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1. Extension of Dedekind Domains

Lemma 1.1. Let R be a Noetherian one dimensional domain with fractional
field K, S be the integral closure of R in K. Then for any nonzero ideal a of
R, S/aS is a finitely generated R-module.

Proof. See Prof. Y.Tian’s lecture notes. ¤
Proposition 1.2. Let R be a Dedekind domain with fractional field K, L/K
be finite extension of fields, S be the integral closure of R in L, then S is
Dedekind domain.

Proof. See Prof. Y.Tian’s lecture notes. ¤
Remark 1.3. In [2], another proof of this proposition is given by discussing
purely inseparable extension. For example the integral closure of Fp[t] in
Fp( p

√
t) is Fp[ p

√
t] which is Dedekind domain.

Corollary 1.4. If L/K is separable, b is an ideal of S, then b ' Rn−1 ⊕ a
as R-module with a nonzero ideal of R. Moreover if Cl(K) is trivial, then
b ' Rn (i.e. Integral basis theorem holds for L/K).

Proof. We have shown that S is a finitely generated R-module, so is b since
R is Noetherian. By the structure theorem of finitely generated modules over
Dedekind domain, we only need to show that b is of “rank” n = [L : K].
Choose 0 6= x1 ∈ b, and let {x1, · · · , xn} be basis of L over K. Then for i ≥ 2,
xi = lix1 ∈ b with li ∈ L, there exists ai ∈ R such that aili is integral over
R, hence in S, then aixi = ailix1 ∈ b, {x1, a2x2, · · · , anxn} is also a basis of
L over K, hence b is of “rank” n as R-module. (a much simpler proof: take
a ∈ I then aS ⊆ I, so I must be of “rank” n.) ¤
Example 1.5. We consider the quadratic number fieldQ(

√
d)/Q (with d square-

free) and S be the ring of integers of Q(
√

d), then S = Z[α] = Z⊕ Zα where

α =

{ √
d , if d ≡ 2, 3(mod4),√

d+1
2 , if d ≡ 1(mod4)

In fact, it is easy to see that S ⊇ Z[α]

since in each case α is integral over Z. Conversely, let β ∈ S, then β = u+v
√

d
with u, v ∈ Q. If v = 0, β = u ∈ Q is integral over Z, which implies u ∈ Z and
β ∈ Z[α]. If v 6= 0, the minimal polynomial of β over Q is x2 + ax + b with
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a, b ∈ Z, then u + v
√

d = β = −a
2 ± 1

2

√
a2 − 4b, therefore (*) a2 − 4b = t2d

with t ∈ Z. If d ≡ 1(mod4), u, v ∈ Z1
2 , β ∈ Z[α], S = Z[α]. If d ≡ 2, 3(mod4),

we have 2 | a by (*), hence u, v ∈ Z and S = Z[α].

Example 1.6. Cyclotomic field Q(ζn) with ζn = e
2πi
n

[Q(ζn) : Q] = ϕ(n), the ring of integers of Q(ζn) is Z[ζn], for details see [3].

2. Prime Decomposition

Theorem 2.1. Let S/R be a finite extension of Dedekind domains with frac-
tional fields L/K, p be nonzero prime ideal of R, writing pS = Pe1

1 · · ·Peg
g

with ei ≥ 1, fi = [S/Pi : R/p], then
∑g

i=1 eifi = [L : K].

Proof. We have S/pS = S/Pe1
1 · · ·Peg

g ' S/Pe1
1 ×· · ·×S/P

eg
g . Consider S/Pe,

f = [S/P : R/p], Pi/Pi+1 is a S/P-vector space, there is no ideal between Pi

and Pi+1, so Pi/Pi+1 has no proper submodule, hence dimS/PPi/Pi+1 = 1,
dimR/pP

i/Pi+1 = f . 0 ⊆ Pe−1/Pe ⊆ Pe−2/Pe ⊆ · · · ⊆ P/Pe ⊆ S/Pe is a

chain of R/p-vector spaces with Pi/Pe

Pi+1/Pe ' Pi/Pi+1, therefore dimR/pS/Pe =
ef , dimR/pS/Pe1

1 · · ·Peg
g =

∑
eifi.

S is a finitely generated R-module and S is torsion-free for S ⊆ L, so by
the structure theorem S = Rx1 ⊕ · · · ⊕Rxn−1 ⊕ axn, with a an ideal of R, by
tensor-ing with K we obtain n = [L : K]. Now pS = px1⊕· · ·⊕ pxn−1⊕ paxn,
S/pS ' (R/p)n−1 ⊕ a/pa ' (R/p)n as R/p-vector space, dimR/pS/pS = n.
Therefore [L : K] = n =

∑
eifi.

¤
Remark 2.2. In deed, we just dealt with the fibre of the point p, hence the
problem is local. We can treat it “near” p, that is localization at p, this process
will not change e and f , and we can proof the theorem by using the structure
theorem of finitely generated modules over P.I.D instead of that over Dedekind
domain.

Theorem 2.3. Let S/R be a finite extension of Dedekind domains with frac-
tional fields L/K. If L = K(α) with α ∈ S, whose minimal polynomial over K
is F (X) ∈ R[X], and p is a nonzero prime ideal of R. Assume that pS∩R[α] =
pR[α]. F̄ (X) = F̄1(X)e1 · · · F̄g(X)eg in R/p[X] where Fi(X) ∈ R[X] is monic
such that F̄i(X) ∈ R[X] is irreducible. Set fi = degFi and Pi = (p, Fi(α)),
then pS = Pe1

1 · · ·Peg
g with fi = [S/Pi : R/p].

Proof. Denote R/p by k. Note that R[X]/(F ) ' R[α], tensor with k = R/p,
we obtain k[X]/(F̄ ) ' R/p⊗R R[α] ' R[α]/p[α] = R[α]/pS ∩R[α].

We observe that the kernel of R[α] → S/pS is pS ∩ R[α] = pR[α], hence
induces an injection R[α]/pR[α] → S/pS, we claim that it is an isomorphism.
In deed, dimR/pS/pS = [L : K] by the previous theorem. Note that R[α] ⊆ L
is a finitely generated torsion-free R-module, the structure theorem of finitely
generated modules over Dedekind domain implies R[α] ' a1x1 ⊕ · · · ⊕ anxn

with ai ideals of R, n = [K(α) : K] = [L : K]. R[α]/pR[α] ' a1/pa1 ⊕
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· · · ⊕ an/pan ' R/p⊕ · · · ⊕R/p hence is of dimension n as R/p-vector space.
R[α]/pR[α] → S/pS must be surjective, hence isomorphic. So we obtain
φ : k[X]/(F̄ ) → S/pS;G + (F̄ ) 7→ G(α) + pS as ring isomorphism.

{maximal ideal of S that divides pS} 1:1←→{maximal ideal of S containing
pS} 1:1←→{maximal ideal of S/pS} 1:1←→{maximal ideal of k[X]/(F̄ )} 1:1←→{maximal
ideal of k[X] containing (F̄ )} 1:1←→{irreducible polynomial of k[X] that divides
F̄}, this is just F̄i

1:1←→ (Fi(α), p) = Pi by the definition of φ. So we have
pS = Pt1

1 · · ·Ptg
g .

Note that F̄ = F̄ e1
1 · · · F̄ eg

g , F̄ e1
1 · · · F̄ eg

g = 0 in k[X]/(F̄ ), so pS = Pe1
1 · · ·Peg

g =
0 in S/pS, so Pe1

1 · · ·Peg
g ⊆ pS = Pt1

1 · · ·Ptg
g , hence ei ≥ ti by localiz-

ing S at Pi. Conversely, pS = Pt1
1 · · ·Ptg

g , that is Pt1
1 · · ·Ptg

g = 0 in S/pS

so F̄ t1
1 · · · F̄ tg

g = 0 in k[X]/(F̄ ), F̄ | F̄ t1
1 · · · F̄ tg

g , hence ei ≤ ti. Therefore
pS = Pe1

1 · · ·Peg
g .

At last, we have to show that fi = [S/Pi : R/p]. Consider π : R[X] →
S/Pi;G 7→ G(α) + Pi, (p, Fi) ⊆ kerπ for Pi = (Fi(α), p), this induces π̄ :
R[X]/(p, Fi) → S/Pi, and R[X] → k[X] → k[X]/(F̄i) induces isomorphism
R[X]/(p, Fi)

'→ k[X]/(F̄i), therefore R/p = k → k[X] → k[X]/(F̄i) → S/Pi

is a field extension. f ′i = [S/Pi : R/p] ≥ [k[X]/(F̄i) : R/p] = degF̄i = fi, but
we always have

∑
f ′iei = [L : K] = degF = degF̄ =

∑
eifi, hence fi = f ′i ,

fi = [S/Pi : R/p]. (a much simpler proof: φ : k[X]/(F̄ ) → S/pS is a k-algebra
isomorphism with F̄i

1:1←→ (Fi(α), p) = Pi, hence the degree of residue field at
corresponding closed points are the same, i.e. fi = f ′i .)

¤
Remark 2.4.

(1)We define I = {β ∈ S | βS ⊆ R[α]} to be the conductor, it is the
maximum ideal of S contained in R[α]. The geometric condition I + pS =
S implies pS ∩ R[α] = pR[α]. In deed, I + pS = S implies I + pR[α] =
R[α](otherwise I + pR[α] ⊆ m maximal ideal in R[α], then I ⊆ mS and
pS ⊆ mS with mS 6= S since S is integral over R[α] and going-up theorem,
this leads to a contradiction), then pS ∩ R[α] = (I + pR[α])(pS ∩ R[α]) ⊆
I(pS ∩ R[α]) + pR[α] ⊆ IpS + pR[α] ⊆ pI + pR[α] ⊆ pR[α] (remember that
I ⊆ R[α]).

(2)In number theory, for R = Z, L/Q number field, S = OL integral closure
of Z in L and p prime number in Z. If p - [S : Z[α]], then pS ∩ Z[α] = pZ[α].
In general pS ∩ Z[α] ⊇ pZ[α], and [pS ∩ Z[α] : pZ[α]] divides [pS : pZ[α]] =
[S : Z[α]] and [Z[α] : pZ[α]] = some power of p, hence [pS ∩ Z[α] : pZ[α]] = 1.

(3)Dedekind showed that there exist some ring of integers O such that for
some p one cannot find α satisfying p | [O : Z[α]].

Example 2.5. Consider the prime decomposition of quadratic fields. ForQ(
√

d)

with d square-free we know that S =

{
Z[
√

d] , if d ≡ 2, 3(mod4),
Z[
√

d+1
2 ] , if d ≡ 1(mod4)
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(1)d ≡ 2, 3(mod4), we choose α =
√

d with minimal polynomial x2−d. Con-

sider x2−d ≡ 0(modp), if (d
p) = 1 then pS =

{
(p, c +

√
d)2 , if p=2

(p, c +
√

d)(p, c−
√

d) , if p 6= 2
with d = c2(modp), if (d

p) = −1, then pS is still a prime ideal, if p | d, then
pS = (p,

√
d)2.

(2)d ≡ 1(mod4), we can also choose α =
√

d, in this case [S : Z[
√

d]] = 2.

If p 6= 2, pS =

{
(p, c +

√
d)(p, c−

√
d) , if (d

p) = 1
still prime , if (d

p) = −1
with d = c2(modp).

If p = 2, we should choose α =
√

d+1
2 , consider x2 − x + 1−d

4 ≡ 0(mod2)
d = 1(mod8) ⇐⇒ x2 − x + 1−d

4 ≡ (x− 1)x(mod2); d = 5(mod8) ⇐⇒ x2 − x +

1−d
4 (mod2) is irreducible. pS =

{
(p,
√

d)(p,
√

d− 1) , if d ≡ 1(mod8)
still prime , if d ≡ 5(mod8)

Example 2.6.

Z[ζ5] = Z[ζ5 − 1] is the ring of integers of Q(ζ5), the minimal polynomial
of ζ5 − 1 is x4 + 5x3 + 10x2 + 10x + 5, hence 5Z[ζ5] = (5, ζ5 − 1)4, in general,
pZ[ζp] = (p, ζp − 1)p−1 for prime number p.

Example 2.7 (Eisenstein extension).

Let R be a Dedekind domain, p be a nonzero prime ideal of R, for a ∈ R
we define ordp(a) = ordp(aR).

First we note that

(*) if a1 + · · · + at = 0 with ai ∈ R then the minimum value of ordp(ai)
must be attained for at least two i’s.

Now assume that R is a Dedekind domain with fractional field K, f =
Xn + a1X

n−1 + · · · + an ∈ R[X] is an Eisenstein polynomial for p nonzero
ideal of R(i.e. ordp(ai) ≥ 1, ordp(an) = 1). Let α be a root of f , S be
integral closure of R in K(α). Then α ∈ S and pS = PePe1

1 · · ·Pet
t with

e ≤ [K(α) : K] = m ≤ n.





0 = αn + a1α
n−1 + · · ·+ an

ordP(αn) = nordP(α)
ordP(aiα

n−i) ≥ (n− i)ordP(α) + e, (1 ≤ i < n)
ordP(an) = e

By (*), we have ordP(αn) ≥ 1, ordP(α) ≥ 1. Again by (*), the minimum
value must be e and ordP(αn) = e ≤ m ≤ n. Hence ordP(α) = 1, n = m = e,
and pS = Pe since m = ef + e1f1 + · · ·+ etft. ordP(α) = 1 also implies that
(p, α) = pS + αS = Pe + P1Ps1

1 · · ·Pst
t = P.

Conversely, assume [K : L] = m, S is the integral closure of R in L, p is a
nonzero ideal of R, pS = Pm, α ∈ S and ordP(α) = 1. Let f = Xn+a1X

n−1+
· · ·+ an ∈ R[X] be the minimal polynomial of α over K, so n ≤ [L : K] = m
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



0 = αn + a1α
n−1 + · · ·+ an

ordP(αn) = nordP(α) = n ≤ m
ordP(aiα

n−i) = n− i + ordP(ai) = n− i + mordp(ai), (1 ≤ i < n)
ordP(an) = mordp(an)

Note that m ≥ n, 1 ≤ i < n, ordP(aiα
n−i) cannot equal to each other for

different i (**). (*) implies ordP(an) > 0, then ordp(an) ≥ 1, ordP(an) ≥ m.
If ordp(an) > 1 we obtain a contradiction by (*) and (**), so ordp(an) = 1.
Similarly, m > n also implies contradiction, so m = n. Hence the minimum
value must be m, ordp(ai) > 0, (1 ≤ i < n), f is Eisenstein polynomial, and
[K(α) : K] = n = m = [L : K], L = K(α).

Remark 2.8. In the example above, it is not necessary that S = R[α], if so the
decomposition of p follows directly from the previous theorem. For example,
Q(
√

5)/Q,Z[1+
√

5
2 ] ) Z[

√
5] ⊇ Z with α =

√
5.
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