Some Arithmetic Duality Theorems

LIANG, Yong Qi

Université de Paris-Sud XI, Orsay France

ALGANT thesis defence
2008-07-08
Brussels, Belgium
Outline of Part I

Galois cohomology

1. Local duality
 - Duality with respect to a class formation
 - Local duality
 - Euler-Poincaré characteristic

2. An application to Abelian varieties

3. Global duality
 - A duality theorem
 - Poitou-Tate exact sequence
 - Euler-Poincaré characteristic
Outline of Part I

Galois cohomology

1 Local duality
 - Duality with respect to a class formation
 - Local duality
 - Euler-Poincaré characteristic

2 An application to Abelian varieties

3 Global duality
 - A duality theorem
 - Poitou-Tate exact sequence
 - Euler-Poincaré characteristic
Outline of Part I

Galois cohomology

1. Local duality
 - Duality with respect to a class formation
 - Local duality
 - Euler-Poincaré characteristic

2. An application to Abelian varieties

3. Global duality
 - A duality theorem
 - Poitou-Tate exact sequence
 - Euler-Poincaré characteristic
Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology
 - Some notations and calculations
 - Euler-Poincaré characteristic

6 Artin-Verdier’s theorem
Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology
 - Some notations and calculations
 - Euler-Poincaré characteristic

6 Artin-Verdier’s theorem
Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology
 • Some notations and calculations
 • Euler-Poincaré characteristic

6 Artin-Verdier’s theorem
A very brief introduction

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example : $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !
Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example: $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion: the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y!
A very brief introduction

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = Cl(K)/mCl(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example: $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion: the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !
A very brief introduction

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.
 - A famous example : $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !
Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
- A famous example: $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion: the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y!
Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example : $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !
A very brief introduction

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example: $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion: the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y!
A very brief introduction

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example: $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion: the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y!
A very brief introduction

Why arithmetic duality??

○ In mathematics, solving equations is always interesting.
○ e.g. rational points on a variety $V(\mathbb{Q}) = ?$
○ Why Galois / étale cohomology?
 ○ e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = Cl(K)/mCl(K)$ for K a number field
 ○ e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
○ They give some certain obstructions of the local-global principal for the problem of rational points.
 ○ A famous example : $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
○ Tentative conclusion : the cohomology groups contain important arithmetic information.
○ Arithmetic duality theorems may help to understand the question of rational points.
○ Allons-y !
Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = \text{Cl}(K)/m\text{Cl}(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example: $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion: the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.

Allons-y!
A very brief introduction

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. $H^1_{\text{ét}}(\text{spec}(\mathcal{O}_K), \mathbb{Z}/m\mathbb{Z})^* = Cl(K)/mCl(K)$ for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for E/\mathbb{Q}_p an elliptic curve
- They give some certain obstructions of the local-global principal for the problem of rational points.
 - A famous example: $\text{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion: the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y!
Part I

Galois cohomology
Definition

Let G be a profinite group, and C be a G-module (such that $C = \bigcup_{U \leq_o G} C^U$). We say that (G, C) is a class formation if there exists an isomorphism $\text{inv}_U : H^2(U, C) \xrightarrow{\sim} \mathbb{Q}/\mathbb{Z}$ for each open subgroup $U \leq_o G$ with the commutative diagram for $V \leq_o U \leq_o G$:

$$
\begin{array}{ccc}
H^2(U, C) & \xrightarrow{Res_{V,U}} & H^2(V, C) \\
\downarrow \text{inv}_U & & \downarrow \text{inv}_V \\
\mathbb{Q}/\mathbb{Z} & \xrightarrow{[U:V]} & \mathbb{Q}/\mathbb{Z}
\end{array}
$$

and $H^1(U, C) = 0$.
(G, C) = class formation, M = G-module \[\implies\] natural pairing:

\[\text{Ext}_G^r(M, C) \times H^{2-r}(G, M) \rightarrow H^2(G, C) \simeq \mathbb{Q}/\mathbb{Z},\]

\[\implies\]

\[\alpha^r(G, M) : \text{Ext}_G^r(M, C) \rightarrow H^{2-r}(G, M)^* = \text{Hom}(H^{2-r}(G, M), \mathbb{Q}/\mathbb{Z}),\]

On the other hand, (G, C) \[\implies\] the reciprocity map

\[\text{rec} : C^G \rightarrow G^{ab}.\]
(G, C) = class formation, M = G-module \[\sim \sim \sim \rightarrow\] natural pairing:

\[
\text{Ext}_G^r(M, C) \times H^{2-r}(G, M) \rightarrow H^2(G, C) \cong \mathbb{Q}/\mathbb{Z},
\]

\[\sim \sim \sim \rightarrow\]

\[\alpha^r(G, M) : \text{Ext}_G^r(M, C) \rightarrow H^{2-r}(G, M)^* = \text{Hom}(H^{2-r}(G, M), \mathbb{Q}/\mathbb{Z}),\]

On the other hand, (G, C) \[\sim \sim \sim \rightarrow\] the reciprocity map

\[\text{rec} : C^G \rightarrow G^{ab}.\]
Lemma

Let \((G, \mathcal{C})\) be a class formation and \(M\) be a finite \(G\)-module, then

(i) \(\alpha^r(G, M)\) is bijective for all \(r \geq 2\);

(ii) \(\alpha^1(G, M)\) is bijective if \(\alpha^1(U, \mathbb{Z}/m\mathbb{Z})\) is bijective for all \(m\) and all \(U \leq_o G\);

(iii) \(\alpha^0(G, M)\) is surjective (resp. bijective) if \(\alpha^0(U, \mathbb{Z}/m\mathbb{Z})\) is surjective (resp. bijective) for all \(m\) and all \(U \leq_o G\).
Let (G, C) be a class formation and M be a finite G-module, then

- (i) $\alpha^r(G, M)$ is bijective for all $r \geq 2$;
- (ii) $\alpha^1(G, M)$ is bijective if $\alpha^1(U, \mathbb{Z}/m\mathbb{Z})$ is bijective for all m and all $U \leq_o G$;
- (iii) $\alpha^0(G, M)$ is surjective (resp. bijective) if $\alpha^0(U, \mathbb{Z}/m\mathbb{Z})$ is surjective (resp. bijective) for all m and all $U \leq_o G$.

LIAO, Yong Qi

Some Arithmetic Duality Theorems
Lemma

Let \((G, C)\) be a class formation and \(M\) be a finite \(G\)-module, then

1. \((i)\alpha^r(G, M)\) is bijective for all \(r \geq 2\);
2. \((ii)\alpha^1(G, M)\) is bijective if \(\alpha^1(U, \mathbb{Z}/m\mathbb{Z})\) is bijective for all \(m\) and all \(U \trianglelefteq G\);
3. \((iii)\alpha^0(G, M)\) is surjective (resp. bijective) if \(\alpha^0(U, \mathbb{Z}/m\mathbb{Z})\) is surjective (resp. bijective) for all \(m\) and all \(U \trianglelefteq G\).
Duality with respect to a class formation

Remark

$P = \text{a set of prime numbers}$

Considering only the P-primary part, a P-class formation will give us a similar lemma.
Notations

- $K = \text{non-Archimedean local field}$
- $k = \text{residue field, } \text{char}(k) = p$
- $G = \text{Gal}(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT
Notations

- $K =$ non-Archimedean local field
- $k =$ residue field, $\text{char}(k) = p$
- $G = \text{Gal}(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT
Notations

- K = non-Archimedean local field
- k = residue field, $\text{char}(k) = p$
- $G = \text{Gal}(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT
Notations

- $K =$ non-Archimedean local field
- $k =$ residue field, $\text{char}(k) = p$
- $G = \text{Gal}(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT
Local duality

Theorem

Let M be a finite G-module, then

$$\alpha^r(G, M) : \text{Ext}^r_G(M, K^{s*}) \to H^{2-r}(G, M)^*$$

is an isomorphism for all r. If $\text{char}(K) \nmid \#M$, then $\text{Ext}^r_G(M, K^{s*})$ and $H^r(G, M)$ are finite.

Corollary

If $\text{char}(K) \nmid \#M$, then there exists a perfect pairing of finite groups (where $M^D = \text{Hom}(M, K^{s*})$)

$$H^r(G, M^D) \times H^{2-r}(G, M) \to H^2(G, K^{s*}) \simeq \mathbb{Q}/\mathbb{Z}.$$
Sketch of proof

- LCFT \(\rightsquigarrow \) info. of \(\text{rec} : K^* \to G^{ab} \),
- \(\alpha^1(G, \mathbb{Z}/m\mathbb{Z}) = \text{rec}^m : K^*/K^{*m} \to (G^{ab})^m \),
- commutative diagram

\[
\begin{align*}
\mu_m(K) & \xrightarrow{\alpha^0(G, \mathbb{Z}/m\mathbb{Z})} H^2(G, \mathbb{Z}/m\mathbb{Z})^* \\
& \xrightarrow{\psi} (G^{ab})_m
\end{align*}
\]
Sketch of proof

- LCFT \Leftrightarrow info. of $\text{rec} : K^* \to G^{ab}$,
- $\alpha^1(G, \mathbb{Z}/m\mathbb{Z}) = \text{rec}^{(m)} : K^*/K^{*m} \to (G^{ab})^{(m)}$,
- commutative diagram

\[
\begin{array}{ccc}
\mu_m(K) & \xrightarrow{\alpha^0(G, \mathbb{Z}/m\mathbb{Z})} & H^2(G, \mathbb{Z}/m\mathbb{Z})^* \\
& \downarrow{\text{rec}_m} & \downarrow{\psi} \\
& (G^{ab})_m & \\
\end{array}
\]
Sketch of proof

- LCFT $\sim\rightarrow$ info. of $\text{rec} : K^* \rightarrow G^{ab}$,
- $\alpha^1(G, \mathbb{Z}/m\mathbb{Z}) = \text{rec}^{(m)} : K^*/K^{*m} \rightarrow (G^{ab})^{(m)}$,
- commutative diagram

\[
\begin{array}{c}
\mu_m(K) \\
\xrightarrow{\alpha^0(G,\mathbb{Z}/m\mathbb{Z})} \\
H^2(G, \mathbb{Z}/m\mathbb{Z})^* \\
\end{array}
\xrightarrow{\psi} \\
\xrightarrow{\text{rec}_m} \\
(G^{ab})_m
\]
Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case $scd(G) = 2 \leadsto H^3(G, \mathbb{Z}) = 0 \leadsto \psi$: isomorphism,

- info. of rec \leadsto info. of $\begin{cases} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{cases}$

- Apply the previous lemma \Rightarrow the statement, spectral sequence \leadsto finiteness.

- some simple calculations

- For the corollary, $char(K) \nmid \#M \leadsto$ identify $Ext^r_G(M, K^{s*})$ and $H^r(G, M^D)$ by spectral sequence.

LIANG, Yong Qi Some Arithmetic Duality Theorems
Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case $scd(G) = 2$ $\implies H^3(G, \mathbb{Z}) = 0$ $\implies \psi$: isomorphism,

- info. of rec \rightsquigarrow info. of $\left\{\begin{array}{l}
\alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\
\alpha^1(G, \mathbb{Z}/m\mathbb{Z})
\end{array}\right.$

- Apply the previous lemma \Rightarrow the statement, spectral sequence
 some simple calculations \implies finiteness.

- For the corollary, $\text{char}(K) \nmid \# M$ \implies identify $\text{Ext}_G^r(M, K^{s*})$ and $H^r(G, M^D)$ by spectral sequence.
Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case $\text{scd}(G) = 2 \leadsto H^3(G, \mathbb{Z}) = 0 \leadsto \psi$: isomorphism,

- info. of rec \leadsto info. of $\left\{ \begin{array}{l} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{array} \right.$

- Apply the previous lemma \Rightarrow the statement,

- spectral sequence

- some simple calculations \leadsto finiteness.

- For the corollary, $\text{char}(K) \nmid \#M \leadsto$ identify $\text{Ext}_G^r(M, K^{s*})$ and $H^r(G, M^D)$ by spectral sequence.
Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case $scd(G) = 2$ $\hookrightarrow H^3(G, \mathbb{Z}) = 0$ $\hookrightarrow \psi$: isomorphism,

- info. of rec \hookrightarrow info. of $\left\{ \begin{array}{l} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{array} \right.$

- Apply the previous lemma \Rightarrow the statement,

- spectral sequence, some simple calculations \hookrightarrow finiteness.

- For the corollary, $char(K) \nmid \# M$ \hookrightarrow identify $Ext^r_G(M, K^{s*})$ and $H^r(G, M^D)$ by spectral sequence.
Sketch of proof

Sketch of proof (continued).

- In general, \(\psi \): NOT a bijection, BUT in our case \(scd(G) = 2 \) \(\leadsto H^3(G, \mathbb{Z}) = 0 \) \(\leadsto \psi \): isomorphism,

- info. of rec \(\leadsto \) info. of \(\left\{ \begin{array}{l}
\alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\
\alpha^1(G, \mathbb{Z}/m\mathbb{Z})
\end{array} \right. \)

- Apply the previous lemma \(\Rightarrow \) the statement,

- spectral sequence

- some simple calculations \(\leadsto \) finiteness.

- For the corollary, \(char(K) \nmid \#M \leadsto \) identify \(Ext'_G(M, K^{s*}) \) and \(H^r(G, M^D) \) by spectral sequence.
We define the Euler-Poincaré characteristic
\[\chi(G, M) = \frac{\#H^0(G, M) \cdot \#H^2(G, M)}{\#H^1(G, M)} \],
and we have the following formula

Theorem

For M finite of order m such that char(K) ∤ m, then

\[\chi(G, M) = |m|_K. \]
As an application of the local duality theorem, we get

Theorem (Tate)

Let K be a non-Archimedean local field of characteristic 0, and A be an Abelian variety over K with dual A^t, then there exists a perfect pairing

$$A^t(K) \times H^1(K, A) \to \mathbb{Q}/\mathbb{Z}.$$
Sketch of proof.

- We are going to study the $\Ext^r_K(-, \mathbb{G}_m)$ sequence and $H^r(K, -)$ sequence of $0 \to A_n \to A \xrightarrow{n} A \to 0$,
- The local duality \rightsquigarrow info. of $\alpha^r(K, A_n)$,
- info. of $\alpha^r(K, A_n)$ \rightsquigarrow info. of $\{ \alpha^r(K, A)_n, \alpha^r(K, A)^{(n)} \}$
- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula: $A^t(K) = \Ext^1_K(A, \mathbb{G}_m)$
Sketch of proof.

- We are going to study the $\text{Ext}^r_K(\cdot, \mathbb{G}_m)$ sequence and $H^r(K, \cdot)$ sequence of $0 \to A_n \to A \xrightarrow{n} A \to 0$.
- The local duality $\sim \to$ info. of $\alpha^r(K, A_n)$,

 \[
 \text{info. of } \alpha^r(K, A_n) \sim \to \text{info. of } \left\{ \begin{array}{l}
 \alpha^r(K, A)_n \\
 \alpha^r(K, A)^{(n)}
 \end{array} \right.
 \]

- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula: $A^t(K) = \text{Ext}^{1}_K(A, \mathbb{G}_m)$.
Sketch of proof.

- We are going to study the $\text{Ext}_{K}^{r}(-, \mathbb{G}_{m})$ sequence and $H^{r}(K, -)$ sequence of $0 \to A_{n} \to A \to A \to 0$.
- The local duality $\sim \to$ info. of $\alpha^{r}(K, A_{n})$,
- info. of $\alpha^{r}(K, A_{n})$ \quad $\sim \to$ info. of $\left\{ \alpha^{r}(K, A)_{n}, \alpha^{r}(K, A)^{(n)} \right\}$
- Take the limit on n, get the info. on $\alpha^{r}(K, A)$: iso.,
- Finally, Barsotti-Weil formula: $A^{t}(K) = \text{Ext}_{K}^{1}(A, \mathbb{G}_{m})$. □
Sketch of proof.

- We are going to study the $\text{Ext}^r_K(\cdot, \mathbb{G}_m)$ sequence and $H^r(K, \cdot)$ sequence of $0 \to A_n \to A \xrightarrow{n} A \to 0$.
- The local duality $\sim \to$ info. of $\alpha^r(K, A_n)$,
- info. of $\alpha^r(K, A_n)$ $\xrightarrow{\sim}$ info. of $\left\{ \begin{array}{l} \alpha^r(K, A)_n \\ \alpha^r(K, A)^{(n)} \end{array} \right.$
- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula: $A^t(K) = \text{Ext}^1_K(A, \mathbb{G}_m)$
Sketch of proof.

- We are going to study the $\text{Ext}_K^r(-, \mathbb{G}_m)$ sequence and $H^r(K, -)$ sequence of $0 \to A_n \to A \xrightarrow{n} A \to 0$.
- The local duality $\sim \to$ info. of $\alpha^r(K, A_n)$,
 - info. of $\alpha^r(K, A_n)$ $\sim \to$ info. of $\left\{ \begin{array}{c} \alpha^r(K, A)_n \\ \alpha^r(K, A)^{(n)} \end{array} \right.$
- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula: $A^t(K) = \text{Ext}_K^1(A, \mathbb{G}_m)$
Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = \text{Gal}(K_S/K)$
- $\mathcal{O}_{F,S} = \{x \in F; w(x) \geq 0, \forall w \notin S\}$, S-integers for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod_{w \in S_F} F_w^*$, S-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^\times = \{x \in F; w(x) = 0, \forall w \notin S\}$, S-units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \lim_{\to F} C_{F,S}$
- $P = \{p$ prime number; $p^\infty | \#G_S\}$
- (G_S, C_S) is a P-class formation by GCFT
Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = \text{Gal}(K_S/K)$
- $\mathcal{O}_{F,S} = \{x \in F; w(x) \geq 0, \forall w \notin S\}$, S-integers
 for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod'_{w \in S_F} F_w^*$, S-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^\times = \{x \in F; w(x) = 0, \forall w \notin S\}$, S-units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \lim_{\longrightarrow} C_{F,S}$
- $P = \{p \text{ prime number}; p^\infty | \#G_S\}$
- (G_S, C_S) is a P-class formation by GCFT
Local duality
An application to Abelian varieties
Global duality

A duality theorem
Poitou-Tate exact sequence
Euler-Poincaré characteristic

Notations

- $K = \text{a global field}$
- $S \neq \emptyset$ a set of places containing all the archimedean places
- $K_S = \text{the maximal extension of } K \text{ unramified outside } S$
- $G_S = \text{Gal}(K_S/K)$
- $\mathcal{O}_{F,S} = \{ x \in F; w(x) \geq 0, \forall w \notin S \}$, S-integers
- for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod_{w \in S_F} F_w^*$, S-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^\times, S$-units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varprojlim_{F} C_{F,S}$
- $P = \{ p \text{ prime number}; p^\infty \mid \#G_S \}$
- (G_S, C_S) is a P-class formation by GCFT
Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = \text{Gal}(K_S/K)$
- $\mathcal{O}_{F,S} = \{ x \in F; w(x) \geq 0, \forall w \notin S \}$, S-integers
 - for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod_{w \in S_F} F_w^*$, S-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^\times = \{ x \in F; w(x) = 0, \forall w \notin S \}$, S-units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \lim_{\rightarrow F} C_{F,S}$
- $P = \{ p \text{ prime number}; p^\infty \mid \# G_S \}$
- (G_S, C_S) is a P-class formation by GCFT
Notations

- $K =$ a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- $K_S =$ the maximal extension of K unramified outside S
- $G_S = \text{Gal}(K_S/K)$
- $\mathcal{O}_{F,S} = \{x \in F; w(x) \geq 0, \forall w \notin S\}$, S-integers for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod_{w \in S_F} F_w^*$, S-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^\times = \{x \in F; w(x) = 0, \forall w \notin S\}$, S-units
- $C_{F,S} = \frac{J_{F,S}}{E_{F,S}}$ and $C_S = \lim \rightarrow F C_{F,S}$
- $P = \{p \text{ prime number}; p^\infty | \#G_S\}$
- (G_S, C_S) is a P-class formation by GCFT
Notations

- $K = \text{a global field}
- S \neq \emptyset \text{ a set of places containing all the archimedean places}
- K_S = \text{the maximal extension of } K \text{ unramified outside } S
- G_S = \text{Gal}(K_S/K)
- \mathcal{O}_{F,S} = \{x \in F; w(x) \geq 0, \forall w \notin S\}, \text{ } S\text{-integers for } K \subseteq F \subseteq K_S \text{ with } F/K \text{ finite (Galois) extension.}
- J_{F,S} = \prod'_{w \in S_F} F_w^*, S\text{-idèles}
- E_{F,S} = \mathcal{O}_{F,S}^\times = \{x \in F; w(x) = 0, \forall w \notin S\}, S\text{-units}
- C_{F,S} = J_{F,S}/E_{F,S} \text{ and } C_S = \lim_{\longrightarrow F} C_{F,S}
- P = \{p \text{ prime number}; p^\infty \mid \#G_S\}
- (G_S, C_S) \text{ is a } P\text{-class formation by GCFT}
Notations

- \(K = \) a global field
- \(S \neq \emptyset \) a set of places containing all the archimedean places
- \(K_S = \) the maximal extension of \(K \) unramified outside \(S \)
- \(G_S = \text{Gal}(K_S/K) \)
- \(\mathcal{O}_{F,S} = \{ x \in F; w(x) \geq 0, \forall w \notin S \} \), \(S \)-integers
 for \(K \subseteq F \subseteq K_S \) with \(F/K \) finite (Galois) extension.
- \(J_{F,S} = \prod'_{w \in S_F} F_w^*, S\)-idèles
- \(E_{F,S} = \mathcal{O}_F^\times,S = \{ x \in F; w(x) = 0, \forall w \notin S \} \), \(S \)-units
- \(C_{F,S} = J_{F,S}/E_{F,S} \) and \(C_S = \lim_{\rightarrow F} C_{F,S} \)
- \(P = \{ p \text{ prime number}; p^{\infty} \mid \# G_S \} \)
- \((G_S, C_S)\) is a \(P \)-class formation by GCFT
Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = \text{Gal}(K_S/K)$
- $\mathcal{O}_{F,S} = \{x \in F; w(x) \geq 0, \forall w \notin S\}$, S-integers
 for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod_{w \in S_F}' F_w^*, \ S$-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^\times = \{x \in F; w(x) = 0, \forall w \notin S\}$, S-units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \lim_{\rightarrow F} C_{F,S}$
- $P = \{p \text{ prime number}; p^\infty \mid \# G_S\}$
- (G_S, C_S) is a P-class formation by GCFT
Notations

- $K =$ a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- $K_S =$ the maximal extension of K unramified outside S
- $G_S = \text{Gal}(K_S/K)$
- $O_{F,S} = \{ x \in F; w(x) \geq 0, \forall w \notin S \}$, S-integers for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod_{w \in S_F} F_w^*$, S-idèles
- $E_{F,S} = O_{F,S}^\times = \{ x \in F; w(x) = 0, \forall w \notin S \}$, S-units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varprojlim_F C_{F,S}$
- $P = \{ p$ prime number; $p^\infty \mid \#G_S \}$
- (G_S, C_S) is a P-class formation by GCFT
Notations

- $K = \text{a global field}$
- $S \neq \emptyset$ a set of places containing all the archimedean places
- $K_S = \text{the maximal extension of } K \text{ unramified outside } S$
- $G_S = \text{Gal}(K_S/K)$
- $\mathcal{O}_{F,S} = \{x \in F; w(x) \geq 0, \forall w \notin S\}$, S-integers

 for $K \subseteq F \subseteq K_S$ with F/K finite (Galois) extension.
- $J_{F,S} = \prod'_{w \in S_F} F_w^*, S$-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^\times = \{x \in F; w(x) = 0, \forall w \notin S\}$, S-units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \lim_{\rightarrow} F C_{F,S}$
- $P = \{p \text{ prime number}; p^\infty | \#G_S\}$
- (G_S, C_S) is a P-class formation by GCFT
Theorem

Let M be a finite G_S-module, then for any prime number $p \in P$,

$$
\alpha^r(G_S, M)(p) : \text{Ext}^r_{G_S}(M, C_S)(p) \xrightarrow{\sim} H^{2-r}(G_S, M)^*(p)
$$

is an isomorphism for $r \geq 1$. Moreover, if K is a function field then the statement is also true for $r = 0$, in which case P is all the prime numbers.

Proof.

The proof: similar to the local case, BUT in case $K = \text{number field}$, NOT necessary that $\text{scd}(G_S) = 2$, GCFT $\sim \Rightarrow$ info. of $\text{rec} \not\Rightarrow$ info. of $\alpha^0(G_S, \mathbb{Z}/p^s\mathbb{Z})$, that is why the statement is only for $r \geq 1$ in this case.
Notations

- $M^D = \text{Hom}(M, K_S^*)$
- $G_v = \text{Gal}(K_v^s/K_v) \rightarrow g_v = \text{Gal}(k(v)^s/k(v))$
- $H^r(K_v, M) = \left\{ \begin{array}{ll} H^r_T(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedean} \end{array} \right.$
- $H^r_{un}(K_v, M) = \text{im}(H^r(g_v, M) \rightarrow H^r(G_v, M))$ for $v \notin S_\infty$
- $P^r_S(K, M) = \prod'_{v \in S} H^r(K_v, M)$ restrict prod. wrt. $H^r_{un}(K_v, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \rightarrow \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta^r_S(K, M) : H^r(G_S, M) \rightarrow P^r_S(K, M)$
- $\boxed{\text{III}^r_S(K, M) = \ker(\beta^r_S(K, M))}$
Notations

- \(M^D = \text{Hom}(M, K_S^*) \)
- \(G_v = \text{Gal}(K_v^s/K_v) \rightarrow g_v = \text{Gal}(k(v)^s/k(v)) \)
- \(H^r(K_v, M) = \begin{cases} H^r_T(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedean} \end{cases} \)
- \(H^r_{un}(K_v, M) = \text{im}(H^r(g_v, M) \rightarrow H^r(G_v, M)) \) for \(v \notin S_\infty \)
- \(P^r_S(K, M) = \prod'_{v \in S} H^r(K_v, M) \text{ restrict prod. wrt. } H^r_{un}(K_v, M) \)

Lemma

The image of the homomorphism \(H^r(G_S, M) \rightarrow \prod_{v \in S} H^r(K_v, M) \) is contained in \(P^r_S(K, M) \).

- \(\beta^r_S(K, M) : H^r(G_S, M) \rightarrow P^r_S(K, M) \)
- \(\Pi^r_S(K, M) = \ker(\beta^r_S(K, M)) \)
Notations

- $M^D = \text{Hom}(M, K_S^*)$
- $G_v = \text{Gal}(K_v^s/K_v) \to g_v = \text{Gal}(k(v)^s/k(v))$
- $H^r(K_v, M) = \begin{cases} H^r_T(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedean} \end{cases}$
- $H^r_{un}(K_v, M) = \text{im}(H^r(g_v, M) \to H^r(G_v, M))$ for $v \notin S_\infty$
- $P^r_S(K, M) = \prod'_{v \in S} H^r(K_v, M)$ restrict prod. wrt. $H^r_{un}(K_v, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta^r_S(K, M) : H^r(G_S, M) \to P^r_S(K, M)$
- $\text{III}^r_S(K, M) = \ker(\beta^r_S(K, M))$
Notations

- \(M^D = \text{Hom}(M, K_S^*) \)
- \(G_v = \text{Gal}(K_v^s/K_v) \implies g_v = \text{Gal}(k(v)^s/k(v)) \)
- \(H^r(K_v, M) = \begin{cases} H^r_T(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedean} \end{cases} \)
- \(H^r_{un}(K_v, M) = \text{im}(H^r(g_v, M) \to H^r(G_v, M)) \) for \(v \notin S_\infty \)
- \(P^r_S(K, M) = \prod'_{v \in S} H^r(K_v, M) \) restrict prod. wrt. \(H^r_{un}(K_v, M) \)

Lemma

The image of the homomorphism \(H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M) \) is contained in \(P^r_S(K, M) \).

- \(\beta^r_S(K, M) : H^r(G_S, M) \to P^r_S(K, M) \)
- \(\Theta^r_S(K, M) = \ker(\beta^r_S(K, M)) \)
Notations

- $M^D = \text{Hom}(M, K^*_S)$
- $G_v = \text{Gal}(K_v^s/K_v) \rightarrow g_v = \text{Gal}(k(v)^s/k(v))$
- $H^r(K_v, M) = \begin{cases} H^r_T(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedean} \end{cases} \cdot$
- $H^r_{un}(K_v, M) = \text{im}(H^r(g_v, M) \rightarrow H^r(G_v, M))$ for $v \notin S_\infty$
- $P^r_S(K, M) = \prod'_{v \in S} H^r(K_v, M)$ restrict prod. wrt. $H^r_{un}(K_v, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \rightarrow \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta^r_S(K, M) : H^r(G_S, M) \rightarrow P^r_S(K, M)$
- $\beta^r_S(K, M) = \ker(\beta^r_S(K, M))$
Notations

- \(M^D = \text{Hom}(M, K_S^*) \)
- \(G_v = \text{Gal}(K_v^s/K_v) \rightarrow g_v = \text{Gal}(k(v)^s/k(v)) \)
- \(H^r(K_v, M) = \begin{cases} H^r_T(G_v, M), & \text{v} \in S_\infty \\ H^r(G_v, M), & \text{v non-Archimedean} \end{cases} \)
- \(H^r_{un}(K_v, M) = \text{im}(H^r(g_v, M) \rightarrow H^r(G_v, M)) \) for \(v \notin S_\infty \)
- \(P^r_S(K, M) = \prod'_{v \in S} H^r(K_v, M) \) restrict prod. wrt. \(H^r_{un}(K_v, M) \)

Lemma

The image of the homomorphism \(H^r(G_S, M) \rightarrow \prod_{v \in S} H^r(K_v, M) \) is contained in \(P^r_S(K, M) \).

- \(\beta^r_S(K, M) : H^r(G_S, M) \rightarrow P^r_S(K, M) \)
- \(\Pi^r_S(K, M) = \ker(\beta^r_S(K, M)) \)
Notations

- $M^D = \text{Hom}(M, K_S^*)$
- $G_v = \text{Gal}(K_v^s/K_v) \rightarrow g_v = \text{Gal}(k(v)^s/k(v))$
- $H^r(K_v, M) = \begin{cases} H_T^r(G_v, M), & v \in S_{\infty} \\ H^r(G_v, M), & v \text{ non-Archimedean} \end{cases}$
- $H^r_{un}(K_v, M) = \text{im}(H^r(g_v, M) \rightarrow H^r(G_v, M))$ for $v \notin S_{\infty}$
- $P^r_S(K, M) = \prod'_{v \in S} H^r(K_v, M)$ restrict prod. wrt. $H^r_{un}(K_v, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \rightarrow \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta^r_S(K, M) : H^r(G_S, M) \rightarrow P^r_S(K, M)$
- $\mathcal{III}^r_S(K, M) = \ker(\beta^r_S(K, M))$
Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

- (i) The map $\beta_1^1(K, M)$ is proper, in particular $\Omega_1^1(K, M)$ is finite.
- (ii) There exists a perfect pairing of finite groups

$$\Omega_1^1(K, M) \times \Omega_2^1(K, M^D) \to \mathbb{Q}/\mathbb{Z}.$$

- (iii) For $r \geq 3$, $\beta_r^r(K, M) : H^r(G_S, M) \cong \prod_{v \in S^\mathbb{R}} H^r(K_v, M)$ is an isomorphism.
Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

(i) The map $\beta^1_S(K, M)$ is proper, in particular $\mathcal{W}_S^1(K, M)$ is finite.

(ii) There exists a perfect pairing of finite groups

$$\mathcal{W}_S^1(K, M) \times \mathcal{W}_S^2(K, M^D) \to \mathbb{Q}/\mathbb{Z}.$$

(iii) For $r \geq 3$, $\beta^r_S(K, M) : H^r(G_S, M) \xrightarrow{\sim} \prod_{v \in S^R} H^r(K_v, M)$ is an isomorphism.
Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

(i) The map $\beta^1_S(K, M)$ is proper, in particular $\Xi^1_S(K, M)$ is finite.

(ii) There exists a perfect pairing of finite groups

$$\Xi^1_S(K, M) \times \Xi^2_S(K, M^D) \rightarrow \mathbb{Q}/\mathbb{Z}.$$

(iii) For $r \geq 3$, $\beta^r_S(K, M) : H^r(G_S, M) \xrightarrow{\sim} \prod_{v \in S^\mathbb{R}} H^r(K_v, M)$ is an isomorphism.
Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

(i) The map $\beta^1_S(K, M)$ is proper, in particular $\Sha^1_S(K, M)$ is finite.

(ii) There exists a perfect pairing of finite groups

$$\Sha^1_S(K, M) \times \Sha^2_S(K, M^D) \to \mathbb{Q}/\mathbb{Z}.$$

(iii) For $r \geq 3$, $\beta^r_S(K, M) : H^r(G_S, M) \xrightarrow{\sim} \prod_{v \in S^{\mathbb{R}}} H^r(K_v, M)$ is an isomorphism.
Theorem (Poitou-Tate)

(iv) There is an exact sequence

\[0 \rightarrow H^0(G_S, M) \xrightarrow{\beta^0_S} P^0_S(K, M) \xrightarrow{\gamma^0_S} H^2(G_S, M^D)^* \]

\[H^1(G_S, M^D)^* \xleftarrow{\gamma^1_S} P^1_S(K, M) \xleftarrow{\beta^1_S} H^1(G_S, M) \]

\[H^2(G_S, M) \xrightarrow{\beta^2_S} P^2_S(K, M) \xrightarrow{\gamma^2_S} H^0(G_S, M^D)^* \rightarrow 0. \]
Sketch of proof

(i) Properness of $\beta_S^1(K, M)$: Spectral sequence \Longrightarrow reduction to simple case,

- Direct calculations for the simple case,
 finiteness of class group \Rightarrow properness of $\beta_S^1(K, M)$.
- Poitou-Tate sequence \Rightarrow (ii) perfect pairing of III.
Sketch of proof

(i) Properness of $\beta^1_S(K, M)$: Spectral sequence \Rightarrow reduction to simple case,

Direct calculations for the simple case, finiteness of class group \Rightarrow properness of $\beta^1_S(K, M)$.

Poitou-Tate sequence \Rightarrow (ii) perfect pairing of III.
Sketch of proof

- (i) Properness of $\beta^1_S(K, M)$: Spectral sequence \Rightarrow reduction to simple case,
- Direct calculations for the simple case, finiteness of class group \Rightarrow properness of $\beta^1_S(K, M)$.
- Poitou-Tate sequence \Rightarrow (ii) perfect pairing of III.
(iii) & (iv): Local duality \[\gamma^r_S(K, M^D) : P^r_S(K, M^D) \to H^{2-r}(G_S, M)^* \] is the dual of \[\beta^{2-r}_S(K, M) : H^{2-r}(G_S, M) \to P^{2-r}_S(K, M), \]

Symmetry \(\Rightarrow\) only need to proof the second half of the sequence,

\[Ext^r_{G_S}(M^D, -), 0 \to E_S \to J_S \to C_S \to 0 \] long exact sequence,

Complicated calculations \(\Rightarrow\) \[Ext^r_{G_S}(M^D, E_S) = H^r(G_S, M) \] and \[Ext^r_{G_S}(M^D, J_S) = P^r_S(K, M) \] for any \(r\),

Previous duality theorem \(\Rightarrow\) \[Ext^r_{G_S}(M^D, C_S) = H^r(G_S, M^D)^* \] for \(r \geq 1\) (the last six terms of the Poitou-Tate sequence).
Sketch of proof (continued).

(iii) & (iv): Local duality $\sim \Rightarrow$

$\gamma^r_S(K, M^D) : P^r_S(K, M^D) \to H^{2-r}(G_S, M)^*$ is the dual of

$\beta^{2-r}_S(K, M) : H^{2-r}(G_S, M) \to P^{2-r}_S(K, M),$

Symmetry \Rightarrow only need to proof the second half of the sequence,

$\text{Ext}^r_{G_S}(M^D, -), 0 \to E_S \to J_S \to C_S \to 0 \sim \Rightarrow$ long exact sequence,

Complicated calculations \Rightarrow $\text{Ext}^r_{G_S}(M^D, E_S) = H^r(G_S, M)$ and $\text{Ext}^r_{G_S}(M^D, J_S) = P^r_S(K, M)$ for any $r,$

Previous duality theorem \Rightarrow $\text{Ext}^r_{G_S}(M^D, C_S) = H^r(G_S, M^D)^*$ for $r \geq 1$ (the last six terms of the Poitou-Tate sequence).
Sketch of proof (continued).

(iii)&(iv): Local duality $\gamma^r_S(K, M^D) : P^r_S(K, M^D) \to H^{2-r}(G_S, M)^*$ is the dual of $\beta^{2-r}_S(K, M) : H^{2-r}(G_S, M) \to P^{2-r}_S(K, M)$,

Symmetry \Rightarrow only need to proof the second half of the sequence,

$\text{Ext}^r_{G_S}(M^D, -), 0 \to E_S \to J_S \to C_S \to 0 \sim\rightarrow$ long exact sequence,

Complicated calculations \Rightarrow $\text{Ext}^r_{G_S}(M^D, E_S) = H^r(G_S, M)$ and $\text{Ext}^r_{G_S}(M^D, J_S) = P^r_S(K, M)$ for any r,

Previous duality theorem \Rightarrow $\text{Ext}^r_{G_S}(M^D, C_S) = H^r(G_S, M^D)^*$ for $r \geq 1$ (the last six terms of the Poitou-Tate sequence).

LIANG, Yong Qi

Some Arithmetic Duality Theorems
Sketch of proof (continued).

(iii)&(iv): Local duality \(\leadsto \)
\[
\gamma^r_S(K, M^D) : P^r_S(K, M^D) \to H^{2-r}(G_S, M)^* \text{ is the dual of } \\
\beta^{2-r}_S(K, M) : H^{2-r}(G_S, M) \to P^{2-r}_S(K, M),
\]

Symmetry \(\Rightarrow \) only need to proof the second half of the sequence,

\[
Ext^r_{G_S}(M^D, -), \ 0 \to E_S \to J_S \to C_S \to 0 \leadsto \text{long exact sequence},
\]

Complicated calculations \(\Rightarrow \)
\[
Ext^r_{G_S}(M^D, E_S) = H^r(G_S, M) \text{ and } \\
Ext^r_{G_S}(M^D, J_S) = P^r_S(K, M) \text{ for any } r,
\]

Previous duality theorem \(\Rightarrow \)
\[
Ext^r_{G_S}(M^D, C_S) = H^r(G_S, M^{D})^* \text{ for } r \geq 1 \text{ (the last six terms of the Poitou-Tate sequence)}. \]
Sketch of proof (continued).

(iii) & (iv): Local duality $\sim \rightarrow$

$$\gamma^r_S(K, M^D) : P^r_S(K, M^D) \rightarrow H^{2-r}(G_S, M)^\ast$$

is the dual of

$$\beta^{2-r}_S(K, M) : H^{2-r}(G_S, M) \rightarrow P^{2-r}_S(K, M),$$

Symmetry \Rightarrow only need to proof the second half of the sequence,

$$\text{Ext}^r_{G_S}(M^D, -), \ 0 \rightarrow E_S \rightarrow J_S \rightarrow C_S \rightarrow 0 \sim \rightarrow$$

long exact sequence,

Complicated calculations \Rightarrow $\text{Ext}^r_{G_S}(M^D, E_S) = H^r(G_S, M)$ and

$$\text{Ext}^r_{G_S}(M^D, J_S) = P^r_S(K, M)$$

for any r,

Previous duality theorem \Rightarrow $\text{Ext}^r_{G_S}(M^D, C_S) = H^r(G_S, M^D)^\ast$

for $r \geq 1$ (the last six terms of the Poitou-Tate sequence).
If \(m = \#M \) such that \(m\mathcal{O}_K, S = \mathcal{O}_K, S \), and if \(S \) is finite, then \(H^r(G_S, M) \) is finite, we define

\[
\chi(G_S, M) = \frac{\#H^0(G_S, M) \cdot \#H^2(G_S, M)}{\#H^1(G_S, M)},
\]

we have the following formula

\[
\chi(G_S, M) = \prod_{v \in S_\infty} \frac{\#H^0(G_v, M)}{|m|_v}.
\]
Part II

Etale cohomology
From now on, all the cohomology groups = étale cohomology
groups, "sheaf" = étale sheaf of abelian groups

- R: Henselian DVR, $K = \text{Frac}(R)$, $k = R/m$ residue field
- $X = \text{spec}(R) = \{u, x\}$ where
 - $j : u = \text{spec}(K) \to X$ is the generic point
 - $i : x = \text{spec}(k) \to X$ is the closed point
From now on, all the cohomology groups = étale cohomology groups, "sheaf" = étale sheaf of abelian groups

R: Henselian DVR, $K = \text{Frac}(R)$, $k = R/\mathfrak{m}$ residue field

$X = \text{spec}(R) = \{u, x\}$ where

- $j : u = \text{spec}(K) \to X$ is the generic point
- $i : x = \text{spec}(k) \to X$ is the closed point
From now on, all the cohomology groups = étale cohomology groups, "sheaf" = étale sheaf of abelian groups

- R: Henselian DVR, $K = \text{Frac}(R)$, $k = R/m$ residue field
- $X = \text{spec}(R) = \{u, x\}$ where
 - $j: u = \text{spec}(K) \rightarrow X$ is the generic point
 - $i: x = \text{spec}(k) \rightarrow X$ is the closed point
Suppose that k is a finite field. Let \mathcal{F} be a constructible sheaf on X, if one of the following conditions holds (1) K is complete, (2) $\text{char}(K) = 0$, (3) $\text{char}(K) = p$ and $p\mathcal{F} = \mathcal{F}$, then we have a perfect pairing:

$$
\text{Ext}^r_X(\mathcal{F}, \mathbb{G}_m) \times H^{3-r}_X(X, \mathcal{F}) \to H^3_X(X, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}.
$$

Corollary

Suppose that k is finite of characteristic p, for a locally constant constructible sheaf \mathcal{F} on X such that $p\mathcal{F} = \mathcal{F}$, then we have a perfect pairing (where $\mathcal{F}^D = \text{Hom}_X(\mathcal{F}, \mathbb{G}_m)$)

$$
H^r(X, \mathcal{F}^D) \times H^{3-r}_X(X, \mathcal{F}) \to \mathbb{Q}/\mathbb{Z}.
$$
Sketch of proof.

1. For sheaves of the form $j_!\mathcal{F}$, we identify the pairing with the local duality of Galois cohomology,

2. For sheaves of the form $i_*\mathcal{F}$, we identify the pairing with the duality of the class formation $(\text{Gal}(k^s/k), \mathbb{Z})$,

3. Finally, for general \mathcal{F} we take the cohomology sequence and Ext sequence of

$$0 \to j_!j^*\mathcal{F} \to \mathcal{F} \to i_*i^*\mathcal{F} \to 0$$

and combine the first two cases.

4. For the corollary, $p\mathcal{F} = \mathcal{F} \leadsto$ identify $\text{Ext}^r_X(\mathcal{F}, \mathbb{G}_m)$ and $H^r(X, \mathcal{F}^D)$ by the local-global Ext spectral sequence.
Sketch of proof.

1. For sheaves of the form $j_!\mathcal{F}$, we identify the pairing with the local duality of Galois cohomology,

2. For sheaves of the form $i_*\mathcal{F}$, we identify the pairing with the duality of the class formation $(Gal(k^s/k), \mathbb{Z})$,

3. Finally, for general \mathcal{F} we take the cohomology sequence and Ext sequence of

$$0 \to j_!j^*\mathcal{F} \to \mathcal{F} \to i_*i^*\mathcal{F} \to 0$$

and combine the first two cases.

4. For the corollary, $p\mathcal{F} = \mathcal{F} \rightsquigarrow$ identify $Ext^r_X(\mathcal{F}, \mathbb{G}_m)$ and $H^r(X, \mathcal{F}^D)$ by the local-global Ext spectral sequence.
Sketch of proof.

1. For sheaves of the form $j_! \mathcal{F}$, we identify the pairing with the local duality of Galois cohomology,

2. For sheaves of the form $i_* \mathcal{F}$, we identify the pairing with the duality of the class formation $(\text{Gal}(k^s/k), \mathbb{Z})$,

3. Finally, for general \mathcal{F} we take the cohomology sequence and Ext sequence of

\[
0 \to j_! j^* \mathcal{F} \to \mathcal{F} \to i_* i^* \mathcal{F} \to 0
\]

and combine the first two cases.

4. For the corollary, $p\mathcal{F} = \mathcal{F} \mapsto$ identify $\text{Ext}_X^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(X, \mathcal{F}^D)$ by the local-global Ext spectral sequence.
Local duality
Global cohomology
Artin-Verdier’s theorem

Proof of the theorem

Sketch of proof.

1. For sheaves of the form $j_! \mathcal{F}$, we identify the pairing with the local duality of Galois cohomology,

2. For sheaves of the form $i_* \mathcal{F}$, we identify the pairing with the duality of the class formation $(\text{Gal}(k^s/k), \mathbb{Z})$,

3. Finally, for general \mathcal{F} we take the cohomology sequence and Ext sequence of

$$0 \to j_! j^* \mathcal{F} \to \mathcal{F} \to i_* i^* \mathcal{F} \to 0$$

and combine the first two cases.

4. For the corollary, $p\mathcal{F} = \mathcal{F} \leadsto$ identify $\text{Ext}_X^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(X, \mathcal{F}^D)$ by the local-global Ext spectral sequence.
Notations

- \(K \): a global field
- \(X \)
 - \(X = \text{spec}(\mathcal{O}_K) \) if \(K \) is a number field
 - \(X \) the unique complete smooth curve with function field \(K \)

- Usually, for open subschemes \(V \subset U \subset X \),
 \(j : V \to U = \) the open immersion
 \(i : U \setminus V = Z \to U = \) the (reduced) closed immersion

- For a closed point \(v \) of \(X \), \(\mathcal{O}_v^h = \) Henselization of the stalk of \(\mathcal{O}_X \) at \(v \), \(K_v = \text{Frac}(\mathcal{O}_v^h) \)

- For an Archimedean place \(v \), we set \(K_v = \mathbb{R} \) or \(\mathbb{C} \)
Notations

- K: a global field
- X
 - $X = \text{spec}(\mathcal{O}_K)$ if K is a number field
 - X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$,
 - $j: V \to U$ = the open immersion
 - $i: U \setminus V = Z \to U$ = the (reduced) closed immersion
- For a closed point v of X, $\mathcal{O}_v^h =$ Henselization of the stalk of \mathcal{O}_X at v, $K_v = \text{Frac}(\mathcal{O}_v^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}
Notations

- K: a global field
- X
 - $X = \text{spec}(\mathcal{O}_K)$ if K is a number field
 - X the unique complete smooth curve with function field K

- Usually, for open subschemes $V \subset U \subset X$,
 - $j : V \to U = \text{the open immersion}$
 - $i : U \setminus V = Z \to U = \text{the (reduced) closed immersion}$

- For a closed point v of X, $\mathcal{O}^h_v = \text{Henselization of the stalk of } \mathcal{O}_X$ at v, $K_v = \text{Frac}(\mathcal{O}^h_v)$

- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}
Notations

- K: a global field
- X
 - $X = \text{spec}(\mathcal{O}_K)$ if K is a number field
 - X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subset X$,
 - $j : V \rightarrow U = \text{the open immersion}$
 - $i : U \setminus V = Z \rightarrow U = \text{the (reduced) closed immersion}$
- For a closed point v of X, $\mathcal{O}_v^h =$ Henselization of the stalk of \mathcal{O}_X at v, $K_v = \text{Frac}(\mathcal{O}_v^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}
Notations

- K: a global field
- X
 - $X = \text{spec}(\mathcal{O}_K)$ if K is a number field
 - X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subset X$,
 - $j : V \to U = \text{the open immersion}$
 - $i : U \setminus V = Z \to U = \text{the (reduced) closed immersion}$
- For a closed point v of X, $\mathcal{O}_v^h = \text{Henselization of the stalk of } \mathcal{O}_X \text{ at } v$, $K_v = \text{Frac}(\mathcal{O}_v^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}
Notations

- K: a global field
- X
 - $X = \text{spec} (\mathcal{O}_K)$ if K is a number field
 - X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$
 - $j : V \to U = \text{the open immersion}$
 - $i : U \setminus V = Z \to U = \text{the (reduced) closed immersion}$
- For a closed point v of X, $\mathcal{O}_X^h = \text{Henselization of the stalk of } \mathcal{O}_X$ at v, $K_v = \text{Frac}(\mathcal{O}_X^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}
Some calculations

- We can compute $H^r(U, \mathbb{G}_m)$, they are related to the ideal class group (or $Pic(U)$) and the group of unites.

- We can define $H^r_c(U, \mathcal{F}) = "cohomology with compact support"
 - in case $K =$ function field, $H^r_c(U, \mathcal{F}) \simeq H^r(X, j_! \mathcal{F})$ is the cohomology with compact support in the classic sense;
 - if $K =$ number field, $H^r_c(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.

- The important point: $H^r_c(U, \mathcal{F})$ is fixed into a long exact sequence

$$
\cdots \to H^r_c(U, \mathcal{F}) \to H^r(U, \mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v, \mathcal{F}_v) \to \cdots
$$

- Then we can also compute $H^r_c(U, \mathbb{G}_m)$, $H^3_c(U, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}$.

\begin{flushright}
LIANG, Yong Qi
Some Arithmetic Duality Theorems
\end{flushright}
Some calculations

- We can compute $H^r(U, \mathbb{G}_m)$, they are related to the ideal class group (or $\text{Pic}(U)$) and the group of unites.
- We can define $H^r_c(U, \mathcal{F}) =$ "cohomology with compact support"
 - in case $K =$ function field, $H^r_c(U, \mathcal{F}) \cong H^r(X, j_! \mathcal{F})$ is the cohomology with compact support in the classic sense;
 - if $K =$ number field, $H^r_c(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point: $H^r_c(U, \mathcal{F})$ is fixed into a long exact sequence

$$\cdots \rightarrow H^r_c(U, \mathcal{F}) \rightarrow H^r(U, \mathcal{F}) \rightarrow \bigoplus_{v \notin U} H^r(K_v, \mathcal{F}_v) \rightarrow \cdots$$

- Then we can also compute $H^r_c(U, \mathbb{G}_m)$, $H^3_c(U, \mathbb{G}_m) \cong \mathbb{Q}/\mathbb{Z}$.

LIANG, Yong Qi

Some Arithmetic Duality Theorems
Some calculations

- We can compute $H^r(U, \mathbb{G}_m)$, they are related to the ideal class group (or $Pic(U)$) and the group of unites.

- We can define $H^r_c(U, \mathcal{F}) = "cohomology with compact support"
 - in case $K =$ function field, $H^r_c(U, \mathcal{F}) \simeq H^r(X, j_! \mathcal{F})$ is the cohomology with compact support in the classic sense;
 - if $K =$ number field, $H^r_c(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.

- The important point : $H^r_c(U, \mathcal{F})$ is fixed into a long exact sequence

\[\cdots \to H^r_c(U, \mathcal{F}) \to H^r(U, \mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v, \mathcal{F}_v) \to \cdots. \]

- Then we can also compute $H^r_c(U, \mathbb{G}_m), H^3_c(U, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}$.

LIANG, Yong Qi

Some Arithmetic Duality Theorems
Some calculations

- We can compute $H^r(U, \mathbb{G}_m)$, they are related to the ideal class group (or $\text{Pic}(U)$) and the group of unites.
- We can define $H^r_c(U, \mathcal{F}) =$ "cohomology with compact support"
 - in case $K = \text{function field}$, $H^r_c(U, \mathcal{F}) \simeq H^r(X, j_! \mathcal{F})$ is the cohomology with compact support in the classic sense;
 - if $K = \text{number field}$, $H^r_c(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point: $H^r_c(U, \mathcal{F})$ is fixed into a long exact sequence

 $$\cdots \rightarrow H^r_c(U, \mathcal{F}) \rightarrow H^r(U, \mathcal{F}) \rightarrow \bigoplus_{v \notin U} H^r(K_v, \mathcal{F}_v) \rightarrow \cdots$$

- Then we can also compute $H^r_c(U, \mathbb{G}_m)$, $H^3_c(U, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}$.
Some calculations

- We can compute $H^r(U, \mathbb{G}_m)$, they are related to the ideal class group (or $\text{Pic}(U)$) and the group of unites.
- We can define $H^r_c(U, \mathcal{F}) = "\text{cohomology with compact support}\"$
 - in case $K = \text{function field}$, $H^r_c(U, \mathcal{F}) \simeq H^r(X, j_! \mathcal{F})$ is the cohomology with compact support in the classic sense;
 - if $K = \text{number field}$, $H^r_c(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point: $H^r_c(U, \mathcal{F})$ is fixed into a long exact sequence

 $\cdots \to H^r_c(U, \mathcal{F}) \to H^r(U, \mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v, \mathcal{F}_v) \to \cdots$

- Then we can also compute $H^r_c(U, \mathbb{G}_m), H^3_c(U, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}$.

Liang, Yong Qi

Some Arithmetic Duality Theorems
Some calculations

- We can compute $H^r(U, \mathbb{G}_m)$, they are related to the ideal class group (or $\text{Pic}(U)$) and the group of unites.
- We can define $H^r_c(U, \mathcal{F}) = "\text{cohomology with compact support}"$
 - in case $K = \text{function field}$, $H^r_c(U, \mathcal{F}) \cong H^r(X, j_!\mathcal{F})$ is the cohomology with compact support in the classic sense;
 - if $K = \text{number field}$, $H^r_c(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point: $H^r_c(U, \mathcal{F})$ is fixed into a long exact sequence
 \[
 \cdots \to H^r_c(U, \mathcal{F}) \to H^r(U, \mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v, \mathcal{F}_v) \to \cdots.
 \]
- Then we can also compute $H^r_c(U, \mathbb{G}_m)$, $H^3_c(U, \mathbb{G}_m) \cong \mathbb{Q}/\mathbb{Z}$.
For an open subscheme U of X, $\mathcal{F} \in Sh(U)$ constructible sheaf s.t. $\exists m \in \mathbb{Z}$ satisfying $m\mathcal{F} = 0$ and m invertible on U (i.e. $m\mathcal{O}_v = \mathcal{O}_v$ for all closed point $v \in U$), then $H^r(U, \mathcal{F})$ and $H^r_c(U, \mathcal{F})$ are finite, we define

- $\chi(U, \mathcal{F}) = \frac{\#H^0(U, \mathcal{F}) \cdot \#H^2(U, \mathcal{F})}{\#H^1(U, \mathcal{F}) \cdot \#H^3(U, \mathcal{F})}$
- $\chi_c(U, \mathcal{F}) = \frac{\#H^0_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}{\#H^1_c(U, \mathcal{F}) \cdot \#H^3_c(U, \mathcal{F})}$
For an open subscheme U of X, $\mathcal{F} \in \text{Sh}(U)$ constructible sheaf s.t. $\exists m \in \mathbb{Z}$ satisfying $m\mathcal{F} = 0$ and m invertible on U (i.e. $m\mathcal{O}_v = \mathcal{O}_v$ for all closed point $v \in U$), then $H^r(U, \mathcal{F})$ and $H^r_c(U, \mathcal{F})$ are finite, we define

- $\chi(U, \mathcal{F}) = \frac{\# H^0(U, \mathcal{F}) \cdot \# H^2(U, \mathcal{F})}{\# H^1(U, \mathcal{F}) \cdot \# H^3(U, \mathcal{F})}$

- $\chi_c(U, \mathcal{F}) = \frac{\# H^0_c(U, \mathcal{F}) \cdot \# H^2_c(U, \mathcal{F})}{\# H^1_c(U, \mathcal{F}) \cdot \# H^3_c(U, \mathcal{F})}$
For an open subscheme U of X, $\mathcal{F} \in Sh(U)$ constructible sheaf s.t. $\exists m \in \mathbb{Z}$ satisfying $m\mathcal{F} = 0$ and m invertible on U (i.e. $m\mathcal{O}_v = \mathcal{O}_v$ for all closed point $v \in U$), then $H^r(U, \mathcal{F})$ and $H^r_c(U, \mathcal{F})$ are finite, we define

\begin{align*}
\chi(U, \mathcal{F}) &= \frac{\#H^0(U, \mathcal{F}) \cdot \#H^2(U, \mathcal{F})}{\#H^1(U, \mathcal{F}) \cdot \#H^3(U, \mathcal{F})} \\
\chi_c(U, \mathcal{F}) &= \frac{\#H^0_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}{\#H^1_c(U, \mathcal{F}) \cdot \#H^3_c(U, \mathcal{F})}
\end{align*}
Theorem

Let \mathcal{F} a constructible sheaf on U such that $m\mathcal{F} = 0$ for a certain integer m invertible on U, then we have the formulae

1. $\chi(U, \mathcal{F}) = \prod_{v \in S_{\infty}} \frac{\# \mathcal{F}(K_v)}{\# H^0(K_v, \mathcal{F}) \cdot \# \mathcal{F}(K^s)_v}$
2. $\chi_c(U, \mathcal{F}) = \prod_{v \in S_{\infty}} \# \mathcal{F}(K_v)$

Sketch of proof.

- First, relate $\chi(U, \mathcal{F})$ with $\chi(V, \mathcal{F}|_V)$
- Take a small V s.t. \mathcal{F} is locally constant on V, identify $H^r(V, \mathcal{F})$ with Galois cohomology, and apply the χ global formula for Galois cohomology.
Theorem

Let \mathcal{F} a constructible sheaf on U such that $m\mathcal{F} = 0$ for a certain integer m invertible on U, then we have the formulae

\begin{itemize}
 \item[(i)] $\chi(U, \mathcal{F}) = \prod_{v \in S_\infty} \frac{\#\mathcal{F}(K_v)}{\#H^0(K_v, \mathcal{F}) \cdot \#\mathcal{F}(K^s)_v}$,
 \item[(ii)] $\chi_c(U, \mathcal{F}) = \prod_{v \in S_\infty} \#\mathcal{F}(K_v)$.
\end{itemize}

Sketch of proof.

\begin{itemize}
 \item First, relate $\chi(U, \mathcal{F})$ with $\chi(V, \mathcal{F}|_V)$
 \item Take a small V s.t. \mathcal{F} is locally constant on V, identify $H^r(V, \mathcal{F})$ with Galois cohomology, and apply the χ global formula for Galois cohomology.
\end{itemize}
Let \mathcal{F} a constructible sheaf on U such that $m\mathcal{F} = 0$ for a certain integer m invertible on U, then we have the formulae

(i) $\chi(U, \mathcal{F}) = \prod_{v \in S_\infty} \frac{\# \mathcal{F}(K_v)}{\# H^0(K_v, \mathcal{F}) \cdot \# \mathcal{F}(K^s)_v}$,

(ii) $\chi_c(U, \mathcal{F}) = \prod_{v \in S_\infty} \# \mathcal{F}(K_v)$.

Sketch of proof.

- First, relate $\chi(U, \mathcal{F})$ with $\chi(V, \mathcal{F}|_V)$
- Take a small V s.t. \mathcal{F} is locally constant on V, identify $H^r(V, \mathcal{F})$ with Galois cohomology, and apply the χ global formula for Galois cohomology.
Artin-Verdier’s theorem

Theorem (Artin-Verdier)

Let \(\mathcal{F} \) be a constructible sheaf on \(U \), then we have the following perfect pairing of finite groups

\[
\text{Ext}^r_U(\mathcal{F}, \mathbb{G}_m) \times H^{3-r}_c(U, \mathcal{F}) \to H^3_c(U, \mathbb{G}_m) \cong \mathbb{Q}/\mathbb{Z}.
\]

Corollary

Let \(\mathcal{F} \) be a locally constant constructible sheaf on \(U \) such that \(m\mathcal{F} = 0 \) for a certain integer \(m \) invertible on \(U \), then we have the following perfect pairing of finite groups

(\text{where } \mathcal{F}^D = \text{Hom}_U(\mathcal{F}, \mathbb{G}_m))

\[
H^r(U, \mathcal{F}^D) \times H^{3-r}_c(U, \mathcal{F}) \to H^3_c(U, \mathbb{G}_m) \cong \mathbb{Q}/\mathbb{Z}.
\]
Sketch of proof of Artin-Verdier

- Proof the theorem with assumption $supp(\mathcal{F}) \subseteq Z \subsetneq X$;
- Show that we can replace U by a smaller V, then we can assume \mathcal{F} to be locally constant, killed by m invertible on V;
- Show that we can replace (U, \mathcal{F}) by $(U', \mathcal{F}|_{U'})$ with a finite étale covering $U' \to U$, then we can consider only the constant sheaves and assume that K is totally imaginary;
Sketch of proof:

- Proof the theorem with assumption $\text{supp}(\mathcal{F}) \subseteq Z \subsetneq X$;
- Show that we can replace U by a smaller V, then we can assume \mathcal{F} to be locally constant, killed by m invertible on V;
- Show that we can replace (U, \mathcal{F}) by $(U', \mathcal{F}|_{U'})$ with a finite étale covering $U' \to U$, then we can consider only the constant sheaves and assume that K is totally imaginary;
Sketch of proof of Artin-Verdier

- Proof the theorem with assumption $\text{supp}(\mathcal{F}) \subseteq Z \subsetneq X$;
- Show that we can replace U by a smaller V, then we can assume \mathcal{F} to be locally constant, killed by m invertible on V;
- Show that we can replace (U, \mathcal{F}) by $(U', \mathcal{F}|_{U'})$ with a finite étale covering $U' \rightarrow U$, then we can consider only the constant sheaves and assume that K is totally imaginary;
With the above assumptions, develop a machine for doing induction on \(r \);

- Show that \(\text{Ext}^r_U \) and \(H^r_c \) vanish if \(r \) is large enough or small enough;

- Finally, complete the proof with a supplement argument of Artin-Schreier for the case \(\text{char}(K) = p \).

- For the corollary, under the assumptions, we identify \(\text{Ext}^r_U(\mathcal{F}, \mathbb{G}_m) \) and \(H^r(U, \mathcal{F}^D) \) by spectral sequence.
Sketch of proof (continued).

- With the above assumptions, develop a machine for doing induction on r;
- Show that Ext_U^r and H^r_c vanish if r is large enough or small enough;
- Finally, complete the proof with a supplement argument of Artin-Schreier for the case $\text{char}(K) = p$.
- For the corollary, under the assumptions, we identify $\text{Ext}_U^r(F, \mathbb{G}_m)$ and $H^r(U, F^D)$ by spectral sequence.
Sketch of proof (continued).

- With the above assumptions, develop a machine for doing induction on r;
- Show that Ext_U^r and H_c^r vanish if r is large enough or small enough;
- Finally, complete the proof with a supplement argument of Artin-Schreier for the case $\text{char}(K) = p$.
- For the corollary, under the assumptions, we identify $\text{Ext}_U^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(U, \mathcal{F}^D)$ by spectral sequence.
Sketch of proof (continued).

- With the above assumptions, develop a machine for doing induction on r;
- Show that Ext^r_U and H^r_c vanish if r is large enough or small enough;
- Finally, complete the proof with a supplement argument of Artin-Schreier for the case $\text{char}(K) = p$.
- For the corollary, under the assumptions, we identify $\text{Ext}^r_U(\mathcal{F}, \mathbb{G}_m)$ and $H^r(U, \mathcal{F}^D)$ by spectral sequence.
The End.

- Thank you very much!!
- Grazie mille!
- Merci beaucoup!

LIANG, Yong Qi
yongqi.liang@u-psud.fr