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Notation

k : number field
Ωk = Ωf

k t∞k set of places
kv for v ∈ Ωk

Ov ⊂ kv for v ∈ Ωf
k

Ak ring of adèles
S ⊂ Ωk finite subset
AS
k adèles without S-components

prS : Ak → AS
k natural projection

X : smooth variety over k (variety = separated scheme of
finite type, geometrically integral)
Br(X ) = H2

ét(X ,Gm) the cohomological Brauer group
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Weak approximation

X (k) ↪→
∏

v∈Ω X (kv ) diagonally
Weak approximation holds if X (k) is dense w.r.t. product
topology
∅ 6= U ⊂ X Zariski open
weak approximation on X =⇒ weak approximation on U
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Strong approximation

X (k) ↪→ X (AS
k ) diagonally

Strong approximation off S holds if X (k) is dense w.r.t. adélic
topology
subtle difference between product topology and adélic
topology:
- strong approximation on X ; strong approximation on U

Example: k = Q, S 6= ∅, X = A1, U = A1 \ {0} = Gm

X satisfies strong approximation off S
U does not satisfy strong approximation off S
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What happens if Z = X \ U is of codimension ≥ 2 ?

in such a case
- Zariski-Nagata: πét

1 (Xk̄) = πét
1 (Uk̄)

- purity for étale cohomology: Br(X ) = Br(U)
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First example: the affine space

X = An satisfies strong approximation off S 6= ∅
What about the case when X is a semi-simple simply
connected group?

in these cases
Br(X )

Br(k)
=

Br(X \ Z )

Br(k)
= 0

in general, should take into account the Brauer-Manin
obstruction

Yongqi LIANG Arithmetic Purity for Strong Approximation 6/20



First example: the affine space

X = An satisfies strong approximation off S 6= ∅

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of An such that codim(Z ,X ) ≥ 2.
Then An \ Z satisfies strong approximation off S 6= ∅.

What about the case when X is a semi-simple simply
connected group?

in these cases
Br(X )

Br(k)
=

Br(X \ Z )

Br(k)
= 0

in general, should take into account the Brauer-Manin
obstruction

Yongqi LIANG Arithmetic Purity for Strong Approximation 6/20



First example: the affine space

X = An satisfies strong approximation off S 6= ∅

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of An such that codim(Z ,X ) ≥ 2.
Then An \ Z satisfies strong approximation off S 6= ∅.

What about the case when X is a semi-simple simply
connected group?

in these cases
Br(X )

Br(k)
=

Br(X \ Z )

Br(k)
= 0

in general, should take into account the Brauer-Manin
obstruction

Yongqi LIANG Arithmetic Purity for Strong Approximation 6/20



First example: the affine space

X = An satisfies strong approximation off S 6= ∅

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of An such that codim(Z ,X ) ≥ 2.
Then An \ Z satisfies strong approximation off S 6= ∅.

What about the case when X is a semi-simple simply
connected group?

in these cases
Br(X )

Br(k)
=

Br(X \ Z )

Br(k)
= 0

in general, should take into account the Brauer-Manin
obstruction

Yongqi LIANG Arithmetic Purity for Strong Approximation 6/20



First example: the affine space

X = An satisfies strong approximation off S 6= ∅

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of An such that codim(Z ,X ) ≥ 2.
Then An \ Z satisfies strong approximation off S 6= ∅.

What about the case when X is a semi-simple simply
connected group?

in these cases
Br(X )

Br(k)
=

Br(X \ Z )

Br(k)
= 0

in general, should take into account the Brauer-Manin
obstruction

Yongqi LIANG Arithmetic Purity for Strong Approximation 6/20



Brauer-Manin obstruction to strong approximation

S ⊂ Ωk finite subset
AS
k adèles without S-components

prS : Ak → AS
k & prS : X (Ak)→ X (AS

k ) natural projections
Consider X (k) ⊂ X (k) ⊂ prS(X (Ak)Br) ⊂ X (AS

k )

one may also consider larger codimension instead of 2, we will
specify later.
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Arithmetic purity

Analog: Arithmetic purity for weak approximation holds once
X satisfies weak approximation with BM obstruction.
No! even for rational varieties.
Example (Y. Cao & F. Xu 2013):
X fails arithmetic purity
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GLn

One more example:
X = GLn(n ≥ 2) satisfies str. approx. with BM obs.
(Demarche 2011)
As a corollary of our main result (you will see it soon... be
patient!):
We should modify the question

Question

Suppose that k̄[X ]× = k̄×, does X verify arithmetic purity for str.
approx. with BM obs.?
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No!

No!
I am sorry...
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Punctured elliptic curves

Harari-Voloch 2010: elliptic curve E/Q : y2 = x3 + 3, E (Q) = Z
U = E \ {O} a hyperbolic curve
U does not satisfy str. approx. with BM obs. off ∞Q

idea of proof:
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Punctured Abelian varieties

the above 1-dimensional result + fibration argument =⇒
arithmetic purity results

A× E fails arithmetic purity (even for arbitrarily large
codimension).
Remark. Similar statement holds for tori and semi-abelian
varieties.
proof by contradiction:
We should modify our question to avoid Abelian varieties.
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Question

Question

Suppose that k̄[X ]× = k̄× and Pic(Xk̄) is finitely generated, does
X verify arithmetic purity for str. approx. with BM obs. (off S)?
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A known result:

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that k̄[X ]× = k̄×. Then X
verifies arithmetic purity for str. approx. with BM obs. off S 6= ∅.
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Suppose that k̄[X ]× = k̄× and Pic(Xk̄) is finitely generated, does
X verify arithmetic purity for str. approx. with BM obs. (off S)?

A known result:

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that k̄[X ]× = k̄×. Then X
verifies arithmetic purity for str. approx. with BM obs. off S 6= ∅.

Examples: An, Pn

Yongqi LIANG Arithmetic Purity for Strong Approximation 13/20



Our results

In our paper, we study arithmetic purity for strong approximation
for

Algebraic groups
certain homogeneous spaces
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for

Algebraic groups
- mentioned above:
Abelian varieties, tori, semi-abelian varieties
- quasi-split semi-simple simply connected groups
- connected linear algebraic groups with G sc quasi-split
certain homogeneous spaces

Theorem
Let G be a semi-simple simply connected linear algebraic group
defined over a number field. Suppose that G is quasi-split. Then G
verifies arithmetic purity for strong approximation off S 6= ∅. (In
this case Br(G )/Br(k) = 0.)
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Sketch of proof

G quasi-split:
B ⊂ G be a k-Borel, T ⊂ B = T n Bu a maximal torus.
φ : V ' Bu × B → T induces an isomorphism of Galois
module k̄[T ]×/k̄× → k̄[V ]×/k̄×

G : ss sc =⇒ k̄[V ]×/k̄× is a permutation Galois module.
T is quasi-trivial: T = ResK|kGm,K for a certain finite étale
k-algebra K .
In such a case φ extends to a smooth morphism φ : Y → R
with non-empty geometrically integral fibres, where
some kind of fibration argument completes the proof.
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SLn and GLn

Corollary

SLn verifies arithmetic purity for strong approximation off S 6= ∅:
For any Zariski closed subset Z such that codim(Z , SLn) ≥ 2,
SLn \ Z satisfies strong approximation off S 6= ∅.
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For any Zariski closed subset Z such that codim(Z , SLn) ≥ 2,
SLn \ Z satisfies strong approximation off S 6= ∅.

Corollary
Over any number field k , GLn verifies 3-codimensional arithmetic
purity for str. approx. with BM obs. off ∞k .

Remark. k̄[GLn]× 6= k̄×

In our previous definition, we discuss codimension 2 arithmetic
purity. The additional 1(= 3− 2) dimension comes from Gm. To
be more precise...
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SLn and GLn

Definition
We say that X satisfies Zariski open strong approximation with
Brauer-Manin obstruction off S , if for any non-empty Zariski open
U ⊂ X , U(k) is dense in prS(X (Ak)Br) ⊂ X (AS

k ).
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We say that X satisfies Zariski open strong approximation with
Brauer-Manin obstruction off S , if for any non-empty Zariski open
U ⊂ X , U(k) is dense in prS(X (Ak)Br) ⊂ X (AS

k ).

Lemma (Dirichlet’s unit theorem)

The k-torus Gm satisfies Zariski open str. approx. with BM obs. if
and only if the number field k is neither Q nor an imaginary
quadratic field.
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SLn and GLn

Definition
We say that X satisfies Zariski open strong approximation with
Brauer-Manin obstruction off S , if for any non-empty Zariski open
U ⊂ X , U(k) is dense in prS(X (Ak)Br) ⊂ X (AS

k ).

Lemma (Dirichlet’s unit theorem)

The k-torus Gm satisfies Zariski open str. approx. with BM obs. if
and only if the number field k is neither Q nor an imaginary
quadratic field.

Corollary

GLn verifies arithmetic purity (codim 2) for str. approx. with BM
obs. off ∞k if and only if the number field k is neither Q nor an
imaginary quadratic field.
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Linear algebraic groups

GLn  most general setting
G connected linear algebraic group
G red = G/Gu, G ss = [G red,G red],
G tor = G red/G ss, G sc → G ss
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Linear algebraic groups

GLn  most general setting
G connected linear algebraic group
G red = G/Gu, G ss = [G red,G red],
G tor = G red/G ss, G sc → G ss

Theorem
Suppose that G sc verifies arithmetic purity for str. approx. off ∞k

(in particular when it is quasi-split).
(1) G verifies arithmetic purity of codimension (2 + dimG tor) for
str. approx. with BM obs. off ∞k .
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Linear algebraic groups

GLn  most general setting
G connected linear algebraic group
G red = G/Gu, G ss = [G red,G red],
G tor = G red/G ss, G sc → G ss

Theorem
Suppose that G sc verifies arithmetic purity for str. approx. off ∞k

(in particular when it is quasi-split).
(1) G verifies arithmetic purity of codimension (2 + dimG tor) for
str. approx. with BM obs. off ∞k .
(2) if furthermore G tor 6= 1 satisfies Zariski open str. approx. with
BM obs., then G verifies arithmetic purity of codimension
(1 + dimG tor) for str. approx. with BM obs. off ∞k .
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Homogeneous spaces

Theorem
Let G be a connected linear group and H ⊂ G be a connected
closed subgroup. Let X be a G -variety containing G/H as a Zariski
open dense G -orbit. Assume that k̄[X ]× = k̄×. If G sc verifies
arithmetic purity (in particular when it is quasi-split), then X
satisfies arithmetic purity for str. approx. with BM obs. off S 6= ∅.

Example: X ⊂ A4 defined by x1x2 + x3x4 = c where c ∈ k×,
then X verifies arithmetic purity.
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Theorem
Let G be a connected linear group and H ⊂ G be a connected
closed subgroup. Let X be a G -variety containing G/H as a Zariski
open dense G -orbit. Assume that k̄[X ]× = k̄×. If G sc verifies
arithmetic purity (in particular when it is quasi-split), then X
satisfies arithmetic purity for str. approx. with BM obs. off S 6= ∅.

Example: X ⊂ A4 defined by x1x2 + x3x4 = c where c ∈ k×,
then X verifies arithmetic purity.
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An open question

The following question is still open.

Question
What about arithmetic purity for semi-simple simply connected
groups (not necessarily quasi-split)?
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The following question is still open.

Question
What about arithmetic purity for semi-simple simply connected
groups (not necessarily quasi-split)?

Merci de votre attention!
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