
Front. Comput. Sci. China, 2008, 2(3)
DOI 10.1007/s11704-009-0000-0

REVIEW ARTICLE

Formal Verification of Concurrent Programs with
Read-Write Locks

Ming Fu, Yu Zhang, Yong Li

School of Computer Science & Technology University of Science & Technology of China, Hefei, 230027,China
Suzhou Institute for Advanced Study University of Science & Technology of China, SuZhou,215123,China

c© Higher Education Press and Springer-Verlag 2008

Abstract Read-write locking is an important mecha-
nism to improve concurrent granularity, but it is difficult
to reason about the safety of concurrent programs with
read-write locks. Concurrent Separation Logic(CSL)
provides a simple but powerful technique for locally rea-
soning about concurrent programs with mutual exclusive
locks. Unfortunately, CSL cannot be directly applied to
reason about concurrent programs with read-write locks
due to the different concurrent control mechanisms.

This paper focuses on extending CSL and present a
proof-carrying code(PCC) system for reasoning about
concurrent programs with read-write locks. We extend
the heap model with a writing permission set, denoted
as logical heap, then define "strong separation" and
"weak separation" over logical heap. Following CSL’s
local-reasoning idea, we develop a novel program logic
to enforces weak separations of heap between different
threads and support verification of concurrent programs
with read-write locks.

Keywords verification, concurrent separation logic,
mutual exclusive locks, read-write locks

1 Introduction

Read-write locking is an important mechanism to im-
prove concurrent granularity. It is widely employed in
realistic applications. Ensuring the safety of concurrent
programs with read-write locks is an essential but chal-
lenging task.

A mutual exclusion lock (also called a mutex) is used
to enforce that only one thread can access a certain set
of shared heap locations at a given time. Lock has two
operations: lock and unlock. The lock operation de-

Received month dd.yyyy; accepted month dd.yyyy

E-mail: yuzhang@ustc.edu.cn

notes the beginning of a critical section while the unlock
operation denotes the ending. The most basic lock can
only be locked one time by a given thread (non-reentrant)
and can be implemented with a boolean and an atomic
test-set operation. O’Hearn [1] proposed concurrent sep-
aration logic(CSL) to reason about concurrent programs
with mutual exclusion locks. CSL is a logic based on the
notion that separate parts of a program depending on
separated heap can be dealt with independently. Proofs
in CSL consider the heap of each thread separately and
adjust the ownership of heap protected by mutual ex-
clusion lock among threads. The use of the separating
conjunction * in pre- and post- conditions allows asser-
tion to specify heap of program state and transfer of
ownership of shared heap between threads. However,
CSL supports only strong separation which exclusively
partitions the shared heap among threads and does not
provide a mechanism of sharing read-only ownership of
shared heap among several threads. So it is not sufficient
for verification of concurrent programs with read-write
locks.

A read-write lock functions differently from a mutual
exclusive lock: it either allows multiple threads to access
the shared heap in a read-only way, or it allows one, and
only one, thread to have full access (both read and write)
to the shared heap. It is fundamentally different from the
normal mutex (since it allows multiple threads to obtain
a read lock). By using this kind of threads the program
can be faster by increasing the concurrent granularity.
In this paper, we attempt to extend CSL to develop a
framework for the verification of concurrent programs
with read-write locks. In our extension of CSL, we ap-
ply both thread modular reasoning and heap modular
reasoning to read-write locks. According to the seman-
tics of the read-write locks, the separation of share heap
becomes more complicate in concurrent programs with
read-write locks. Therefore we introduce access permis-
sion into the heap model, and then define "strong sepa-

2
Frontiers of Computer Science in China Instruction for authors

ration" and "weak separation" under the modified heap
model. The strong separation exclusively partitions heap
among threads, while the weak separation allow heap
partitions with overlaps, but all the overlaps only have
read permissions. We add an additional weak separat-
ing conjunction operator ⊛ to allow for weak separation
in our extension of CSL. We also study the relationship
between the two kinds of separation, and conclude that
strong separation in CSL is not always applicable for all
cases.

Our study is based on an assembly lan-
guage with RISC-style instructions and built-in
rlock/unrlock/wlock/unwlock primitives. Instead of
using the high-level parallel language proposed by
Hoare [2], we use the assembly language because it has
cleaner semantics, which makes our formulation much
simpler. For instance, we do not use variables, instead
we only use register files and heap. Therefore we can
have a quick formulation in Coq [3] without worrying
about variable renaming issues. Also we do not have to
formalize the complicated syntactic constraints enforced
in CSL over shared variables. Another important reason
is that our work at low level can be easily applied
to generate proof-carrying code [4]. The extension
of CSL method studied in this paper is adapted to
the low-level language. The relationship between the
low-level extension over CSL and the original logic by
O’Hearn [1] is discussed in section 6.

Our paper makes the following contributions:

1. We model an abstract machine with read-write lock
primitives supported at assembly-level. We also give
the operational semantics for the synchronized prim-
itives which is much more complex than the mutual-
exclusion lock primitives.

2. We extend CSL to certify concurrent programs
based on the abstract machine. Our extension of
CSL is significant since it is a novel program logic
that can successfully support modular verification of
concurrent programs synchronized with read-write
locks.

3. We implement our framework using Coq proof assis-
tant, and prove examples under the framework. The
result shows that our extension of CSL can be eas-
ily applied for verification of concurrent programs
synchronized with read-write locks.

The rest of this paper is organized as follows: In sec-
tion 2, we briefly introduce CSL and informally explain
our ownership transfer technique for reasoning about
read-write locks. In section 3, we describe the abstract
machine we model and the program logic based on exten-
sion of CSL we use to reason. Section 4 presents exam-
ples that are written and proved under our framework.
We discuss the implementation in Section 5. Finally we

discuss the related work and conclude.

2 Preliminaries

Before giving the formal description of our framework
for verifying concurrent programs with read-write locks,
we first explain the the limitation of the original CSL
in verifying critical sections with read-write locks, then
informally describe our ownership transfer technique for
reasoning about programs with read-write locks.

2.1 Concurrent Separation Logic(CSL)

In this subsection, we give a brief description of CSL and
demonstrate the necessity of extending CSL to support
local reasoning about concurrent programs with read-
write locks. CSL is an extension of separation logic [5]
for reasoning about shared heap race-free concurrent pro-
grams. Separation logic is a programming logic which is
tailored to reason about heap-manipulating programs. A
simplified syntax for separation logic is shown in Fig. 1.

P,Q ::= l 7→ v | emp | P ∗Q | P ∧Q | P ∨Q
| ∃ x. Q | ∀ x. P

Fig. 1 Syntax of Separation Logic

Here we briefly demonstrate the logical semantics for
each construct in the syntax. Both P and Q are in-
terpreted as heap predicates. l 7→ v holds if the heap
consists entirely of the binding of location l to value v.
emp holds only on the empty heap. P ∗ Q holds if the
heap can be split into two disjoint parts such that P
holds on one and Q on the other. P ∧ Q holds if both
P and Q hold on the entire heap. P ∨Q holds if either
P or Q holds on the heap. ∃ x. Q holds if there exists
an x that Qx holds on the heap. ∀ x. P holds on a heap
that satisfies Px for all x.

CSL introduces the concurrency rule based on separa-
tion logic for reasoning about concurrent programs. The
concurrency rule given below

{P1}C1{Q1} {P2}C2{Q2}

{P1 ∗ P2}C1‖C2{Q1 ∗Q2}

describes how concurrent threads with disjoint heap re-
sources can be treated separately. As a concurrent pro-
gram executes, heap resources must remain separated
but the separation need not be fixed : the ownership can
be transferred among threads through exclusive locking
operations.

However, the separating and local reasoning mecha-
nism for mutual exclusive locks is not suitable for read-
write locks, since concurrent programs synchronized with

Front. Comput. Sci. China
3

read-write locks allow heaps to be safely shared among
concurrent threads provided they all promise only to
read, never to write. From the concurrency rule in origi-
nal CSL we know that the separating conjunction "*" in
separation logic does not allow the different concurrent
threads to see the same heap and read from the same lo-
cations of it simultaneously, so "*" is too strong to enable
the read sharing.

In order to allow several threads read from the same
heap locations simultaneously, we introduce a weaker
separating conjunction "⊛" which is defined over an ex-
tended logical heap and allows read sharing. The corre-
sponding concurrency rule may be written as follow:

{P1}C1{Q1} {P2}C2{Q2}

{P1 ⊛ P2}C1‖C2{Q1 ⊛Q2}

In the above rule, our proposed separating conjunction
"⊛" allows the heap specified by P1 and P2 respectively
to contain the same sub heap with read-only permission,
so threads C1 and C2 can read the locations of the sub
heap concurrently.

2.2 Ownership Transfer for Read-Write Locks

In Fig. 2, we describe the partition of the whole heap and
use it to demonstrate the ownership transfer of acquiring
and releasing read-write locks. The whole heap space
is partitioned into several thread-private heaps and the
shared heap. The shared heap is partitioned and each
part is protected by a read-write lock. For each part
of the partition, an invariant is assigned to specify its
well-formedness.

Shared Heap

Heap Space

Thread-Private Heap

Lock Space

Fig. 2 Partition of Heap

In Fig 3, we give the ownership transfer of acquiring
write lock, which is the same with that in the original
CSL. ie, the ownership transfer must ensure the shared
heap be acquired exclusively. The heap Hk enclosed in
a dashed box is the private heap of a thread. When the
lock li is acquired in write mode, the thread takes ad-
vantage of mutual exclusion provided by acquiring write
lock li and treats the lock-protected heap LH(li) as pri-
vate. Before releasing the lock li, it must ensure that

the part of heap LH(li) is well-formed with regard to the
corresponding invariant.

Fig. 3 Ownership Transfer for Acquiring and Releasing Write

Lock

However, the ownership transfer for acquiring and re-
leasing read locks is different. In Fig 4, when the lock
li is acquired in read-only mode, the thread copies the
part of shared heap LH(li) with read-only permission
(The heap with a shadow box represents that the heap
is read-only) and added it into the thread’s private part.
Before releasing the lock li, because the part of heap
LH(li) has never been written, it is well-formed with re-
gard to the corresponding invariant and can be removed
from thread’s private part.

Fig. 4 Ownership Transfer for Acquiring and Releasing Read

Lock

Since the original heap model cannot directly support
shared heap copying with read-only permission, it is nec-
essary to extend the heap with permission. We defines
the logical heap, which contains writing permission sets
in addition to the normal heaps. The heap locations
without writing permissions are read-only. Acquiring a
write lock gets the write permission of the heap protected
by the lock, while acquiring a read lock gets read-only
permission of the heap. The formal description of own-
ership transfer under acquiring read-write lock is in the

4
Frontiers of Computer Science in China Instruction for authors

(PogramState) P ::= (H, [T1, . . . ,Tn],L)

(Thread) Tt ::= (C,R, I, t)

(CodeHeap) C ∈ Labels ⇀ InstrSeq

(Heap) H ∈ Labels ⇀ Word

(RegFile) R ∈ Register → Word

(LockMap) L ∈ Locks → WBit × RBit

(WBit) u := ε | t

(RBit) Q := {t}∗

(Register) r ::= r0 | . . . | r31

(Labels) f, l ::= i (nat nums)

(Locks) l ::= i (nat nums)

(ThrdID) t ::= 1 | . . . |n

(Word) w ::= i (nat nums)

(InstrSeq) I ::= j f | jr rs | ι; I

(Instr) ι ::= add rd, rs, rt | addi rd, rs, i

| st rt, i(rs) | ld rt, i(rs)

| wlock l | rlock l | sub rd, rs, rt

| unrlock l | unwlock l

Fig. 5 The Abstract Machine

next section.

3 The Framework

In this section, we present our abstract machine model
and its operational semantics. Then a program logic ex-
tended CSL with access permission is presented for the
verification of assembly concurrent programs synchro-
nized with read-write locks, its structure is similar to
other CAP [6] systems.

3.3 The Abstract Machine

Fig. 5 defines the abstract machine and the syntax of
an assembly language. We extend CAP by adding sev-
eral built-in instructions for read-write locks. A program
state P on the abstract machine consists of a shared heap
H, a lock mapping L and n threads [T1, . . . ,Tn].

The global shared heap H is modeled as a finite par-
tial mapping from heap locations l (natural numbers) to
word values (natural numbers). The locking map L is a
finite mapping from read-write locks to its corresponding
pair (u,Q). We implement a read-write lock with a pair
(u,Q), where the integer u identifies the thread holding
the lock in write mode(or ε if no such thread exists) and
the integer set Q contains identifiers of all threads hold-
ing the lock in read mode. The default value of the pair
is (ε, ∅).

The abstract machine has a fixed number of threads.

Each thread Tt contains its own code heap C, register
file R, instruction sequence I currently being executed,
and its thread id t. Here we allow each thread to have
its own register file, which is consistent with most im-
plementation of thread libraries where the register file
is saved in the execution context when a thread is pre-
empted. The register file R is represented as a total
function from registers to words. The code heap C maps
code labels to instruction sequences, which is a list of
assembly instructions ending with a jump instruction.
The set of instructions we present here are the com-
monly used subsets in RISC machines with additional
wlock/unwlock/rlock/unrlock primitives for synchroniza-
tion.

The step function (7−→) of program state P is de-
fined in Fig. 6. We use the auxiliary relation (H,T,L)
(H′,T′,L′) to define the effects of the execution of the
thread T. Here we follow the preemptive thread model
where execution of threads can be preempted at any pro-
gram point, but execution of individual instructions is
atomic. The operational semantics for most instructions
are quite straightforward. Note that the execution of
instruction for acquiring locks. A thread attempts to ac-
quire lock l in write mode by executing wlock l instruc-
tion, there must be no other threads holding l in read
or write mode, and the corresponding value of lock l is
(ε, ∅). The result state of this operation is to replace u

with the thread identifier which owns the lock. Similarly,
acquiring the lock in read mode using the rlock l instruc-
tion must make sure no other threads hold l in write
mode, and the result state of the operation is to put the
thread identifier into the set Q. In this model, we do
not support re-entrant locks. If the lock l has been held
in read mode or write mode, execution of the “wlock l”
or “rlock l” instruction will be blocked even if the lock is
held by the current thread. The release operations are
straightforward. All of these locking operation should
respect the invariant: ∀l.L(l) = (u,Q)∧ (u = ε∨Q = ∅).
The function Nextι defines the effects of the sequential
instruction ι over heap and register files.

3.4 Extension of CSL

In this subsection, we introduce an extension of CSL that
supports two different kinds of separations in the logi-
cal heap model. In order to specify access permission
for each heap location, we associate heap block with a
writing permission set and modify both the syntax and
logical semantics of separation logic based on the logi-
cal heap model. With the help of extended logical heap
model, we can describe heap with read-only or read-write
permission transferred between different threads.

Front. Comput. Sci. China
5

(H, [T1, . . . ,Tn],L) 7−→ (H′, [T1, . . . ,Tk−1,T
′

k,Tk+1, . . . ,Tn],L′)
if (H,Tk,L) (H′,T′

k,L
′) for any k;

where

(H, (C,R, I, k),L) (H′,T′,L′)

if I = then (H′,T′,L′) =

j f (H, (C,R, I′, k),L) where I′ = C(f)

jr rs (H, (C,R, I′, k),L) where I′ = C(R(rs))

wlock l; I′
(H, (C,R, I′, k),L{l;(k, ∅)})
(H, (C,R, I, k),L)

if L(l) = (ε, ∅)
otherwise

unwlock l; I′ (H, (C,R, I′, k),L{l;(ε, ∅)}) if L(l) = (k, ∅)

rlock l; I′
(H, (C,R, I′, k),L{l;(ε,Q ∪ {k})})
(H, (C,R, I, k),L)

if L(l) = (ε,Q) ∧ k 6∈ Q

otherwise

unrlock l; I′ (H, (C,R, I′, k),L{l;(ε,Q \ {k})}) if L(l) = (ε,Q) ∧ k ∈ Q

ι; I′ for other ι (H′, (C,R′, I′, k),L) where (H′,R′) = Nextι (H,R)

and

if ι = then Nextι (H,R) =

add rd, rs, rt (H,R{rd ;R(rs)+R(rt)})
addi rd, rs, i (H,R{rd ;R(rs)+i})
ld rt, i(rs) (H,R{rt ;H(R(rs)+i)}) when R(rs)+i ∈ dom(H)
sub rd, rs, rt (H,R{rd ;R(rs)−R(rt)})
st rt, i(rs) (H{R(rs)+i;R(rt)},R) when R(rs)+i ∈ dom(H)

Fig. 6 Operational Semantics of the Machine

3.4.1 Logical Heap Model

The logical heap model M extends the heap structure
with a special writing permission set which is used to
denote the access permission for each heap location. Ac-
cording to the logical heap model we formalize extended
thread state and extended program state below:

(LogicalHeap) M ::= (H,D)

(PermissionSet) D ::= {l}∗

(XState) X ::= (M,R, t,L)

(ExtProgState) W ::= (M, [T1, . . . ,T2],L)

The logical heap model M contains the data heap block H

and the corresponding writing permission set D which is
always a subset of the domain of H, denoted as dom(H).
The writing permission set D is used to represent the ac-
cess permission of each heap location. A heap location in
writing permission set D can be read and written. A heap
location in dom(H) but not in D is read-only. Instead of
using real heap structure, we use logical heap model to
formalize the extended thread state X which contains the
local information of the thread, including the private log-
ical heap M owned by the thread, the thread’s register
file, identifier and the lock set. The extended program
state W use logical heap M to trace the access permission
of each heap location.

3.4.2 Strong Separation VS. Weak Separation

By using the logical heap model, we can describe two
different partitions on shared heap. One is similar with
the partition in standard separation logic, which strictly
partitions shared heap into disjoint part, and we denote
it as strong separation. The other partitions shared heap
in a relaxed way allowing overlap among different threads
with read-only permission, we denote this as weak sepa-

ration. The formal definitions are displayed below:

M1⊥M2
def
= dom(M1.H1) ∩ dom(M2.H2) = ∅

M1⊻M2
def
= (∀l.l ∈ dom(M1.H1) ∩ dom(M2.H2) →

M1.H1(l) = M2.H2(l) ∧ l /∈ M1.D1 ∪ M2.D2)
∧(M1.D1 ∩ M2.D2 = ∅)

M1⊎M2

def
=

(M1.H1 ∪ M2.H2,M1.D1 ∪ M2.D2)
if M1⊥M2

undefined otherwise

M1⊕M2
def
=

(M1.H1 ∪ M2.H2,M1.D1 ∪ M2.D2)
if M1⊻M2

undefined otherwise

We use M1 ⊥ M2 to represent a strong separation
relation between M1 and M2, which means there does
not exist a heap location which is both in the domain of
M1.H1 and in the domain of M2.H2. M1⊻M2 denotes a
weak separation relation between M1 and M2, it allows

6
Frontiers of Computer Science in China Instruction for authors

the two heap blocks M1.H1 and M2.H2 contain the same
heap locations neither in M1.D1 nor in M2.D2. M1 ⊎M2

and M1 ⊕ M2 respectively define heap merge operations
under strong separation and weak separation. According
to the definition of the logical heap model, weak separa-
tion ensures the overlapping heap locations never to be
written. The following lemmas present the relationship
between strong separation and weak separation.

Lemma 3.1 (Strong Separation Weakening)
If M1 = (H1,D1),D1 ⊆ dom(H1), M2 = (H2,D2),
D2⊆dom(H2), and M1⊥M2, then M1⊻M2.

Proof. According to the definition of strong separation,
we can conclude dom(H1) ∩ dom(H2) = ∅ from M1 ⊥
M2. We prove the lemma by destructing the definition
of weak separation and giving the proof of the following
two proposition:

• (∀l.l ∈ dom(H1)∩dom(H2) → H1(l) = H2(l)∧l 6∈
D1 ∪ D2), because there exist not any heap location
in the empty set, so the premise is false and we can
prove this proposition trivially by inversion the false
premise.

• (D1 ∩ D2 = ∅), we can easily prove this by applying
the conditions D1 ⊆ dom(H1) , D2 ⊆ dom(H2) and
dom(H1) ∩ dom(H2) = ∅.

Qed. �

Lemma 3.2 (Weak Separation Strengthening) If

M1 = (H1,D1),D1 = dom(H1), M2 = (H2,D2),D2 ⊆
dom(H2), and M1⊻M2 ,then M1⊥M2.

Proof. We prove this lemma by considering the two fol-
lowing different cases :

• if dom(H1) ∩ dom(H2) = ∅, then according to the
definition of strong separation, we can conclude
M1⊥M2.

• if dom(H1) ∩ dom(H2) 6= ∅, then there exists a
heap location l ∈ dom(H1) ∩ dom(H2). By ap-
plying (∀l.l ∈ dom(H1) ∩ dom(H2) → H1(l) =
H2(l) ∧ l 6∈ D1 ∪ D2) inferred from the definition
of M1⊻M2, we obtain l /∈ D1 ∪ D2, we can replace
D1 with dom(H1) because of D1 = dom(H1), then
l /∈ dom(H1) which is contradict with the existing
premise l ∈ dom(H1)∩dom(H2). Since this case will
never happen.

Qed. �

3.4.3 Operational Semantics with Logical Heap

We give the concurrent operational semantics based on
the logical heap model and extended state in Fig. 7. The
simulation between the logical operational semantics for
program executions with the logical heap and the real

machine semantics shown in Fig. 6 is obvious and we do
not show it in the paper.

In the operational semantics with the logical heap,
we use a merged logical heap to depict the state tran-
sition. The transfer of the ownership described in sec-
tion 2 is not expressed in the logical operational seman-
tics, and the logical partition over the merged logical
heap will be enforced by the top rule of the program

logic. The function
lg
7−→ is defined for stepping over

extended program state, and we use the auxiliary rela-

tion (M,T,L)
lg
 (M′,T′,L′) to define the effects of the

execution of the thread T over the logical heap. The
state transitions over the logical heap for most of the
instructions can be easily obtained from the operation
semantics shown in Fig. 6. The function Next’ι is used
to describe the effects made by some local actions over
logical heap and register files. The safe execution of in-
struction st rt, i(rs) requires that the written heap loca-
tion should be contained in the writing permission set of
the current logical heap.

3.4.4 Assertion Language

Fig. 8 shows the syntax of assertion language for rea-
soning about concurrent programs with read-write locks
under our proposed framework. We treat m as a predicate
over real heap, and v is predicate over logical heap. a is
a predicate over extended thread state to ensure the safe
execution of the instruction sequence. In addition to the
usual formulate of predicate calculus, we introduce five
new forms of predicates that describe the heap with ac-
cess permission. Since the abstract machine is built with
both locking primitives and register at low level, we de-
fine some predicates to specify locking map and register
files.

We give the definitions of logical semantics for each as-
sertion construct based on the abstract machine model
in Fig. 8. The semantics for the predicates m over real
heap is similar to the semantics of separation logic, we
have given the formal explanation for them in subsec-
tion 2.2. ⌊m⌋r and ⌊m⌋w are predicates over logical heap,
the former asserts read-only heap block satisfying m, the
latter asserts read-write heap block satisfying m. v1 ∗ v2

is a predicate over logical heap that can be split into two
parts with strong separation relation, the first satisfy-
ing v1 and the second v2. A new separating conjunction
"⊛" is introduced to specify the weak separation rela-
tionship between logical heaps. v1 ⊛ v2 is interpreted
as a predicate over logical heap which can be split into
two parts with weak separation relation, the first satis-
fying v1 and the second v2. [v] is a predicate over ex-
tended thread state that contains logical heap satisfying
v. r = v is a predicate specifying the register files status
in the extended thread state. ownr(l, t) and ownw(l, t)
are predicates over extended thread state holding the

Front. Comput. Sci. China
7

(M, [T1, . . . ,Tn],L)
lg
7−→ M′, [T1, . . . ,Tk−1,T

′

k,Tk+1, . . . ,Tn],L′)

if (M,Tk,L)
lg
 (M′,T′

k,L
′) for any k ;

where

(M, (C,R, I, k),L)
lg
 (M′,T′,L′)

if I = then (M′,T′,L′) =

j f (M, (C,R, I′, k),L) where I′ = C(f)

jr rs (M, (C,R, I′, k),L) where I′ = C(R(rs))

wlock l; I′
(M, (C,R, I′, k),L{l;(k, ∅)})
(M, (C,R, I, k),L)

if L(l) = (ε, ∅)
otherwise

unwlock l; I′ (M, (C,R, I′, k),L{l;(ε, ∅)}) if L(l) = (k, ∅)

rlock l; I′
(M, (C,R, I′, k),L{l;(ε,Q ∪ {k})})
(M, (C,R, I, k),L)

if L(l) = (ε,Q) ∧ k 6∈ Q

otherwise

unrlock l; I′ (M, (C,R, I′, k),L{l;(ε,Q \ {k})}) if L(l) = (ε,Q) ∧ k ∈ Q

ι; I′ for other ι (M′, (C,R′, I′, k),L) where (M′,R′) = Next’ι (M,R)

and

if ι = then Next’ι ((H,D),R) =

add rd, rs, rt ((H,D),R{rd ;R(rs)+R(rt)})
addi rd, rs, i ((H,D),R{rd ;R(rs)+i})
ld rt, i(rs) ((H,D),R{rt ;H(R(rs)+i)}) when R(rs)+i ∈ dom(H)
sub rd, rs, rt ((H,D),R{rd ;R(rs)−R(rt)})
st rt, i(rs) ((H{R(rs)+i;R(rt)},D),R) when R(rs)+i ∈ D

Fig. 7 Operational Semantics of the Machine with Logical Heap

lock l in read mode and write mode respectively. Here,
we omit explanation for some straightforward assertion
constructs, such as m1∧m2, etc. Some straightforward ax-
ioms for weak separation conjunction are shown in Fig.
9. Weak separation conjunction ⊛ has some same prop-
erties as strong separation conjunction * in original sepa-
ration logic. Most of them are easy to be proven through
the semantics of the assertion language. We omit the
proof of them here due to the space limitation.

3.5 Program Specification

We use the mechanized meta-logic implemented in the
Coq proof assistant [3] as our specification language.
The logic corresponds to a higher-order predicate logic
with inductive definitions.

Fig. 10 shows the specification constructs for our cal-
culus. The program specification φ consists of a col-
lection of code heap specifications for each thread and
a specification Γ for lock-protected heap. Code heap
specification ψ maps a code label to an predicate a over
extended thread state X as the precondition of corre-
sponding instruction sequence. The specification Γ of
lock-protected heap maps a lock to invariant m specifying
shared heap. We also give five different judgements to
represent well-formed program, well-formed thread, well-

formed code heap, well-formed instruction sequences and
well-formed instructions respectively, which are used to
construct the inference rules. The semantics for each
proposition will be explained in subsection 3.6.

3.6 Inference Rules

The inference rules for a program and instructions are
presented in Fig. 13. The prog rule requires that there
be a partition of the global logical heap into n+ 1 parts
satisfying weak separation. The data heap of shared log-
ical heap Ms must satisfy the invariants specified in Γ.

We give the definition of predicate aΓ below, which
is the separating conjunction of invariants assigned to
the locks which are read-free (locks held in read mode
by some threads) or write-free (locks not held in any
mode by any threads). It ensures that shared heap are
well-formed outside critical regions or inside read-only
critical regions which start with rlock instruction and end
with unrlock instruction. Here ∀∗ is an indexed, finitely
iterated separating conjunction, which is formalized in
Fig. 11.

aΓ

def
= λ(M, (R, k),L). ∃M1,M2.M1 ⊎ M2 = M∧

⌊∀∗l∈{l | L(l) = (ε,Q) ∧ Q 6= ∅}. Γ(l)⌋r M1 ∧
⌊∀∗l∈{l | L(l) = (ε, ∅)}. Γ(l)⌋w M2

As in O’Hearn’s original work on CSL [7], we also re-

8
Frontiers of Computer Science in China Instruction for authors

(HeapPred) m ∈ Heap → Prop

(LogicalHeapPred) v ∈ LogicalHeap → Prop

(StPred) a ∈ XState → Prop

m ::= l 7→ v | emp | m1 ∗ m2

| m1 ∧ m2 | m1 ∨ m2 | ∃ x. m | ∀ x. m

v ::= ⌊m⌋r | ⌊m⌋w | v1 ∗ v2 | v1 ⊛ v2

| v1 ∧ v2 | v1 ∨ v2

a ::= [v] | r = v | ownr(l, t) | ownw(l, t)
| a1 ∧ a2 | a1 ∨ a2 | ∃ x. a | ∀ x. a

emp
def
= λH.H = ∅

l 7→ v
def
= λH.dom(H) = {l} ∧ H(l) = v

m1 ∗ m2
def
= λH.∃H1,H2.H1 ⊎ H2 = H

∧ m1 H1 ∧ m2 H2

m1 ∧ m2
def
= λH.m1 H ∧ m2 H

m1 ∨ m2

def
= λH.m1 H ∨ m2 H

∃ x. m
def
= λH.∃x.m H

∀ x. m
def
= λH.∀x.m H

⌊m⌋r
def
= λM.M = (H,D) ∧ m H ∧ D = ∅

⌊m⌋w
def
= λM.M = (H,D) ∧ m H ∧ D = dom(H)

v1 ∗ v2
def
= λM.∃H1,H2,D1,D2.(H1,D1)⊎(H2,D2)

= M ∧ v1 (H1,D1) ∧ v2 (H2,D2)

v1 ⊛ v2
def
= λM.∃H1,H2,D1,D2.(H1,D1)⊕(H2,D2)

= M ∧ v1 (H1,D1) ∧ v2 (H2,D2)

v1 ∧ v2
def
= λM.v1 M ∧ v2 M

v1 ∨ v2
def
= λM.v1 M ∨ v2 M

∃ x. v
def
= λM.∃x.v M

∀ x. v
def
= λM.∀x.v M

[v]
def
= λX. v X.M

r = v
def
= λX. X.R(r) = v

ownr(l, t)
def
= λX. X.L(l) = (ε,Q) ∧ t ∈ Q

ownw(l, t)
def
= λX. X.L(l) = (t, ∅)

a1 ∧ a2
def
= λX.a1 X ∧ a2 X

a1 ∨ a2
def
= λX.a1 X ∨ a2 X

∃ x. a
def
= λX.∃x.a X

∀ x. a
def
= λX.∀x.a X

Fig. 8 The Assertion Language

quire invariants specified in Γ to be precise, denoted as
Precise(Γ). Each Mk is privately owned by thread Tk

with access permission and every thread of the program
is well-formed. Thus the verification of a multi-threaded
program can be decompose into the verification of its
component threads accessing only private heap. The rea-

⌊m1 ∗ m2⌋r ⇔ ⌊m1⌋r ∗ ⌊m2⌋r

⌊m1 ∗ m2⌋w ⇔ ⌊m1⌋w ∗ ⌊m2⌋w

⌊emp⌋r ⇔ ⌊emp⌋w

⌊emp⌋
_
⊛ v ⇔ v

v1 ⊛ v2 ⇔ v2 ⊛ v1

(v1 ⊛ v2)⊛ v3 ⇔ v1 ⊛ (v2 ⊛ v3)
(v1 ⊛ v2) ∗ v3 ⇔ v1 ⊛ (v2 ∗ v3)
(v1 ∨ v2)⊛ v3 ⇔ (v1 ⊛ v3) ∨ (v2 ⊛ v3)
(v1 ∧ v2)⊛ v3 ⇔ (v1 ⊛ v3) ∧ (v2 ⊛ v3)

Fig. 9 Axioms for Weak Separation Conjunction

(ProgSpec) φ ::= ([ψ1, . . . , ψn],Γ)

(CdHpSpec) ψ ::= {f ; a}∗

(ResourceINV) Γ ∈ Locks ⇀ HeapPred

φ, [a1, . . . , an] ⊢ W (Well-formed program)

ψ,Γ ⊢{a} (M,T,L) (Well-formed thread)

ψ,Γ ⊢ C :ψ′ (Well-formed code heap)

ψ,Γ ⊢{a} I (Well-formed instruction sequences)

ψ,Γ ⊢{a} ι {a′} (Well-formed instructions)

Fig. 10 Specification Constructs

∀∗x∈S. P (x)
def
=

{

emp if S = ∅
P (xi) ∗ ∀∗x∈S

′. P (x) if S = S′ ⊎ {xi}

Precise(m)
def
= ∀H1,H2,H.H1 ⊆ H → H2 ⊆ H →

m H1 ∧ m H2 → H1 = H2

Precise(Γ)
def
= ∀l ∈ dom(Γ). Precise(Γ(l))

a ⇒ a′
def
= ∀X. a X → a′ X

a ⊲ Next’ι
def
= ∀(M, (R, k),L). ∃ M′,R′.(M′,R′) =

Next’ι (M,R) ∧ a (M′, (R′, k),L)

Fig. 11 Definitions of Auxiliary Propositions

soning is both thread-modular and data-modular in our
framework.

The well-formedness of Tk is checked by applying the
thrd rule. A thread is well-formed when the code heap
is required to be well-formed and the precondition for
the thread is satisfied. Since the precondition a only
specifies the private resource, we use "filter" operator
"L|k" to prevent a from having access to the ownership
information of locks not owned by the current thread:

(L|k)(l)
def
=

(k, ∅) if L(l) = (k, ∅)
(ε, {k}) if L(l) = (ε,Q) ∧ k ∈ Q

(ε, ∅) otherwise

Front. Comput. Sci. China
9

a ∗ v
def
= λ(M, (R, t),L).∃M1,M2.M1⊎M2 = M∧

a (M1, (R, t),L) ∧ v M2

rlk l a
def
= λ(M, (R, k),L). ∃Q.L(l) = (ε,Q)∧

a (M, (R, k),L{l;(ε,Q ∪ {k})})

unrlk l a
def
= λ(M, (R, k),L). ∃Q.L(l) = (ε,Q) ∧ k ∈ Q∧

a (M, (R, k),L{l;(ε,Q \ {k})})

wlk l a
def
= λ(M, (R, k),L). a (M, (R, k),L{l;(k, ∅)})

unwlk l a
def
= λ(M, (R, k),L). L(l) = (k, ∅)∧

a (M, (R, k),L{l;(ε, ∅)})

Fig. 12 Definitions of Auxiliary Macros

And a code heap is well-formed only if each instruction
sequence specified in ψ′ is well-formed with respect to
the imported interfaces specified with ψ and the lock
specification Γ.

The seq, j and jr rules ensure that it is safe to execute
the instruction sequence if the precondition is satisfied.
If the instruction sequence starts with a normal sequen-
tial instruction ι, we need to come up with an assertion
a′ which serves both as the post-condition of ι and as
the precondition of the remaining instruction sequence.
If reaching the last jump instruction of the instruction
sequence, both the j and jr rules require that the asser-
tion assigned to the target address in ψ be satisfied after
the jump.

Most inference rules for instructions are similar and
grouped in the other rule. It requires that the precon-
dition a ensures the safe execution of the instruction; and
the resulting state satisfies the post-condition a′. We use
"a ⇒ a′" for logical implication lifted for state predicates
and "a′ ⊲Nextι" to represent the weakest precondition of
a′. They are formalized in Fig 11.

In the wlock rule, we use "wlk l a′" which is formal-
ized in Fig. 12 to represent the weakest precondition of
a′. If the execution of wlock l instruction successfully
acquired the lock l in write mode, through our global
invariant we know that the part of heap protected by l
satisfies the invariant ⌊Γ(l)⌋w allowing the write permis-
sion to be transferred. Therefore, we can carry both the
knowledge Γ(l) and the read-write access permission in
the post-condition a′. Also carrying ⌊Γ(l)⌋w in a′ allows
subsequent instructions to read or write the part of heap.

In the unwlock rule, The weakest precondition of a′

is "unwlk l a′" (see Fig. 12). When the lock l is released
by executing unwlock l, the heap protected by l must be
well formed with respect to the invariant "⌊Γ(l)⌋w". The
strong separating conjunction "*" ensures that a′ does
not specify this part of heap. Therefore the subsequent
instructions cannot access the part of heap unless the
lock is acquired again. It is still correct to replace the
strong separating conjunction "*" with the weak sepa-

φ, [a1, . . . , an] ⊢ W (Well-formed program)

φ = ([ψ1, . . . , ψn],Γ)
Ms ⊕ M1 ⊕ · · · ⊕ Mn = M

aΓ (Ms,_,L) Precise(Γ)
ψk,Γ ⊢{ak} (Mk,Tk,L) for all k

φ, [a1, . . . , an] ⊢ (M, [T1, . . . ,Tn],L)
(prog)

ψ,Γ ⊢{a} (M,T,L) (Well-formed thread)

a (M, (R, k),L|k)
ψ,Γ ⊢ C :ψ ψ,Γ ⊢{a} I

ψ,Γ ⊢{a} (M, (C,R, I, k),L)
(thrd)

ψ,Γ ⊢ C :ψ′ (Well-formed code heap)

∀f ∈ dom(ψ′) : ψ,Γ ⊢{ψ′(f)}C(f)

ψ,Γ ⊢ C :ψ′
(cdhp)

ψ,Γ ⊢{a} I (Well-formed instr. sequences)

ψ,Γ ⊢{a} ι {a′} ψ,Γ ⊢{a′} I

ψ,Γ ⊢{a} ι; I
(seq)

a ⇒ ψ(f)

ψ,Γ ⊢{a} j f
(j)

∀X.X = (M, (R, k),L) →
a X → ψ(R(rs)) X

ψ,Γ ⊢{a} jr rs

(jr)

ψ,Γ ⊢{a} ι {a′} (Well-formed instructions)

a ∗ ⌊m⌋r ⇒ rlk l a′

ψ,Γ{l;m} ⊢{a} rlock l {a′}
(rlock)

a ⇒ (unrlk l a′) ∗ ⌊m⌋r

ψ,Γ{l;m} ⊢{a} unrlock l {a′}
(unrlock)

a ∗ ⌊m⌋w ⇒ wlk l a′

ψ,Γ{l;m} ⊢{a}wlock l {a′}
(wlock)

a ⇒ (unwlk l a′) ∗ ⌊m⌋w

ψ,Γ{l;m} ⊢{a} unwlock l {a′}
(unwlock)

ι ∈ {add, addi, ld, sub, st}
a ⇒ a′ ⊲ Next’ι

ψ,Γ ⊢{a} ι {a′}
(others)

Fig. 13 Inference Rules

rating conjunction "⊛" in the wlock and unwlock rule,
because we can infer the strong separation from the weak
separation according to lemma 3.2.

The rlock rule is similar to the wlock rule, we can

10
Frontiers of Computer Science in China Instruction for authors

just carry the knowledge Γ(l) with read-only access per-
mission in the post-condition a′ which allows the subse-
quent instructions only to read the part of heap.

Similarly, the unrlock rule also ensures the lock-
protected heap must be well formed when the lock is
released via unrlock l instruction.

3.7 Soundness

The soundness of these inference rules with respect to
the operational semantics of the abstract machine is
proved following the syntactic approach [8]. From the
"progress" and "preservation" lemmas, we can guaran-
tee that given a well-formed program under compatible
preconditions, the current instruction sequence will be
able to execute without getting "stuck". The soundness
of our framework is formally stated as Theorem 3.5.

Lemma 3.3 (Progress) φ = ([ψ1, . . . , ψn],Γ). If there

exist a1, . . . , an, such that φ, [a1, . . . , an] ⊢ W, then there

exists an extended program state W′ such that W
lg
7−→ W′.

Lemma 3.4 (Preservation) φ = ([ψ1, . . . , ψn],Γ). If

φ, [a1, . . . , an] ⊢ W and W
lg
7−→ W′, then there exist

a
′

1, . . . , a
′

n such that φ, [a′1, . . . , a
′

n] ⊢ W′.

Theorem 3.5 (Soundness) φ = ([ψ1, . . . , ψn],Γ). If

there exist a1, . . . , an, such that φ, [a1, . . . , an] ⊢ W, then

for any n ≥ 0, there exist an extended program state W′

and a
′

1, . . . , a
′

n such that W
lg
7−→

n

W′ and φ, [a′1, . . . , a
′

n] ⊢
W′.

Proof. By induction over n. The base case is trivial.
In the inductive case, if n = k + 1, from the induction
hypothesis we can know that there exist an intermediate
extended program state W′′ and a′′1 . . .a

′′

n , such that

W
lg
7−→

k

W′′ and φ, [a′′1 , . . . , a
′′

n] ⊢ W′′. Using lemma 3.3
and 3.4 and the induction hypothesis we can conclude
the proof.
Qed. �

4 An Example

In this section, we use an simple example to demon-
strate the effectiveness of our reasoning system, and il-
lustrate an example in high-level program and their as-
sembly counterpart. Fig. 14 shows a simple program, in
which the shared heap location m and n are protected
by the read-write lock l1 and the location x is protected
by the read-write lock l2. The values stored in the loca-
tion m and n are initialized with value 0. Thread1 tries
to acquire l1 for reading and writing shared heap loca-
tion m and n and acquires l2 for only reading the shared

Initially : [m] = [n] = 0 ;

Thread_1: Thread_2:

wlock l_1; wlock l_2;

rlock l_2; || [x] := [x] - 1;

[m] := [m] + [x]; unwlock l_2;

[n] := [n] + [x];

unrlock l_2;

unwlock l_1;

Fig. 14 Read-Write Lock Example

heap location x. At the time successfully acquiring the
locks, l1 and l2 are respectively held in write and read
mode. After the execution of Thread1, both heap loca-
tions m and n are added with the same value stored in
x. Thread2 is trivial, l2 is acquired for both reading and
writing the shared heap location x. The corresponding
assembly code is given in Fig. 15.

We verify the code under our framework. Following
the MIPS convention, we assume the register r0 always
contains 0. Assertions are shown as annotations enclosed
in "−{}", the shared heap protected by l1 and l2 are
specified by the invariants inv1 and inv2 respectively. We
explain how to verify Thread1 with the inference rules in
our program logic as follows:

• At the initial program point of Thread1, the thread
does not own any resource and precondition is
[⌊emp⌋∗]. If the first wlock l1 instruction acquired
the read-write lock l1 successfully, the shared heap
block protected by lock l1 is transferred from shared
heap to the thread’s private part with the lifted
invariant ⌊inv1⌋w which allows the following code
to read and write the heap specified by inv1 and
the lock l1 is held by Thread1 with the unique
identifier 1 in write mode. The post-condition
[⌊inv1⌋w] ∧ ownw(l1, 1) is implied by the above re-
quirements, so the first instruction is a well-formed
instruction by applying the rule wlock.

• The reasoning of the second instruction rlock l2 is
similar to the first instruction, it applies the rule
rlock to prove the well-form instruction rlock l2.
The shared heap specified by inv2 is lifted with read-
only permission and added a copy of that into the
thread’s private part. The top rule tell us that the
private heaps owned by each thread satisfy weak
separation, and the heap copy does not prevent
other threads to acquire the shared heap specified
by inv2 with read-only permission.

• From the third instruction to the ninth instruction,
they only make effects on the private heap or regis-
ter files. It is easy to reason about these instructions
by applying the inference rule others, and the do-
main of the private heap is unchanged during the
execution of this subsequence.

• We can infer that the current state satisfies the in-

Front. Comput. Sci. China
11

variant inv2 from the pre-condition of instruction
unrlock l2, this means that the invariants inv2 is
reestablished. Hence we can apply the rule unr-

lock to reason about this instruction. The thread
removes the private heap satisfying inv2 from its
private domain.

• The reasoning of the last instruction is similar to
that of the instruction unrlock l2, we can apply the
rule unwlock to reason about it, it is obvious that
the precondition implies the invariant inv1, so we
can safely remove the heap specified by inv1 from
thread’s private domain and return it to shared part.

After reasoning about the code sequence with the
specification annotations, we can conclude that the
above assembly code satisfies the given specification, and
the code fragment is well-formed under our framework.
Our reasoning supports modularity, because we never
need to consider the behavior of Thread2 while reason-
ing about Thread1. Thread2 is simpler than Thread1,
we can use the same method to reason about it, and the
detail is omitted here. It is also sound to replace the "*"
with "⊛" in the pre- and post- conditions in this exam-
ple, and we can use lemma 3.2 to ensure the soundness
of the conversion.

5 Implementation

We have mechanized our verification in the Coq proof as-
sistant [9], an interactive theorem prover which uses CiC
as basic logic. Using Coq we can construct the specifica-
tion and proofs as types and terms in CiC respectively.
Proof checking in Coq functions as type checking of terms
in CiC, which is easier to implement and more trustwor-
thy. We build the abstract machine model and sound
program logic using this tool.

In Fig. 16 we give a breakdown of the size of our proofs
for our framework. For each component we give the num-
ber of non-empty lines of Coq proof scripts. It took us
several man-months (by programmer who are familiar
with the Coq system) to complete. Interested readers
can obtain the Coq implementation from [10].

6 Related Work

Owicki & Gries [11] introduced the concept of non-
interference between the proofs of concurrent threads.
The method is not compositional. To address this prob-
lem, C. Jones [12] introduced the compositional rely-
guarantee method [6,13,14] to describe the state changes
performanced by the environment and by the program
respectively. The rely-guarantee method supports thread
modular verification in the sense that each thread is ver-
ified with regard to its own specification. It is general

inv1
def
= ∃v.m 7→ v ∗ n 7→ v

inv2
def
= ∃v.x 7→ v

Γ
def
= {l1 ; inv1, l2 ; inv2}

Thread_1: -{[⌊emp⌋∗]}
(1) wlock l_1

-{[⌊inv1⌋w] ∧ ownw(l1, 1)}
(2) rlock l_2

-{[⌊inv1⌋w ∗ ⌊inv2⌋r] ∧ ownw(l1, 1) ∧ ownr(l2, 1)}
(3) ld r1, x(r0)

-{∃v1.[⌊inv1⌋w ∗ ⌊x 7→ v1⌋r] ∧ r1 = v1 ∧ ownw(l1, 1) ∧
ownr(l2, 1)}
(4) ld r2, m(r0)

-{∃v, v1.(r2 = v∧[⌊m 7→ v⌋w∗⌊n 7→ v⌋w∗⌊x 7→ v1⌋r]∧r1 =
v1) ∧ ownw(l1, 1) ∧ ownr(l2, 1)}
(5) add r2, r2, r1

-{∃v, v1.(r2 = v + v1 ∧ r1 = v1 ∧ [⌊m 7→ v⌋w ∗ ⌊n 7→ v⌋w ∗
⌊x 7→ v1⌋r]) ∧ ownw(l1, 1) ∧ ownr(l2, 1)}
(6) st r2, m(r0)

-{∃v, v1.(r2 = v + v1 ∧ r1 = v1 ∧ [⌊m 7→ v + v1⌋w ∗
⌊n 7→ v⌋w ∗ ⌊x 7→ v1⌋r]) ∧ ownw(l1, 1) ∧ ownr(l2, 1)}
(7) ld r2, n(r0)

-{∃v, v1.(r2 = v ∧ r1 = v1 ∧ [⌊m 7→ v + v1⌋w ∗ ⌊n 7→ v⌋w ∗
⌊x 7→ v1⌋r]) ∧ ownw(l1, 1) ∧ ownr(l2, 1)}
(8) add r2, r2, r1

-{∃v, v1.(r2 = v + v1 ∧ r1 = v1 ∧ [⌊m 7→ v + v1⌋w ∗
⌊n 7→ v⌋w ∗ ⌊x 7→ v1⌋r]) ∧ ownw(l1, 1) ∧ ownr(l2, 1)}
(9) st r2, n(r0)

-{∃v, v1.(r2 = v + v1 ∧ r1 = v1 ∧ [⌊m 7→ v + v1⌋w ∗
⌊n 7→ v + v1⌋w ∗ ⌊x 7→ v1⌋r]) ∧ ownw(l1, 1) ∧
ownr(l2, 1)} -{[⌊inv1⌋w ∗ ⌊inv2⌋r] ∧ ownw(l1, 1) ∧
ownr(l2, 1)}
(10) unrlock l_2

-{[⌊inv1⌋w] ∧ ownw(l1, 1)}
(11) unwlock l_1

-{[⌊emp⌋∗]}

Thread_2: -{[⌊emp⌋∗]}
(1) wlock l_2

-{⌊inv2⌋w ∧ ownw(l2, 2)}
(2) ld r1, x(r0)

-{∃v.r1 = v ∧ [⌊x 7→ v⌋w] ∧ ownw(l2, 2)}
(3) subi r1, r1, 1

-{∃v.r1 = v ∧ [⌊x 7→ v⌋w] ∧ ownw(l2, 2)}
(4) st r1, x(r0)

-{∃v.r1 = v ∧ [⌊x 7→ v⌋w] ∧ ownw(l2, 2)} -{⌊inv2⌋w ∧
ownw(l2, 2)}
(5) unwlock l_2

-{[⌊emp⌋∗]}

Fig. 15 Read-Write Lock in Our Framework

and does not require language constructs for synchro-
nizations. However, each individual step of the verifica-
tion, we need to prove that state transition satisfies the
guarantee, it makes proofs more complicated with rely-

12
Frontiers of Computer Science in China Instruction for authors

Lines Component

897 Basic properties and tactics for Map
248 Abstract machine encoding and lemmas
127 Inference rules encoding and lemmas
46 Assertions construct definitions
913 Soundness proof for the framework
1458 Auxiliary definitions and lemmas

Fig. 16 Proof Script Size

guarantee method than our proposed method based on
CSL. Also, the relies and guarantees are usually compli-
cated and hard to define, because memory modularity
is not supported in rely-guarantee method. Our exten-
sion of CSL for verifying the properties of the concurrent
programs with read-write locks supports not only thread
modularity but also memory modularity.

Peter O’Hearn [1, 7] proposed CSL for a high level
parallel language. The language construct for synchro-
nization in this high level language is in the form of
"with r when b do c", which is used to mark the
conditional critical region. The semantics of the con-
ditional critical region is that only if the resource r has
not been acquired by others and the boolean expression
b is true then the statement c can be executed; other-
wise the thread will get blocked. The similar high level
language constructs can be designed for read-only/read-
write critical region, which can be implemented using
our rlock/unrlock/wlock/unwlock primitives. Each lock
in our language corresponds to a resource name at the
high level. Atomic instructions in our assembly language
are very similar to actions in Brookes Semantics [15] ,
where semantic functions are defined for statements and
expressions. These semantic functions can be viewed as
a translation from the high-level language to a low-level
language similar to ours. Thus the method and formula-
tion proposed in this paper can be applied on high level
parallel languages with refined synchronization construct
for read-only and read-write critical regions. CSL applies
the local-reasoning idea from separation logic [5, 16] to
verify shared-state concurrent programs with memory
pointers. Separation logic assertions are used to cap-
ture ownerships of resources. Separating conjunction en-
forces the partition of resources. Verification of sequen-
tial threads in CSL is no different from verification of
sequential programs. Memory modularity is supported
by using separating conjunction and frame rules. How-
ever, following Owicki and Gries [11], CSL works only for
well-synchronized programs with mutual exclusive locks
in the sense that transfer of resource ownerships includ-
ing total access permissions can only occur at entry and
exit points of critical regions. Our work goes further, we
extend CSL for well-synchronized programs with read-
write locks which is widely applied in fine-grained con-

current programs. We believe that our extension of CSL
is fit for verifying some other fine-grained concurrent pro-
grams, such as concurrent programs using transactional
memory etc, this will leave for our future work.

Feng et.al [14] proposed a combination of rely-
guarantee and CSL, SAGL. which improves the modular-
ity of rely-guarantee reasoning method and make the def-
inition of relies and guarantees easier. Vafeiadis [17] also
proposed another approach to combining rely/guarantee
and CSL, which we refer to here as RGSep. Both RGSep
and SAGL partition memory into shared and private
parts. Our work only consider private memory with ac-
cess permissions which are acquired via the read-write
lock primitives, since our program logic is simpler than
SAGL and RGSep.

Our work is similar with Bornat et al. [18]’s work
which proposed a refinement of CSL with fine-grained
resource accounting. Our work is another novel and
lightweight logical approach to extend CSL for verifying
concurrent programs with read-write locks, the essential
difference between [18] and our paper are: we focus on
verifying concurrent assembly code with read-write locks
and develop an extension to PCC framework; instead of
using hand-writing proof, we provide machine-checkable
proof for our framework.

7 Conclusion

In this paper we have presented a framework for verifying
concurrent programs synchronized with read-write locks.
We modeled an assembly-level machine with built-in
read-write lock primitives. We extended concurrent
separation logic and applied it to our framework. We
also used an example to demonstrate the effectiveness
of our extended CSL.

Acknowledgements We thank Prof. Zhong Shao (Yale

University) and anonymous referees for their suggestions and

comments on an earlier version of this paper. This research

was supported in part by the National Natural Science Foun-

dation of China under Grant No. 60673126 and gifts from

Intel Corporation. Any opinions, findings, and conclusions

contained in this document are those of the authors and do

not reflect the views of these agencies.

References

1. Peter W. O’Hearn. Resources, concurrency, and local
reasoning. Theoretical Computer Science, 375(1-3):271–
307, 2007.

2. C. A. R. Hoare. Towards a theory of parallel program-
ming. In C. A. R. Hoare and R. H. Perrott, editors,
Operating Systems Techniques, pages 61–71. Academic
Press, 1972.

Front. Comput. Sci. China
13

3. The Coq Development Team. The Coq proof assistant
reference manual. The Coq release v8.0, October 2004.

4. George Necula. Proof-carrying code. In Proc. 24th
ACM Symp. on Principles of Prog. Lang., pages 106–
119. ACM Press, January 1997.

5. John C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proc. LICS’02, pages 55–74,
July 2002.

6. Dachuan Yu and Zhong Shao. Verification of safety prop-
erties for concurrent assembly code. In Proc. 2004 ACM
SIGPLAN Int’l Conf. on Functional Prog., pages 175–
188, September 2004.

7. Peter W. O’Hearn. Resources, concurrency and local
reasoning. In Proc. 15th Int’l Conf. on Concurrency The-
ory (CONCUR’04), volume 3170 of LNCS, pages 49–67,
2004.

8. Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness. Information and Computa-
tion, 115(1):38–94, 1994.

9. The Coq Development Team. The Coq proof assistant
reference manual. The Coq release v7.1, October 2001.

10. Ming Fu, Yu Zhang, and Yong Li. Formal verification
of concurrent programs with read-write locks(coq).
http://ssg.ustcsz.edu.cn/vsync/papers/ccprwl/,
July 2008.

11. Susan Owicki and David Gries. Verifying properties of
parallel programs: an axiomatic approach. Commun.

ACM, 19(5):279–285, 1976.
12. Cliff B. Jones. Tentative steps toward a development

method for interfering programs. ACM Trans. on Pro-
gramming Languages and Systems, 5(4):596–619, 1983.

13. Xinyu Feng and Zhong Shao. Modular verification of
concurrent assembly code with dynamic thread creation
and termination. In Proc. ICFP’05, pages 254–267, 2005.

14. Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On
the relationship between concurrent separation logic and
assume-guarantee reasoning. In ESOP ’07, pages 173–
188, 2007.

15. Stephen Brookes. A semantics for concurrent separation
logic. In Proc. 15th International Conference on Con-
currency Theory (CONCUR’04), volume 3170 of LNCS,
pages 16–34, 2004.

16. Samin S. Ishtiaq and Peter W. O’Hearn. BI as an asser-
tion language for mutable data structures. In Proc. 28th
ACM Symp. on Principles of Prog. Lang., pages 14–26,
2001.

17. Viktor Vafeiadis and Matthew J. Parkinson. A marriage
of rely/guarantee and separation logic. In CONCUR,
pages 256–271, 2007.

18. Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and
Matthew Parkinson. Permission accounting in separa-
tion logic. In Proc. 32nd ACM Symp. on Principles of
Prog. Lang., pages 259–270, 2005.

