 Izp'1=1, Ispl, lspl, ~ Is I
1. (66b)

Ke can fix 2'2', s4, s5, 2: and regard s3 as a function
of si' and follow the same procedure by increasing

I
si'

I

till 23 assumes a value equal to 1 in absolute magnitude.

which contradicts (67b). (It is easy to show that B does
not vanish by making a transformation similar to (64)
and reduce 8 to products of some x's with Q i.)

This completes the proof by induction.
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Previous theoretical treatments of high frequency electrical breakdown in gases based on the Boltzmann
transport equation were applied to specific gases and met with mathematical difhculties when applied to
higher pressures. We now present a simpler solution applicable to any gas and to a wide pressure range.
Agreement between theory and experiment with hydrogen gives confidence that the energy distribution-
function is correct and the distribution function is therefore used to compute other quantities of physical
interest.

I. INTRODUCTION

' 'N a recent series of papers, the electrical breakdown
~ - of helium and hydrogen in a microwave cavity has
been predicted from the measured probability of col-
lision P', and the corresponding probabilities of excita-
tion P and ionization P;. The only processes assumed
to take place are acceleration of electrons by the field,
elastic and inelastic collisions with the gas, and diffusion

to the walls, which in turn have no effect other than to
absorb the electrons and ions. Mathematical difhculties
arose in the method used in these papers when applied
to higher pressures. The simpler solution given in this
paper is applicable to any gas and to a wide pressure
range.

IL BOLTZMANN EQUATION

When a high frequency electric field E=Z„exp(j t)pp
is applied to a gas, the velocity distribution F(v) of the

~ This work has been supported in part by the Signal Corps,
the Air Materiel Command, and ONR.

free electrons is determined by the Boltzmann equation:

(aF/at) =C V, vFPV, eE—F/m.

C represents the eGect of collisions and V'„and V', are
the gradient operators in configuration and velocity
space. This equation is solved by expanding the dis-
tribution function in spherical harmonics in velocity
space and in Fourier series in time,

F=pi gq F Fp( i8c)osexp(jkppt)
=Fp'+v

I
Fp'+Fi' epx( j(tp)] /.v(2)

All terms except the three indicated may be dropped
when the geometry, pressure, and frequency fall within
certain limits which have been discussed by Brown and
MacDonald. ' These limits require that the mean free
path be less than any dimension of the cavity, that the
frequency be sufficiently high so that the electrons do
not lose appreciable energy between cycles, and that the
average motion of the electrons resulting from the
action of the field and of collisions be sufFiciently small

' S. C, Brown and A, D. MacDonald, Phys. Rev. 76, 1629 (1949).


