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Abstract

We present a proof of Fermi’s Golden rule from an educational perspective
without compromising formalism.
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1. Introduction

Fermi’s Golden Rule (also referred to as, the Golden Rule of time-dependent
perturbation theory) is an equation for calculating transition rates. The
result is obtained by applying the time-dependent perturbation theory to a
system that undergoes a transition from an initial state |i〉 to a final state
|f〉 that is part of a continuum of states.

The following sections provide the calculations and notions involved in
deriving the final equation, as well as some concluding remarks (synopsis).

2. Time dependent perturbation theory

For a great deal of problems the time-independent perturbation theory suf-
fices. Nevertheless, there are cases in which we want to study how systems
respond to imposed perturbations and then settle into stationary states after
an interval, in other words, study the transitions induced by a perturbation
between stationary states of the unperturbed system. In cases like these, we
use time-dependent perturbation theory to calculate, amongst other things,
transition probabilities.

We assume that the hamiltonian H of the system can be written in the
form:

H = H0 + W (t) (1)

where
,H0 is the hamiltonian of the unperturbed system
,W(t) is a perturbation applied to the system.

Since H0 is the unperturbed hamiltonian, the time independent Schrödinger
equation is satisfied:

H0|ϕn〉 = En|ϕn〉 (2)

The wavefunctions |ϕn〉 are related to the time-dependent unperturbed
wavefunctions by:

|ψn(t)〉 = |ϕn〉e−iEnt/h̄ (3)

The time dependent Schrödinger equation for the system is:

H|ψ(t)〉 = [H0 + W (t)]|ψ(t)〉 = ih̄
∂|ψ(t)〉

∂t
(4)

with the state of the system |ψ〉, at a time t, expressed as a linear combina-
tion of the {|ϕn〉} basis functions:

|ψ(t)〉 =
∑

n

cn(t)|ψn(t)〉 =
∑

n

cn(t)|ϕn〉e−iEnt/h̄ (5)
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We insert this relation in (4) and project the result on |ϕn〉 :

H0

∑

k

ck(t)|ϕk〉e−iEkt/h̄ + W (t)
∑

k

ck(t)|ϕk〉e−iEkt/h̄

= ih̄
∂

∂t

∑

k

ck(t)|ϕk〉e−iEkt/h̄ ⇒

∑

k

ck(t)Ek|ϕk〉e−iEkt/h̄ +
∑

k

ck(t)W (t)|ϕk〉e−iEkt/h̄

= ih̄
∑

k

∂ck(t)
∂t

|ϕk〉e−iEkt/h̄ + ih̄
∑

k

ck(t)|ϕk〉
(
− iEk

h̄

)
e−iEkt/h̄ ⇒

Encn(t)e−iEnt/h̄ +
∑

k

ck(t)Wnk(t)e−iEkt/h̄ = ih̄
∂cn(t)

∂t
e−iEnt/h̄ + Encn(t)e−iEnt/h̄ ⇒

∑

k

ck(t)Wnk(t)e−iEkt/h̄ = ih̄
∂cn(t)

∂t
e−iEnt/h̄ ⇒

∂cn(t)
∂t

=
1
ih̄

∑

k

ck(t)Wnk(t)eiωnkt (6)

where
,Wnk = 〈ϕn|W (t)|ϕk〉 , the perturbation matrix element
,ωnk = (En −Ek)/h̄

Up to this point we have made no approximation. The difficulty in
solving (6) arises from the fact that the coefficients are expressed in terms
of themselves. In order to evaluate the coefficients from (6) we make two
assumptions:

1. The system is initially in state |i〉, thus, all of the coefficients at t=0
are equal to zero, except for ci : cj(t = 0) = δij

2. The perturbation is very weak and applied for a short period of time,
such that all of the coefficients remain nearly unchanged.

With these in mind, (6) gives us:

∂cn(t)
∂t

=
1
ih̄

ci(t)Wni(t)eiωnit (7)

so for any final state the coefficient will be (cf (t) ≈ cf (0) = 0):
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cf (t) =
1
ih̄

∫ t

0
Wfi(t′)eiωfit

′
dt′ (8)

remarks

In order to derive (8) we forced all of the coefficients of the states to
remain virtually unchanged, at time t, from the values they initially had
(t=0). For that we must pay a price. Equation (8) holds only for perturba-
tions that last a very short period of time, i.e. that don’t have enough time
to significantly alter the state of the system.

Also, by zeroing out the coefficients of states in (6) we deprived the
system of any capability of reaching the final state by alternate routes, i.e.
only direct transitions from state |i〉 to |f〉 are possible.

We have extensively used frases that refer to transitions between eigen-
states of the unperturbed hamiltonian H0. Such frases are commonplace
in Quantum Mechanics literature1 but are also a point of much controversy
and discussions. The controversy has to do mainly with the interpretation
one gives to the mathematical results of Quantum Mechanics. As an ex-
ample of the situation a quotation is given from the very well known and
accepted book Quantum Mechanics, by L. E. Ballentine[5, p. 351] (who
supports[6] an interpretation for the wavefunction other than the orthodox
interpretation):

“When problems of this sort are discussed formally, it is com-
mon to speak of the perturbation as causing transitions between
the eigenstates H0. If this means only that the system has ab-
sorbed from the perturbing field (or emitted to it) the energy
difference h̄ωfi = εf − εi, and so has changed its energy, there
is no harm in such language. But if the statement is interpreted
to mean that the state has changed from its initial value of
|Ψ(0)〉 = |i〉 to a final value of |Ψ(T )〉 = |f〉, then it is incor-
rect.

. . .

If the state vector |Ψ〉 is of the form (5) it is correct to say
that the probability of the energy being εf is |cf |2. In the for-
mal notation this becomes Prob(E = εf |Ψ) = |αf |2, which is a
correct formula of quantum theory. But it is nonsense to speak
of the probability of the state being |f〉 when in fact the state is
|Ψ〉.”

The application of the perturbation changes the state of the system from
the initial state |ϕi〉 to a final state |ϕf 〉, both of which are eigenstates of

1This language is used by Cohen-Tannoudji, Atkins, Merzbacher [1, 2, 3, 4] and many
more.
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the unperturbed hamiltonian H0. The probability of finding the system in
the eigenstate |ϕf 〉 is:

Pif (t) = |〈ϕf |ψ(t)〉|2 (9)

Using (8) we have:

Pif (t) = 1
h̄2

∣∣∣∣
∫ t

0
eiωfit

′
Wfi(t′)dt′

∣∣∣∣
2

(10)

3. High frequency harmonic perturbation

The case of an oscillating (i.e. harmonic) perturbation is a most important
one. Once the effects of an oscillating perturbation are known then the gen-
eral case can be evaluated since an arbitrary perturbation can be expressed
as a superposition of harmonic functions. An example of an oscillating per-
turbation is an electromagnetic wave such as a laser pulse.

We define the oscillating perturbation having the form:

W (t) = 2Wcos(ωt) = W
(
eiωt + e−iωt

)
(11)

Inserting this in (8) we obtain:

cf (t) =
Wfi

ih̄

∫ t

0

(
eiωt′ + e−iωt′

)
eiωfit

′
dt′

=
Wfi

ih̄

{
ei(ωfi+ω)t − 1
i(ωfi + ω)

+
ei(ωfi−ω)t − 1
i(ωfi − ω)

}
(12)

Thus, equation (10) becomes:

Pif (t) =
W 2

fi

h̄2

∣∣∣∣∣
ei(ωfi+ω)t − 1
i(ωfi + ω)

+
ei(ωfi−ω)t − 1
i(ωfi − ω)

∣∣∣∣∣
2

(13)

At this point we make an approximation assuming that the oscillating
angular frequency of the perturbation has a value near the Bohr angular
frequency of |ϕi〉 and |ϕf 〉, ωfi:

ω ' ωfi

which can also be written:

|ω − ωfi| ¿ |ωfi|

With this approximation, the first term in equation (13) becomes negli-
gible compared to the second one. This is made obvious from the fact that
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the exponential factor (eix = cosx + isinx) cannot become greater than 1.
Thus, the prominent term is defined by the denominator. When ω ' ωfi

(usualy of high frequency ωfi ≈ 1015sec−1) the denominator of the second
term goes to zero (the situation is reversed when ω ' −ωfi, so we need not
examine this case separately).

The second term (also called the ”resonant term”) can be written:

A− =
ei(ωfi−ω)t − 1
i(ωfi − ω)

= ei(ωfi−ω)t/2 ei(ωfi−ω)t/2 − e−i(ωfi−ω)t/2

i(ωfi − ω)

= ei(ωfi−ω)t/2 sin[(ωfi − ω)t/2]
(ωfi − ω)/2

(14)

Thus, the probability becomes:

Pif (t) =
W 2

fi

h̄2

∣∣∣∣
sin[(ωfi − ω)t/2]

(ωfi − ω)/2

∣∣∣∣
2

(15)

and, by introducing the function F (t, ω − ωfi):

F (t, ω − ωfi) =
{

sin[(ωfi − ω)t/2]
(ωfi − ω)/2

}2

(16)

we obtain:

Pif (t) =
W 2

fi

h̄2 F (t, ω − ωfi) (17)

remarks

As we can see in the figure (1) the function F (t, ω) has a sharp peak
about the central angular frequency ω. Do to this behavior we say that F,
and thus the probability Pif (t; ω), shows a resonant nature. The distance
between the first two zeros are defined as the resonance width ∆ω. The area
underlined by Pif (t;ω) at this interval is over 95% of the total area. For
∆ω we have:

∆ω ' 4π

t
(18)

The function F (t, ω) appears in equation (17) with an offset. As a result,
the resonant point is located at ω = ωfi. The modulus of the resonant term
in equation (13), |A−|2, behaves in the same manner. In the antiresonant
case, |A+|2, the resonant point is located at ω = −ωfi. Placing both of
these functions on the same graph it becomes clear that the part of |A+|2
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Figure 1: The function F (t, ω) shows a resonant nature.

that reaches ωfi is the diffraction pattern (negligible). In view of this, the
resonant approximation is justified when |A+|2 and |A−|2 are far apart:

2|ωfi| À ∆ω (19)

and with (18), we obtain:

t À 1
|ωfi| '

1
ω

(20)

Another point noteworthy is the behavior of the probability function at
resonance. From equation (17) at the resonant frequency we have

Pif (t;ω = ωfi) =
W 2

fi

h̄2 t2 (21)

from which we acquire probability values greater than one for large values
of t. For this equation to have physical meaning the probability Pif must
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be less than 1, which we have when:

t ¿ h̄

|Wfi| (22)

and using, (20):

1
|ωfi| ¿

h̄

|Wfi| (23)

which we can read as: the matrix element of the perturbation must be much
smaller than the energy separation between the initial and final states.

4. Quantum jumps to the continuum

When the final state is part of a continuum of states (i.e. when the energy
belongs to a continuous part of the spectrum of H0) we must account for
all the states to which the system can jump to. This is done by integrating
the probability as given by equation (17) with the density of states ρ(E) as
weights:

P(t) =
∫

{Eacc}
Pif (t)ρ(E)dE (24)

,where {Eacc} denotes all the states that the system can jump to under
the influence of the perturbation.
(What we have actually done is create a probability density from the prob-
ability equation).

The probability function is sharply peaked at ω = ωfi and as a result
acts as a delta function in the integral and thus selects the value for the
density function at ω = ωfi. By substituting equation (17) in (24) we have:

P(t) =
∫

{Eacc}

W 2
fi

h̄2 F (t, ω − ωfi)ρ(E)dE

=
∫

{Eacc}

W 2
fi

h̄2

{
sin[(ωfi − ω)t/2]

(ωfi − ω)/2

}2

ρ(E)dE

as shown in the figure (2) the range of energies is very narrow and as
a result the matrix element Wfi and the density of states ρ(E) can be
considered as constant:
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Figure 2: The function F (t, ω) acts as a delta function.

P(t) =
W 2

fi

h̄2 ρ(Efi)
∫

{Eacc}

{
sin[(ωfi − ω)t/2]

(ωfi − ω)/2

}2

dE

=
W 2

fi

h̄2 ρ(Efi)
∫

{Eacc}

{
sin[(ωfi − ω)t/2]

(ωfi − ω)/2

}2

h̄dω

=
W 2

fi

h̄2 ρ(Efi)h̄
(

2
t

)
t2

∫ +∞

−∞

sin2x

x2
dx

where we substituted E = h̄ω, x = (ωfi − ω)t/2 and used the fact that
for frequencies far from ωfi the function sin2x/x2 is negligible so we can
extend the limits to infinity. The value for the integral is well known and
equal to π, thus we obtain:
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P(t) =
2π

h̄
W 2

fiρ(Efi)t (25)

The result is significant in that the probability has a linear dependence
in time. The transition rate is:

W =
dP(t)

dt
=

2π

h̄
W 2

fiρ(Efi) (26)

This result is known as Fermi’s Golden Rule. This equation states that
in order to calculate the transition rate all we have to do is multiply the
square modulus of the perturbation matrix element between the two states,
by the the density of states at the transition frequency.
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