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k : number field

Q= QZ L ook set of places
k, for v € Q4
(’)VCkvforveQZ

A ring of adéles

S C Q finite subset
A3 adéles without S-components
pro : A, — A} natural projection

@ X : smooth variety over k (variety = separated scheme of
finite type, geometrically integral)

e Br(X) = HZ%(X,G,) the cohomological Brauer group
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Weak approximation

o X(k) = [I,cqX(k,) diagonally
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o X(k) = [I,cqX(k,) diagonally
e Weak approximation holds if X (k) is dense w.r.t. product
topology
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Weak approximation

o X(k) = [I,cqX(k,) diagonally

e Weak approximation holds if X (k) is dense w.r.t. product
topology

e ) # U C X Zariski open

@ weak approximation on X — weak approximation on U
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Weak approximation

o X(k) = [I,cqX(kv) diagonally

e Weak approximation holds if X(k) is dense w.r.t. product
topology

e () # U C X Zariski open

@ weak approximation on X = weak approximation on U
(uv)yv € [Is, My x [1,gs, U(ky) with My, C U(ky) open,
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Weak approximation

o X(k) = [I,cqX(k,) diagonally

e Weak approximation holds if X(k) is dense w.r.t. product
topology

@ () #£ U C X Zariski open

@ weak approximation on X — weak approximation on U
(uv)yv € [Is, My x I1,¢s, U(ky) with My, C U(ky) open,
(u)v € [1sy My x [1,¢s, X(kv), My C X(kv) open
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Weak approximation

o X(k) = [I,cq X(ky,) diagonally

e Weak approximation holds if X(k) is dense w.r.t. product
topology

e () #£ U C X Zariski open

@ weak approximation on X = weak approximation on U
(uy)y € HSO M, x HV¢SO U(k,) with M, C U(k,) open,
(uv)v € Ils, My % vaéso X(kv), My C X(ky) open
Ix € X(k) N [11s, My x TT,¢s, X (k)]
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Weak approximation

o X(k) = [I,cqX(k,) diagonally

e Weak approximation holds if X(k) is dense w.r.t. product
topology

e () # U C X Zariski open

@ weak approximation on X = weak approximation on U
(uv)v € I1sy My x [1,¢s, U(ky) with M, C U(ky) open,
(w)v € [Isy My x [1,gs, X(kv), My C X(kv) open
Sx € X(k) 1 [TTs, My % [T, 5, X (k)]

— x € U(k) N [[Is, Mv x [1,gs, U(kv)], don’t need to care
about v ¢ 5o
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Strong approximation

o X(k) — X(A?) diagonally
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Strong approximation

o X(k) — X(A?) diagonally
e Strong approximation off S holds if X(k) is dense w.r.t. adélic
topology
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Strong approximation

o X(k) — X(A?) diagonally

e Strong approximation off S holds if X(k) is dense w.r.t. adélic
topology

@ subtle difference between product topology and adélic

topology:
- strong approximation on X = strong approximation on U
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Strong approximation

o X(k) < X(A?) diagonally

e Strong approximation off S holds if X(k) is dense w.r.t. adélic
topology

@ subtle difference between product topology and adélic
topology:
- strong approximation on X =#- strong approximation on U
(uv)v € [Is, My % [],¢s, U(Ov) with M, C U(k,) open
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Strong approximation

o X(k) < X(A3) diagonally

e Strong approximation off S holds if X(k) is dense w.r.t. adélic
topology

@ subtle difference between product topology and adélic
topology:
- strong approximation on X = strong approximation on U
(uv)yv € [Is, My x [T, g5, U(Ov) with M, C U(k,) open
(uv)v € ITsy My x [],¢s, X(Ov) with M, C X(ky) open
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Strong approximation

o X(k) — X(A3) diagonally

e Strong approximation off S holds if X(k) is dense w.r.t. adélic
topology

@ subtle difference between product topology and adélic
topology:
- strong approximation on X =#- strong approximation on U
(uv)v € [1sy My x [],¢5,U(Oy) with M, C U(ky) open
(u)v € [Isy My x [T g5, X(Ov) with M, C X(ky) open
3x € X(k) N[ Tsy Me * [l,gs, X(OL)]
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Strong approximation

o X(k) < X(A?) diagonally

e Strong approximation off S holds if X (k) is dense w.r.t. adélic
topology

@ subtle difference between product topology and adélic
topology:
- strong approximation on X = strong approximation on U
(uv)yv € [Is, My x [, g5, U(Ov) with M, C U(k,) open
(uv)v € IIsy My x [],¢s, X(Ov) with M, C X(ky) open

Ix € X(k) N l1s, My x I1,¢s, X(OV)]
= x € U(k), but & x e U(O,) for v ¢ Sy
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Strong approximation

o X(k) < X(A?) diagonally

e Strong approximation off S holds if X (k) is dense w.r.t. adélic
topology

@ subtle difference between product topology and adélic
topology:
- strong approximation on X = strong approximation on U
(uv)yv € [Is, My x [, g5, U(Ov) with M, C U(k,) open
(uv)v € IIsy My x [],¢s, X(Ov) with M, C X(ky) open
Ix € X(k) N l1s, My x I1,¢s, X(OV)]
= x € U(k), but # x e U(O,) for v ¢ So

e Example: k=Q, S#0, X =Al, U=A'\ {0} =G,
X satisfies strong approximation off S
U does not satisfy strong approximation off S
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Strong approximation

o Why? (X = Al, U =G,)
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Strong approximation

o Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups

2. Brauer groups
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Strong approximation

o Why? (X = Al, U= Gp)

Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups A

m$H(Xz) = 0 while 7§t (Uz) = Z
2. Brauer groups
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Strong approximation

o Why? (X = Al, U =G,)
Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups
7¥(Xz) = 0 while 7$*(Uz) = Z

Theorem (Minchev)

Let V' be a variety defined over a number field k. If V¢ is not
simply connected w§t(V;) # 0, then V' can never satisfy strong
approximation.

2. Brauer groups
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Strong approximation

o Why? (X = Al, U =G,)
Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups
7¥(Xz) = 0 while 7$*(Uz) = Z

Theorem (Minchev)

Let V' be a variety defined over a number field k. If V¢ is not
simply connected w§t(V;) # 0, then V' can never satisfy strong
approximation.

2. Brauer groups
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Strong approximation

o Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups
7 Xz) = 0 while n$t(Ug) = Z
2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H'(k,Q/Z) is
infinite
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Strong approximation

o Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups
7¥H(Xz) = 0 while 7§t (Uz) = Z
2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H!(k,Q/Z) is infinite
- Brauer-Manin pairing: V(Ayx) x Br(V) — Q/Z
- V(k) C V(k) C V(AR C V(Ax)
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Strong approximation

o Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups
7$H(Xz) = 0 while 7$t(Uz) = Z
2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H!(k,Q/Z) is infinite
- Brauer-Manin pairing: V(Ax) x Br(V) - Q/Z
- V(k) c V(k) C V(AR c V(Ax)
X(Ak)B = X(Ay) while U(AK)B" C U(A)
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Strong approximation

o Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups
7$H(Xz) = 0 while 7$t(Uz) = Z
2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H!(k,Q/Z) is infinite
- Brauer-Manin pairing: V(Ax) x Br(V) - Q/Z
- V(k) c V(k) C V(AR c V(Ax)
X(Ak)B = X(Ay) while U(AK)B" C U(A)
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Strong approximation

o Why? (X =Al U= Gm)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups
7$8(Xz) = 0 while 7n$t(Uz) = Z
2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H'(k,Q/Z) is
infinite

Question (Wittenberg 2014)

What happens if Z = X\ U is of codimension > 2 7
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Strong approximation

o Why? (X = Al, U =G,)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups
7 (Xz) = 0 while 7$%(Uz) = Z
2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H*(k,Q/Z) is
infinite

Question (Wittenberg 2014)

What happens if Z = X\ U is of codimension > 2 7

@ in such a case , ,
- Zariski-Nagata: 7{"(Xz) = 75" (Ug)
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Strong approximation

o Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:
1. étale fundamental groups
7¥(Xz) = 0 while 7$%(Uz) = Z
2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H*(k,Q/Z) is
infinite

Question (Wittenberg 2014)

What happens if Z = X\ U is of codimension > 2 7

@ in such a case ) )
- Zariski-Nagata: 75"(Xz) = 75" (Uy)
- purity for étale cohomology: Br(X) = Br(U)
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First example: the affine space

@ X = A" satisfies strong approximation off S # ()
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First example: the affine space

@ X = A" satisfies strong approximation off S # ()

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of A" such that codim(Z, X) > 2.
Then A"\ Z satisfies strong approximation off S # ().
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First example: the affine space

@ X = A" satisfies strong approximation off S # ()

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of A" such that codim(Z, X) > 2.
Then A"\ Z satisfies strong approximation off S # ().

@ What about the case when X is a semi-simple simply
connected group?
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First example: the affine space

@ X = A" satisfies strong approximation off S # ()

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of A" such that codim(Z, X) > 2.
Then A"\ Z satisfies strong approximation off S # ().

@ What about the case when X is a semi-simple simply
connected group?
Br(X) Br(X\Z)

@ in these cases Br(K) = Br(k) =0
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First example: the affine space

@ X = A" satisfies strong approximation off S # ()
Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of A" such that codim(Z, X) > 2.
Then A"\ Z satisfies strong approximation off S # ().

@ What about the case when X is a semi-simple simply
connected group?

Br(X) Br(X\ 2)
= = 0
Br(k) Br(k)
@ in general, should take into account the Brauer-Manin
obstruction

@ in these cases
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Brauer-Manin obstruction to strong approximation

@ S C Q finite subset
A3 adéles without S-components
pro: A — A7 & pr : X(Ax) — X(A?) natural projections
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Brauer-Manin obstruction to strong approximation

@ S C Q finite subset

A3 adéles without S-components

pro: A — A7 & pr : X(Ax) — X(A?) natural projections
o Consider X (k)  X(k) C pr°(X(Ax)B") c X(A?)
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Brauer-Manin obstruction to strong approximation

@ S C Q finite subset

A3 adéles without S-components

pro: A — A7 & pr : X(Ax) — X (A7) natural projections
o Consider X (k)  X(k) C pr°(X(Ax)B") c X(A?)

Definition

(1)We say that X satisfies strong approximation with Brauer-Manin
obstruction off S if X(k) = pr>(X(Ax)B") c X(A?).
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Brauer-Manin obstruction to strong approximation

@ S C Q finite subset
A3 adéles without S-components
pro: Ak — A7 & pr : X(Ax) — X(A?) natural projections

o Consider X(k) C X(k) C prS(X(Ax)®") C X(A$)

Definition

(1)We say that X satisfies strong approximation with Brauer-Manin
obstruction off S if X(k) = pr3(X(A.)B") c X(A?).

(2) Furthermore, we say that X verifies arithmetic purity (for strong
approximation with Brauer-Manin obstruction off S) if for all
Zariski closed subset Z C X such that codim(Z, X) >2, the
complement U = X \ Z still satisfies strong approximation with
Brauer-Manin obstruction off S.
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Brauer-Manin obstruction to strong approximation

@ S C Q finite subset
A3 adéles without S-components
pro: Ak — A7 & pr : X(Ax) — X(A?) natural projections

o Consider X(k) C X(k) C prS(X(Ax)®") C X(A$)

Definition

(1)We say that X satisfies strong approximation with Brauer-Manin
obstruction off S if X(k) = pr3(X(A.)B") c X(A?).

(2) Furthermore, we say that X verifies arithmetic purity (for strong
approximation with Brauer-Manin obstruction off S) if for all
Zariski closed subset Z C X such that codim(Z, X) >2, the
complement U = X \ Z still satisfies strong approximation with
Brauer-Manin obstruction off S.

@ one may also consider larger codimension instead of 2, we will
specify later.
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Arithmetic purity

@ Analog: Arithmetic purity for weak approximation holds once
X satisfies weak approximation with BM obstruction.
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Arithmetic purity

@ Analog: Arithmetic purity for weak approximation holds once
X satisfies weak approximation with BM obstruction.

Does arithmetic purity for strong approximation with BM
obstruction holds in general?
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Arithmetic purity

@ Analog: Arithmetic purity for weak approximation holds once
X satisfies weak approximation with BM obstruction.

Does arithmetic purity for strong approximation with BM
obstruction holds in general?

o No! even for rational varieties.
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Arithmetic purity

@ Analog: Arithmetic purity for weak approximation holds once
X satisfies weak approximation with BM obstruction.

Does arithmetic purity for strong approximation with BM
obstruction holds in general?

@ No! even for rational varieties.

e Example (Y. Cao & F. Xu 2013):
k = Q or an imaginary quadratic field
- X = G, x A! satisfies str. approx. with BM obs. off ooy
(Harari 2008, arithmetic duality theorems)
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Arithmetic purity

@ Analog: Arithmetic purity for weak approximation holds once
X satisfies weak approximation with BM obstruction.

Does arithmetic purity for strong approximation with BM
obstruction holds in general?

@ No! even for rational varieties.

e Example (Y. Cao & F. Xu 2013):
k = Q or an imaginary quadratic field
- X = G, x A! satisfies str. approx. with BM obs. off ooy
(Harari 2008, arithmetic duality theorems)
- U = X\ {one rational point} does not satisfy str. approx.
with BM obs. off oo
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Arithmetic purity

@ Analog: Arithmetic purity for weak approximation holds once
X satisfies weak approximation with BM obstruction.

Does arithmetic purity for strong approximation with BM
obstruction holds in general?

@ No! even for rational varieties.

e Example (Y. Cao & F. Xu 2013):
k = Q or an imaginary quadratic field
- X = G, x A! satisfies str. approx. with BM obs. off ooy
(Harari 2008, arithmetic duality theorems)
- U = X\ {one rational point} does not satisfy str. approx.
with BM obs. off oo

o X fails arithmetic purity
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GL,

@ One more example:
X = GL,(n > 2) satisfies str. approx. with BM obs.
(Demarche 2011)
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GL,

@ One more example:
X = GL,(n > 2) satisfies str. approx. with BM obs.
(Demarche 2011)

@ As a corollary of our main result (you will see it soon... be
patient!):
X fails arithmetic purity if k = Q or an imaginary quadratic
field

Yongqi LIANG Arithmetic Purity for Strong Approximation



GL,

@ One more example:
X = GL,(n > 2) satisfies str. approx. with BM obs.
(Demarche 2011)

@ As a corollary of our main result (you will see it soon... be
patient!):
X fails arithmetic purity if kK = Q or an imaginary quadratic
field
(idea: remove a divisor of a certain fiber of det : GL, — Gy,)
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GL,

@ One more example:
X = GL,(n > 2) satisfies str. approx. with BM obs.
(Demarche 2011)

@ As a corollary of our main result (you will see it soon... be
patient!):
X fails arithmetic purity if kK = Q or an imaginary quadratic
field
(idea: remove a divisor of a certain fiber of det : GL, — Gy,)

@ We should modify the question

Suppose that k[X]* = k*, does X verify arithmetic purity for str.
approx. with BM obs.?
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GL,

@ One more example:
X = GL,(n > 2) satisfies str. approx. with BM obs.
(Demarche 2011)

@ As a corollary of our main result (you will see it soon... be
patient!):
X fails arithmetic purity if kK = Q or an imaginary quadratic
field
(idea: remove a divisor of a certain fiber of det : GL, — Gy,)

@ We should modify the question

Suppose that k[X]* = k*, does X verify arithmetic purity for str.
approx. with BM obs.?
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Nol

| am sorry...
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Punctured elliptic curves

Harari-Voloch 2010: elliptic curve E/q : y? = x> 43, E(Q) = Z
U= E\ {O} a hyperbolic curve
U does not satisfy str. approx. with BM obs. off cog
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Punctured elliptic curves

Harari-Voloch 2010: elliptic curve E/q : y? = x>+ 3, E(Q) = Z
U= E\ {O} a hyperbolic curve
U does not satisfy str. approx. with BM obs. off cog

o We generalise this to

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\{O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.

@ idea of proof:
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\{O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.

@ idea of proof: choose U a good Oy-model of U
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < co.

@ idea of proof: choose U a good Ok-model of U
- take Q € E(k) a point of infinite order
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.

@ idea of proof: choose U a good Ok-model of U
- take Q € E(k) a point of infinite order
- @ is a S-integral point of U for a certain finite set S
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.

@ idea of proof: choose U a good Ok-model of U
- take Q € E(k) a point of infinite order
- @ is a S-integral point of U for a certain finite set S

- Siegel: U(Oys) is finite
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off ocoy.

The converse is also true if III(E, k) < oo.

@ idea of proof: choose U a good Oy-model of U
- take Q € E(k) a point of infinite order
- Q is a S-integral point of U for a certain finite set S
- Siegel: U(Oks) is finite
- consider a sequence pQ € E(k) C E(Ax)e where prime
number p runs in a carefully chosen arithmetic progression
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < co.

@ idea of proof: choose U a good O,-model of U
- take Q € E(k) a point of infinite order
- @ is a S-integral point of U for a certain finite set S
- Siegel: U(Oys) is finite
- consider a sequence pQ € E(k) C E(Ak)s where prime
number p runs in a carefully chosen arithmetic progression
- a subsequence converges to (x,)veq in E(Ag)e
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.

@ idea of proof: choose U a good Oy-model of U
- take Q € E(k) a point of infinite order
- @ is a S-integral point of U for a certain finite set S
- Siegel: U(Oks) is finite
- consider a sequence pQ € E(k) C E(Ax)e where prime
number p runs in a carefully chosen arithmetic progression
- a subsequence converges to (xy)veq in E(Ak)e
- (xv)vLBr(E) and Br(E) = Br(U)
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Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.

@ idea of proof: choose U a good Ok-model of U
- take Q € E(k) a point of infinite order
- Q is a S-integral point of U for a certain finite set S
- Siegel: U(Oys) is finite
- consider a sequence pQ € E(k) C E(Ax)e where prime
number p runs in a carefully chosen arithmetic progression
- a subsequence converges to (x,)yecq in E(Ak)e
- (xv)vLBr(E) and Br(E) = Br(U)
- check that x, e U(O,) for v ¢ S and (x,), € U(Ak)e

Yongqi LIANG Arithmetic Purity for Strong Approximation



Punctured elliptic curves

Let E be an elliptic curve defined over a number field k.
U= E\ {O}. If E(k) has positive rank, then U does not satisfy
str. approx. with BM obs. off coy.

The converse is also true if III(E, k) < oo.

@ idea of proof: choose U a good Ok-model of U
- take Q € E(k) a point of infinite order
- @ is a S-integral point of U for a certain finite set S
- Siegel: U(Oks) is finite
- consider a sequence pQ € E(k) C E(Ak)e where prime
number p runs in a carefully chosen arithmetic progression
- a subsequence converges to (x,)yeq in E(Ak)e
- (xv)v-LBr(E) and Br(E) = Br(U)
- check that x, € U(O,) for v ¢ S and (x,), € U(Ax)e
- by p-adic logarithm, check that (x,), can not be
approximated by global (S-integral) points of U
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Punctured Abelian varieties

the above 1-dimensional result + fibration argument —
arithmetic purity results
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Punctured Abelian varieties

the above 1-dimensional result + fibration argument —
arithmetic purity results

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.
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Punctured Abelian varieties

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.

e A x E fails arithmetic purity (even for arbitrarily large
codimension).
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Punctured Abelian varieties

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.

e A x E fails arithmetic purity (even for arbitrarily large
codimension).

@ Remark. Similar statement holds for tori and semi-abelian
varieties.
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Punctured Abelian varieties

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.

e A x E fails arithmetic purity (even for arbitrarily large
codimension).

@ Remark. Similar statement holds for tori and semi-abelian
varieties.

@ proof by contradiction:
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Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.

e A x E fails arithmetic purity (even for arbitrarily large
codimension).

@ Remark. Similar statement holds for tori and semi-abelian
varieties.
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(E x A)\ {O} str. approx. BM
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Punctured Abelian varieties

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.

e A x E fails arithmetic purity (even for arbitrarily large
codimension).

@ Remark. Similar statement holds for tori and semi-abelian
varieties.

@ proof by contradiction:
(E x A)\ {O} str. approx. BM + A(k) discrete in A(Ax)
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Punctured Abelian varieties

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A)\ {O} does not
satisfy str. approx. with BM obs. off coy.

e A x E fails arithmetic purity (even for arbitrarily large
codimension).

@ Remark. Similar statement holds for tori and semi-abelian
varieties.

@ proof by contradiction:
(E x A)\ {O} str. approx. BM + A(k) discrete in A(Ax)
= the punctured fiber E \ {O} str. approx. BM
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Punctured Abelian varieties

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.

e A X E fails arithmetic purity (even for arbitrarily large
codimension).

@ Remark. Similar statement holds for tori and semi-abelian
varieties.
@ proof by contradiction:

(E x A)\ {O} str. approx. BM + A(k) discrete in A(Ax)
= the punctured fiber E \ {O} str. approx. BM
contradicting the previous theorem
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Punctured Abelian varieties

Let E be an elliptic curve of rank > 1 over a number field k. Let A
be an Abelian variety of rank 0. Than (E x A) \ {O} does not
satisfy str. approx. with BM obs. off coy.

e A X E fails arithmetic purity (even for arbitrarily large
codimension).

@ Remark. Similar statement holds for tori and semi-abelian
varieties.

@ proof by contradiction:
(E x A)\ {O} str. approx. BM + A(k) discrete in A(Ax)
= the punctured fiber E \ {O} str. approx. BM
contradicting the previous theorem

@ We should modify our question to avoid Abelian varieties.
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Suppose that k[X]* = k* and Pic(Xz) is finitely generated, does
X verify arithmetic purity for str. approx. with BM obs. (off S)7
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Suppose that k[X]* = k* and Pic(Xz) is finitely generated, does
X verify arithmetic purity for str. approx. with BM obs. (off S)7

A known result:

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that k[X]* = k*. Then X
verifies arithmetic purity for str. approx. with BM obs. off S # ().
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Suppose that k[X]* = k* and Pic(Xz) is finitely generated, does
X verify arithmetic purity for str. approx. with BM obs. (off S)?

A known result;

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that k[X]* = k*. Then X
verifies arithmetic purity for str. approx. with BM obs. off S # ().

Examples: A", P"
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Our results

In our paper, we study arithmetic purity for strong approximation
for
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Our results

In our paper, we study arithmetic purity for strong approximation
for
@ Algebraic groups
- mentioned above:
Abelian varieties, tori, semi-abelian varieties
- quasi-split semi-simple simply connected groups
- connected linear algebraic groups with G*¢ quasi-split

@ certain homogeneous spaces

Let G be a semi-simple simply connected linear algebraic group
defined over a number field. Suppose that G is quasi-split. Then G
verifies arithmetic purity for strong approximation off S # ).
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Our results

In our paper, we study arithmetic purity for strong approximation
for
@ Algebraic groups
- mentioned above:
Abelian varieties, tori, semi-abelian varieties
- quasi-split semi-simple simply connected groups
- connected linear algebraic groups with G*¢ quasi-split

@ certain homogeneous spaces

Let G be a semi-simple simply connected linear algebraic group
defined over a number field. Suppose that G is quasi-split. Then G
verifies arithmetic purity for strong approximation off S # (). (In
this case Br(G)/Br(k) =0.)
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Sketch of proof

e G quasi-split:
B C G bea k-Borel, T B=T x B" a maximal torus.

Yongqi LIANG Arithmetic Purity for Strong Approximation



Sketch of proof

o G quasi-split:
B C G bea k-Borel, T C B= T x B“ a maximal torus.

@ Bruhat decomposition: the big cell V = BwB C G is an open
dense, where w € G(k) is the longest root
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Sketch of proof

o G quasi-split:
B C G bea k-Borel, T C B= T x B“ a maximal torus.

@ Bruhat decomposition: the big cell V = BwB C G is an open
dense, where w € G(k) is the longest root

® ¢:V ~B"xB— T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
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Sketch of proof

o G quasi-split:
B C G bea k-Borel, T C B= T x B“ a maximal torus.

@ Bruhat decomposition: the big cell V = BwB C G is an open
dense, where w € G(k) is the longest root

® ¢:V ~B"xB— T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*

o G: sssc => k[V]*/k* is a permutation Galois module.
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Sketch of proof

e G quasi-split:
B C G bea k-Borel, T B= T x B" a maximal torus.

@ Bruhat decomposition: the big cell V = BwB C G is an open
dense, where w € G(k) is the longest root

® ¢:V ~B"x B — T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
o G: sssc => k[V]*/k* is a permutation Galois module.

o T is quasi-trivial: T = ResgGm k for a certain finite étale
k-algebra K.
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Sketch of proof

® ¢:V ~B"xB— T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
o G: sssc = k[V]*/k* is a permutation Galois module.

o T is quasi-trivial: T = Resy G,k for a certain finite étale
k-algebra K.
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Sketch of proof

® ¢:V ~B"xB— T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*

o G: sssc = k[V]*/k* is a permutation Galois module.

o T is quasi-trivial: T = Resy G,k for a certain finite étale
k-algebra K.

@ In such a case ¢ extends to a smooth morphism ¢: Y — R
with non-empty geometrically integral fibres, where
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Sketch of proof

¢:V = B"x B — T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
G: sssc = k[V]*/k* is a permutation Galois module.

T is quasi-trivial: T = ReskxGm x for a certain finite étale
k-algebra K.
In such a case ¢ extends to a smooth morphism ¢ : Y — R

with non-empty geometrically integral fibres, where
-VCcYCG&codim(G\VY,G)>2
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Sketch of proof

¢:V = B"x B — T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
G: sssc = k[V]*/k* is a permutation Galois module.

T is quasi-trivial: T = ResgxG, k for a certain finite étale
k-algebra K.

In such a case ¢ extends to a smooth morphism ¢ : Y — R
with non-empty geometrically integral fibres, where
-VCYCG&codim(G\Y,G)>2

-T= ResK|ka CRC RGSK‘kAl =AY &

codim(A?\ R, A9) > 2
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Sketch of proof

¢:V ~B"x B — T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
o G: sssc = k[V]*/k* is a permutation Galois module.

o T is quasi-trivial: T = Resy G,k for a certain finite étale
k-algebra K.

@ In such a case ¢ extends to a smooth morphism ¢: Y — R
with non-empty geometrically integral fibres, where
-VCYCG&codim(G\Y,G)>2
- T =ResgGm CR C RGSK‘kAl =Ad &
codim(A9\ R, A9) > 2
- more or less ¢ : G — A9 up to some 2-codimensional things
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Sketch of proof

¢:V ~B"x B — T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
o G: sssc = k[V]*/k* is a permutation Galois module.

o T is quasi-trivial: T = Resy G,k for a certain finite étale
k-algebra K.

@ In such a case ¢ extends to a smooth morphism ¢ : Y — R
with non-empty geometrically integral fibres, where
-VCcYCG&codim(G\Y,G)>2
-T= ResK|ka CRC RGSK‘kAl =AY &
codim(A9\ R, A9) > 2
- more or less ¢ : G — A9 up to some 2-codimensional things
- most fibres look like B" x B"
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Sketch of proof

¢:V ~B"x B — T induces an isomorphism of Galois
module k[T]*/k* — k[V]*/k*
o G: sssc = k[V]*/k* is a permutation Galois module.

o T is quasi-trivial: T = Resy G,k for a certain finite étale
k-algebra K.

@ In such a case ¢ extends to a smooth morphism ¢ : Y — R
with non-empty geometrically integral fibres, where
-VCcYCG&codim(G\Y,G)>2
-T= ResK|ka CRC RGSK‘kAl =AY &
codim(A9\ R, A9) > 2
- more or less ¢ : G — A9 up to some 2-codimensional things
- most fibres look like B" x B"

@ some kind of fibration argument completes the proof.
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SL, and GL,

SL,, verifies arithmetic purity for strong approximation off S # ():
For any Zariski closed subset Z such that codim(Z, SL,) > 2,
SL, \ Z satisfies strong approximation off S # .
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SL, and GL,

Corollary

SL, verifies arithmetic purity for strong approximation off S = ():
For any Zariski closed subset Z such that codim(Z, SL,,) > 2,
SL, \ Z satisfies strong approximation off S # (.

| \

Corollary

Over any number field k, GL, verifies 3-codimensional arithmetic
purity for str. approx. with BM obs. off coy.
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SL, and GL,

Corollary

SL,, verifies arithmetic purity for strong approximation off S # ():
For any Zariski closed subset Z such that codim(Z, SL,) > 2,
SL, \ Z satisfies strong approximation off S # (.

Corollary

| \

Over any number field k, GL,, verifies 3-codimensional arithmetic
purity for str. approx. with BM obs. off coy.

Remark. k[GL,]* # k*
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SL, and GL,

Corollary

SL,, verifies arithmetic purity for strong approximation off S # ():
For any Zariski closed subset Z such that codim(Z, SL,,) > 2,
SL, \ Z satisfies strong approximation off S # ().

| A

Corollary

Over any number field k, GL,, verifies 3-codimensional arithmetic
purity for str. approx. with BM obs. off coy.

Remark. k[GL,]* # k*

In our previous definition, we discuss codimension 2 arithmetic
purity. The additional 1(= 3 — 2) dimension comes from G,,. To
be more precise...
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SL, and GL,

Definition

We say that X satisfies Zariski open strong approximation with
Brauer-Manin obstruction off S, if for any non-empty Zariski open
U C X, U(k) is dense in pro(X(Ax)B") C X(AR).
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SL, and GL,

Definition

We say that X satisfies Zariski open strong approximation with
Brauer-Manin obstruction off S, if for any non-empty Zariski open
U C X, U(k) is dense in pr°(X(A)B") c X(A?).

Lemma (Dirichlet’s unit theorem)

The k-torus G, satisfies Zariski open str. approx. with BM obs. if
and only if the number field k is neither Q nor an imaginary
quadratic field.
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SL, and GL,

Definition

We say that X satisfies Zariski open strong approximation with
Brauer-Manin obstruction off S, if for any non-empty Zariski open
U C X, U(k) is dense in pro(X(A)B") c X(A?).

Lemma (Dirichlet's unit theorem)

The k-torus G, satisfies Zariski open str. approx. with BM obs. if
and only if the number field k is neither Q nor an imaginary
quadratic field.

Corollary

GL,, verifies arithmetic purity (codim 2) for str. approx. with BM
obs. off ooy if and only if the number field k is neither Q nor an
imaginary quadratic field.
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Linear algebraic groups

GL, ~ most general setting

@ G connected linear algebraic group
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Linear algebraic groups

GL, ~ most general setting
@ G connected linear algebraic group
° Gred — G/Gu, Gss = [Gred’ Gred],
Gtor — Gred/Gss Gs¢ 5 GSs
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Linear algebraic groups

GL, ~ most general setting
@ G connected linear algebraic group
° Gred — G/Gu, G = [Gred’ Gred],
Gtor — Gred/Gss Gs¢ 5 GSs

Suppose that G*¢ verifies arithmetic purity for str. approx. off ooy
(in particular when it is quasi-split).

(1) G verifies arithmetic purity of codimension (2 + dim G*°*) for
str. approx. with BM obs. off coy.
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Linear algebraic groups

GL, ~~ most general setting
@ G connected linear algebraic group
° Gred — G/Gu Gss = [Gred Gred]
Gtor — Gred/Gss GS¢ 5 GSs

Theorem

Suppose that G verifies arithmetic purity for str. approx. off ooy
(in particular when it is quasi-split).

(1) G verifies arithmetic purity of codimension (2 + dim G*°*) for
str. approx. with BM obs. off coy.

(2) if furthermore G =£ 1 satisfies Zariski open str. approx. with
BM obs., then G verifies arithmetic purity of codimension

(1 + dim G*%) for str. approx. with BM obs. off coy.
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Homogeneous Spaces

Let G be a connected linear group and H C G be a connected
closed subgroup. Let X be a G-variety containing G/H as a Zariski
open dense G-orbit. Assume that k[X]* = k*. If G* verifies
arithmetic purity (in particular when it is quasi-split), then X
satisfies arithmetic purity for str. approx. with BM obs. off S # ().
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Homogeneous Spaces

Let G be a connected linear group and H C G be a connected
closed subgroup. Let X be a G-variety containing G/H as a Zariski
open dense G-orbit. Assume that k[X]* = k*. If G* verifies
arithmetic purity (in particular when it is quasi-split), then X
satisfies arithmetic purity for str. approx. with BM obs. off S # ().

e Example: X C A* defined by x1x» 4+ x3x4 = ¢ where ¢ € kX,
then X verifies arithmetic purity.

Yongqi LIANG Arithmetic Purity for Strong Approximation



An open question

The following question is still open.

What about arithmetic purity for semi-simple simply connected
groups (not necessarily quasi-split)?
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An open question

The following question is still open.

What about arithmetic purity for semi-simple simply connected
groups (not necessarily quasi-split)?

Merci de votre attention!
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