2007 IFIP International Conference on Network and Parallel Computing - Workshops

Implementing Atomic Section by Using Hybrid Concurrent Control*

Lei Zhao, Yu Zhang
Department of Computer Science & Technology
University of Science & Technology of China, Hefei, 230027, China
arre @mail.ustc.edu.cn, yuzhang @ustc.edu.cn

Abstract

Atomic section is an important language feather in multi-
thread synchronizing. So far, it can only be implemented
by using pessimistic or optimistic concurrent control singly.
This paper introduces a flexible hybrid concurrent control
system which could harmonize the two modes of concurrent
control. Accordingly, a new atomic section is proposed as
language level support to open an interface for both manual
and compiler-assisted optimization.

1. Introduction

Atomic section is an important language feature in multi-
thread synchronizing, which guarantees a set of statements
could be executed atomically and frees programmer from
managing concurrent control strategy. Commonly, atomic
sections are implemented by using two distinct modes of
concurrent controls: the lock-based pessimistic [4] [8] and
the STM(software transaction memory)-based optimistic
[1] [6]. It is well known that locking usually lead to coarse
concurrent granularity especially for the large and complex
data structures with irregular shapes, because fine granular-
ity concurrent algorithms are not only hard to design but
liable to cause mistakes, such as deadlock and priority re-
verse. STM completely eliminates these drawbacks and
possesses very fine granularity, however, it inevitably has
shortcoming such as high cost of memory space and com-
puting resource, and unable to support irreversible opera-
tions, such as I/0.

Traditionally, pessimistic and optimistic concurrent con-
trols are incompatible and unable to work simultaneously
within one system. However, considering the balance
of scalability and overhead, either of them singly cannot
achieve high performance at any time. A more flexible strat-
egy is needed in implementing atomic sections.

*This work is funded in part by gifts from Intel Corporation and Na-
tional Natural Science Foundation of China under Grant No. 60673126.

0-7695-2943-7/07 $25.00 © 2007 IEEE
DOI 10.1109/NPC.2007.160

642

This paper introduces a hybrid concurrent control system
which can harmonize pessimistic and optimistic modes, let-
ting them cooperate correctly and effectively. Accordingly,
anew structure of atomic section is proposed for opening an
interface for both manual and compiler-assisted optimiza-
tion.

The rest of this paper is organized as follows. Section
2 describes the syntax and semantics of the atomic section.
Section 3 illustrates the essentials of hybrid concurrent con-
trol: conflict definition and avoidance, and operation proto-
col. Section 4 explains how to handle nesting. Experimental
results and interpretation are presented in section 5. Finally
we conclude our work in section 6.

2. Atomic Section

atom (guard object list
[, concurrent control mode])
{stmts;}

Figure 1. Structure of atomic section.

Figure 1 presents the structure of atomic section. The
new keyword atom is used to identify a synchronized block,
ie. {stmts}, in which another atomic section could be
nested.

guard_object_list (shorted as gol) declares a list of shared
objects. Each of them is called a guard-object. Atomic sec-
tions with at least one common guard-object show isolation
and atomicity to each other.

concurrent_control_mode is an optional field, which de-
clares the mode of concurrent control to be applied on this
atomic section. It can be set to PESS or OPT. PESS means
pessimistic concurrent control (P mode), while OPT means
optimistic concurrent control (O mode).

Limitation. Most of efforts on determining the concur-
rent control mode are supposed to be performed automat-
ically by compiler and/or concurrent control system using

IEEE
computer
® psouety

self-adaptive algorithms, both of which would be our future
work. Currently, our experiments in section 5 remain relay-
ing on specifying manually.

3. Hybrid Concurrent Control

The hybrid concurrent control system harmonies pes-
simistic and optimistic modes, letting them co-work correc-
tively and effectively. In this section, we describe the details
in designing hybrid concurrent control system.

3.1. Transaction

Informally, a transaction is one pass of execution of cer-
tain atomic section. Following the terminology of Herlihy,
Wing [2], and Scott[7], a transaction is defined as a se-
quence of operations performed by a single thread. If a
transaction adopts pessimistic or optimistic concurrent con-
trol, we say it is with P mode or O mode respectively. In
our system, operations include:

For transaction with P mode:

e startP(gol): starts the transaction of the related
atomic section with gol,

e read¥ (so): reads current value of the shared object so
from shared memory;

e writeP (s0,v): updates so with value v by directly writ-
ing v into shared memory;

e endP(gol): terminates the transaction of the related
atomic section with gol.

For transaction with O mode:

° starto(gol): starts the transaction of the related
atomic section with gol;

e read®(so): reads current value of so from thread-local
memory; if it contains no value of so, reading from
shared memory;

e write©(so,v): updates so with the value v by writing
v into thread-local memory;

° COI’I’ll’l’lito(gOZ,SOl,SOQ,. ..,50y,): terminates the trans-
action by exiting corresponding atomic section with
guard-object list gol after updating shared memory us-
ing local values of so; (1 <7 <n,0 < n);

° aborto(gol): terminates the transaction of the related
atomic section with go!/ without updating shared mem-
ory.

643

Trans —
(start’ ((read’ |write’) *NestTrans) *end") |
(start® ((read® |write®) *NestTrans) *
(commit® | abort?))
NestTrans — Trans| €

Figure 2. Definition of transaction.

Figure 2 describes the form of operations sequence in
a transaction. A thread first starts a transaction, perform-
ing several read/write operations, and then terminates the
transaction. The termination may succeed or fail in O mode
but definitely succeed in P mode. NESTTRANS represents
the nested part of that transaction. Transactions in differ-
ent threads inherit the identification of that thread. We use
OPY to represent an operation OP being performed in
transaction T with concurrent control mode M in following
part of this paper.

3.2. Conflict

For a program, one pass of execution is represented by
a history, which is a chronological sequence of operations
that performed by all threads according to global system
time. A history H induces a partial order relation <y
on operations: for any two operations op; and opg, if
op1 <3 Opz, then op; precedes ops. To define conflict,
we slightly modify the definition of consistency in [7]:
we say a history H is consistent, if there is operation
read¥ (so) or readQ(so)(T holds gol; as its guard-
object list), the value of so has not been modified until
end¥.(gol;) or commitQ(goly,...) appears respectively
by transaction S with golo which shares at least one
guard-object with gol;. Any sequence of operations that
causes inconsistency raises a conflict. We define conflict
by dividing it into three categories: (In the following
definitions, for any two transactions T with gol; and S with
gols, there are T # S and goly N goly #)

Conflict Definition

P vs. P Conflict: In history H, it will raise a
P vs. P conflict, if there exists an operation sequence
of read¥.(so) <3 writef (s0) <y end®(goly).

P vs. O Conflict: In history H, it will raise a
P vs. O conflict, if there exists an operation sequence of
read® (s0) <y commitQ (gols, s0,...) <y endf(goly)
orread(so) <y writef (so) <y commit?(goli,...).

O vs. O Conflict: In history H, it will raise a
O vs. O conflict, if there exists an operation sequence

of readQ(s0) <y commitg (gols,so,...)
<y commitQ(goly,...).

Above conflict definition has several drawbacks: 1)
increasing possibility to incur deadlock. Because threads
will access different shared objects exclusively in uncertain
order, any pairs of reversed lock acquiring orders may
cause deadlock; 2) increasing overhead of locking. The
overhead will rise proportionately to the number of shared
objects that have been read. To avoid the difficulty, our
system uses a broadened conflict definition.

Broadened Conflict Definition

P vs. P Conflict: In history H, it will raise a
P vs. P conflict, if there exists an operation sequence
of start¥ (gol;) <3 startf(gola) <y end®(goly).

P vs. O Conflict: In history H, it will raise a
P vs. O conflict, if there exists an operation sequence
of start®(gol;) <y start(gols) < end%(goly) or

startQ(gol1) <y startf (golz) <y commitQ(goly,..

O vs. O Conflict: In history H, it will raise a
O vs. O conflict, if there exists an operation sequence
of readQ(s0) <3 commitQ (gola, so,...)

<y commitQ(goly,...).

3.3. Keep Consistency

In order to avoid conflicts, conflict avoidance rules in Ta-
ble 1 are used. Once concurrent control system has detected
a critical sequence, which is such sequence that will imme-
diately raise a conflict, it will force the execution to generate
the corresponding solved sequence.

For rules A and B, it would raise conflict if an end¥
were appended to the sequence, so rules delay the start
of S until endg is performed. For rules C and D, if T is
threatened by dirty read, it is forced to abort.

Implementing rules A and B is straightforward. Every
shared object has been bound with a lock. When transaction
S starts, it will find that the locks of gol; has been hold by
transaction T, therefore having to wait until T releases those
locks. Implementing rules C and D has a little difficulty
because start and read of T are invisible to S, who would be
therefore unable to see the critical sequence. This problem
is resolved by using visible reader [5]. Every shared object
maintains a visible reader list, which records all transactions
having read this object. Consequently, for rule D, S is able
to detect read of T at the point of commit?. For rule C,
T is added as a visible reader of guard-objects in gol; while
startQ(goly) is performed, then start of T is visible to S.

).

644

3.4. Operation Protocol

In this section, we describe the operation protocol of
hybrid concurrent control. This protocol is implemented
according to the conflict avoidance rules; it guarantees
conflict-free histories in all executions of multi-thread
programs.

Operation Protocol

e Transaction T with P mode must successfully acquire
all locks of its guard-objects before start, aborting all
visible readers of the guard-objects, then release these
locks when exiting.

e Transaction T with O mode can start only when all
locks of its guard-objects are free (by acquiring all then
releasing all). After starting successfully, T marks it-
self as a visible reader of the guard-objects.

e Transaction T with O mode can perform read$ (so)
and writeQ(so,v) only when it has not been
aborted. At the earliest performed readQ(so) or
writeQ (so,v), T marks itself as a visible reader of
s0.

e Transaction T with O mode must perform self-
validating at least one time (the one at commit%) be-
fore it can successfully commit. Once being aborted,
T restarts without any shared memory updating.

e Transaction T with O mode remains active at
commitQ, it acquires all locks of its guard-objects,
writing back the local copies to shared memory, abort-
ing all visible readers of the objects it wrote, and then
releases the locks.

Deadlock avoidance. In the stage of lock acquiring, two
transactions might form a waiting cycle due to the improper
acquiring order. To avoid deadlock, a transaction is forced
to acquire all locks of its guard-objects at one time; oth-
erwise, it releases the locks having already acquired then
restarts the process of acquiring.

3.5. Example

In Figure 3, we list four transactions sharing single guard
object so;, where (1) (2) are with P mode and (3) (4) with
O mode. The table below describes how the hybrid concur-
rent control works when each pair of them run concurrently.
When (1) starts before (2), (2) will be blocked and wait for
the lock of so;. The second column is similar: (3) will be
blocked too. In column three, (3) starts first, and then (1)

Critical Sequence
P

Solved Sequence

start¥ (gol;) <3 startf (gols)

start (gol;) <3 endh(gol;) <3 startf (gol)

start¥ (gol;) <3 startQ (gols)

start® (gol;) <3 end%(gol;) <3 startS (gols)

startQ(gol1) <y startf (golo)

startQ(gol1) <y startf (gola) <y abort2(goly)

Ol Q| w| >

read? (so) <y commit§ (goly, so, .. .)

read? (s0) <y commit? (goly, so,...) <3 abort2(gols)

Table 1. Conflict avoidance rules. In all rules, gol; N gols # P.

@ e @ p

@0 e

®3) o I @ o I (O : read only object

ol JEloX

@ @ @ @ @ @ ® @

1 T I T 1 I both
i owait... i wait... i restart... .
I I g commit

Figure 3. Program behavior under the hybrid
concurrent control.

O : serves as the guard object.

@ : read and write object

starts. (3) will be aborted and restarts. In sum, transac-
tion with P mode would not interleave with others no mat-
ter with P or O mode. However, while (3) and (4) encounter
with each other, both of them could commit, because their
write sets have no elements in common. This ensures the
fine-granularity concurrency of optimistic mode.

4. Nesting
Py > Py >
02 i g P
P —_— * m
A Do P T
s E R

Figure 4. Dealing with mixed nesting.

Nesting is a critical aspect that should be supported in
any concurrent control system, in that almost all recursive
algorithms and function call may lead to nested transaction.

Let M; (could be O; or P;) be the concurrent control
mode of transaction with nested depth 7 (the outmost is
with depth 1). All transactions that nested together could be
symbolized by a sequence of MM, ... M, ... M, where

1 < i < n. All of these sequences are divided into three
classes: 1) all of transactions are with O mode, which we
denote with 010> ...0;...0O,; 2) all of transactions are
with P mode, which we denote with P, P, ... P; ... P,; 3)
mixed nesting, where M; depends on the mode on depth 1.

For case one, we apply closed nesting mode: the inner
transaction merely commit its works to the outer one, rather
than to shared memory. A drawback of this method is that
when an inner transaction is aborted, the whole nested block
is requested to be re-executed. However, given it increases
the overhead of rollback, it is more practical for the low cost
of maintaining information about nesting. For case two, the
whole nested blocks are flattened similarly

For case three, a restriction is imposed on the style of
mode mixing: for sequence M1 Ms ... M; ... M,, if M; is
P mode, all M; that have 1 < j < ¢ must also be P mode,
because the sequence may otherwise violate the semantic
of abort that once a transaction has been aborted, its effect
should be discarded. An example is shown in Figure 4.
The left part displays four transactions P; O P30, nested
together (we use its mode to represent the transaction for
short). Under this case, P; starts at the time point S and
ends at F, during when it will directly update shared mem-
ory. Suppose that if Os was then aborted by other thread at
R and tried to discard its effect for rollback, it is unable to
discard those work done in P3. To conform to the restric-
tion, when P5 reaches S, it must rollback to the start of O,
switching the mode of O, to P, then restarts the execution,
as showed on the right side in Figure 4.

5. Experiments

Our experiment is carried on simulated shared mem-
ory multiprocessor (SMP) environment by using Simics[3].
Configuration of the system is listed bellow:

e The SMP system contains 15 CPUs with Pentium IV
instruction set, 20MHz main frequency and split L1
cache: 16K, 4-way, l-cycle latency. 512MB main
memory (100-cycle latency).

e Operating system is Linux Fedora Core 5 (kernel ver-
sion 2.6.9).

e The JVM is Sun HotSpot JVM 1.6.0 with default op-
tions.

The three benchmarks used in the experiments include
two variants of integer sets, i.e., a sorted linkedlist and a red-
black tree (rbtree for short), and a compounded benchmark
combining a linkedlist with an rbtree. Benchmarks support
operations: insert, lookup, and remove. insert and remove
will write the shared memory, while lookup only reads it.

The number of threads ranges from 1 to 15; every thread
operates on rbtree or linkedlist with initial 100 nodes for 10
seconds; the total number of operations is counted as the
criteria of performance. The concurrent control system is
configured to three types: 1) Pess: configuration “read-P;
write-P” (both read and write use P mode); 2) Opt: “read-
O; write-O”; 3) Hyb: “read-O; write-P”. Write percentage
has two levels: 1) heavy write (HW) with %6 read and %94
write; 2) light write (LW) with %94 read and %6 write.

5.1. Performance

Sorted LinkedList

7000

6000 B on N —e—HW,P
w5000 A\ o e
s »x HW,Opt
§ 4000 A —&—HW,Hyb
g y
o 3000 4 == LW,Pess

2000 Y = LW,Opt

L. = =< == ceecaacadVN

0
1 3 5 7 9 11 13 15
Threads

Figure 5. Performance contrast over
linkedList.

Figure 5 and 6 show the performance contrast over rb-
tree and linkedlist respectively. Pess shows little scalability,
but it takes the advantages of incurring lower overhead than
Opt does. So when number of threads is small, Pess is much
faster than the other two. Because of the intensive data con-
tent on HW, Opt cannot benefit from the thread number in-
creasing, thus Pess is always the most efficient configura-
tion on HW.

The write on rbtree is much heavier than on linkedlist
due to the balance keeping for the tree, so it limits the po-
tential concurrency of rbtree. The result is that on rbtree,
Pess is more effective than Opt not only on HW but on
LW as well. However, on LW-linkedlist, Opt is evidently
superior to Pess when the number of threads exceeds five.
The performance of Hyb is slightly better than Opt on rb-
tree, however it dominates totally on linkedlist. On HW,

646

RBTree

60000

50000 /ﬁv ——HW,Pess
2 40000 HW,Opt
8 ; —&—HW,Hyb
g 30000 ASE Sy E—— v
o 7 SV =W, Pess

20000

—¥—LW,0pt
o L, e

Threads

Figure 6. Performance contrast over rbtree.

CompoundBench
10000
9000 A
8000
7000
g 6000 —o—Pess
£ 5000 ey Opt
g 4000 —a—Hyb
O 3000
2000
1000

11 13 15

Threads

Figure 7. Performance contrast over com-
poundBench.

its performance approaches equality with that of Opt; on
LW, the performance also equates to approximately 80 per-
cent of Pesss. In other words, Hyb gets relative high perfor-
mance when data contention is intensive meanwhile shows
well scalability when data contention is rare.

On compoundbench, every thread performs read or write
on linkedlist and rbtree alternately. rbtree is with HW, while
linkedlist with LW. The Hyb is configured as “rbtree-P;
linkedlist-O”. Figure 7 presents the performance and Hyb
also shows high scalability. Figure 8 compares the ratio of
abort per operation of Opt and Hyb. It illustrates that Hyb
could effectively do the same amount of works as Opt could
but avoid very high waste of system resource.

Average Abort Ratio

200%

180% /’
160% V2
5 140% 7
< 120%
g J
& 100%
E 80% l" —o—Opt
2 6% / Hyb
40% 7
20%
0% U :‘5‘{ _____ Pl

Threads

Figure 8. Overhead contrast over compound-
edBench.

6. Conclusion

The atomic section described in this paper provides the
hybrid concurrent control with language support. As theo-
retic foundation of the hybrid concurrent control, the con-
flict definition and solution makes the system possessing
low overhead of pessimistic mode and fine scalability of
optimistic mode. The experiments show that hybrid concur-
rent control is very flexible when being applied to different
programs. However, so far we just focus on correctly and
effectively harmonizing pessimistic and optimistic modes in
hybrid concurrent control system and have not developed a
method to automatically configure the hybrid mode accord-
ing to programs. Further, the strategy of conflict avoidance
is currently hard coded therefore lacking self-adaptability.
It is reasonable to develop various strategies to manage con-
flicts. These problems are still open and require for further
research.

References

[1] T. Harris and K. Fraser. Language support for lightweight
transactions. In Proceedings of 18th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 388—402, 2003.

M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. In ACM Transactions on
Programming Languages and Systems, 1990.

P. S. Magnusson, M. Christensson, J. Eskilson, F. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: a full system simulation environment.
IEEE Computer, pages 50-58, 2002.

B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. In 33rd ACM

(2]

(3]

(4]

647

(5]
(6]

(7]

(8]

Symposium on Principles of Programming Languages, pages
346-358, 2006.

C. H. Papadimitriou. = The serializability of concurrent
database updates. Journal of the ACM, 1979.

B. Saha, A. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. Mecrt-stm: a high performance software trans-
actional memory system for a multi-core runtime. In Pro-
ceedings 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 187-197, 2006.

M. L. Scott. Sequential specification of transactional memory
semantics. In Proceedings of the 1st ACM SIGPLAN Work-
shop on Languages, Compilers, and Hardware Support for
Transactional Computing, 2006.

Y. Zhang, J. B. Manzano, and G. R. Gao. Atomic section:
concept and implementation. In Mid-Atlantic Student Work-
shop on Programming Languages and Systems, 2005.

