
On the Verification of Strong Atomicity in Programs using STM

Yong Li1,2 Yu Zhang1,2 Yiyun Chen1,2 Ming Fu1,2

1Department of Computer Science & Technology 2Software Security Laboratory
University of Science & Technology of China Suzhou Institute for Advanced Study, USTC

Hefei, 230027,China SuZhou, 215123, China
{liyong, fuming}@mail.ustc.edu.cn {yuzhang, yiyun}@ustc.edu.cn

Abstract—Transactional memory (TM) provides an easy-
using and high-performance parallel programming model for
multicore systems. It simplifies parallel programming by sup-
porting that transactions appear to execute atomically and in
isolation. Despite the large amount of recent works on various
TM implementations, very little has been devoted to precisely
guarantee that these implementations have implemented the
atomicity and isolation properties. In previous work we have
proposed a framework on the correctness of STM programs by
formally certifying the shared memory invariant at assembly
level. Now the framework is extended and we certify the
strong atomicity property of programs using STM in this
paper. In particular, we formalize the strong atomicity as the
shared memory consistence of states in our model and use
a notion of “local guarantee” to check the shared memory
consistence for verification. Our work provides a foundation
for certifying realistic transactional programs and makes an
important advance toward generating proof-carrying code.

Keywords-transactional memory; strong atomicity; proof-
carrying code;

I. INTRODUCTION

The advent of multicore processors has brought concur-
rency into mainstream applications, however, it also brings
great challenges to programmers for the concurrency man-
agement. They traditionally used locks to enforce synchro-
nized concurrent memory accesses. However, locks are well-
known software engineering issues that make parallel pro-
gramming too complicated and may lead to problems such
as deadlock, priority inversion, or convoying. Transactional
memory provides an alternative concurrency management
model that avoids these pitfalls associated with locks and
significantly eases parallel programming.

TM simplifies concurrency management by supporting
parallel tasks that appear to execute atomically and in
isolation. In TM system, behavior of transactions must
satisfy the following properties: a) atomicity: either the
whole transaction executes or none of it; b) isolation: partial
memory updates are not visible to other transactions [1].

Transactions should be atomic and isolated with respect
to each other, but their relationship to non-transactional code
is less clear. There are two models of atomicity semantics:
strong atomicity semantics and weak atomicity semantics.
Strong atomicity semantics is a semantics in which transac-
tions are atomic and strongly isolated with respect both to

other transactional and non-transactional codes. In essence,
strong atomicity implicity treats each instruction appearing
outside transactions as its own singleton transaction. Weak
atomicity semantics is a semantics in which transactions
are atomic and weakly isolated only with respect to other
transactions.

There have been several proposals for supporting trans-
actional memory either by hardware [1], [2], [3] (HTM)
or software [5], [6], [7], [8] (STM) with both approaches
having their pros and cons. HTM provides a significant
performance advantage, and enforces the strong atomicity
semantics. However, HTM requires complicated hardware
support and usually restricts the size of transactional code
blocks. STM can easily support unbounded transactions,
nested transactions with partial rollbacks, and conditional
signaling [9]. However, STM lacks for performance so prior
STM systems mostly implement weak atomicity, in which
non-transactional codes go directly to shared memory and
bypass the STM access protocols.

In STM programming, programmers mark the regions that
should be executed atomically at high level; then the STM
compiler packages operations in the region with libraries and
translates to the low level. At the low level, not only the
well synchronized concurrent shared memory accesses, but
also the strong atomicity semantics must be well enforced in
program behaviors. In previous work [13] we have proposed
a framework for certifying concurrent programs using STM
at assembly level. In the framework we have modeled a
software implementation of TM system based on storable
locks and certified the shared memory invariant. It mainly
focuses on the correct shared memory accesses in and out of
transactions. However, the other significant properties such
as the strong atomicity behaviors are entirely overlooked. In
this paper, we attempt to extend our previous framework
by formally certifying the strong atomicity semantics in
concurrent programs using STM system. The atomicity and
strong isolation properties are formalized as the consistence
of visible shared memory between the beginning and the
time after rolling back of a transaction in the extended
framework. The consistence is certified by using a local
guarantee that describes valid shared memory transitions.
The local guarantees for the beginning and the time after
rolling back of a transaction are constant while the others

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSIRI.2009.8

117



Initially x=0
Thread 1 Thread 2

atomic{
x = 1; r = x;
x = 2;

}
can r==1?

(a) Single-lock STM

Initially x=0, y=0
Thread 1 Thread 2

atomic{
if (y==0) x = 1;

x = 2; y = 1;
/*abort*/

}
can x==0?

(b) Eager-versioning STM

Initially x=null, e.v=0
Thread 1 Thread 2

atomic{ r = -1;
e.v = 1; if (x != null)
x = e; r = x.v;

}
can r==0?

(c) Lazy-versioning STM

Figure 1. Anomalies on various STM implementations

between them can be generated automatically.
And just as most Foundational-PCC (FPCC) [19] systems,

we provide these certifications just at the assembly level in
the work. However, codes and specifications at high levels
can be translated to our level by a certifying compiler, even
taking the strong atomicity into consideration. In the transla-
tion, the certifying compiler initializes the local guarantees
for the beginning and the time after rolling back of each
transaction, then the others are generated automatically. And
due to the assembly level, the breakdown of strong atomicity
in objective codes caused by translation errors in compilation
can be rejected and the compiler can be excluded from the
trusted computing base. This paper makes the following
novel contributions:
• It presents a train of thought that translates the strong

atomicity in high level codes into the shared memory
consistence at assembly level by a certifying compiler.
Then we introduce local guarantees to certify the con-
sistence in the extended framework.

• It presents a new design of the program logic after the
added local guarantees in program specification. The
soundness of the extended framework has also been
proved.

• Our verification is fully mechanized in the Coq proof
assistant [14]. We follow the FPCC style to give the
soundness proof of the whole verification framework.

The rest of the paper is organized as follows. In section II
we characterize weak atomicity behaviors and analyze the
essence. In section III we summarize our previous frame-
work on formal reasoning about transactional programs.
Then the framework is extended with the atomicity proof
in section IV, presenting the strong atomicity is indeed
enforced in programs. We use an example to illustrate the
verification in section V. Finally, we discuss related work
and conclude in section VI.

II. WEAK ATOMICITY BEHAVIORS

Strong atomicity provides a simple and intuitive view
of transactional atomicity, which may be more difficult to
implement efficiently. In contrast, weak atomicity provides
a less intuitive model, but it may be easier to implement
efficiently so prior STM systems mostly implement it. Un-
der weak atomicity, there are many unexpected behaviors
between transactional and non-transactional codes accessing

the same shared data with at least one write access. In
Figure 1 we present three examples of isolation violation
for various STM implementations respectively.
• Single-lock STM: A transaction holds the global lock

before execution to prevent interleaves from other trans-
actions. Figure 1(a) illustrates an intermediate dirty read
where thread 2 may read the intermediate value 1 from
x. This intermediate dirty read may also exist in the
eager-versioning STM, but can not occur in the lazy-
versioning STM. In the single-lock STM system, there
exists a global lock used for synchronization between
transactions. However, non-transactional codes don’t
hold the global lock before accessing shared data, so
the anomaly happens.

• Eager-versioning STM [6], [7]: A transaction executes
as though no other transaction is interleaved. It writes
new values in place and logs old values, transaction can
retry, undo changes when commit failed. Figure 1(b) il-
lustrates a lost update where a non-transactional update
is lost due to a transaction’s rollback. Assume thread 1
executes first and updates x to 2, then thread 2 executes
and updates both x and y. Next transaction in thread 1
finds the happened conflict due to the modification of
y by thread 2. It rolls back and restores x’s value back
to 0 so thread 2’s update of x is lost.

• Lazy-versioning STM [8], [9]: Like eager-versioning
STM, but it leaves old values in place and buffers new
values. The new values will be updated on commit.
The two anomalies above can not occur here, but it
also has anomalies. Figure 1(c) illustrates overlapped
writes where the commit operation isn’t atomic to non-
transactional codes. Thread 1 initializes a field in the
object el and then publishes the object by writing it
to shared variable x. However, a lazy-versioning STM
copies buffered values to the shared memory in no
particular order. If thread 1 copies new value of x
to memory first, then thread 2 executes and sees the
published object in x but can not see the initialized
value of its field. So r==0 holds in that case.

From these three examples we see that weak atomicity
may lead to unexpected behaviors so it is important to
implement the strong atomicity semantics in STMs. These
anomalies of various STM systems we present above are all
between transactional and non-transactional codes for the

118



lack of synchronization of shared data. To enforce the iso-
lation property between transactional and non-transactional
codes, there must be some mechanism which prevents non-
transactional accessing when a shared memory update has
arisen but has not been commit in transaction. These mech-
anisms are bypassed in weak atomicity semantics due to
the performance while are required in the strong atomicity
semantics. Therefore, with strong atomicity semantics non-
transactional codes cannot observe the intermediate state of
transactions so these anomalies will not occur. Shpeisman et
al. [18] implement the strong atomicity by adding read and
write barriers in non-transactional codes. In our framework
described in next section, we modeled a software TM system
implementation based on storable locks. It uses storable
locks for synchronization of shared data both in and out
of transactions to implement the strong atomicity semantics.
And in section IV we use program logic for the verification
of atomicity property to ensure that programs have indeed
enforced the strong atomicity.

III. THE STM IMPLEMENTATION

In this section, we review our previous framework and
some key techniques used in the framework. It is at assembly
level for certifying safety properties in STM programs.
The whole framework contains two parts: abstract machine
model and program logic. Section III-A presents a simplified
STM system based on storable locks. Section III-B discusses
the program logic for proving the shared memory invariant.
The detailed presentation of the framework is in our latest
paper [13].

A. Abstract machine

(World) W ::= (C,M, [T1, . . . ,Tn])

(Thread) T ::= (R,pc,X)

(ThreadState) S ::= (M,R,pc,X)

(CodeHeap) C ::= {f ; ι}∗
(Memory) M,Hr ,Hw ∈ Address⇀Word

(RegFile) R ∈ Register→Word

(Register) r ::= r0 | . . . | r31

(Address) f,l,pc ::= i (nat nums)

(Word) w ::= i (nat nums)

(Status) U ::= act | cmt | abt

(Bstate) B ::= (R,pc)

(Xstate) X ::= ε | (Hr ,Hw,B,U)

(Instr) ι ::= . . . | cast rd ,rt ,w(rs) | lw rd ,w(rs)
| sw rd ,w(rs) | lwt rd ,w(rs) | swt rd ,w(rs)
| begin | validate rd | commit

(InstrSeq) I ::= ι;I | j f | rollback

(ProgSpec) φ ::= (m, [ψ1, . . . ,ψn])

(CdHpSpec) ψ ::= {l ; a}∗
(StatePred) a ∈ ThreadState→ Prop

(MemPred) m ∈ Memory→ Prop

Figure 2. Syntax and Verification Constructs

The syntax and verification constructs of the machine
is presented in Figure 2. A complete world consists of a
code heap C, a shared memory M and numbers of threads
made up of the register file R, the program counter pc and
transactional mechanism X. The transactional mechanism
is made up of a read set Hr, a write set Hw, a backup
file B and a transactional status U when in transaction.
We introduce three kinds of status act, cmt and abt for
transactions, denoting the various phases during the execu-
tion of a transaction. In status act, transaction reads data
from the shared memory, does some computation and then
buffers write attempts. Next if there are no conflicts, the
status of the transaction turns to cmt. Then the write buffers
commit and the transaction end. Otherwise the status of the
transaction turns to abt and the transaction rolls back. In this
model we use storable locks for synchronization of shared
memory among threads. The storable lock is implemented
by a non-reentrant spin-lock mutex which reserves a word
in memory to flag whether the mutex is locked or not. It
uses a cast instruction for locking while the normal write
instruction sw for unlocking. The locking behaviors are
limited in transactions. Locking instruction cast can only be
executed in status act while the unlocking instruction sw can
be anywhere. Once locking failed in transaction, the status
turns to abt and the transaction rolls back immediately.

The operational semantics of this model is presented in
Figure 3. It is a partial function Next(pc,ι) that computes
the next thread state of S performed by a given instruction
ι when executed from location pc. The macro Npc(pc,ι)
showed in Figure 4 is a total function that computes the pc
of next instruction to be executed after the current instruction
ι is completed.

if ι = then Npc(pc,ι)(M,R,pc,X) =

beq rs,rt ,f

{
f if R(rs) = R(rt )
pc+1 if R(rs) 6= R(rt )

bne rs,rt ,f

{
pc+1 if R(rs) = R(rt )
f if R(rs) 6= R(rt )

j f f

jr rs R(rs)
rollback X.B.pc
Others pc+1

Figure 4. Auxiliary NextPC Macro

B. Program logic

We equip this machine with a construct φ (Program
Specification) for expressing user-defined requirements. A
program specification is made up of a global invariant which
defines a criterion of the shared memory, and several code
heap specifications for threads. The program logic is a
combination of concurrent separation logic and permission
accounting in separation logic.

Concurrent separation logic (CSL) [10] is a well known
logic that provides a simple but powerful technique for
reasoning about shared memory concurrent programs. In

119



if ι = then Next(pc,ι)(M,R,pc,X) =
lw rd ,w(rs) (M,R{rd ;M(R(rs)+w)},pc+1,X) where R(rs)+w ∈ dom(M)
sw rd ,w(rs) (M{R(rs)+w ; R(rd)},R,pc+1,X) where R(rs)+w ∈ dom(M)
beq rs,rt ,f (M,R,f,X) if R(rs) = R(rt )

(M,R,pc+1,X) if R(rs) 6= R(rt )
bne rs,rt ,f (M,R,pc+1,X) if R(rs) = R(rt )

(M,R,f,X) if R(rs) 6= R(rt )
j f (M,R,f,X)
begin (M,R,pc+1,( /0, /0,(R,pc),act)) where X= ε
validate rd (M,R{rd ; 1},pc+1,(Hr ,Hw,B,cmt)) if X.Hr ⊆M∧X.U= act

(M,R{rd ; 0},pc+1,(Hr ,Hw,B,abt)) if X.Hr *M∧X.U= act
commit (M,R,pc+1,ε) where X.U= cmt
rollback (M,R′,pc′,ε) where X.U= abt∧X.B= (R′,pc′)
lwt rd ,w(rs) (M,R{rd ;Hw(R(rs)+w)},pc+1,X) if R(rs)+w ∈ dom(X.Hw);

(M,R{rd ;Hr(R(rs)+w)},pc+1,X) if R(rs)+w ∈ dom(X.Hr);
(M,R{rd ;M(R(rs)+w)},pc+1,

(Hr{R(rs)+w ;M(R(rs)+w)},Hw,B,U)) if R(rs)+w ∈ dom(M),where X 6= ε
swt rd ,w(rs) (M,R,pc+1,(Hr ,Hw{R(rs)+w ; R(rd)},B,U)) where X 6= ε
cast rd ,rt ,w(rs) (M{R(rs)+w ; R(rt )},R{rt ; R(rd)},pc+1,X) if R(rd) =M(R(rs)+w)∧X.U= act;

(M,R{rt ;M(R(rs)+w)},pc+1,(Hr ,Hw,B,abt)) if R(rd) 6=M(R(rs)+w)∧X.U= act;
where R(rd)+w ∈ dom(M)

Figure 3. Operational Semantics of the Machine

CSL, shared memory is partitioned and each part is protected
by a unique lock. For each part of the partitions, an invariant
is assigned to specify its well-formedness. When the lock
is acquired, the thread takes advantage of mutual-exclusion
provided by lock and treats the partial memory as private.
Before releasing the lock, it must ensure that the part of
memory is well-formed with regard to the corresponding
invariant. With CSL, shared memory accesses must be put
in conditional critical region to treat the part of memory as
private, both in and out of transactions, then those anomalies
in section II can not occur.

Permission Accounting in Separation Logic (PASL) [11]
is a lightweight logical approach to race-free sharing of
memory, based on the notion of permission to access. In
PASL each cell in the shared memory associates with a
permission set (zero and one in our model). A total permis-
sion (zero) can be split into two read-only permissions (one)
as needed. On lock acquiring, one part with the read-only
permission is moved to the thread’s private memory while
the other one is left in shared memory for other threads’
speculative reads. When updating, it first combines the
private memory with the shared memory to form a total
permission, then updates both parts.

By the program logic that incorporates CSL and PASL, we
can deal with speculative shared memory accesses in trans-
action. Our specification asserts the machine-level behavior
of the program and is general enough for various safety
requirements. Interested readers are referred to the previous
work [13] for a complete modeling of the framework and a
certified example.

IV. ATOMICITY PROOF

In this section, we extend our previous framework with
the formal atomicity proof to enforce strong atomicity. In the
previous work we mainly focus on the correct concurrent
shared memory accesses and certify the shared memory

invariant. However, the shared memory invariant is a well-
formed characterization of the shared memory but lacks the
ability for description of the relation between two different
states. So it is impossible to certify the strong atomicity in
our previous framework.

As we have mentioned, strong atomicity requires that
transactions are atomic and strongly isolated. First, we
formalize the atomicity property as the consistence of shared
memory between thread states of the beginning and the time
after rolling back of a transaction. Then aiming at the consis-
tence, we introduce local guarantees in the program spec-
ification to describe valid shared memory transitions. The
local guarantees for the beginning and the time after rolling
back of each transaction are generated by the certifying
compiler while the others can be generated automatically.
In the atomicity proof, it implicitly requires to restore the
modified data to previous state before the corresponding lock
releasing in status act or abt, which is exactly the strong
isolate property that we need.

By adding the local guarantee in the program specifi-
cations, the verification constructs and inference rules for
program logic have to be extended too.

A. Inference rule

Verification constructs for program logic of our extended
framework are introduced in Figure 5.

(WorldSpec) φ ::= (m, [ψ1, . . . ,ψn])

(CdHpSpec) ψ ::= {l ; (a,g)}∗
(StatePred) a ∈ ThreadState→ Prop

(Guarantee) g ∈ ThreadState→Memory→ Prop

(MemPred) m ∈ Memory→ Prop

(Interpa) [[−]]a ∈ StatePred×Guarantee→ StatePred

(Interpg) [[−]]g ∈ StatePred×Guarantee→ Guarantee

Figure 5. Verification Constructs for Program Logic

120



The whole world specification φ contains a global shared
memory invariant m and code heap specifications ψ1, . . . ,ψn
for each thread. Compared with Figure 2, the code heap
specification ψ here adds a guarantee g to each instruction
sequence. The local guarantee g, just as in CCAP [16] and
CMAP [17], describes valid shared memory transitions –
it is safe for the current transaction to roll back only after
making a memory transition allowed by g. Finally [[−]]a and
[[−]]g take out the state predicate and guarantee from the pair
(a,g) respectively.

The memory predicate m takes a style of PASL which is
shown in Figure 6.

m ::= l
u7−→v | emp | m1 ∗m2 | m1 ∧m2 | m1 ∨m2

∃x.m | ∀x.m

Figure 6. Permission Accounting in Separation Logic

a ::= ε | [m] | [m]r | [m]w | [r] = v | [r]b = v

| [pc] = v | [pc]b = v | U= act/cmt/abt

| a1 ∧a2 | a1 ∨a2 | ∃x. a | ∀x. a

ε def= λS. S.X= ε [r] = v
def= λS. S.R(r) = v

[m] def= λS. m S.M [r]b = v
def= λS. S.X.B.R(r) = v

[m]r
def= λS. m S.X.Hr [pc]b = v

def= λS. S.X.B.pc = v

[m]w
def= λS. m S.X.Hw [pc] = v

def= λS. S.pc = v

∃x. a def= λS. ∃x. a S a1 ∧a2
def= λS. a1S∧a2S

∀x. a def= λS. ∀x. a S a1 ∨a2
def= λS. a1S∨a2S

U= act/cmt/abt
def= λS. S.X.U= act/cmt/abt

Figure 7. Assertion Language for Thread State

The assertion language for thread state is presented in
Figure 7. To encode the specification and proofs, we take the
use of Coq [14] and the underlying CiC [15] for mechanical
verification. We encode the syntax using inductive defini-
tions, and define the operational semantics and inference
rules as a collection of relations.

We introduce some useful auxiliary definitions for pro-
gram logic in Figure 8. And the macro En (ι) for required
transactional status of each instruction ι is presented in
Figure 9. They are the same as ones in our previous paper.

a⇒ a′ def= ∀S. a S→ a′ S
Domeq MM′ def= ∀l. (l ∈ dom(M)∧l ∈ dom(M′))∨

(l /∈ dom(M)∧l /∈ dom(M′))
a/ (R,pc,X) def= λM. a (M,R,pc,X)
a~m

def= λ(M,R,pc,X). (a/ (R,pc,X)∗m) M

Figure 8. Auxiliary Definition for Program Logic

We use the following judgement forms to define the
inference rules:

φ, [(a1,g1), . . . ,(an,gn)] `W (well-formed world)
ψ,m ` C : ψ′ (well-formed code heap)
ψ,m ` {(a,g)}pc : I (well-formed instr. sequences)

if ι = then En (ι) =
lwt rd ,rs(w) λS. S.X 6= ε
swt rd ,rs(w) λS. S.X 6= ε
cast rd ,rt ,rs(w) λS. S.X.U= act
begin λS. S.X= ε
validate rd λS. S.X.U= act
commit λS. S.X.U= cmt
rollback λS. S.X.U= abt
Others True

Figure 9. Required Transactional Status for Instructions

The inference rules for the extended framework are pre-
sented in Figure 10. A world is well-formed with regard to
a world specification φ and pairs of thread state predicates
and guarantees (a1,g1), . . . ,(an,gn) for each thread when the
following conditions hold:

• There exists a code heap specification ψi for each thread
and a global invariant m in the world specification φ. For
each thread, the code heap is well-formed regarding ψi
and m, moreover, the thread precondition pair (ai,gi) is
satisfied at the point of pci.

• There is a n + 1 parts partition of the shared mem-
ory M, where Ms satisfies the global invariant m and
M1, . . . ,Mn satisfy each thread state predicate ai re-
spectively.

A code heap is well-formed only if each instruction
sequence in the code heap is well-formed.

Next, an instruction sequence is well-formed if it is
composed of a single instruction ι and another instruction
sequence I and both of them are well-formed (rule-INSQ).
A well-formed instruction (rule-INSN) requires :

• Thread state predicate restrict as previous: instruction
ι can execute for all thread states specified by the
current thread state predicate a and the global invariant
m. Furthermore, the new modified thread state must
satisfy the thread state predicate for the target address
of instruction ι given by ψ and reestablish the global
invariant m.

• Added restrict on local guarantee: if the current trans-
action is in status act or abt and the modified thread
state satisfies the guarantee of the target address, then
the original state satisfies g.

Here we left rules of instructions begin,commit and rollback
alone. Rule-COMMIT checks the domain of private memory
at current state with the beginning of transaction to enforce
that all locks have been released before commit. Next rule-
ROLLBACK records memory at the state of rolling back
and goes back to check the consistence with memory of the
beginning in rule-BEGIN.

Suppose the thread state transition sequence of the trans-
action(begin with begin and end with rollback) is S0, . . . ,Sn.
To show that the atomicity of the transaction is enforced
through the guarantee g, we enforce the following chain of

121



φ, [(a1,g1), . . . ,(an,gn)] `W (Well-formed world)

φ = (m, [ψ1, . . . ,ψn])
M=Ms ]M1 ] . . .]Mn
m Ms ak(Mk ,Rk ,pck ,Xk)

ψk ,m ` C : ψk ψk ,m ` {(ak ,gk)}pck : C[pck ] for all k

φ, [(a1,g1), . . . ,(an,gn)] ` (C,M, [(R1,pc1,X1), . . . ,(Rn,pcn,Xn)])
(WORLD)

ψ,m ` C : ψ′ (Well-formed code heap)

∀(pc,(a,g)) ∈ ψ′ : ψ,m ` {(a,g)}pc : C[pc]

ψ,m ` C : ψ′
(CDHP)

ψ,m ` {(a,g)}pc : I (Well-formed instr. sequences)

ψ,m ` {(a′,g′)}pc+1 : I
ψ]{pc+1 ; (a′,g′)},m ` {(a,g)}pc : ι

ψ,m ` {(a,g)}pc : ι;I
(INSQ)

ι /∈ {begin,commit, rollback}
a~m⇒ (λS. [[(ψ(Npc(pc,ι)S)]]a ~m) (Next(pc,ι)S))∧En (ι)

∀S,M. (a~m) S→ S.X.U= act/abt→
[[ψ(Npc(pc,ι)S)]]g (Next(pc,ι)S) M→ g S M

ψ,m ` {(a,g)}pc : ι
(INSN)

a⇒ (λS. [[ψ(pc+1)]]a (Next(pc,ι)S))∧En (begin)
∀S,M. [[ψ(pc+1)]]g S M→ S.M=M

ψ,m ` {(a,g)}pc : begin
(BEGIN)

a⇒ (λS. [[ψ(pc+1)]]a (Next(pc,ι)S))∧En (commit)
∀S,S′. a S→ [[ψ(S.X.B.pc)]]a S′→ Domeq S.M S′.M

ψ,m ` {(a,g)}pc : commit
(COMMIT)

a⇒ (λS. [[ψ(Npc(pc,ι)S)]]a (Next(pc,ι)S))∧En (rollback)
∀S. (a~m) S→ g S S.M
ψ,m ` {(a,g)}pc : rollback

(ROLLBACK)

Figure 10. Inference Rules

implication relations:
gn Sn Sn.M→ gn−1 Sn−1 Sn.M→ . . .→ g1 S1 Sn.M→ g0 S0 Sn.M

where each gi is the intermediate specification used at each
verification step. Each arrow on the chain is enforced by
rule-INSN. The head of the chain is enforced by rule-
ROLLBACK while the end of the chain is enforced by rule-
BEGIN, therefore we can finally reach the conclusion of
S0.M= Sn.M, which is the atomicity property.

Next the strong isolation property is also implied in the
atomicity proof. Suppose a thread state transition Si → Si+1
is created by an instruction ι, which is the instruction sw
for unlocking. Then the domain of memories in Si and
Si+1 are not equal due to the resource releasing. However,
the local guarantee gi+1 must be satisfied in both thread
states. So it can not mention the partial memory which
is in Si but not in Si+1. Otherwise the assertion ai+1 ~ m
and guarantee gi+1 will specify different memories and the
atomicity proof is breakdown. In order to not be mentioned
in the local guarantee, the memory block must be restored to
the previous state when the corresponding lock is released.
So that its partial updates are invisible to other threads and
the isolation property is well enforced. We will show an
example to illuminate the details in the next section.

CSL well synchronized shared memory accesses both in
and out of transactions except for the speculative read lwt .
It seems to break the isolation of concurrent threads due to
the speculative read’s accessing shared memory without syn-
chronization. However, the speculative read is only allowed
in transactions and always followed by a conflict detection
validate to check the validity of values. Instruction validate
requires that locations that have been read speculatively must
have been privatized. In this way, lwt just delays memory
privatization, not indeed pass it. So together with CSL and
the atomicity proof, we can ensure that the strong atomicity
is certified in our framework.

B. Soundness

The soundness of our extended framework inference rules
with respect to the operational semantics for the machine
is established following the syntactic approach of proving
type soundness [20]. From the “progress” and “preserva-
tion” lemmas, we can guarantee that given a well-formed
world under compatible assumptions, the current instruction
sequence will be able to execute without getting “stuck”.
Furthermore, any safety property derivable from the global
invariant will hold throughout the execution and the strong
atomicity is well enforced. We define W 7→n W′ as the
relation of n-step (n ≥ 0) world transitions. The soundness
of the framework is formally stated as Theorem 4.3.

Lemma 4.1 (Progress).
For any W = (C,M, [T1, . . . ,Tn]), if
φ, [(a1,g1), . . . ,(an,gn)] ` W, then for any
thread Ti, there exists M′,T′i, such that
(M,Ti) ↪→ (M′,T′i).

Lemma 4.2 (Preservation).
If φ, [(a1,g1), . . . ,(an,gn)] ` W, and W 7→ W′,
then exists (a′1,g

′
1), . . . ,(a

′
n,g

′
n), such that

φ, [(a′1,g
′
1), . . . ,(a

′
n,g

′
n)] `W′

Theorem 4.3 (Soundness).
If φ, [(a1,g1), . . . ,(an,gn)] `W, then for any n ≥
0, there exists a world W′ and (a′1,g

′
1), . . . ,(a

′
n,g

′
n)

such that W 7→n W′ and φ, [(a′1,g
′
1), . . . ,(a

′
n,g

′
n)] `

W′.
We have implemented the complete framework [21] in-

cluding the proofs for these two lemmas and the soundness
theorem in the Coq proof assistant so we are confident that
the framework is indeed sound.

V. EXAMPLE

Our framework is a realization of established verification
techniques at the assembly level for concurrent programs.
In this section, we give an example to demonstrate the
mechanized verification of strong atomicity property for
concurrent assembly code using our machine model.

A simple example of Fibonacci program is presented in
Figure 11, which is the concurrent code that computes the
next element of a Fibonacci sequence. The routine computes

122



the Fibonacci number by storing the last two numbers of
the sequence into internal variables prev and curr. The
variables prev and curr are shared between threads so it
needs synchronization for access which is hidden in the
CommitTransaction( ).

int fib( ){
do{

tx = StartTransaction();
val_1 = StmRead(tx, &prev);
val_2 = StmRead(tx, &curr);
temp = val_1 + val_2;
StmWrite(tx, &prev, val_2);
StmWrite(tx, &curr, temp);

}while(!CommitTransaction(tx));
}

Figure 11. Fibonacci Program

The assembly code for routine fib is presented in Fig-
ure 12. In the code it use a storable lock mutex for
synchronization which relates to the inline synchronization
in CommitTransaction( ). Together with the assembly code,
we also present the set of precondition pairs and the shared
memory invariant of the program Fibonacci for verification
in Figure 12.

The shared memory invariant m and assertions ai are the
same as our previous paper [13]. Besides, we introduce
guarantees g0,g1,g2 for the atomicity proof. Just as men-
tioned in section IV, it records the shared memory before
the time of rolling back in the local guarantee and then goes
backwards to check the consistence at the beginning. g0 is a
constant truth predicate which is usually used in status cmt
or outside transactions. g1 states that consistence is satisfied,
it is safe now to roll back the transaction. Next instruction
cast acquires the storable lock mutex. If succeed, cell mutex
of the shared memory is modified and the local guarantee
turns to g2 which states that cell mutex must restore to zero
before rolling back. Then the lock is released at label ulk, the
local guarantee turns back to g1 again. Finally the control
transfers to rollback, it initializes the parameter M in the
local guarantee with the shared memory at current state and
passes it back for checking. After the whole verification, we
can confirm that atomicity is indeed enforced.

The property strong isolation of transactions is also im-
plied in the atomicity proof. In the atomicity proof it requires
that the memory block must be restored to the previous state
before its corresponding lock is released in rolling back, so
the partial updates is not visible to other threads. Here we
modify the pre-example to show the breakdown of strong
isolation property due to the violation in atomicity proof
when the memory block have not been restored to initial
state before unlocking.

In Figure 13 we add an instruction to modify cell curr
but do not restore it to previous value before releasing
mutex. After the modification, the local guarantee changes
to g3 which denotes that it is safe to roll back only after

m
M= (∃n. mutex 7−→ 0∗prev 7−→ fib(n)∗curr 7−→ fib(n+1))∨

(∃n,n′. mutex 7−→ 1∗prev
17−→n∗curr

17−→n′)
a0

M= [emp]∧ ε
a1

M= [emp]∧ [emp]r ∧ [emp]w ∧ [pc]b = fib∧U= act

a2
M= [emp]∧ [t1] = 1∧∃v,v′.[curr 7→ v∗prev 7→ v′]r
∧ [curr 7→ v+ v′ ∗prev 7→ v]w ∧ [pc]b = fib∧ U= act

a3
M= [∃n. curr

17−→fib(n+1)∗prev
17−→fib(n)]

∧ ∃v,v′.[curr 7→ v∗prev 7→ v′]r ∧ [curr 7→ v+ v′ ∗prev 7→ v]w
∧ [pc]b = fib∧U= act

a4
M= ∃n. [curr

17−→fib(n+1)∗prev
17−→fib(n)]∧ [emp]r

∧ [curr 7→ fib(n+2)∗prev 7→ fib(n+1)]w ∧ [pc]b = fib∧U= cmt

a5
M= ∃n. [curr

17−→fib(n+2)∗prev
17−→fib(n+1)]∧ [emp]r

∧ [curr 7→ fib(n+2)∗prev 7→ fib(n+1)]w ∧ [pc]b = fib∧U= cmt

a6
M= [∃n. curr

17−→fib(n+1)∗prev
17−→fib(n)]∧ [emp]r

∧ [∃v,v′.curr 7→ v+ v′ ∗prev 7→ v]w ∧ [pc]b = fib∧ U= abt

a7
M= [emp]∧ [pc]b = fib∧U= abt
∧ ([emp]r ∧ [emp]w ∨ ∃v,v′.[curr 7→ v∗prev 7→ v′]r
∧ [curr 7→ v+ v′ ∗prev 7→ v]w)

g0
M= λS,M. TRUE

g1
M= λS,M. M= S.M

g2
M= λS,M. M= S.M{mutex ; 0}

l .word 0
prev .word 0
curr .word 1

fib : −{(a0,g0)}
begin
−{(a1,g1)}
lwt t1,curr(r0)
lwt t2,prev(r0)
addu t2,t1,t2
swt t2,curr(r0)
swt t1,prev(r0)
addiu t1,r0,1
−{(a2,g1)}
// acquire locks
cast r0,t1,mutex(r0)
bne r0,t1, rb
−{(a3,g2)}
validate t2
beq r0,t2,ulk
−{(a4,g2)}
lwt 01,curr(r0)
sw t1,curr(r0)
lwt t2,prev(r0)
sw t2,prev(r0)
−{(a5,g0)}
// release locks
sw r0,mutex(r0)
commit
−{(a0,g0)}
j fib

// release locks
ulk : −{(a6,g2)}

sw r0,mutex(r0)
j rb

rb : −{(a7,g1)}
rollback

Figure 12. Assembly Code with Assertions of Fibonacci

restore cell mutex to zero and cell curr to fib(n + 1). Next
the storable lock mutex is released and the post condition
is (a7,g4). g4 denotes that cell curr must be restored to
fib(n+1) before rolling back. However, when the condition
(a7,g4) is applied in the rule of the next instruction the
proof breaks down. Cell curr mentioned in g4 may not be in
the memory described by the assertion a7 ~m because that

123



a8
M= [∃n. curr

17−→0∗prev
17−→fib(n)]

∧ ∃v,v′.[curr 7→ v∗prev 7→ v′]r ∧ [curr 7→ v+ v′ ∗prev 7→ v]w
∧ [pc]b = fib∧U= act

a9
M= [∃n. curr

17−→0∗prev
17−→fib(n)]∧ [emp]r

∧ [∃v,v′.curr 7→ v+ v′ ∗prev 7→ v]w ∧ [pc]b = fib∧ U= abt

g3
M= λS,M. M= S.M{mutex ; 0}{curr ; fib(n+1)}

g4
M= λS,M. M= S.M{curr ; fib(n+1)}

. . .
−{(a2,g1)}
cast r0,t1,mutex(r0)
bne r0,t1, rb
−{(a3,g2)}
sw r0,curr(r0)
−{(a8,g3)}
validate t2
beq r0,t2,ulk
. . .

ulk : −{(a9,g3)}
sw r0,mutex(r0)
−{(a7,g4)} // conflict happens in a7 and g4
j rb

Figure 13. Violation of Atomicity

thread does not hold the storable lock anymore. Then g4 is
a false predicate due to the conflict between a7 and g4 and
the proof can not go ahead. In order to finish the atomicity
proof it must first restore curr and then g4 will not mention
cell curr anymore. In this way when a lock is released not in
status cmt, it implicitly acquires that the protected memory
block looks like unchanged before. Then the strong isolation
entirely holds since the intermediate memory updates are in-
visible to other threads. In summary, both the atomicity and
strong isolation properties are guaranteed in the atomicity
proof.

VI. RELATED WORK AND CONCLUSIONS

Transactional memory, as applied to programming lan-
guages, was first studied by Herlihy and Moss [1]. The
primary goal is to make it easier to perform general atomic
updates of multiple independent memory words, avoiding
the problems of locks. It is a hardware implementation and
rely on the assumption that transactions have short durations
and small data sets. Shavit and Touitou [4] proposed the
first software implementation handling transactions with
statically known read and write sets. Next Blundell [12]
distinguishes subtleties of transactional memory atomicity
semantics. It defines strong atomicity and weak atomicity
semantics to characterize the atomicity property between
transactional and non-transactional codes. Presently prior
software TM systems mostly implement weak atomicity
and it allows violation of a transaction’s isolation if there
is a data race between transactional and non-transactional
codes. To enforce the strong atomicity semantics in STM,
Shpeisman [18] implements non-transactional data accesses
via read and write barriers. Recently, Guerraoui [22] presents
opacity, an extension of the classical database serializability
property with additional requirement that non-committed
transactions are prevent from accessing inconsistent states.

However, all these work above are lack of a formal reasoning
of these correctness properties in STM implementations.

O’Hearn [10] proposed CSL for a high-level parallel
language based on the separation logic [23]. It explicitly sep-
arates the private and shared memories and uses conditional
critical regions (CCR) to permit the ownership transfer.
CSL can specify well synchronized shared memory accesses
and we adopt it in the program logic to formal reasoning
strong atomicity. Recently, Brookes [24] provides a grainless
semantics to CSL for parallel programs that share mutable
states; Bornat et al. [11] proposed a refinement of CSL with
fine-grained resource accounting.

In [25] we have presented a PCC framework for certifying
concurrent programs using transactional memory. It treats
the whole commit operation as a single primitive and there
are no shared memory accesses outside transactions, so the
strong atomicity semantics is enforced obviously. Next we
refine the model by splitting the huge commit operation
into several thin instructions and introduce storable locks for
synchronization both in and out of transactions in [13]. At
the same time the strong atomicity semantics is not enforced
for sure and it depends on the actual implementation. In
this paper we mainly focus on the formal reasoning the
strong atomicity of STM programs. Actually we introduce a
local guarantee for each instruction to specify valid memory
transition before rolling back to enforce the strong atomicity.
It is the first framework on formal certifying strong atomicity
semantics in STM programs.

ACKNOWLEDGMENTS

We would like to thank Prof. Zhong Shao (Yale Uni-
versity) and anonymous for their inspiring discussions and
suggestions on this paper. This research war supported by the
National Natural Science Foundation of China under (Grant
No.60673126, No.90718026) and Intel China Research Cen-
ter. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the
views of these agencies.

REFERENCES

[1] M. Herlihy and J. E. B. Moss. Transactional memory: archi-
tectural support for lock-free data structures. In SIGARCH
Comput. Archit. News, pages 289–300, 1993.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leis-
erson, and S. Lie. Unbounded transactional memory. In
HPCA’05: Proceeding of the 11th International Symposim
on High-Performance Computer Architecture, pages 316–327,
Washington, DC, 2005. IEEE Comp. Soc.

[3] K. E. Moore and D. Grossman. Log-based transactional
memory. PhD thesis, Madison, WI, USA, 2007. Adviser-David
A. Wood.

[4] N. Shavit and D. Touitou. Software transactional memory. In
PODC’95: Proceeding of the fourteenth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 204–213,
New York, 1995. ACM Press.

124



[5] T. Harris and K. Fraser Language support for lightweight
transactions In OOPSLA ’03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pages 388–402, New
York, 2003. ACM Press.

[6] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. In
PPoPP’06: Procedding of the eleventh ACM SIGPLAN Sym-
posium on Principles and Practice of parallel programming,
pages 187–197, New York, 2006. ACM Press.

[7] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer.
Software transactional memory for dynamic-sized data struc-
tures. In PODC’03: Proceedings of the twenty-second annual
Symposium on Principles of Distributed Computing, pages 92–
101, New York, 2003. ACM Press.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In Lecture Notes in Computer Science, pages 194–208, 2006.
Springer Berlin.

[9] T. Harris, S. Marlow and P. Jones. Composable memory
transactions. In PPoPP’05: Proceedings of the 10th ACM
SIGPLAN Symposium on Principles and Practice of parallel
programming, New York, 2005. ACM Press.

[10] P. W. OHearn. Resources, coucurrency, and local reasoning.
Theor. Comput. Sci., pages 271–307, 2007.

[11] R. Bornat, C. Calcagno, P.O’Hearn, and M. Parkinson. Per-
mission accounting in separation logic. In POPL’05: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 259–270, New
York, 2005. ACM Press.

[12] C. Blundell, E. Lewis, and M. K. Martin. Subtleties of
transactional memory atomicity semantics. In IEEE Comput.
Archit. Lett., page 17, 2006

[13] Yong Li, Yu Zhang, Yiyun Chen and Ming Fu. Formal
reasoning concurrent programs using a lazy-STM system. In
http://ssg.ustcsz.edu.cn/vsync/papers/frcptm/.

[14] Coq Development Team. The Coq proof assistant reference
manual. Coq release v8.1, October 2006.

[15] C. Paulin-Mohring. Inductive definitions in the system Coq-
rules and properties. In Proc. TLCA, volume 664 of LNCS,
1993.

[16] D. Yu and Z. Shao. Verification of safety properties for
concurrent assembly code. In ICFP’04: Proceedings of the
2004 ACM SIGPLAN International Conference on Functional
Programming, pages 175–188, Utah, September 2004. ACM
Press.

[17] X. Feng and Z. Shao. Modular verfication of concurrent
assembly code with dynamic thread creation and termination.
In ICFP’05: Proceedings of the 2005 ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 254–
267, New York, 2005. ACM Press.

[18] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforc-
ing isolation and ordering in STM. In PLDI’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 78–88, New York,
2007. ACM Press.

[19] A. W. Appel Foundational proof-carrying code In Proc. 16th
Annu. IEEE Symp. on Logic in Computer Science, pages 247–
258, 2001. IEEE Comp. Soc.

[20] A. K. Wright and M. Felleisen. A syntactic approach to
type soundness. In Infromation and Computation, pages 38–
94, 1994.

[21] Y. Li. Coq implementation for On the Verification
of Strong Atomicity of Programs Using STM. In
http://ssg.ustcsz.edu.cn/vsync/papers/ovsaps/.

[22] R. Guerraoui and M. Kapalka. On the Correctness of
Transactional Memory In PPoPP’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, New York, 2008, ACM Press.

[23] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS’02: Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, pages 55-74,
Washington, DC, 2002. IEEE Comp. Soc.

[24] S. Brookes. A grainless semantics for parallel programs
with shared mutable data. In MFPS’06: Proceeding of the
21st Annual Conference on Mathematical Foundational of
Programming Semantics, pages 277–307, Washington, DC,
2006. IEEE Comp. Soc..

[25] L. Li, Y. Zhang, Y. Chen, and Y. Li. Certifying concurrent
programs using transactional memory. In Journal of Computer
Science and Technology, 24(1):110 121, Jan.2009.

125


	SSIRI2009-Manuscript 141
	SSIRI2009-Manuscript 142
	SSIRI2009-Manuscript 143
	SSIRI2009-Manuscript 144
	SSIRI2009-Manuscript 145
	SSIRI2009-Manuscript 146
	SSIRI2009-Manuscript 147
	SSIRI2009-Manuscript 148
	SSIRI2009-Manuscript 149

