Yong Wei (韦勇)

School of Mathematical Sciences,
University of Science and Technology of China,
Hefei, 230026, P.R. China

Office: 管理科研楼1305
Tel: 0551-63600940
Email: yongwei ät ustc.edu.cn

 


Employment

1.       Feb 2020 – present,  Professor (特任教授), University of Science and Technology of China, P. R. China

2.       Jan 2019 – Feb 2020, ARC Discovery Early Career Researcher, Australian National University, Australia

3.       Jul 2016 – Dec 2018, Postdoctoral Fellow, Australian National University, Australia

4.       Jul 2014- Jul 2016, Research Associate, University College London, United Kingdom


Education

1.       Jul 2014, PhD in Mathematics, Tsinghua University, Beijing. Supervisor: Prof. Haizhong Li.

2.       Jul 2009, B.S. in Mathematics, Tsinghua University, Beijing.


Teaching

1.       中法班分析IV习题课 - 2022

2.       科学与社会新生研讨课 - 2021

3.       教过的课程: 微分几何(2021秋、2020 );微分方程II(H)  (2021春、2020);中法班复分析习题课  - 2021秋;科学与社会新生研讨课( 2020 ) 纯粹数学前沿( 2020 )


Research

Research interest: Differential geometry and geometric analysis. Recent research projects include geometric flows of G2 structures, geometry flows of hypersurfaces, and their applications in geometry and topology.

Survey articles

1.       Volume preserving flow and geometric inequalities (with Ben Andrews),  ``Proceedings of the ICCM 2018” [pdf]

2.       Laplacian flow for closed G2 structures,  In: Karigiannis S., Leung N., Lotay J. (eds)  Lectures and Surveys on G2-Manifolds and Related Topics. Fields Institute Comm., vol 84, 2020. Springer.  [pdf]

Selected research papers [A full list of my publications can be found in MathSciNet]

1.       Shifted inverse curvature flows in hyperbolic space (with Xianfeng Wang and Tailong Zhou), arXiv:2004.08822

2.       On an inverse curvature flow in two-dimensional space forms (with Kwok-Kun Kwong, Glen Wheeler, and Valentina-Mira Wheeler), Math. Annalen online first (2021).

3.       Locally constrained curvature flows and geometric inequalities in hyperbolic space (with Yingxiang Hu and Haizhong Li), Math. Annalen. 382, 1425-1474 (2022)

4.       A fully nonlinear locally constrained anisotropic curvature flow (with Changwei Xiong), Nonlinear Analysis, 217,2022, Article no. 112760.

5.       A volume-preserving anisotropic mean curvature type flow (with Changwei Xiong),  Indiana Univ. Math. J., 70 (2021),  881-906.

6.       Volume preserving flow and Alexandrov-Fenchel type inequalities in hyperbolic space (with Ben Andrews and Xuzhong Chen),  J. Euro. Math. Soc. , 23 (2021), 2467-2509.

7.       Volume preserving flow by powers of kth mean curvature (with Ben Andrews), J. Differential Geom., 117(2021), no.2, 193-222.

8.       Contraction of surfaces in hyperbolic space and in sphere (with Yingxiang Hu, Haizhong Li and Tailong Zhou), Calc. Var. Partial Differential Equ.. 59(2020), Article no. 172.

9.       Laplacian flow for closed G2 structures: Real Analyticity (with Jason D. Lotay), Comm. Anal. Geom., 27 (2019), no. 1, 73-109

10.    New pinching estimates for inverse curvature flows in space forms, J. Geom. Anal., 29 (2019), no.2, 1555-1570.

11.    Stability of torsion-free G2 structure along the Laplacian flow (with Jason D. Lotay), J. Differential Geom., 111 (2019), no. 3, 495-526.

12.    Surfaces expanding by non-concave curvature functions (with Haizhong Li and Xianfeng Wang), Ann. Global Anal. Geom., 55 (2019), no.2, 243-279.

13.    Quermassintegral preserving curvature flow in hyperbolic space (with Ben Andrews), Geom. Func. Anal., 2018, 28(5), 1183-1208.

14.    On the Minkowski-type inequality for outward minimizing hypersurfaces in Schwarzschild space, Calc.Var. Partial Differential Equ., (2018) 57:46.

15.    On inverse mean curvature flow in Schwarzschild space and Kottler space (with Haizhong Li), Calc. Var. Partial Differential Equ., (2017) 56: 62.

16.    Laplacian flow for closed G2 structures: Shi-type estimate, uniqueness and compactness (with Jason D. Lotay),  Geom. Func. Anal., 2017, 27(1), 165-233.

17.    On lower volume growth estimate for f-minimal submanifolds in gradient shrinking soliton, IMRN, 2017 (9): 2662-2685.

18.    Smooth compactness of f-minimal hypersurfaces with bounded f-index (with Ezequiel Barbosa and Ben Sharp) , Proc. Amer. Math. Soc., 2017, 145(11), 4945–4961

19.    A geometric inequality on hypersurface in hyperbolic space  (with Haizhong Li and Changwei Xiong), Adv. in Math., 2014, 253(1):152–162.

20.    F-stability for self-shrinking solutions to mean curvature flow (with Ben Andrews and Haizhong Li), Asian J. Math., 18, No.5 (2014),  757-778.

Collaborators  Ben Andrews (ANU), Ezequiel Barbosa (UFMG), Xuzhong Chen (Hunan Univ.), Guangyue Huang (Henan Normal Univ.), Xiaoli Han (Tsinghua), Yingxiang Hu (Beihang Univ.), Kwok-Kun Kwong (Univ. of Wollongong),  Haizhong Li (Tsinghua), Jason D. Lotay (Oxford),  Ben Sharp (University of Leeds), Xianfeng Wang (Nankai), Glen Wheeler and Valentina-Mira Wheeler (Univ. of Wollongong),   Changwei Xiong (Sichuan Univ.), Tailong Zhou (USTC),


Links: MathSciNet, Research gate, Google scholar profile, googlesite personal page.