
Just-in-Time Compiler Assisted Object

Reclamation and Space Reuse�

Yu Zhang1,2, Lina Yuan1, Tingpeng Wu1, Wen Peng1,2, and Quanlong Li1,2

1 School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, P.R. China

2 Software Security Laboratory, Suzhou Institute for Advanced Study,
University of Science and Technology of China, Suzhou 215123, P.R. China

yuzhang@ustc.edu.cn

Abstract. Garbage collection consumes significant overhead to reclaim
memory used by dead (i.e., unreachable) objects in applications. This
paper explores techniques for compiler assisted object reclamation and
allocation on an actual JVM. Thereinto, the just-in-time compiler iden-
tifies dead objects using pointer and escape analysis combining liveness
information and inserts calls to free them. The garbage collector provides
runtime support for explicit reclamation and space reuse. Our approach
differs from other compiler assisted GC in two crucial ways. First, it iden-
tifies not only the objects that are no longer referenced directly by the
program, but also the objects that are referenced only by those identified
to-be-freed objects. Second, it modifies a parallel garbage collector, and
not only frees the identified dead objects, but also tries to reuse their
space immediately. The experimental results show that the JIT-assisted
GC improves the memory utility and the performance efficiently.

Keywords: Compiler assisted garbage collection, pointer and escape
analysis, live variable information, parallel garbage collector.

1 Introduction

Garbage collection (GC) [1] is a technology that frees programmers from the
error-prone task of explicit memory management. However, it consumes signifi-
cant overhead to find dead (i.e., unreachable) objects in the managed heap and
to reclaim the memory used by them. Accordingly, GC has become one of the
dominant factors influencing performance of the runtime systems such as Java
virtual machine (JVM). For example, SPECjbb2005 [2] usually spends 10% of
its total execution time in GC.

In order to reduce the cost of GC, other than improving GC algorithms [1, 3,
4], a more effective approach is compiler assisted memory management, including
stack allocation [5–7], region allocation [8–11], compile-time free [12–15] and
reuse [15–17].
� This research was supported in part by the National Natural Science Foundation of

China under Grant No. 90718026 and gifts from Intel Corporation.

C. Ding, Z. Shao, and R. Zheng (Eds.): NPC 2010, LNCS 6289, pp. 18–34, 2010.
c© IFIP International Federation for Information Processing 2010

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 19

Stack or region allocation reduce the load of GC through allocating some ob-
jects in a method stack frame or a region, and all objects in a stack frame or in
a region should be reclaimed simultaneously even if some of them became dead
before. However, stack allocation may induce stack overflow, while region alloca-
tion needs sophisticated region management, neither has delivered improvements
on garbage collectors.

Compile-time free and reuse belong to compiler assisted GC, they improve the
collection or reuse of objects allocated in heap through compiler efforts. Some
works insert free instructions to free dead objects [12–15], thus reduce GC the
load of identifying dead objects. Others automate compile-time object merging
or reuse [15–17] to decrease the number of objects allocated in heap.

We explore techniques on compiler assisted object reclamation and space reuse
on an actual JVM, i.e., Apache Harmony DRLVM [18], and implement them as
a system called just-in-time compiler assisted garbage collection (JIT-assisted
GC). The novel contributions we made are as follows:

– We design a novel object lifetime analysis algorithm which is field-sensitive
and context-sensitive. The analysis combines pointer and escape analysis
with flow-sensitive liveness information to identify not only the objects that
are no longer referenced directly by the program, but also the objects that
are referenced only by those identified objects.

– We collect the free instrument information from the dead object information
based on the dominance relationship in control flow. Various strategies are
used to ensure the validity and flexibility of the instrumentation.

– We modify GCv5 [19], a parallel garbage collector, not only adding gc free
interface for explicit reclamation but also improving gc alloc to try to reuse
the explicitly reclaimed space immediately.

The JIT-assisted GC system can handle multi-threaded programs. The experi-
mental results show that the memory utility and the performance of the whole
runtime system are improved efficiently.

2 Overview of the JIT-Assisted GC

In this section we first give an overview of the framework of JIT-assisted GC,
then take a simple example to illustrate the compiler analysis and transformation
for explicit object deallocation.

2.1 The Framework of the JIT-Assisted GC

The JIT-assisted GC is built on DRLVM, involving several components of DR-
LVM, such as VMCore, EM(Execution Manager), Jitrino.OPT (a JIT optimiz-
ing compiler), and GCv5 garbage collector, etc.

VMCore concentrates most of the JVM control functions. EM selects a com-
piler or an interpreter for compiling/executing a method, handles profiles and
the dynamic recompilation logic. Jitrino.OPT features two types of code in-
termediate representation (IR): platform-independent high-level IR (HIR) and

20 Y. Zhang et al.

platform-dependent low-level IR (LIR). Both of them are graph-based structures
denoting the control flow of a program. Jitrino incorporates an extensive set of
code optimizations for each IR type, and defines the compilation process as a
pipeline, which is a linear sequence of steps. Each step stores a reference to an
action object (e.g., an optimization pass), its parameters and other information.
GCv5 is a fully parallel garbage collector including various algorithms, and can
work in generational and non-generational modes.

Fig. 1. Framework of the JIT-assisted GC

Fig.1 shows the framework of JIT-assisted GC, which mostly refers to the
shadowed areas in the figure. On the JIT side, the compilation pipeline loads the
bytecode of current to-be-compiled method, first translates it into the HIR via
the translator, then transforms the HIR into the LIR via the Code Selector, and
last emits the native code via the Code Emitter. We currently explore techniques
for explicit object reclamation and space reuse based on the framework and they
work as follows:

JIT side. To support explicitly object deallocation, an Op Free instruction and
a VM RT FREE runtime call instruction are extended into HIR and LIR,
respectively. And the Code Selector and the Code Emitter are modified to
support translating the extended instructions. Then algorithms on compiler
analysis and transformation for explicit object deallocation are designed and
implemented as an optimization pass for HIR type.

GC side. A gc free interface is added to support explicitly reclaiming object
space, and the implementation of gc alloc is modified to try to reuse the
explicitly reclaimed space immediately.

VMCore side. Runtime support for mapping VM RT FREE instruction to
gc free interface is implemented. The mapping needs to push the right pa-
rameters onto the runtime stack, and to ensure the consistency of the stack
pointer before and after the call of gc free interface.

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 21

Fig. 2. Code fragment from BH, one of the Jolden benchmarks. The code in italics is
inserted by the compiler.

Beyond the explicit reclamation and space reuse discussed in this paper, more
techniques for compiler assisted GC can be explored on the framework. e.g., as
to some allocation sites in loops we can let them produce objects at the first
iteration and reset such objects in subsequent iterations to reduce the allocation
overhead of GC.

2.2 A Simple Example

Fig.2 shows a code fragment from BH of Jolden. The code underlined is inserted
by the compiler. Lines 1-20 show a class MathVector containing a static field
NDIM and an array field data. The constructor at lines 4-8 builds a double
array object o1 and initializes each element of o1. Lines 23-31 show a method
subdivp in class Cell which creates an object o2 of type MathVector at line 24.
Note that after line 26, dr is not live, thus o2 only referenced by dr is dead.

If the compiler maintains the field reference information across procedures, it
can further check whether objects referenced by the fields of the identified dead
objects are dead. In the example object o1 is only referenced by field data of o2

in method subdivp, so once o2 is dead, the compiler can detect that o1 is also
dead according to the field reference information, and can decide that the dead
points (i.e., program point where an object is dead) of o1 and o2 are the same.

Although the compiler identifies o1 and o2 are dead after line 26, there are
still two problems to be considered. One is does the allocation site of an object
dominates its dead point? The other is how to get the reference to the dead
object? Here the allocation site of o2 dominates the point after line 26, so its
free instruction can be inserted after line 26. However, there is no reference to o1

in original subdivp code, so the compiler has to generate instructions to obtain
the reference of o1, the load of dr.data in Fig.2 (line 27) will correspond to several
instructions in HIR level.

22 Y. Zhang et al.

3 Object Lifetime Analysis and Program Transformation

In this section we first give the compiler analysis and transformation for explicit
object deallocation in a nutshell, then describe some key parts in it.

3.1 Analysis and Transformation in a Nutshell

When executing a Java application on DRLVM, VMCore controls the class load-
ing, and interacts with the compiler to compile the bytecode of a to-be-executed
method into native code, and then executes it. The compilation process of a Java
method is defined as a pipeline specified in the EM configuration file, and our
analysis and transformation is developed as an HIR optimization pass which can
be configured into a pipeline.

Due to the limitation of the pipeline management framework, the pass can
only directly obtain the HIR of the current compiling method M , and have to
insert free instructions into M only when it is the compiling method of the
pipeline.

01 if (M is not analyzed){
02 G = init(M);
03 L = calculateLiveInfo(M);
04 B = getRevRuntimeBasicBlocks(M);
05 foreach b in reverse iterator of B {
06 foreach instruction i in b
07 transGwithInst(i, G);

08 transGwithLiveInfo(b, L, D);
09 genInstrumentInfo(D, I)
10 }
11 addResult(M);
12 }
13 〈M, I〉 = getResult(M);
14 transHIR(〈M, I〉);

Fig. 3. Flow of the object lifetime analysis and transformation

Fig.3 is the flow of the pass, where method M is in the HIR of static single
assignment (SSA) form; L, D, I, and M represent the liveness information, the
dead object information, the free instrument information and the summary of
M , respectively. Line 03 calculates L. Line 04 gets the reversed pseudo-runtime
basic block sequence of M , which consists of all reachable basic blocks of M in
reverse topological order, where the basic block exited from a loop is located
before all basic blocks in the loop, and the exception handling block edged from
a basic block b is located before other blocks edged from b. Lines 05-10 include
operations on identifying D through the intra-procedural and inter-procedural
analysis based on a program abstraction called points-to escape graph (PEG),
and collecting I from D. Line 11 records the analyzing result of M , and line 14
transforms the HIR of M according to the analyzing result of M.

In the following subsections we present the details of the PEG, the intra-
procedural and the inter-procedural analysis, and the instrument information
collection in turn.

3.2 Points-to Escape Graph

Definition 1. Suppose M is a method, and V , P denote the set of variables
and the set of formal parameters of method M , respectively. The PEG of M is a
directed graph, denoted as G = (No �Nr, Ep �Ef) (� represents disjoint union)
where:

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 23

– No = Nc � Np represents the set of objects accessed in M .
• Nc represents the set of objects created by allocation sites in M .
• Np = Nfp ∪ Nin represents the set of objects created outside M , called

phantom objects, where Nfp represents the set of objects created in the
direct or indirect callers of M and passed into M via formal parameters
of M and their fields, Nin represents the set of objects created in the
direct or indirect callees of M and passed into M via the return value
receivers and their fields or fields of the actual parameters at each call
site in M .

• Nret ⊆ No represents the set of objects returned from M .
– Nr is the set of reference nodes in M . Each variable with reference type in

M corresponds to a reference node, i.e., Nr ⊆ V .
– Ep ⊆ Nr × No represents the set of points-to edges. 〈v, o〉 ∈ Ep denotes that

reference node v may point to object o.
– Ef ⊆ No × F × No represents the set of field edges where F represents the

set of non-static fields in M . 〈o1, f, o2〉 ∈ Ef denotes that field f of object
o1 may point to object o2.

Each object o in a PEG G (o ∈ No) has an associated escape state, denoted as
ξ(o). The range of ξ(o) is a lattice E consisting of two elements: EN ≺ EG. EG

means the object escapes globally and may be accessed by multiple threads, EN

means that the object may not escape globally.
If an object o does not escape globally, that is, the object can be accessed

only by a single thread, and no other variables or object fields refer to object o
after a program point p, then o can be reckoned as a dead object at point p, we
call p the dead point.

3.3 Intra-procedural Analysis

The identification of dead objects are accompanied by building and transforming
the PEG of M according to each instruction in the pseudo-runtime basic block
sequence, and the live variable information, i.e., lines 07-08 in Fig.3. We first
discuss the analysis process neglecting call instructions in this subsection.

Transforming the PEG According to the Basic Instructions. Given an
instruction i in the HIR, the PEG at entry to i (denoted as G(�i)) and that at
exit from i (denoted as G(i�)) are related by the standard data flow equations:

G(i�) = f i(G(�i)) (1)
G(�i) = ∧i′∈Pred(i)G(i′�) (2)

where f i denotes data flow transfer function of instruction i, Pred(i) is the set of
predecessor instructions of i and operator ∧ is a merge of PEGs. Table 1 shows
the transfer function f i for each kind of basic instructions i, where the Ac and
Ap operations are defined in Definitions 2 and 3.

24 Y. Zhang et al.

Table 1. The transfer functions for each kind of basic instructions

HIR instruction i G(i�) = f i(G(�i))
defineArg : fp ∈ P o := newObject(); Nfp := Nfp ∪ {o}; Ep := Ep ∪ {〈fp, o〉};

ξ(o) := EG.
new : v = new C o := newObject(); Nc := Nc ∪ {o}, Ep := Ep ∪ {〈v, o〉};

v = new C[] if (o is a thread object) ξ(o) := EG else ξ(o) := EN .
copy : v1 = v2 Ep := Ep ∪ {〈v1, o〉|〈v2, o〉 ∈ Ep}.
phi : v=phi(v1,v2) Ep := Ep ∪ {〈v, o〉|〈v1, o〉 ∈ Ep ∨ 〈v2, o〉 ∈ Ep};
putField : v1.f = v2 suppose X = {x|〈v1, x〉 ∈ Ep}, Y = {y|〈v2, y〉 ∈ Ep}

Ef := Ef ∪ {〈x, f, y〉|x ∈ X, y ∈ Y };
∀x ∈ X, ∀y ∈ Y .Ac(x, y); if(ξ(y) = EG) Ap(y).

getField : v1 = v2.f suppose X = {x|〈v2, x〉 ∈ Ep}, Y = {y|〈x, f, y〉 ∈ Ef , x ∈ X}
if(Y �= ∅){ o := newObject(); Nin := Nin ∪ {o}; ξ(o) := EN ;

Ef := Ef ∪{〈x, f, o〉|x ∈ X}; Ep := Ep ∪{〈v1, o〉}}
else{Ep := Ep ∪ {〈v1, y〉|y ∈ Y }}

putStaticField :C.sf=v ∀〈v, o〉 ∈ Ep.ξ(o) := EG; Ap(o).
getStaticField : v=C.sf o := newObject(); Nin := Nin ∪ {o}; ξ(o) := EG;

Ep := Ep ∪ {〈v, o〉}.
return: return v Nret := Nret ∪ {o|〈v, o〉 ∈ Ep}.

Definition 2. Given two object nodes o1, o2 ∈ No in the PEG G, the escape
state combination operation Ac(o1, o2) which propagates ξ(o1) to ξ(o2) is defined
as:

e ∈ E e = ξ(o1) ξ(o2) ≺ e

ξ(o2) := e
(3)

Definition 3. Given an object node o ∈ No in the PEG G where ξ(o) = EG,
operation Ap(o) sets the escape state of each object reachable from object o via a
path of field edges to be EG.

The Ac operation is used when there is a field assignment (i.e., putField or
getField in Table 1) or inter-procedural information combination, while the Ap

operation is used when there is a static field assignment (i.e., putStaticField or
getStaticField).

Transforming the PEG Combining with the Live Variable Information.
After analyzing all instructions in a basic block, combining with the live variable
information, if a variable v is not live, the out points-to edges of v will be clipped,
thus objects only pointed to by v can be regarded as dead. Furthermore, if an
object o dies, the out field edges of o will be clipped, thus objects only referenced
by the fields of o can also be regarded as dead. The clip operation AD is based
on the live variable information and produces the dead object information at the
end of each basic block.

Definition 4. Given an object o ∈ No, a reference node v ∈ Nr, G and G′ de-
note the PEGs before and after the AD operation respectively. The AD operation
is defined as the following two rules.

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 25

G = (No ∪ Nr, Ep ∪ Ef) v ∈ Nr Ev
p = {〈v, o〉|o ∈ No}

G′ = (No ∪ N ′
r, E

′
p ∪ Ef) N ′

r = Nr − {v} E′
p = Ep − Ev

p

(4)

G = (No ∪ Nr, Ep ∪ Ef) o ∈ No Eo
f = {〈o, f, o′〉|o′ ∈ No}

G′ = (N ′
o ∪ Nr, Ep ∪ E′

f) N ′
o = No − {o} E′

f = Ef − Eo
f

(5)

3.4 Inter-procedural Analysis

When analyzing a method M , only objects with EN state may be explicitly freed.
If such an object is referenced by a formal parameter or the return value of M or
reachable from their fields, the object cannot be freed in M because M ’s callers
may use it. The object lifetime analysis needs to record them into a summary
of M , and update the PEG of M ’s caller using M ’s summary when analyzing a
call instruction to invoke M .

Definition 5. Given a method M and its PEG G = (No ∪ Nr, Ep ∪ Ef), the
object lifetime analysis result of M is a 2-tuple 〈M,D〉 where:

– M = (Nfp∪Nret, E
′
f) is a summary of M . It records all objects referenced by

the formal parameters or the return value of M , i.e., Nfp∪Nret, and the set of
field edges starting from them, i.e., E′

f = {〈o, f, o′〉|o ∈ Nfp∪Nret∧〈o, f, o′〉 ∈
Ef .

– D describes the dead object information in M . It is a set of triples, each
triple is denoted as 〈o, r, p〉, where
• o ∈ No is dead after the point p in M ,
• r = 〈v, f〉 represents the reference to o. If f is null, then v is the reference

to o, otherwise, v.f is the reference to o.
Given a method M and its PEG G, suppose there is a call instruction v =
v0.m(v1, ..., vn) in M and the summary of m is Mm = 〈Nm

fp ∪ Nm
ret, E

m
f 〉. The

process of dealing with the call instruction is as follows:

1. Combine the formal parameters and the actual parameters. For each 〈vi, o〉
in Ep, perform Ac(fpi, o) where fpi ∈ Nm

fp is the corresponding formal
parameter of m.

2. Combine the return value and the return value receiver. For each 〈v, o〉 in
Ep, perform Ac(r, o) where r ∈ Nm

ret is the return value of m.
3. Map field edges. For each edge in Em

f , add a corresponding edge in Ef .
4. Propagate escape states. If the escape state of an object o referenced by

one of the actual parameters or the return value receiver becomes EG, then
perform Ap(o).

The above inter-procedural combination takes a callee summary as precondition.
However, a callee of M may not be analyzed when analyzing M . If so, there are
two optional ways to deal with the call site. One is to neglect the callee and
to make a decision conservatively. The other is to start up a new pipeline to
compile the unanalyzed callee to obtain its summary. This special pipeline only
includes a few basic passes translating bytecode into non-optimized HIR of SSA

26 Y. Zhang et al.

form and the object lifetime analysis pass in order to obtain the analyzed result
of the callee and not the native code of the callee. The latter way is more precise
but consumes more overhead. We introduce an argument to control the depth
level starting up the special compilation of unanalyzed callees, thus users can
use it to trade off between precision and performance.

3.5 Collecting Free Instrument Information

The dead objects and their dead points in D cannot be directly used as the
instrument information generating free instructions. Sometimes instrumenting
directly at a dead object o’s dead point may bring compile-time or runtime
errors. e.g., if o is created in a branch and dies outside the branch, freeing o at
the dead point might induce a runtime error. Another problem is how to free an
object o that dies in method M and has no explicit reference to o in M , e.g., o1

referenced by dr.data in method subdivp.
Therefore, we need to collect instrument information from the dead object

information. The structure of the instrument information I is quite similar to
that of dead object information, the only difference is that the dead point in the
latter is changed into the instrument point in the formal.

When collecting instrument information, a rule must be followed: given a dead
object o and its dead point p, the basic block in which the allocation site of o
appears must dominate the dead point p of o. Otherwise, it means the compiler
is trying to free an object that may not be allocated before, thus causing runtime
errors. The dominance relationship can be obtained from the dominance tree of
HIR.

Two key steps of the collecting process are as follows:

Confirm dead object reference: for an object o, there are two kinds of refer-
ences: one is at its allocation site, e.g., A a = new A(), where a is the reference
to the newly created object o here; the other is brought by phi, assign, getF ield,
or putF ield instructions. We preferentially choose the reference at allocation site
for a dead object. If the dead object has no explicit reference in the method, we
can make use of other object’s field to generate its reference indirectly.

Confirm instrument point: for a dead object o, we preferentially choose the
basic block which contains a return instruction (denoted return node) to insert
instructions to free o. If there is not any exception when executing the program,
the return node must be executed. If the confirmed reference point of dead
object o cannot dominate return node, and the dead point of o is in a branch,
then we have to insert instructions to free o at the dead point because such a
branch may not be executed.

According to the reference and the instrument point information of each dead
object provided in I, the code transformation of free instrumentation can easily
create instructions to explicitly free object.

Fig.4 shows the analysis process of method subdivp in Fig.1. We give source-
level statements for the sake of brevity. The new expression in block 2 will im-
plicitly invoke the constructor, so object o1 created there will be passed into
subdivp and become an element of Nin in the PEG of subdivp. At the end of

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 27

Fig. 4. An example illustrating the analysis process

block 4, variable dr is not live, so the analysis determines that o2 only referenced
by dr and o1 only referenced by dr.data are both dead. At last the analysis will
record the analysis result.

3.6 Special Design Tradeoff

Thread Object. Thread objects are distinguished from other ordinary objects
based on class hierarchy diagrams, and their escape states can be initialized as
EG. If an object o is assigned to a thread object field, then ξ(o) := EG. If a
thread object ot has ended its execution, ot will be treated as an ordinary object
and ξ(ot) will be reset according to the escape states of objects referring to ot

in the current PEG. However, it is difficult to identify when and where a thread
has ended execution. Our analysis only judges this case by join() invocations of
thread objects.

Loop. Instructions in loops are analyzed only once, which makes the analysis
simpler and cheaper since the analysis overhead is a part of the whole program
runtime overhead. The analysis is also correct and conservative because accord-
ing to the rules in section 3.5, 1)assuming the allocation site pa of an object o
occurs before a loop entry and o dies in the loop, if pa dominates a return node
pr, then select pr as the instrument point, else might select some point after the
loop exit; 2) assuming the allocation site pa of o occurs in a loop, if o dies in the
loop, then select the dead point in the loop which can be dominated by pa as
the instrument point, otherwise indicating any reference to o is live at all basic
blocks of the loop, and not freeing o.

28 Y. Zhang et al.

Array. All elements of an array are abstracted as an object with a special field,
and accesses to an element are treated as accesses to the special field. It may
reduce the size of explicitly freed objects but save analysis overhead.
Recursion. Our inter-procedural analysis can handle recursion. It maintains a
chain of method invocation when meeting an unanalyzed callee, if the current
unanalyzed callee has already existed in the chain (i.e., there is a recursion),
the loop in the chain is cut and the inter-procedural combination could be done
conservatively based on the current method summaries.

4 Explicit Reclamation and Space Reuse

GCv5 [19] is a parallel GC which support multiple collectors running collabora-
tively. We choose GCv5-MS to implement explicit reclamation and space reuse
(denoted as JIT-GCv5-MS), because it uses free-list to organize heap space and
is convenient to add or acquire a free space from the heap.

4.1 Brief Overview of GCv5-MS

Each thread in an application (called application thread) corresponds to a mu-
tator thread in GCv5-MS. Each mutator takes charge of the allocation of the
corresponding application thread. GCv5-MS classifies objects into two kinds,
i.e., small objects (less than 1KB) and large objects (greater than or equal to
1KB), and provides Free Block Pool (FBP) and Free Area Pool (FAP) shown in
Fig.5 for the allocation of the two kinds, respectively. Each pool is organized as
an array of segregated free lists, where each free list contains blocks/areas of the
same size or class size.

The FBP has 254 segregated free block lists shared among all mutators, and
blocks in the same list provide objects of the same size (from 8B to 1020B,
aligned in 4B). Each block comprises a header and a data area. The header
depicts information on the data area, e.g., a bitmap marking the status of each
slot in the data area, such as in use or free. Each mutator requests a free block
from the pool and its acquired blocks are local to the mutator. When a mutator
receives a request of allocating a small object, it searches its local block of the
requested size. If there is a free slot of the requested size then the mutator can
return one; otherwise it need to request a free block of the requested size from
the pool. Operations on the pool must be synchronized while operations on the
mutator-local blocks need not.

The FAP has 128 segregated free area lists. The last list contains free areas of
the size greater than or equal to 128KB. All mutators share the pool and must
request memory for large objects with synchronization. Generally speaking, there
are relatively few large objects in applications, so the synchronization overhead
of parallel large object allocations is not high.

4.2 Allocation and Explicit Reclamation in JIT-GCv5-MS

In order to support explicit reclamation and space reuse, we modify GCv5-MS
as JIT-GCv5-MS to add gc free and to modify the implementation of gc alloc.

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 29

Fig. 5. Heap space management of
GCv5-MS

Fig. 6. Heap space management of the explic-
itly reclaimed objects

Each mutator in JIT-GCv5-MS handles not only allocation requests but also
explicit free ones from its corresponding application thread. Due to the different
memory management mechanisms between the small and the large objects in
GCv5-MS, we take different methods.

Handling with Small Objects. If a mutator mf receives a request to free a
small object o, slot occupied by o must belong to a mutator-local block of some
mutator ma, where mf may not be ma, that is, o may not be thread-local. If mf

directly modifies the mark bits of o in the block header as free status to reclaim
the slot, and lets the original allocation algorithm control the reuse, accesses to
the word containing the mark bits by mf need to be synchronized, because the
word contains other slots’ mark bits, which may be accessed by ma to handle an
allocation request or by other mutator to handle another explicit free request,
simultaneously. Thus allocation operations on the mutator-local blocks which
need not be synchronized originally, have to be synchronized, which brings more
synchronization overhead.

In order to avoid such synchronization, we introduce a Reclaimed Object Pool
(ROP) (shown in Fig.6) for each mutator to collect its explicitly reclaimed object
spaces. When mutator mf reclaims an object o, it does not modify the mark bits
of o, but forces the object slot into a node of type Reclaimed Object Entry and
inserts the node into a list of the same size in mf ’s local ROP. gc alloc need be
modified to try to reuse the explicitly reclaimed object space immediately. That
is, it first searches its local ROP for free space of the requested size. If there are
none, it continues to allocate as the original strategy in GCv5-MS.

Handling with Large Objects. Because all mutators share the FAP for al-
locating large objects and the synchronization on these operations cannot be
neglected, we keep the implementation on allocating large objects as original.
When mutator mf receives a request to free a large object o, it directly insert the
memory area occupied by o into the free list of the matched size in the FAP, thus
the subsequent object allocation of the same size will reuse the memory area. It
is noticed that explicit reclamation of large objects need be synchronized, and
we cannot easily obtain the reuse rate of large reclaimed object space.

30 Y. Zhang et al.

5 Experimental Results

We have implemented the above work in DRLVM and evaluated it with Jolden
and SPECjbb2005. The experiments were performed on 2.1GHz AMD Athlon
dual core machine with 896MB of memory running Windows XP.

5.1 Effectiveness of the JIT-Assisted GC

First, we check whether the JIT-assisted GC frees still reachable objects or frees
dead objects at wrong program points. In order to perform the correctness vali-
dation, we modify the implementation of gc free, mark the explicitly reclaimed
object as un-useable and un-reusable. In addition, the pipeline performs many
checks in LIR, such as variable liveness checking. In this way if done a wrong
free action, the system will throw exception at the next access to a freed object
or at the access to a potential undefined variable. The experiments show that
there are no such exceptions and errors in compile time or runtime.

Table 2 presents the statistics on allocation, free and reuse for our JIT-assisted
GC system at the default heap size 256MB of the VM. The first four programs
are from Jolden, the JIT-assisted GC explicitly frees 66% of all objects on av-
erage and up to 96% in Jolden. We find that the free instructions inserted in
loops or recursive methods can bring considerable income, and these explicitly
reclaimed object spaces can be reused easily because the same allocation site will
be executed many times, e.g., Health reclaims 14MB and almost all the space is
from such free instructions.

Table 2. Memory freed and reused by JIT-assisted GC.

Application Total Alloc
Mem

Free Mem
on free(x)

Free Mem
on free(x.f)

Total
Free
Mem.

Total
Reuse
Mem

%Free
Mem

%Reuse
Mem

BH 67MB 14MB 46MB 60MB 60MB 90% 100%
Health 60MB 14MB 0B 14MB 14MB 23% 100%
Power 24MB 23MB 100B 23MB 23MB 96% 100%
TSP 51MB 28MB 88B 28MB 27MB 55% 96%
SPECjbb2005 1419MB 104MB 0B 104MB 104MB 7% 100%

The last column of the table shows the explicitly reclaimed memory reuse ratio.
For the programs in Jolden, the ratios are high and the explicitly reclaimed objects
are all small objects, this illustrates that the JIT-GCv5-MS can reuse almost all
these small objects. The reuse ratio of SPECjbb2005 is relatively low because the
system reclaims many large objects, and the system does not count statistics for
the large object space reuse due to not increasing the synchronization cost.

5.2 Time Cost

Table 3 presents the statistics on the time cost of our object lifetime analysis
and transformation pass and the total compilation time, we can see that the
pass cost less than 10% of the total compilation time.

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 31

Table 3. Analysis time and total compilation time.

Application Objlife Time Total Comp. Time %Objlife
BH 23ms 537ms 4.3%
Health 14ms 309ms 4.5%
Power 12ms 332ms 3.6%
TSP 11ms 207ms 5.3%
SPECjbb2005 738ms 19011ms 3.9%

5.3 Performance Improving of JIT-Assisted GC

To evaluate the performance impact, we compared the GC execution times of
the benchmark programs. Fig.7 presents the GC execution time comparison of
programs in Jolden. The x-axis is the heap size and the y-axis is the GC exe-
cution time. We can see that GC execution time of JIT-GCv5-MS is less than
that of GCv5-MS. Along with the increase of the heap size, the performance
improvement becomes small. This is because the numbers of the explicitly re-
claimed objects and those of the reused objects are fixed, the larger heap size
relatively decreases the performance improvement, as Health and TSP in Fig. 7.
As to BH and Power, even if the heap size is set to the least 16MB, the execution
time of GC in JIT-GCv5-MS is zero, since more than 90% of the allocated space
can be explicitly reclaimed.

Fig. 7. Performance comparison of 4 programs in Jolden

Fig.8 shows the throughput comparison of SPECjbb2005 with and without
JIT-assisted GC optimization. It lists the collectively throughputs of 6 group
experiments. The dark column and the first row in the data table illustrate the
throughput without JIT-assisted GC. The tint column and the second row in the

32 Y. Zhang et al.

Fig. 8. The throughput comparison of SPECJbb2005

data table illustrate the throughput with JIT-assisted GC. The third row in the
table is the improving ratio. We can see the improving ratio is about 1.3∼2.9%.

6 Related Work and Conclusions

Guyer et al. propose a free-me analysis [12] which is closest to our work. They
combine a light-weight pointer analysis with liveness information that detects
when short-lived objects die, and insert calls to free dead objects. However,
their method cannot identify the lifetime of objects referenced by fields due to
its field-insensitive property. Cherem et al. present a uniqueness inference and
can free objects with unique reference in the whole heap through free instructions
and destructors [13, 14], the work needs to modify libraries to add destructors,
this method is complex and difficult and not fit for the system built in virtual
machine because the latter need to exucute applications accompanied by just-
in-time compilation. Both of the works do not support the reuse of the explicitly
reclaimed space.

Lee and Yi’s analysis inserts free instructions only for immediate reuse, i.e.,
before an allocation of the same size [15]. Marinov et al. present Object Equality
Profiling (OEP) [16] to discover opportunities for replacing a set of equivalent
object instances with a single representative object. Gheorghioiu et al. present
an inter-procedural and compositional algorithm for finding pairs of compatible
allocation sites [17], which have the property that no object allocated at one site
is live at the same time as any object allocated at the other site. All these works
focus on object merging and reuse only for the same size objects with lifetime
homogeneity only on the compiler end.

Our work can identify some short-lived objects not limited in method scope
or other special features like [15], it also detects objects only referenced by the
fields of the identified dead objects. The PEG based analysis seems similar to
[7], however, the definition of the escape lattice and the rules on building and
transforming the PEG are very different. In addition, our work not only frees
the identified dead objects, but also tries to reuse them immediately. Although
our current work in GCv5 is on Mark-sweep algorithm, we can easily extend the
work to other algorithms in GCv5.

Just-in-Time Compiler Assisted Object Reclamation and Space Reuse 33

Based on the JIT-assisted GC framework, we can explore more optimization
on memory management. We are analyzing the benefit of each free instruction
inserted by JIT and the memory utility of each allocation site in loop or recursive
method by developing a log system with the cooperation among JIT, VMCore
and GC. According to the analysis results, we will find more chances on memory
management optimization.

References

1. Jones, R., Lins, R.: Garbage collection: algorithms for automatic dynamic memory
management. John Wiley & Sons, Chichester (1996)

2. Specjbb2005 benchmark (2005), http://www.spec.org/jbb2005/

3. Kero, M., Nordlander, J., Lundgren, P.: A correct and useful incremental copying
garbage collector. In: Proc. 6th Int’l Symp. on Memory Management, October
2007, pp. 129–140. ACM Press, New York (2007)

4. Blackburn, S., McKinley, K.: Immix garbage collection: mutator locality, fast col-
lection, and space efficiency. In: Proc. 2008 ACM Conf. on Prog. Lang. Design and
Impl., pp. 22–32. ACM Press, New York (June 2008)

5. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for java pro-
grams. ACM SIGPLAN Notices 34(10), 187–206 (1999)

6. Gay, D., Steensgaard, B.: Fast escape analysis and stack allocation for object-based
programs. In: Watt, D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 82–93. Springer,
Heidelberg (2000)

7. Choi, J.D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack alloca-
tion and synchronization optimizations for java using escape analysis. ACM Trans.
on Programming Languages and Systems 25(6), 876–910 (2003)

8. Gay, D.E., Aiken, A.: Language support for regions. In: Proc. 2001 ACM Conf. on
Prog. Lang. Design and Impl., June 2001, pp. 70–80. ACM Press, New York (June
2001)

9. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based memory management in cyclone. In: Proc. 2002 ACM Conf. on Prog. Lang.
Design and Impl., June 2002, pp. 282–293. ACM Press, New York (June 2002)

10. Salagnac, G., Yovine, S., Garbervetsky, D.: Fast escape analysis for region-based
memory management. In: Proc. 1st Int’l Workshop on Abstract Interpretation for
Object-Oriented Languages, January 2005. ENTCS, vol. 141, pp. 99–110. Elseiver,
Amsterdam (January 2005)

11. Stefan, A., Craciun, F., Chin, W.N.: A flow-sensitive region inference for cli. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 19–35. Springer, Heidel-
berg (2008)

12. Guyer, S.Z., McKinley, K.S., Frampton, D.: Free-me: a static analysis for automatic
individual object reclamation. In: Proc. 2006 ACM Conf. on Prog. Lang. Design
and Impl., June 2006, pp. 364–375. ACM Press, New York (June 2006)

13. Cherem, S., Rugina, R.: Compile-time deallocation of individual objects. In: Proc.
5th Int’l Symp. on Memory Management, June 2006, pp. 138–149. ACM Press,
New York (June 2006)

14. Cherem, S., Rugina, R.: Uniqueness inference for compile-time object deallocation.
In: Proc. 6th Int’l Symp. on Memory Management, October 2007, pp. 117–128.
ACM Press, New York (October 2007)

http://www.spec.org/jbb2005/

34 Y. Zhang et al.

15. Lee, O., Yi, K.: newblock Experiments on the effectiveness of an automatic in-
sertion of memory reuses into ml-like programs, October 2004, pp. 97–108. ACM
Press, New York (October 2004)

16. Marinov, D., O’Callahan, R.: Object equality profiling. In: Proc. 18th ACM SIG-
PLAN Conf. on Object-Oriented Prog. Systems, Lang., and Applications, October
2003, pp. 313–325. ACM Press, New York (October 2003)

17. Ovidiu Gheorghioiu, A.S., Rinard, M.: Interprocedural compatibility analysis for
static object preallocation. In: Proc. 30th ACM Symp. on Principles of Prog. Lang.,
January 2003, pp. 273–284. ACM Press, New York (January 2003)

18. Apache harmony drlvm (2006),
http://harmony.apache.org/subcomponents/drlvm/index.html

19. Apache harmony gcv5 (2008),
http://harmony.apache.org/subcomponents/drlvm/gc-v5.html

http://harmony.apache.org/subcomponents/drlvm/index.html
http://harmony.apache.org/subcomponents/drlvm/gc-v5.html

	Just-in-Time Compiler Assisted Object Reclamation and Space Reuse
	Introduction
	Overview of the JIT-Assisted GC
	The Framework of the JIT-Assisted GC
	A Simple Example

	Object Lifetime Analysis and Program Transformation
	Analysis and Transformation in a Nutshell
	Points-to Escape Graph
	Intra-procedural Analysis
	Inter-procedural Analysis
	Collecting Free Instrument Information
	Special Design Tradeoff

	Explicit Reclamation and Space Reuse
	Brief Overview of GCv5-MS
	Allocation and Explicit Reclamation in JIT-GCv5-MS

	Experimental Results
	Effectiveness of the JIT-Assisted GC
	Time Cost
	Performance Improving of JIT-Assisted GC

	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

