PRIME DECOMPOSITIONS IN DEDEKIND DOMAINS

YONG-QI LIANG

1. EXTENSION OF DEDEKIND DOMAINS

Lemma 1.1. Let R be a Noetherian one dimensional domain with fractional field K, S be the integral closure of R in K. Then for any nonzero ideal \mathfrak{a} of R, S/ \mathfrak{a} S is a finitely generated R-module.

Proof. See Prof. Y.Tian's lecture notes.

Proposition 1.2. Let R be a Dedekind domain with fractional field K, L/K be finite extension of fields, S be the integral closure of R in L, then S is Dedekind domain.

Proof. See Prof. Y.Tian's lecture notes.

Remark 1.3. In [2], another proof of this proposition is given by discussing purely inseparable extension. For example the integral closure of $\mathbb{F}_p[t]$ in $\mathbb{F}_p(\sqrt[p]{t})$ is $\mathbb{F}_p[\sqrt[p]{t}]$ which is Dedekind domain.

Corollary 1.4. If L/K is separable, \mathfrak{b} is an ideal of S, then $\mathfrak{b} \simeq R^{n-1} \oplus \mathfrak{a}$ as R-module with \mathfrak{a} nonzero ideal of R. Moreover if Cl(K) is trivial, then $\mathfrak{b} \simeq R^n$ (i.e. Integral basis theorem holds for L/K).

Proof. We have shown that S is a finitely generated R-module, so is \mathfrak{b} since R is Noetherian. By the structure theorem of finitely generated modules over Dedekind domain, we only need to show that \mathfrak{b} is of "rank" n = [L : K]. Choose $0 \neq x_1 \in \mathfrak{b}$, and let $\{x_1, \dots, x_n\}$ be basis of L over K. Then for $i \geq 2$, $x_i = l_i x_1 \in \mathfrak{b}$ with $l_i \in L$, there exists $a_i \in R$ such that $a_i l_i$ is integral over R, hence in S, then $a_i x_i = a_i l_i x_1 \in \mathfrak{b}$, $\{x_1, a_2 x_2, \dots, \mathfrak{a}_n x_n\}$ is also a basis of L over K, hence \mathfrak{b} is of "rank" n as R-module. (a much simpler proof: take $a \in I$ then $aS \subseteq I$, so I must be of "rank" n.)

Example 1.5. We consider the quadratic number field $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$ (with d square-free) and S be the ring of integers of $\mathbb{Q}(\sqrt{d})$, then $S = \mathbb{Z}[\alpha] = \mathbb{Z} \oplus \mathbb{Z}\alpha$ where

 $\alpha = \begin{cases} \sqrt{d} &, \text{ if } d \equiv 2,3(mod4), \\ \frac{\sqrt{d}+1}{2} &, \text{ if } d \equiv 1(mod4) \end{cases}$ In fact, it is easy to see that $S \supseteq \mathbb{Z}[\alpha]$

since in each case α is integral over \mathbb{Z} . Conversely, let $\beta \in S$, then $\beta = u + v\sqrt{d}$ with $u, v \in \mathbb{Q}$. If v = 0, $\beta = u \in \mathbb{Q}$ is integral over \mathbb{Z} , which implies $u \in \mathbb{Z}$ and $\beta \in \mathbb{Z}[\alpha]$. If $v \neq 0$, the minimal polynomial of β over \mathbb{Q} is $x^2 + ax + b$ with

Key words and phrases. prime decomposition, Dedekind domain.

This work was completed with the help of Prof. Y.Tian .

 $a, b \in \mathbb{Z}$, then $u + v\sqrt{d} = \beta = -\frac{a}{2} \pm \frac{1}{2}\sqrt{a^2 - 4b}$, therefore (*) $a^2 - 4b = t^2d$ with $t \in \mathbb{Z}$. If $d \equiv 1 \pmod{4}$, $u, v \in \mathbb{Z}\frac{1}{2}$, $\beta \in \mathbb{Z}[\alpha]$, $S = \mathbb{Z}[\alpha]$. If $d \equiv 2, 3 \pmod{4}$, we have $2 \mid a$ by (*), hence $u, v \in \mathbb{Z}$ and $S = \mathbb{Z}[\alpha]$.

Example 1.6. Cyclotomic field $\mathbb{Q}(\zeta_n)$ with $\zeta_n = e^{\frac{2\pi i}{n}}$ $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$, the ring of integers of $\mathbb{Q}(\zeta_n)$ is $\mathbb{Z}[\zeta_n]$, for details see [3].

2. PRIME DECOMPOSITION

Theorem 2.1. Let S/R be a finite extension of Dedekind domains with fractional fields L/K, \mathfrak{p} be nonzero prime ideal of R, writing $\mathfrak{p}S = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g}$ with $e_i \ge 1$, $f_i = [S/\mathfrak{P}_i : R/\mathfrak{p}]$, then $\sum_{i=1}^g e_i f_i = [L : K]$.

Proof. We have $S/\mathfrak{p}S = S/\mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g} \simeq S/\mathfrak{P}_1^{e_1} \times \cdots \times S/\mathfrak{P}_g^{e_g}$. Consider S/\mathfrak{P}^e , $f = [S/\mathfrak{P} : R/\mathfrak{p}], \mathfrak{P}^i/\mathfrak{P}^{i+1}$ is a S/\mathfrak{P} -vector space, there is no ideal between \mathfrak{P}^i and \mathfrak{P}^{i+1} , so $\mathfrak{P}^i/\mathfrak{P}^{i+1}$ has no proper submodule, hence $\dim_{S/\mathfrak{P}}\mathfrak{P}^i/\mathfrak{P}^{i+1} = 1$, $\dim_{R/\mathfrak{p}}\mathfrak{P}^i/\mathfrak{P}^{i+1} = f$. $0 \subseteq \mathfrak{P}^{e-1}/\mathfrak{P}^e \subseteq \mathfrak{P}^{e-2}/\mathfrak{P}^e \subseteq \cdots \subseteq \mathfrak{P}/\mathfrak{P}^e \subseteq S/\mathfrak{P}^e$ is a chain of R/\mathfrak{p} -vector spaces with $\frac{\mathfrak{P}^i/\mathfrak{P}^e}{\mathfrak{P}^{i+1}/\mathfrak{P}^e} \simeq \mathfrak{P}^i/\mathfrak{P}^{i+1}$, therefore $\dim_{R/\mathfrak{p}}S/\mathfrak{P}^e = ef$, $\dim_{R/\mathfrak{p}}S/\mathfrak{P}_1^{e_1}\cdots \mathfrak{P}_g^{e_g} = \sum e_i f_i$.

S is a finitely generated R-module and S is torsion-free for $S \subseteq L$, so by the structure theorem $S = Rx_1 \oplus \cdots \oplus Rx_{n-1} \oplus \mathfrak{a}x_n$, with \mathfrak{a} an ideal of R, by tensor-ing with K we obtain n = [L:K]. Now $\mathfrak{p}S = \mathfrak{p}x_1 \oplus \cdots \oplus \mathfrak{p}x_{n-1} \oplus \mathfrak{p}\mathfrak{a}x_n$, $S/\mathfrak{p}S \simeq (R/\mathfrak{p})^{n-1} \oplus \mathfrak{a}/\mathfrak{p}\mathfrak{a} \simeq (R/\mathfrak{p})^n$ as R/\mathfrak{p} -vector space, $\dim_{R/\mathfrak{p}}S/\mathfrak{p}S = n$. Therefore $[L:K] = n = \sum e_i f_i$.

Remark 2.2. In deed, we just dealt with the fibre of the point \mathfrak{p} , hence the problem is local. We can treat it "near" \mathfrak{p} , that is localization at \mathfrak{p} , this process will not change e and f, and we can proof the theorem by using the structure theorem of finitely generated modules over P.I.D instead of that over Dedekind domain.

Theorem 2.3. Let S/R be a finite extension of Dedekind domains with fractional fields L/K. If $L = K(\alpha)$ with $\alpha \in S$, whose minimal polynomial over Kis $F(X) \in R[X]$, and \mathfrak{p} is a nonzero prime ideal of R. Assume that $\mathfrak{p}S \cap R[\alpha] = \mathfrak{p}R[\alpha]$. $\overline{F}(X) = \overline{F}_1(X)^{e_1} \cdots \overline{F}_g(X)^{e_g}$ in $R/\mathfrak{p}[X]$ where $F_i(X) \in R[X]$ is monic such that $\overline{F}_i(X) \in R[X]$ is irreducible. Set $f_i = \deg F_i$ and $\mathfrak{P}_i = (\mathfrak{p}, F_i(\alpha))$, then $\mathfrak{p}S = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_q^{e_g}$ with $f_i = [S/\mathfrak{P}_i : R/\mathfrak{p}]$.

Proof. Denote R/\mathfrak{p} by k. Note that $R[X]/(F) \simeq R[\alpha]$, tensor with $k = R/\mathfrak{p}$, we obtain $k[X]/(\bar{F}) \simeq R/\mathfrak{p} \otimes_R R[\alpha] \simeq R[\alpha]/\mathfrak{p}[\alpha] = R[\alpha]/\mathfrak{p}S \cap R[\alpha]$.

We observe that the kernel of $R[\alpha] \to S/\mathfrak{p}S$ is $\mathfrak{p}S \cap R[\alpha] = \mathfrak{p}R[\alpha]$, hence induces an injection $R[\alpha]/\mathfrak{p}R[\alpha] \to S/\mathfrak{p}S$, we claim that it is an isomorphism. In deed, $\dim_{R/\mathfrak{p}}S/\mathfrak{p}S = [L:K]$ by the previous theorem. Note that $R[\alpha] \subseteq L$ is a finitely generated torsion-free *R*-module, the structure theorem of finitely generated modules over Dedekind domain implies $R[\alpha] \simeq \mathfrak{a}_1 x_1 \oplus \cdots \oplus \mathfrak{a}_n x_n$ with \mathfrak{a}_i ideals of R, $n = [K(\alpha) : K] = [L : K]$. $R[\alpha]/\mathfrak{p}R[\alpha] \simeq \mathfrak{a}_1/\mathfrak{p}a_1 \oplus$ $\cdots \oplus \mathfrak{a}_n/\mathfrak{p}a_n \simeq R/\mathfrak{p} \oplus \cdots \oplus R/\mathfrak{p}$ hence is of dimension n as R/\mathfrak{p} -vector space. $R[\alpha]/\mathfrak{p}R[\alpha] \to S/\mathfrak{p}S$ must be surjective, hence isomorphic. So we obtain $\phi: k[X]/(\bar{F}) \to S/\mathfrak{p}S; G + (\bar{F}) \mapsto G(\alpha) + \mathfrak{p}S$ as ring isomorphism.

{maximal ideal of S that divides $\mathfrak{p}S$ } $\stackrel{1:1}{\longleftrightarrow}$ {maximal ideal of S containing $\mathfrak{p}S$ } $\stackrel{1:1}{\longleftrightarrow}$ {maximal ideal of $S/\mathfrak{p}S$ } $\stackrel{1:1}{\longleftrightarrow}$ {maximal ideal of $k[X]/(\bar{F})$ } $\stackrel{1:1}{\longleftrightarrow}$ {maximal ideal of k[X] containing (\bar{F}) } $\stackrel{1:1}{\longleftrightarrow}$ {maximal ideal of k[X] containing (\bar{F}) } $\stackrel{1:1}{\longleftrightarrow}$ {irreducible polynomial of k[X] that divides \bar{F} }, this is just $\bar{F}_i \stackrel{1:1}{\longleftrightarrow} (F_i(\alpha), \mathfrak{p}) = \mathfrak{P}_i$ by the definition of ϕ . So we have $\mathfrak{p}S = \mathfrak{P}_1^{t_1} \cdots \mathfrak{P}_g^{t_g}$.

Note that $\overline{F} = \overline{F}_1^{e_1} \cdots \overline{F}_g^{e_g}$, $\overline{F}_1^{e_1} \cdots \overline{F}_g^{e_g} = 0$ in $k[X]/(\overline{F})$, so $\mathfrak{p}S = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g} = 0$ in $S/\mathfrak{p}S$, so $\mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g} \subseteq \mathfrak{p}S = \mathfrak{P}_1^{t_1} \cdots \mathfrak{P}_g^{t_g}$, hence $e_i \geq t_i$ by localizing S at \mathfrak{P}_i . Conversely, $\mathfrak{p}S = \mathfrak{P}_1^{t_1} \cdots \mathfrak{P}_g^{t_g}$, that is $\mathfrak{P}_1^{t_1} \cdots \mathfrak{P}_g^{t_g} = 0$ in $S/\mathfrak{p}S$ so $\overline{F}_1^{t_1} \cdots \overline{F}_g^{t_g} = 0$ in $k[X]/(\overline{F})$, $\overline{F} \mid \overline{F}_1^{t_1} \cdots \overline{F}_g^{t_g}$, hence $e_i \leq t_i$. Therefore $\mathfrak{p}S = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g}$.

At last, we have to show that $f_i = [S/\mathfrak{P}_i : R/\mathfrak{p}]$. Consider $\pi : R[X] \to S/\mathfrak{P}_i; G \mapsto G(\alpha) + \mathfrak{P}_i, (\mathfrak{p}, F_i) \subseteq \ker \pi$ for $\mathfrak{P}_i = (F_i(\alpha), \mathfrak{p})$, this induces $\bar{\pi} : R[X]/(\mathfrak{p}, F_i) \to S/\mathfrak{P}_i$, and $R[X] \to k[X] \to k[X]/(\bar{F}_i)$ induces isomorphism $R[X]/(\mathfrak{p}, F_i) \xrightarrow{\sim} k[X]/(\bar{F}_i)$, therefore $R/\mathfrak{p} = k \to k[X] \to k[X]/(\bar{F}_i) \to S/\mathfrak{P}_i$ is a field extension. $f'_i = [S/P_i : R/\mathfrak{p}] \ge [k[X]/(\bar{F}_i) : R/\mathfrak{p}] = \deg F_i = f_i$, but we always have $\sum f'_i e_i = [L : K] = \deg F = \deg F = \sum e_i f_i$, hence $f_i = f'_i$, $f_i = [S/\mathfrak{P}_i : R/\mathfrak{p}]$. (a much simpler proof: $\phi : k[X]/(\bar{F}) \to S/\mathfrak{p}S$ is a k-algebra isomorphism with $\bar{F}_i \xleftarrow{1:1} (F_i(\alpha), \mathfrak{p}) = \mathfrak{P}_i$, hence the degree of residue field at corresponding closed points are the same, i.e. $f_i = f'_i$.)

Remark 2.4.

(1)We define $I = \{\beta \in S \mid \beta S \subseteq R[\alpha]\}$ to be the *conductor*, it is the maximum ideal of S contained in $R[\alpha]$. The geometric condition $I + \mathfrak{p}S = S$ implies $\mathfrak{p}S \cap R[\alpha] = \mathfrak{p}R[\alpha]$. In deed, $I + \mathfrak{p}S = S$ implies $I + \mathfrak{p}R[\alpha] = R[\alpha]$ (otherwise $I + \mathfrak{p}R[\alpha] \subseteq \mathfrak{m}$ maximal ideal in $R[\alpha]$, then $I \subseteq \mathfrak{m}S$ and $\mathfrak{p}S \subseteq \mathfrak{m}S$ with $\mathfrak{m}S \neq S$ since S is integral over $R[\alpha]$ and going-up theorem, this leads to a contradiction), then $\mathfrak{p}S \cap R[\alpha] = (I + \mathfrak{p}R[\alpha])(\mathfrak{p}S \cap R[\alpha]) \subseteq I(\mathfrak{p}S \cap R[\alpha]) + \mathfrak{p}R[\alpha] \subseteq I\mathfrak{p}S + \mathfrak{p}R[\alpha] \subseteq \mathfrak{p}I + \mathfrak{p}R[\alpha] \subseteq \mathfrak{p}R[\alpha]$ (remember that $I \subseteq R[\alpha]$).

(2) In number theory, for $R = \mathbb{Z}$, L/\mathbb{Q} number field, $S = O_L$ integral closure of \mathbb{Z} in L and p prime number in \mathbb{Z} . If $p \nmid [S : \mathbb{Z}[\alpha]]$, then $pS \cap \mathbb{Z}[\alpha] = p\mathbb{Z}[\alpha]$. In general $pS \cap \mathbb{Z}[\alpha] \supseteq p\mathbb{Z}[\alpha]$, and $[pS \cap \mathbb{Z}[\alpha] : p\mathbb{Z}[\alpha]]$ divides $[pS : p\mathbb{Z}[\alpha]] =$ $[S : \mathbb{Z}[\alpha]]$ and $[\mathbb{Z}[\alpha] : p\mathbb{Z}[\alpha]] =$ some power of p, hence $[pS \cap \mathbb{Z}[\alpha] : p\mathbb{Z}[\alpha]] = 1$.

(3)Dedekind showed that there exist some ring of integers O such that for some p one cannot find α satisfying $p \mid [O : \mathbb{Z}[\alpha]]$.

Example 2.5. Consider the prime decomposition of quadratic fields. For $\mathbb{Q}(\sqrt{d})$ with d square-free we know that $S = \begin{cases} \mathbb{Z}[\sqrt{d}] &, \text{ if } d \equiv 2, 3(mod4), \\ \mathbb{Z}[\frac{\sqrt{d}+1}{2}] &, \text{ if } d \equiv 1(mod4) \end{cases}$

 $\begin{array}{l} (1)d\equiv 2,3(mod4)\text{, we choose }\alpha=\sqrt{d}\text{ with minimal polynomial }x^2-d\text{. Consider }x^2-d\equiv 0(modp)\text{, if }(\frac{d}{p})=1\text{ then }pS= \left\{ \begin{array}{cc} (p,c+\sqrt{d})^2 &, \quad \text{if }p=2\\ (p,c+\sqrt{d})(p,c-\sqrt{d}) &, \quad \text{if }p\neq 2\\ \text{with }d=c^2(modp)\text{, if }(\frac{d}{p})=-1\text{, then }pS\text{ is still a prime ideal, if }p\mid d\text{, then }pS=(p,\sqrt{d})^2. \end{array} \right.$

$$(2)d \equiv 1(mod4), \text{ we can also choose } \alpha = \sqrt{d}, \text{ in this case } [S : \mathbb{Z}[\sqrt{d}]] = 2.$$

If $p \neq 2, pS = \begin{cases} (\mathfrak{p}, c + \sqrt{d})(\mathfrak{p}, c - \sqrt{d}) &, \text{ if } (\frac{d}{p}) = 1\\ \text{ still prime }, \text{ if } (\frac{d}{p}) = -1 \end{cases}$ with $d = c^2(modp).$

If p = 2, we should choose $\alpha = \frac{\sqrt{d+1}}{2}$, consider $x^2 - x + \frac{1-d}{4} \equiv 0 \pmod{2}$ $d = 1(\mod 8) \iff x^2 - x + \frac{1-d}{4} \equiv (x-1)x(\mod 2); d = 5(\mod 8) \iff x^2 - x + \frac{1-d}{4} \pmod{2}$ is irreducible. $pS = \begin{cases} (p, \sqrt{d})(p, \sqrt{d} - 1) &, & \text{if } d \equiv 1 \pmod{8} \\ & \text{still prime} &, & \text{if } d \equiv 5 \pmod{8} \end{cases}$

Example 2.6.

 $\mathbb{Z}[\zeta_5] = \mathbb{Z}[\zeta_5 - 1]$ is the ring of integers of $\mathbb{Q}(\zeta_5)$, the minimal polynomial of $\zeta_5 - 1$ is $x^4 + 5x^3 + 10x^2 + 10x + 5$, hence $5\mathbb{Z}[\zeta_5] = (5, \zeta_5 - 1)^4$, in general, $p\mathbb{Z}[\zeta_p] = (p, \zeta_p - 1)^{p-1}$ for prime number p.

Example 2.7 (Eisenstein extension).

Let R be a Dedekind domain, \mathfrak{p} be a nonzero prime ideal of R, for $a \in R$ we define $ord_{\mathfrak{p}}(a) = ord_{\mathfrak{p}}(aR)$.

First we note that

(*) if $a_1 + \cdots + a_t = 0$ with $a_i \in R$ then the minimum value of $ord_{\mathfrak{p}}(a_i)$ must be attained for at least two i's.

Now assume that R is a Dedekind domain with fractional field K, $f = X^n + a_1 X^{n-1} + \cdots + a_n \in R[X]$ is an Eisenstein polynomial for \mathfrak{p} nonzero ideal of R(i.e. $ord_{\mathfrak{p}}(a_i) \geq 1$, $ord_{\mathfrak{p}}(a_n) = 1$). Let α be a root of f, S be integral closure of R in $K(\alpha)$. Then $\alpha \in S$ and $\mathfrak{p}S = \mathfrak{P}^e \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_t^{e_t}$ with $e \leq [K(\alpha) : K] = m \leq n$.

$$\begin{cases} 0 = \alpha^n + a_1 \alpha^{n-1} + \dots + a_n \\ ord_{\mathfrak{P}}(\alpha^n) = nord_{\mathfrak{P}}(\alpha) \\ ord_{\mathfrak{P}}(a_i \alpha^{n-i}) \ge (n-i)ord_{\mathfrak{P}}(\alpha) + e, (1 \le i < n) \\ ord_{\mathfrak{P}}(a_n) = e \end{cases}$$

By (*), we have $ord_{\mathfrak{P}}(\alpha^n) \geq 1$, $ord_{\mathfrak{P}}(\alpha) \geq 1$. Again by (*), the minimum value must be e and $ord_{\mathfrak{P}}(\alpha^n) = e \leq m \leq n$. Hence $ord_{\mathfrak{P}}(\alpha) = 1, n = m = e$, and $\mathfrak{p}S = \mathfrak{P}^e$ since $m = ef + e_1f_1 + \cdots + e_tf_t$. $ord_{\mathfrak{P}}(\alpha) = 1$ also implies that $(\mathfrak{p}, \alpha) = \mathfrak{p}S + \alpha S = \mathfrak{P}^e + \mathfrak{P}^1\mathfrak{P}_1^{s_1}\cdots\mathfrak{P}_t^{s_t} = \mathfrak{P}$.

Conversely, assume [K : L] = m, S is the integral closure of R in L, \mathfrak{p} is a nonzero ideal of $R, \mathfrak{p}S = \mathfrak{P}^m, \alpha \in S$ and $ord_{\mathfrak{P}}(\alpha) = 1$. Let $f = X^n + a_1 X^{n-1} + \cdots + a_n \in R[X]$ be the minimal polynomial of α over K, so $n \leq [L : K] = m$

$$\begin{cases} 0 = \alpha^n + a_1 \alpha^{n-1} + \dots + a_n \\ ord_{\mathfrak{P}}(\alpha^n) = nord_{\mathfrak{P}}(\alpha) = n \le m \\ ord_{\mathfrak{P}}(a_i \alpha^{n-i}) = n - i + ord_{\mathfrak{P}}(a_i) = n - i + mord_{\mathfrak{p}}(a_i), (1 \le i < n) \\ ord_{\mathfrak{P}}(a_n) = mord_{\mathfrak{p}}(a_n) \end{cases}$$

Note that $m \ge n, 1 \le i < n, ord_{\mathfrak{P}}(a_i\alpha^{n-i})$ cannot equal to each other for different i (**). (*) implies $ord_{\mathfrak{P}}(a_n) > 0$, then $ord_{\mathfrak{p}}(a_n) \ge 1$, $ord_{\mathfrak{P}}(a_n) \ge m$. If $ord_{\mathfrak{p}}(a_n) > 1$ we obtain a contradiction by (*) and (**), so $ord_{\mathfrak{p}}(a_n) = 1$. Similarly, m > n also implies contradiction, so m = n. Hence the minimum value must be m, $ord_{\mathfrak{p}}(a_i) > 0$, $(1 \le i < n)$, f is Eisenstein polynomial, and $[K(\alpha): K] = n = m = [L:K], L = K(\alpha)$.

Remark 2.8. In the example above, it is not necessary that $S = R[\alpha]$, if so the decomposition of \mathfrak{p} follows directly from the previous theorem. For example, $\mathbb{Q}(\sqrt{5})/\mathbb{Q}, \mathbb{Z}[\frac{1+\sqrt{5}}{2}] \supseteq \mathbb{Z}[\sqrt{5}] \supseteq \mathbb{Z}$ with $\alpha = \sqrt{5}$.

References

- [1] J.S.Milne. Algebraic Number Theory.
- [2] K.Q.Feng. Basic Commutative Algebra. publisher: forgotten, Chinese edition.
- [3] L.C.Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, 1996.

INSTITUTE OF MATHEMATICS, ACADEMY OF MATHEMATICS AND SYSTEM SCIENCES, CHINESE ACADEMY OF SCIENCES

E-mail address: yongqi_liang@amss.ac.cn