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Brauer-Manin obstruction Rational points vs. Zero-cycles

Notations

k : number field
kv , for v ∈ Ωk . Ωf

k , Ω∞k , ΩR
k , ΩC

k

X : projective variety (separated scheme of finite type,
geometrically integral) over k
Br(X ) := H2

ét(X , Gm) the cohomological Brauer group
Xv = X ⊗k kv
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Rational points

X (k) ⊂
∏

v∈Ω X (kv )

Brauer-Manin pairing[∏
v∈Ω X (kv )

]
× Br(X )→ Q/Z

({xv}v∈Ω, β) 7→ 〈{xv}v , β〉 :=
∑
v∈Ω

invv (β(xv ))

[∏
v∈Ω X (kv )

]Br
= left kernel of the pairing

Fact. X (k) ⊆
[∏

v∈Ω X (kv )
]Br (by class field theory)

X (k) : closure of X (k) in
∏

v X (kv ) (product topology)
If =, Brauer-Manin obstruction is the only obstruction to weak
approximation
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Zero-cycles

(Colliot-Thélène) Similarly, Brauer-Manin pairing[∏
v∈Ω Z0(Xv )

]
× Br(X )→ Q/Z[∏

v∈Ω CH0(Xv )
]
× Br(X )→ Q/Z[∏

v∈Ω CH ′
0(Xv )

]
× Br(X )→ Q/Z

The modified Chow group:

CH ′
0(Xv ) =


CH0(Xv ), v ∈ Ωf

CH0(Xv )/NC|RCH0(X v ), v ∈ ΩR

0, v ∈ ΩC

complex CH0(X )→
∏

v∈Ω CH ′
0(Xv )→ Hom(Br(X ), Q/Z)
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Zero-cycles

M ̂:= lim←−n
M/nM = M ⊗ Ẑ for any abelian group M

A0(X ) := ker(CH0(X )
deg−→ Z)

complex (E )

[CH0(X )] →̂
[∏

v∈Ω CH ′
0(Xv )

]
−̂→ Hom(Br(X ), Q/Z)

similarly, complex (E0)

[A0(X )] →̂
[∏

v∈Ω A0(Xv )
]
−̂→ Hom(Br(X ), Q/Z)

Question: Are they exact?

Remark (Wittenberg)

Exactness of (E ) =⇒
- Exactness of (E0)
- (E1) : Existence of z ∈ CH0(X ) of degree 1 supposing the

existence of a family of degree 1 zero-cycles {zv}⊥Br(X ).
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Examples and a conjecture

(Cassels-Tate) (E0) is exact if X = A is an abelian variety
(with finiteness of X(A) supposed).
(Colliot-Thélène) (E ) is exact if X = C is a smooth curve
(with finiteness of X(Jac(C )) supposed).

Conjecture (Colliot-Thélène/Sansuc, Kato/Saito, Colliot-Thélène)

The complex (E0) is exact for all smooth projective varieties.
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Rationally connectedness

Definition
X/k is called rationally connected,
if for any P, Q ∈ X (C), there exists a C-morphism f : P1

C → XC
such that f (0) = P and f (∞) = Q.

Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus > 0 is never rationally connected.
Example:
- A homogeneous space of a connected linear algebraic group
is rationally connected.
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Main result

Theorem (Liang 2011)

Let X be a smooth (projective) rationally connected variety defined
over a number field k.

Assume that the Brauer-Manin obstruction is the only obstruction
to weak approximation for rational points on X ⊗k K , for any finite
extension K/k .

Then, the complex (E ), hence (E0), is exact for X .
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(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational
points on XK , ∀K/k finite.
=⇒ (Liang 2010)

- BM obstruction is the only obs. to “weak approx.” for
zero-cycles of degree 1 on XK , ∀K/k finite.
=⇒ (key: fibration method applied to X × P1 → P1, generalized Hilbertian

subset)

- ∀d ∈ Z, BM obstruction is the only obs. to “weak approx.”
for zero-cycles of degree d on (X × P1)K , ∀K/k finite.
=⇒ (key: Theorem of Kollár-Szabó (X is RC), an argument of Wittenberg)

- Exactness of (E ) for X × P1.

=⇒
- Exactness of (E ) for X .
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An application

Recall : a result of Borovoi (1996).
G/k : connected linear algebraic group.
Y : homogeneous space of G with connected stabilizer (or
with abelian stabilizer if G is simply connected).
X : smooth compactification of Y .
Then the Brauer-Manin obstruction is the only obstruction to
weak approximation for rational points on X .

Corollary

The complex (E ), (E0) are exact for smooth compactifications of
any homogeneous space of any connected linear algebraic group
with connected stabilizer (or with abelian stabilizer if the group is
simply connected).
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Thank you for your attention !

Yongqi LIANG
yongqi.liang@math.u-psud.fr

http://www.math.u-psud.fr/˜yliang/
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