arXiv:submit/2997162 [quant-ph] 19 Jan 2020

Context-Sensitive and Duration-Aware Qubit Mapping for Various
NISQ Devices

YU ZHANG <X HAOWEI DENG, and QUANXI LI, University of Science and Technology of China

Quantum computing (QC) technologies have reached a second renaissance in the last decade. Some fully
programmable QC devices have been built based on superconducting or ion trap technologies. Although
different quantum technologies have their own parameter indicators, QC devices in the NISQ era share
common features and challenges such as limited qubits and connectivity, short coherence time and high gate
error rates. Quantum programs written by programmers could hardly run on real hardware directly since
two-qubit gates are usually allowed on few pairs of qubits. Therefore, quantum computing compilers must
resolve the mapping problem and transform original programs to fit the hardware limitation.

To address the issues mentioned above, we summarize different quantum technologies and abstractly define
Quantum Abstract Machine (QAM); then propose a COntext-sensitive and Duration-Aware Remapping
algorithm (CopAR) based on the QAM. By introducing lock for each qubit, CODAR is aware of gate duration
difference and program context, which bring it abilities to extract more program’s parallelism and reduce
program execution time. Compared to the best-known algorithm, Copar halves the total execution time
of several quantum algorithms and cut down 17.5% ~ 19.4% total execution time on average in different
architectures.

1 INTRODUCTION

Quantum Computing (QC) has attracted huge attention in recent a decade due to its ability to
exponentially accelerate several important algorithms [12, 15, 27, 33]. Both QC algorithm design-
ers and programmers work at a very high level, and need to know little about (future) Noisy
Intermediate-Scale Quantum (NISQ) devices that (will) execute quantum programs. There exists
a gap, however, between NISQ devices and the hardware requirements (e.g., size and reliability)
of QC algorithms. To bridge this gap, QC requires abstraction layers and toolchains to translate
and optimize applications [9]. QC compilers typically translate high-level QC code into (optimized)
circuit-level assembly code in multiple stages. In order to use NISQ hardware, quantum circuit
programs have to be compiled to the target device, which includes mapping logical qubits to
physical ones of the device. The mapping step, which we focus on in this abstract, faces a tough
challenge because further physical constraints have to be considered. In fact, 2-qubit gates can
only be applied to certain physical qubit pairs. Therefore, additional SWAP operations have to be
inserted in order to “move” the logical qubits to positions where they can interact with each other.
This qubit mapping problem has been proved to be a NP-Complete problem [35].

Previous solutions to this problem can be classified into two types. One type is to formulate
the problem into an equivalent mathematical problem and apply a solver [6-8, 22, 25, 28, 30, 31,
38, 39, 41, 43], and another type is to use heuristic search to obtain approximate results [5, 17-
20, 29, 34, 42, 45]. The former suffers from very long runtime and can only be applied to small size

This work was partly supported by the grants of the National Natural Science Foundation of China (No. 61772487), Anhui
Initiative in Quantum Information Technologies (No. AHY150100) and Anhui Provincial Major Teaching and Research
Project (No. 2017jyxm0005).

Corresponding author: Yu Zhang, email: yuzhang@ustc.edu.cn.

This is the extended abstract of the talk accepted by the First International Workshop on Programming Languages for Quantum
Computing (PLanQC 2020), Jan 19, 2020, New Orleans, Louisiana, USA .

cases. The latter is better in runtime especially when the circuit is in a large scale. All of them
assume different gates have the same execution duration.

Table 1. Parameter information of several quantum computing devices.

Ton Trap Superconducting
Ton O5[21] | Ton QII[4] lBM Q5[21] BM Qt6[z6] | IBM Qao[io] | Teutral Atom[32]
Available 1-qubit gate Rﬁ X,Y,Z,H,S,T Rg
Available 2-qubit gate XX CNOT CNOTI[36]
1-qubit gate 99.1(5)% 995% 99.7% ~99.8% ~99.56% 99.995% [32]
Fidelityl 2-dubit gate 97(1)% 97.5%[95.1%,98.9%] | 96.5% ~96% ~97% 82%[23]
1-qubit readout (|0):99.7(1)%, |1):99.1(1)% 99.3% ~ 96% ~93% ~91.2% 98.6% [13)
laverage readout 95.7(1)% - ~ 80% - - >97% [24]
Time 1-qubit gate 20p s 130 ns 80 ns - 1p ~20p s
2-qubit gate 2500 s - 250-450 ns | 170-391 ns - ~10p s
Depolarization (T;) ~ 0 - ~ 60U s ~70u s 87.29u s >10s
Spin dephasing (T3) ~ 0.5 - ~ 60U s ~70u s 54.43u s ~1s

On NISQ hardware, however, different gates have different durations (see Table 1). Ignoring the
gate duration difference may cause these algorithms to find the shortest depth but not the shortest
execution time. The real execution time of the circuit is associated with the weighted depth, in
which different gates have different duration weights. Considering gate duration difference will
help the compiler make better use of the parallelism of quantum circuit and generate the circuit
with shorter execution time. In this abstract, we focus on solving the qubit mapping problem by
heuristic search with the consideration of gate duration difference and program context to explore
more program’s parallelism. To address the challenges of qubit mapping problem and adapt to
different quantum technologies, we first give several examples to explain our motivation, then
propose a quantum abstract machine (QAM) for studying the qubit mapping problem. The QAM is
modelled as a 2D coupling graph with limited connectivity and configurable durations of different
kinds of quantum gates. Based on the QAM, we further propose two mechanisms that enable
COntext-sensitive and Duration-Aware Remapping algorithm (CoDAR) to solve the qubit mapping
problem with the awareness of gate duration difference and program context. Experimental results
show that compared to the best known remapping algorithm, CODAR can cut down 17.5% ~ 19.4%
weighted depth at average.

2 PROBLEM ANALYSIS
2.1 Recent Work on Qubit Mapping

There are a lot of research on the qubit mapping problem. Here we focus on analyzing some valuable
solutions in recent two years [4, 19, 26, 35, 37, 41, 45]. All of them are proposed for some IBM QX
architectures, and none of them consider the gate duration difference.

Solutions only considering qubit coupling. [35, 41] provide solutions for 5-qubit IBM QX architec-
tures with directed coupling. Siraichi et al. [35] propose an optimal algorithm based on dynamic
programming, which only fits for small circuits; then they propose a heuristic one which is fast
but oversimplified with results worse than IBM’s solution. Wille et al. [41] present a solution
with a minimal number of additional SWAP and H operations, in which qubit mapping problem
is formulated as a symbolic optimization problem with high complexity. They utilize powerful
reasoning engines to solve the computationally task.

[19, 45] use heuristic search to provide good solutions in acceptable time for large scale circuits.
Zulehner et al. divide the two-qubit gates into independent layers, then use A* search plus heuristic
cost function to determine compliant mappings for each layer [45]. Li et al. propose a SWAP-based

bidirectional heuristic search algorithm, named SABRE [19], which can produce comparable results
with exponential speedup against previous solutions such as [45].

Solutions further considering error rates. [4, 26, 37] provide another type of perspective for solving
the qubit mapping problem. They consider the variation in the error rates of different qubits and
connections to generate directly executable circuits that improve reliability rather than minimize
circuit depth and number of gates. Based on the error rate data from real IBM Q16 and Q20
respectively, [26, 37] use a SMT solver to schedule gate operations to qubits with lower error
probabilities. Ash-Saki et al. propose two approaches, Sub-graph Search and Greedy approach, to
optimize gate-errors [4]. Circuits generated by them may suffer from long execution time due to
no consideration of the minimal circuit depth.

What we consider in the qubit mapping. We want to produce solutions for the qubit mapping
problem with speedup against previous works and maintain the fidelity meanwhile. Besides the
coupling map, what we further concern includes the program context and the gate duration
difference, which affect the design of qubit mapping. Considering these factors will help to find
remapping solution with approximate optimal execution close to reality.

2.2 Motivating Examples

We use several examples written in OpenQASM [11] to explain our motivation for considering
program context and gate duration difference in qubit remapping process. The two examples base
on the coupling map of four physical qubits Qy ~ Qs and the assumed gate durations defined in
Fig. 1 (a) and (b). We directly map the logical qubits q[0]1~q[3] initially to physical qubits Qy ~ Q3
for easier explanation.

1: Tq2];
2. CXql0lal3l; % ‘
S 5 e inst . . . inst
@, \ Gate Duration ,. ¢ ql2; 16— P 1 Tqi2 1¢
7 1 T 1 cycie 2: SWAPq[3l,qi2; 2! ¢ : 2: SWAPq[3]q[1];, 2%
x v CX 2 cycle 3: CXq[0],q[2]; 3; ¢ o 3: CXq[0],q[1]; 3: ¢——
SWAP 6 cicle q[]q[] 0 1 s 7 8 9 cycle 0 1 s 6 7 8 cycle
(a) (b) (©) (d)

Fig. 1. An example reflecting the impact of program context on SWAP-based transformations: SWAP q[3],
q[1] is selected in (d) to avoid using q[2] operated by the previous T gate, accordingly increasing parallelism.

Impact of program context. Consider the OpenQASM code fragment shown in Fig.1 (a), where CX
means CNOT in OpenQASM. Since qubits Qg and Q5 are non-adjacent, the instruction “CX q[@]1,q[3]”
at line 2 cannot be applied. To solve the problem, SWAP operation is required before performing the
CX operation. In this case, there are four candidate SWAP pairs, i.e., (Qo, Q1), (Qo, Q2), (O3, Q1) and
(O3, Q,). If the program context, i.e., the predecessor instruction “T q[2];”, is not considered, there
are no differences among four candidates when selecting. However, SWAP operation on pair (Qs,
Q) or (Qo, Q2) conflicts with the context instruction “T q[2];” due to operating the same Q,, and
has to be executed serially after T operation as shown in Fig.1 (c). SWAP on pair (Qs, Q1) or (Qs, Q1)
does not conflict with “T q[2];” and can be executed in parallel as shown in Fig.1 (d). With the
awareness of the context information, SWAP operations which improve parallelism can be sifted
out.

Impact of gate duration difference. We use a 4-qubit QFT (quantum fourier transform) circuit to
explain the limitation of ignoring the duration of quantum gates. Fig. 2 (b) lists the fragment of

1: CX q[0},ql2]; 1: CX q[0].q[2; !
@@ 1+ cxaoaz 2: Tq[ﬁ;]q” 20 Tq[}; o2 i i
| | 2 Tall; 3: SWAP q[3],q[2]; 3 SWAPQBLATL Tt v
@@ 3 oXaolas: X 4: CXq[0],q[2); L 4: CXq[0].q[1}; TR 5 9 o
(@) (b) (© (d)

Fig. 2. A 4-qubit QFT example reflecting the impact of gate duration difference: “SWAP q[3],q[1]” is the
best candidate since it can start immediately after “T q[1]” while “CX q[@]1,q[2]” has not finished yet,
increasing the parallelism of the circuit.

a 4-qubit QFT OpenQASM program, which is generated by ScaffCC compiler [2]. Similar to the
first example, SWAP operation is required before performing the CX operation and there are also
the same four candidate SWAP pairs. Instructions “T q[2]” and “CX q[@],q[2]” can be executed in
parallel and we assume both of them start at cycle 0. If the difference of gate durations is ignored,
the two gates “T q[2]” and “CX q[@],q[2]” are assumed to finish at the same time ¢ and the four
candidate SWAP operations have to start after ¢. But if the duration of CX is twice as much as that of
T, we find that “T q[2]” will finish at cycle 1 while “CX q[@],q[2]” at cycle 2. As a result, SWAP
between q[3] and q[1] can start at cycle 1 as shown in Fig.2 (d), while other three candidate SWAP
operations have to start at cycle 2 since one of operands Q, or Q; is occupied as shown in Fig.2 (c).
Fig. 2 (d) has better parallelism, which can be deduced by the awareness of different quantum gate
durations.

2.3 Quantum Architecture Abstraction

Table 2. Definition of Quantum Abstract Machine.

Notation Definition
Qn The set of physical qubits, [Qy | = N; VO €Qy, Q.tq is the qubit lock described in Section 3.1
. G The set of elementary quantum operations and SWAP, [G [= M
Static - -
Structure M =(Qu.En) The c9uphng graph of a quantl%m device]]
7: G—>N Mapping from quantum operations to their durations, N represents the set of natural numbers
D: Qy XQy—N | Mapping from physical qubit pairs to their shortest path lengths on the M,
if there is no path between Q; and Qj;, then D (Q;,Q;) = INT_MAX
Dynamic | m:Qp—Qn Mapping from logical qubits to physical qubits
Structure | CF(I) Commutative Front gate set of a gate sequence I, defined in Definition 3.1
Auxiliary | gate(g) the name of a given gate g.
Functions | gseq(g) the logical qubit sequence applied by a given gate g.
Q{LZ _____ N} Physical qubits, Q;€Qy, 1 <i < N
q(1.2,....n} Logical qubits, ¢;€Qp,1 <i < n
Variables | g1, .. M) Physical quantum operations, g;€G 1 <i <M
9{1.2,....m} Quantum operations in the circuit program
T A sequence of quantum operations, I = [g1,92,-.., gk] if K = [I], and the length of I is written as I.len

Since the qubit mapping problem is affected by the constraints of underlying QC devices, which
base on various and evolving quantum technologies, it is essential to design quantum mapping
algorithms that are compatible with different quantum technologies.

In view of the above, we consider the qubit connectivity of various NISQ devices, and take each
gate duration as a multiple of quantum clock cycle 7,,, which can be analogized to the classic clock
cycle. We then introduce a Multi-architecture Adaptive Quantum Abstract Machine (maQAM)
which consists of static and dynamic structures, denoted as A = (As, Aq). Table 2 shows the definitions
for maQAM, where A = (Qu, G, M, 7, D), and Aq = (, CF). We assume the device can provide
enough physical qubits (denote the number as N) for the program’s execution (denote the number
of logical qubits in the program as n), i.e, N > n.

4

For a QC device, we abstract its qubit layout as a graph M where qubits are vertices and there
are edges between qubit pairs where a two-qubit gate is allowed to apply on them. We introduce
the Gate Duration Map 7 into A; which maps each kind of quantum gate to its duration, depending
on the information from quantum architecture. We assume the same kind of quantum gates have
the same duration and fidelity. We also introduce the shortest distance matrix map D between
each pair of physical qubits for quick selection of exchangeable qubits in our Copar scheduling
algorithm.

3 DESIGN

In this section, we discuss our COntext-sensitive and Duration-Aware Remapping algorithm (Co-
DAR). We first overview the idea of CODAR, then introduce the two key mechanisms that enable
CODAR context-sensitivity and duration awareness.

The main idea of CODAR is to generate an executable gate sequence for a given input OpenQASM
program by adjusting the gate sequence and inserting the swap operation with the program
semantics unchanged. The generated gate sequence fits quantum hardware limitation on one hand,
and has better parallelism on the other hand to reduce the circuit’s weighted depth , i.e., simulated
execution time. We propose qubit lock mechanism in Section 3.1 for quickly finding available qubits.
And we adjust the gate order based on the quantum gate commutativity described in Section 3.2.

3.1 Qubit Lock

CopaR is based on a reasonable assumption: a qubit cannot be applied by two or more gates at the
same time. If a qubit is occupied by a gate, it is called busy (not free) qubit and cannot be applied
by other gates. As the example shown in Fig. 1, when inserting SWAP for a specific two-qubit gate
CX ql[@],q[3], the neighbour qubit q[2] of the target qubits may be occupied by the contextual
gate which has started in earlier time. Using the occupied qubits to route the two-qubit gate will
reduce the parallelism of the program because the routing process has to wait until occupied qubits
become free.

To make CopAR aware of the qubit occupation by the past contextual gate, we introduce a qubit
lock t.,4 for each physical qubit in Q. When start applying a quantum gate g € G at time t on a
physical qubit in Q and the gate’s duration is 7y, ConAR will update this qubit’s t.,q as t+ 7, which
means that it is occupied before t+7;. A qubit is free only when its lock tenq < current time. When
try to find routing path for a specific two-qubit gate, by comparing t.,4 of each qubit with the
current time, CODAR can be aware of which qubit is occupied by the past contextual gate. Fig. 3
shows an example. Gates can only be applied to the physical qubits in free state. The gates whose
associate physical qubits are all free, are called lock free gates.

Qubit lock can also help CopAr aware of the gate duration difference. Different gate kinds have
different durations and CopARr updates the operated qubit’s lock t,,4 with different value. As a
result, qubits applied by gates with shorter duration will be set smaller ¢.,4 and become free earlier.
Thus CoDAR can use those earlier free qubits to route two-qubit gates and improve the parallelism
of the program. As the example shown in Fig. 2 (d), suppose the program starts at time 0 and zr=1,
cnoT=2. Then te, g of Q; is set to 1 while t.,,4 of Qg and Q, are set to 2. Q; becomes free at time
1 while Q; is still busy. CODAR can use Q; to route for the third gate and need not wait for the
freedom of Q,.

3.2 Commutativity Detection

Qubit lock brings CopaARr awareness of the past contextual gate. Considering gate commutation
relation can expose more future contextual gate for CODAR to decide routing path.

Cycle 0 start Cycle 0 end Cycle 1 start Cycle 1 end

N (1 /\2 ey \2
(@02 02 30) @) ()
Highest § free

2 priority/ \now

Current time: 1 Current time: 2 |
@ teng=2 @ tena=2 11 CXq0.q2: ;: (T:X1q0,q2;
. CTat,
Busy Free 2 Tal === 3. SWAPq3qT;
3: CXq0,q3; % 4: CXq0,3;
Given Generate

Fig. 3. Qubit lock. A 2-cycle gate is ap-
plied on qubit q at time 0, then q is Fig. 4. Example of heuristic search for the high parallelism SWAP.
busy until time 2. The number near the qubits denote the qubit lock t,,,4.

Definition 3.1 (Commutative Forward Gate, CF gate). Given a gate sequence I=[gi, g2, .- gk, -], ¥
gk €1, g is a commutative forward gate iff Vj,0 < j < k, g; and gi are commutative.

The commutation relation between two-qubit gates g4, gp that share qubits with each other can
be resolved by checking the relevant unitary operators AB = BA. Gates applied to disjoint qubits
are obviously commutative with each other. If a commutative forward gate is commutative with all
the gates before it in sequence I, it can exchange with the head of I.

All CF gates in sequence [are denoted as CF(I), which can be executed instantly from software
perspective. Compared to the method that fetches gates with no predecessor as instantly-executable
gates, choosing CF gates as instantly-executable gates can expose more contextual gates for heuristic
search to determine better remapping solutions.

Suppose a sequence I contains two gates: CX q1,g3 and CX 92,93 in order. The second gate
shares g3 with the first and might not be regarded as instantly executable due to qubit dependence.
However, because the second commutes with the first and is a CF gate in I, it is instantly executable
in fact. Commutativity detection will expose both CXs for heuristic search which will improve its
contextual look-ahead ability.

3.3 Example

Now we use an example shown in Fig. 4 to explain our algorithm. Suppose there is a 6-qubit device
and we are given a gate sequence I that contains a CX on {q0,q2}, a T on {q1} and a CX on {q0,q3}. The
number near the qubit node represents the value of its t,,4. All the three gates are CF gates. Due to
the coupling limitation, CX on {q0,q3} is not directly executable and SWAP is needed. The algorithm
simulates the execution timeline and starts at cycle 0. At cycle 0, the first gate "CX q0,q2" and the
second gate "T q1" are directly executable so both of them will be launched and qubits {q0,q1,q2}’s
tend locks are updated with the gate duration (T=1 cycle, CX=2 cycle). At cycle 0, each of {q0,q1,92}
has bigger t.,4 than current time and thus they are locked. Therefore the SWAP between {q1,q3}
and {q2,q3} are blocked. SWAP between {q3,q5} with Hpus;c < 0 (Which means the SWAP wonaAZt
shorten the total distance of CF gates according to our heuristic cost function) moves q3 away
from q0 and will not be inserted. As a result, no SWAP will be inserted in cycle 0 and the mapping =
stays unchanged. At cycle 1, qubit q1 becomes free while q2 stays busy. The SWAP between {q1,q3}
becomes free while the SWAP between {q3,q2} is still blocked. Therefore the algorithm will know
that the SWAP between {q1,q3} can start earlier than SWAP between {q3,q2} and choose SWAP q3,q1 to
solve the remapping problem. After launching the SWAP between {q1,q3}, qubit locks of {q1,q3} are
also updated by the sum of its start time (cycle 1) and the duration of SWAP (6 cycle) as 7.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate CODAR with benchmarks based on the latest reported hardware models.

Comparison with Previous Algorithms. Several recent algorithms proposed by IBM [16], Siraichi
et al. [35], Zulehner et al. [45] and Li et al. [19] try to find solutions of the qubit mapping problem
with small circuit depth. Among them, Li’s SABRE [19] beats the other three in the performance of
benchmarks, thus it is used for comparison in this paper.

Hardware Configuration. We test our algorithm on several latest reported architectures, including
IBM Q20 Tokyo[19], IBM Q16 Melbourne[1], 6 X 6 grid model proposed by Enfield [35]’s GitHub
and Google Q54 Sycamore [3]. The gate duration difference configuration is based on experimental
data of symmetric superconducting technology shown in Table 1, where two-qubit gate duration is
generally twice as much as that of the single-qubit gate.

Benchmarks. To evaluate our algorithm, we totally collect 71 benchmarks which are selected
from the previous work, including: 1) programs from IBM Qiskit [10]’s Github and RevLib [40]; 2)
several quantum algorithms compiled from ScaffCC [2] and Quipper [14]; 3) benchmarks used in
the best-known algorithm SABRE [19]. The size of the benchmarks ranges from using 3 qubits up to
using 36 qubits and about 30,000 gates. For the IBM Q16, Q20 and 6 X 6 architectures, 68 benchmarks
out of the 71 benchmarks except 3 36-qubit programs are tested. While all 71 benchmarks are tested
on Google Q54 Sycamore.

IBM Q16 Melbourne Enfield 6X6 IBM Q20 Tokyo Google Q54 Sycamore

Fig. 5. Speedup ratio of all 71 benchmarks compared between Copar and SABRE in four architectures. The
benchmarks are listed from left to right in the ascending order of the number of qubits used.

Circuit Execution Speedup. We collect the weighted circuit depth of the circuits produced by
Copar and SABRE for the 71 benchmarks. Initial mapping has been proved to be significant for the
qubit mapping problem, and for a fair comparison, we use the same method as SABRE to create the
initial mapping for the benchmarks. We use the depth of circuits produced by SABRE compared
with the one of CoDAR to show the ability of our algorithm to speed up the quantum program.
As shown in Fig.5, the average speedup ratio of CODAR on four architecture models, IBM Q16
Melbourne, Enfield 6x6, IBM Q20 Tokyo and Google Q54 are respectively 1.212, 1.241, 1.214 and
1.258.

5 CONCLUSION

In NISQ era, most quantum programs are not directly executable because two-qubit gates can
be applied between arbitrary two logical qubits while it can only be implemented between two
adjacent physical qubits due to hardware constraints. To solve this problem, in this paper we
propose CODAR that can transform the origin circuit and insert necessary SWAP operations making
the circuit comply with the hardware constraints. With the design of qubit lock and commutativity
detection, CODAR is aware of program context and the gate duration difference which help Copar

7

remapper find the remapping with good parallelism and reduce QC’s weighted depth. Experimental
results show that compared to the best known remapping algorithm, CoDpAR remapper can cut
down 17.5% ~ 19.4% weighted depth at average.

REFERENCES

[19]
[20]

[21]

[22]

[23]

IBM Q backend information. https://github.com/Qiskit/ibmq-device-information, visited in May 2019.

Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi.
ScaffCC: A framework for compilation and analysis of quantum computing programs. In 11th CF, pages 1:1-1:10, New
York, NY, USA, 2014. ACM.

Frank Arute, Kunal Arya, et al. Quantum supremacy using a programmable superconducting processor. Nature,
574:505-510, 2019.

Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. QURE: Qubit re-allocation in noisy intermediate-scale
quantum computers. In 56th DAC, pages 141:1-6, 2019.

Anirban Bhattacharjee, Chandan Bandyopadhyay, Robert Wille, Rolf Drechsler, and Hafizur Rahaman. A novel
approach for nearest neighbor realization of 2D quantum circuits. In ISVLSI, pages 305-310. IEEE, 2018.

Debjyoti Bhattacharjee and Anupam Chattopadhyay. Depth-optimal quantum circuit placement for arbitrary topologies.
arXiv preprint arXiv:1703.08540, 2017.

Kyle E. C. Booth, Minh Do, J. Christopher Beck, Eleanor Rieffel, Davide Venturelli, and Jeremy Frank. Comparing and
integrating constraint programming and temporal planning for quantum circuit compilation. In 28th ICAPS, pages
366-374, 2018.

Amlan Chakrabarti, Susmita Sur-Kolay, and Ayan Chaudhury. Linear nearest neighbor synthesis of reversible circuits
by graph partitioning. arXiv preprint arXiv:1112.0564, 2011.

Frederic T. Chong, Diana Franklin, and Margaret Martonosi. Programming languages and compiler design for realistic
quantum hardware. Nature, 549:1804A5187, 2017.

Andrew Cross. The IBM Q experience and QISKit open-source quantum computing software. Bulletin of the American
Physical Society, 2018.

Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open quantum assembly language.
arXiv:1707.03429, 2017.

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proc. of the Royal Society of
London. Series A: Mathematical and Physical Sciences, 439(1907):553-558, 1992.

A Fuhrmanek, R Bourgain, Yvan RP Sortais, and Antoine Browaeys. Free-space lossless state detection of a single
trapped atom. Physical review letters, 106(13):133003, 2011.

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Valiron. Quipper: a scalable
quantum programming language. In 34th PLDI, pages 333-342. ACM, 2013.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th STOC, pages 212-219, New York,
NY, USA, 1996. ACM.

IBM. Qiskit. https://qiskit.org/, visited in Jan 2019.

Abhoy Kole, Kamalika Datta, and Indranil Sengupta. A heuristic for linear nearest neighbor realization of quantum
circuits by SWAP gate insertion using N-gate lookahead. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 6(1):62-72, 2016.

Abhoy Kole, Kamalika Datta, and Indranil Sengupta. A new heuristic for N-dimensional nearest neighbor realization
of a quantum circuit. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(1):182-192,
2018.

Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for NISQ-era quantum devices. In 24th
ASPLOS, pages 1001-1014. ACM, 2019.

Chia-Chun Lin, Susmita Sur-Kolay, and Niraj K Jha. PAQCS: Physical design-aware fault-tolerant quantum circuit
synthesis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(7):1221-1234, 2014.

Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth
Wright, and Christopher Monroe. Experimental comparison of two quantum computing architectures. Proceedings of
the National Academy of Sciences, 114(13):3305-3310, 2017.

Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal number of SWAP gates for multi-dimensional
nearest neighbor quantum circuits. In 20th ASP-DAC, pages 178-183. IEEE, 2015.

KM Maller, MT Lichtman, T Xia, Y Sun, MJ Piotrowicz, AW Carr, L Isenhower, and M Saffman. Rydberg-blockade
controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Physical Review A,
92(2):022336, 2015.

https://github.com/Qiskit/ibmq-device-information
https://qiskit.org/

[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]

[42]

[43]
[44]

[45]

Miguel Martinez-Dorantes, Wolfgang Alt, Jose Gallego, Sutapa Ghosh, Lothar Ratschbacher, Yannik Vélzke, and Dieter
Meschede. Fast nondestructive parallel readout of neutral atom registers in optical potentials. Physical review letters,
119(18):180503, 2017.

Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Camille Negrevergne. Quantum circuit simplification and
level compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(3):436-444, 2008.
Prakash Murali, Jonathan M Baker, Ali Javadi Abhari, Frederic T Chong, and Margaret Martonosi. Noise-adaptive
compiler mappings for noisy intermediate-scale quantum computers. In 24th ASPLOS, pages 1015-1029, Providence,
RI, USA, 2019. ACM.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University
Press, UK, 10th Anniversary edition, 2010.

Angelo Oddi and Riccardo Rasconi. Greedy randomized search for scalable compilation of quantum circuits. In
CPAIOR, pages 446-461. Springer, 2018.

Mehdi Saeedi, Robert Wille, and Rolf Drechsler. Synthesis of quantum circuits for linear nearest neighbor architectures.
Quantum Information Processing, 10(3):355-377, 2011.

Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Optimization of quantum circuits for interaction distance in
linear nearest neighbor architectures. In 50th DAC, page 41. ACM, 2013.

Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Qubit placement to minimize communication overhead in 2D
quantum architectures. In 19th ASP-DAC, pages 495-500. IEEE, 2014.

Cheng Sheng, Xiaodong He, Peng Xu, Ruijun Guo, Kunpeng Wang, Zongyuan Xiong, Min Liu, Jin Wang, and Mingsheng
Zhan. High-fidelity single-qubit gates on neutral atoms in a two-dimensional magic-intensity optical dipole trap array.
Phys. Rev. Lett., 121:240501, Dec 2018.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM 3. Comput., 26(5):1484-1509, October 1997.

Ritu Ranjan Shrivastwa, Kamalika Datta, and Indranil Sengupta. Fast qubit placement in 2D architecture using nearest
neighbor realization. In 2015 IEEE International Symposium on Nanoelectronic and Information Systems, pages 95-100.
IEEE, 2015.

Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintao Pereira. Qubit
allocation. In CGO 2018, pages 113-125, New York, NY, USA, 2018. ACM.

Robert Stockill, M.J. Stanley, Lukas Huthmacher, E. Clarke, M. Hugues, A.J. Miller, C. Matthiesen, C. Le Gall, and Mete
Atatire. Phase-tuned entangled state generation between distant spin qubits. Physical review letters, 119(1):010503,
2017.

Swamit S Tannu and Moinuddin K. Qureshi. Not all qubits are created equal: a case for variability-aware policies for
NISQ-era quantum computers. In 24th ASPLOS, pages 987-999. ACM, 2019.

Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Compiling quantum circuits to realistic hardware
architectures using temporal planners. Quantum Science and Technology, 3(2):025004, 2018.

Davide Venturelli, Minh Do, Eleanor G Rieffel, and Jeremy Frank. Temporal planning for compilation of quantum
approximate optimization circuits. In 26th IJCAL pages 4440-4446, 2017.

R. Wille, D. GroA§e, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: An online resource for reversible functions and
reversible circuits. In 38th ISMVL, pages 220-225, May 2008.

Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quantum circuits to IBM QX architectures using the
minimal number of SWAP and H operations. In 56th DAC, page 142. ACM, 2019.

Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam Chattopadhyay, and Rolf Drechsler. Look-ahead
schemes for nearest neighbor optimization of 1D and 2D quantum circuits. In 21st ASP-DAC, pages 292-297. IEEE,
2016.

Robert Wille, Aaron Lye, and Rolf Drechsler. Optimal SWAP gate insertion for nearest neighbor quantum circuits. In
19th ASP-DAC, pages 489-494. IEEE, 2014.

K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J. S. Chen, N. C. Pisenti, et al. Benchmarking an
11-qubit quantum computer. arXiv e-prints, page arXiv:1903.08181, Mar 2019.

A. Zulehner, A. Paler, and R. Wille. An efficient methodology for mapping quantum circuits to the IBM QX architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226-1236, July 2019.

	Abstract
	1 Introduction
	2 Problem Analysis
	2.1 Recent Work on Qubit Mapping
	2.2 Motivating Examples
	2.3 Quantum Architecture Abstraction

	3 Design
	3.1 Qubit Lock
	3.2 Commutativity Detection
	3.3 Example

	4 Experimental Evaluation
	5 Conclusion
	References

