
A Pointer Logic Dealing with Uncertain Equality of Pointers

Hongjin Liang∗, Yu Zhang†, Yiyun Chen†, Zhaopeng Li†, Baojian Hua‡
∗Special Class for the Gifted Young, University of Science and Technology of China

†Department of Computer Science and Technology, University of Science and Technology of China
‡School of Software Engineering, University of Science and Technology of China

Hefei, 230026, China
{yiyun, yuzhang}@ustc.edu.cn, {lhj1018, zpli, huabj}@mail.ustc.edu.cn

Abstract

We have designed a pointer logic for a C-like program-
ming language - PointerC. The pointer logic is an extension
of Hoare logic, and it uses the idea of precise alias analysis
in pointer program verification to support safety verification
of programs in which equality of pointers is well-regulated.
In this work, we present an extension to the pointer logic
by introducing a set of uncertain-equality pointer access
path sets, so that we can reason in the extended pointer
logic about properties of programs which manipulate data
structures like directed graph in which equality of pointers
is uncertain.

1. Introduction

With the increasingly widespread use of software, the
safety of software is becoming crucial. Formal program
verification technique provides a way to reason about the
safety of programs. Hoare logic is widely used in verification
of imperative programs, but it’s difficult to reason in Hoare
logic about pointer programs with complex aliases. The
major difficulty is in the treatment of variable assignment
where the substitution affects only relevant variable.

Separation logic [1], which is an extension of Hoare logic,
aims to simplify reasoning about programs with shared mu-
table data structures, i.e., structures where an updatable field
can be referenced from more than one point. In separation
logic, assertions P and Q in separation conjunction P*Q hold
for disjoint portions of the addressable storage. Separation
logic is widely used in assembly language level program
verification. However, in separation logic, the disjoint heaps
are deemed to have no effect on each other but there is no
mechanism to describe connections between them. Thus it
is difficult to get intuitive impression about the shape of
the structure like binary tree, DAG and circular linked list
without other support such as S-expression.

To study pointer program verification, we have designed
the PointerC language [2] which is a C-like language with
dynamic memory allocation and deallocation. The elemen-
tary safety policy is that there are no operations such as

dereference and free on null pointers or dangling pointers,
no use of dangling pointers as parameter of function call, and
no memory leaks during the program execution. To reason
about such properties of the program, we adopt a method
combining techniques of type and logic systems. In order to
design a simple yet sound type system, we introduce side
conditions in the typing rules which make restrictions on
the value of the syntactic expressions. To check these side
conditions, a pointer logic [3, 4, 6] has been designed for
PointerC. The pointer logic is an extension of Hoare logic.
It is used to deduce the precise pointer information at each
program point such as whether a pointer is null, dangling,
or valid (a valid pointer points to an object in the heap)
and the equality between valid pointers. All information
is used to prove whether pointer programs satisfy the side
conditions, thus it can support safety verification of pointer
programs and verification of other properties. Afterwards,
we have extended the pointer logic with limited pointer
arithmetic to support safety verification of operations on
dynamic arrays [7]. Furthermore, we have implemented a
certifying compiler prototype plcc [4, 5] which can generate
proof-carrying assembly codes.

However, the original pointer logic could only deal with
data structures, in which equality of pointers is well-
regulated, such as linked list and binary tree. Structures
like DAG (directed acyclic graph) and other graph, in
which equality of pointers is uncertain, are unsupported. On
the other hand, the pointer logic needs excessively precise
information about equality of pointers when reasoning about
properties of programs, so that it’s necessary to moderately
relax the restrictions to allow partly uncertain information.
As a result, a set of uncertain-equality access path sets is
introduced. Pointers in such an access path set are equal (that
is, they point to the same object in the heap), but they may
also be equal to pointers in another such access path set. One
of the problems we encounter is that memory leak may exist
when the only pointer in such an access path set is assigned.
Another problem is that when we free an object pointed
to by a pointer in such a set, we can’t ensure that all the
pointers point to the object are labeled as dangling pointers.
If these situations do not occur, the original pointer logic

is appropriate. We extend the pointer logic so that if these
situations occur, then we give warnings or even break off the
verification; otherwise we still use the original approach.

This paper extends the pointer logic based on the idea
above. The main contributions are:

1) We introduce a set of uncertain-equality access path
sets into the original access path sets and pointer non-
membership assertions into the assertion language.
Thus the pointer logic can deal with data structures
in which equality of pointers is uncertain.

2) We apply the pointer logic to verification of practical
programs with non-single structures for the first time.
The data structures used in practical programs are
often complicated that consist of several typical data
structures such as singly-linked list and doubly-linked
list. Applying the pointer logic to verification of such
programs may show the potential and practicability of
the pointer logic.

The rest of the paper is organized as follows. Section
2 extends the pointer logic to deal with uncertain equality
of pointers. Section 3 gives two examples to illustrate how
pointer logic is used for verification. Section 4 presents the
related work and Section 5 concludes our work.

2. Design of Pointer Logic Dealing with Uncer-
tain Equality of Pointers

To deal with uncertain equality of pointers in the pointer
logic, we have to introduce a set of uncertain-equality access
path sets, and extend the assertion language, specifications
and inference rules.

2.1. Introduction to PointerC and Pointer Logic

PointerC is a C-like programming language in which the
pointer type is emphasized. In PointerC, pointer variables
can only be used in assignment statements, equality test
expressions, in operations like storing and loading the value
which they are pointing to, and as parameters of functions.
Pointer arithmetic and the address-of operator (&) are for-
bidden. Functions malloc and free are regarded as pre-
defined functions in PointerC which satisfy the elementary
safety policy. In addition, short-circuit calculation is not
adopted in evaluation of PointerC boolean expressions so
that PointerC boolean expressions can be used directly in
assertions.

In the original pointer logic [6] designed for PointerC,
the basic idea is to represent memory states by means of
sets of pointers. We have designed three kinds of pointer
access path sets: a N set for null pointer set, a D set for
dangling pointer set, and a set of Π sets for valid pointers.
Pointers in one set of Π are pointing to the same object in
the heap (that is, they have the same rvalue) and pointers in
different sets of Π are pointing to different objects.

The access path sets in the pointer logic can be used
in inductive auxiliary definitions of data structures. For
example, binary tree can be defined as follows:

tree(s),{s}N∨({s}∧tree(s->l)∧tree(s->r))
in which s is a pointer pointing to:

struct BTNode {struct BTNode *r, *l;}
{s}N stands for an empty tree and {s} ∧ tree(s->l) ∧
tree(s->r) is used to denote a non-empty tree. By using
valid pointer set, it is convenient to express all of the valid
pointers in the tree are not equal to each other. Because
when expanding all references of the inductive definitions,
all valid pointers appear in different subsets of Π.

2.2. Uncertain-equality Access Path Sets

In structures like graphs, there are no rules indicating
whether pointers are equal, i.e., there exists valid pointers
of which equality is uncertain. Such data structures are
unsupported in the original pointer logic. Thus, we introduce
a set of uncertain-equality pointer access path sets based on
the original pointer logic and use U to denote it. On the
semantic model of PointerC, pointers in one set of U are
pointing to the same object in the heap, and distinguished
from pointers in sets of Π, pointers in different sets of U
may be pointing to the same object. Pointers in Π and U are
all called valid pointers. Ψ is used to denote N , D, Π and U
in the rest of the paper. Note that although we use the name
“uncertain-equality access path sets”, the uncertainty only
exists between such sets. Pointers in each set are definitely
equal. This approach can be interpreted as a relaxation of
the original restrictions on sets like Π.

Since not any Ψ, that is formed by arbitrary partitions of
pointer access path sets, can express the mentioned meaning,
we need to define legal Ψ to describe data structures. As U
is introduced, we need to think on the basis of the original
definition of legal Ψ [6] about the characteristics of access
paths in U , such as pointers in U are prefixed by pointers in
Π or U , and the relationships between sets of U and other
sets, such as the prefix of an access path in Π is not in U .

Firstly extend the definition of alias of access path to deal
with U . Result access paths by adding same suffix to pointers
in a same set of Π or U are aliases.

Extended legal Ψ should satisfy the following conditions:
1) All declared pointer variables must appear in Ψ.
2) For each pointer p of Π, if it points to a structure with

a pointer field named r, then some alias of p->r is in
Ψ.

3) Any two different pointers in Ψ are not aliases.
4) Every prefix of each pointer in Ψ has an alias in Π or
U .

5) For each pointer p of U , if it points to a structure with
a pointer field named r, then some alias of p->r is in
U , N or D.

assertion ::= boolexp

| ¬assertion | assertion ∨ assertion

| assertion ∧ assertion | (assertion)
| ∀ident : domain.assertion

| ∃ident : domain.assertion

| {lvalset} | {lvalset}N | {lvalset}D
| [lvalset] | ident(lval)
| lval /∈ [lvalset] | lval /∈ ident(lval)

domain ::= N | exp..exp

lvalset ::= lvalset, lval | lval

lval ::= id | lval->id | lval(->ident)exp

Figure 1. The Assertion Language

2.3. Extension of Assertion Language

We extend the assertion language of the original pointer
logic [6] to support U . Moreover, to describe non-equality
between pointers in different sets of U , we need to introduce
non-membership assertions that present a pointer in some
set of U does not belong to another set of U , in addition to
the boolean expressions denoting equality or non-equality of
two pointers.

The syntax of the extended assertion language is given in
Figure 1. Pay attention to the difference between {lvalset}
for an access path set of Π and newly added [lvalset] for
an access path set of U . {lvalset}N and {lvalset}D are
still used to stand for access path set of NULL pointers
and dangling pointers respectively. The newly added asser-
tions lval/∈ident(lval) and lval/∈[lvalset] are pointer non-
membership assertions.

Intuitively, pointer non-membership assertion is a restric-
tion to U which can reduce the uncertainty in equality of
pointers. It is a bridge connecting U and Π. For example,
binary DAG can be defined as:

dag(p),{p}N∨([p]∧dag(p->l)∧dag(p->r)
∧p/∈dag(p->l)∧p/∈dag(p->l))

By using uncertain-equality access path set and pointer non-
membership assertion, it is convenient to express a valid
pointer in the graph may be equal to others but will not
be equal to any pointers in the left or right subgraph.
p/∈dag(p->l) indicates that p is not a member of any
pointer sets which expanded from the inductive definition
of dag(p->l). When dag(p->l) is not an empty graph,
there is:

p/∈dag(p->l)
=p/∈[p->l]∧p/∈dag(p->l->l)∧p/∈dag(p->l->r)

Logic negation operation (¬) cannot be applied to pointer
non-membership assertions, because the commonly used
definitions of data structures do not have such demand.

2.4. Extension of Assertion Calculus

In the original pointer logic [6], some equivalence and
implication axioms for Ψ are designed, including 1) Equiva-
lence axioms of N and D: two N /D sets are equivalent with
the combined N /D; 2) Axioms of illegal Ψ and assertions:
assertions containing illegal Ψ are false; 3) Equivalence
axioms of access path set and assertion: two legal Ψ are
equivalent if the corresponding access path sets are equiv-
alent; 4) Axiom schemas of boolean expressions and Ψ: if
the boolean expression such as p==NULL, p!=NULL, p==q
and p!=q (p and q are all pointers) added in the assertion is
consistent with Ψ then it is absorbed; otherwise the whole
assertion, including the boolean expression and Ψ, implies
false.

After introducing U and pointer non-membership asser-
tions, these axioms should be extended. Take part 4) as an
example:

4) Axiom schemas of boolean expressions and Ψ
Assume Π consists of n access path sets S1, . . . ,Sn

and U consists of m access path sets T1, . . . , Tm. Q is
an assertion not including access path sets. Sp is short
for a pointer set which includes an alias of pointer p.
Sp,q, T p and T p,q have similar meanings. Note that
in this part, U and Π are on equal terms so that
the original axioms for Π could be almost copied as
axioms for U . Due to the limited space, such axioms
are omitted. In addition, two axioms are newly added
when p and q are repectively members of some set of
Π and U :
S1 ∧ . . . ∧ Sn−1 ∧ Sp ∧ T1 ∧ . . . ∧ Tm−1 ∧ T q

∧N ∧ D ∧Q∧p==q =⇒ false
S1 ∧ . . . ∧ Sn−1 ∧ Sp ∧ T1 ∧ . . . ∧ Tm−1 ∧ T q

∧N ∧ D ∧Q∧p!=q =⇒ S1 ∧ . . . ∧ Sn−1 ∧ Sp

T1 ∧ . . . ∧ Tm−1 ∧ T q ∧N ∧ D ∧Q

Other axioms are introduced because of the particularity
of U and pointer non-membership assertions. When p and
q are in different sets of U , the assertion p==q will make
the two sets of U combined, and then go on to combine
the sets which includes access paths prefixed by p and
q. On the other hand, the assertion p!=q ensures that the
pointers in the two sets of U are definitely unequal, thus
it can be translated into pointer non-membership assertion.
Besides, special equivalence and implication axioms for
pointer non-membership assertion should be designed. These
newly added axioms are given as follows:

5) Axioms of combination of U
When the assertion p==q implies true, the sets T p and
T q should be combined and aliases should be deleted.
The representative axiom is shown as follows:
T1∧ . . .∧Tm−2∧T p∧T q∧Π∧N ∧D∧Q∧p==q
=⇒ T1 ∧ . . . ∧ Tm−2k−2 ∧ (T p] T q) ∧ T p−>r1

∧T q−>r1 ∧ . . .∧T p−>rk ∧T q−>rk ∧Π∧N ∧D

∧Q∧p->r1==q->r1∧ . . .∧p->rk==q->rk
in which] is an operation combining two sets and
deleting aliases. r1,. . .,rk are pointer-typed fields of
the structure pointed to by p. Seen from the axiom
above, we need to keep on combining the sets of
T p−>ri and T q−>ri(i = 1, . . . , k) until the pointers
which are equal appear in D or N . Due to the limited
space, the corresponding axioms are omitted.

6) Axiom schemas of boolean expressions and pointer
non-membership assertions
T1∧ . . .∧Tm−1∧T q∧Π∧N ∧D∧p==q∧p /∈ T q

∧Q′ =⇒ false
T1∧ . . .∧Tm−1∧T q∧Π∧N ∧D∧p!=q∧p /∈ T q

∧Q′ =⇒ T1 ∧ . . . ∧ Tm−1 ∧ T q ∧Π ∧N ∧ D
∧p /∈ T q ∧Q′

7) Equivalence axioms of pointer non-membership asser-
tions
p /∈ (assertion1 ∧ assertion2)
⇐⇒ p /∈ assertion1 ∧ p /∈ assertion2
p /∈ (∀ident:domain.assertion)
⇐⇒ ∀ident:domain.(p /∈ assertion)
p /∈ [lvalset] ⇐⇒ ∀q:[lvalset].alias(p, q)
p /∈ T q ⇐⇒ q /∈ T p ⇐⇒ p!=q

Since p is a valid pointer in U , other axioms about
p/∈{lvalset}, p/∈{lvalset}N or p/∈{lvalset}D
implicates true or false can be obtained.

2.5. Extension of Specifications and Inference Rules

We use Hoare-style specifications {P}S{Q}, in which S is
a syntax structure or a statement mostly, and P and Q are
pre- and post- conditions respectively. Hoare-style inference
rules are used to express the effects of statements to pointer
information which is useful in reasoning about properties of
programs.

In the original pointer logic [6], we have defined some
basic operations on access path sets and predicates to figure
out inference rules in detail, such as access path deletion ‘-’,
access path addition ‘+’, prefix substitution ‘/’, and predicate
leak(S,p). Prefix substitution is used to describe that for each
access path q in the given set R, if a prefix of q is an alias of
p, then q is substituted by its alias q′ where q′ is not prefixed
by any alias of p; other access paths are not changed. These
basic operations are still used in the inference rules below.

Since U is introduced, uncertainty may exist in the deci-
sion whether memory leaks. That is, when deleting access
path p from a valid pointer set T of U (possibly when
p is assigned), if there is a set in which all access paths
are aliases of p or are prefixed by p, then there may exist
memory leaks but it’s not certain, because pointers in other
sets of U may point to the same object as p does.

Here we give the extension based on the original inference
rules [6]. The extended inference rules are similar to the

original except sometimes it is difficult to determine whether
memory leaks and to label dangling pointers.

1) Assignment statement of pointers (p=q and p=NULL)
The original rules for Π could be almost copied as
rules for U in most cases, except these two particular
cases below because of the uncertainty in the decision
whether memory leaks.

a) An alias of p is in some valid access path set of
Π or U and alias of q is in N .
{{{S1∧ . . .∧Sn−1∧Sp∧U ∧N q∧D∧Q}}}
p=q
{{{S1/p ∧ . . . ∧ Sn−1/p ∧ (Sp/p− p)
∧U/p ∧ (N q/p + p) ∧ D/p ∧Q/p}}}
(if leak(Sp, p) is false based on the Ψ
formed by the precondition)
{{{T1∧ . . .∧Tn−1∧T p∧Π∧N q∧D∧Q}}}
p=q
{{{T1/p ∧ . . . ∧ Tn−1/p ∧ (T p/p− p)
∧Π ∧ (N q/p + p) ∧ D/p ∧Q/p}}}
(test leak(T p, p) based on the Ψ formed
by the precondition)

Note that in the former case, it requires that
leak(Sp, p) is false before the assignment while
in the latter case, we just test leak(T p, p) before
the assignment and give warning messages about
possible memory leaks if leak(T p, p) is true.

b) An alias of p is in some valid access path set
of Π or U and alias of q is in D. The rules are
similar.

2) Free rule for free(p)
Only when an alias of p is a valid pointer, it’s safe to
use function free to free the object pointed to by p.
When an alias of p is in some set of Π, the original
rule for free(p) [6] is still usable. When an alias of p
is in some set of U , warning messages about possible
dangling pointers should be given on the basis of the
original free rule, because pointers in other sets of U
may point to the same object as p does.

Other rules, including rules for assignment statement
of non-pointers, malloc rule, composition/conditional/while
rule, case analysis rule, frame rule and rules for function
construct, are the same as those in the original pointer logic.

3. Case Study

3.1. The Schorr-Waite Algorithm

In this subsection, we take the Schorr-Waite algorithm
[8] as an example to show the application of the extended
pointer logic. The Schorr-Waite algorithm performs a depth-
first traversal of a directed graph. It directly uses the pointers
of the graph to implement backtracking. We only prove the
algorithm satisfies the elementary safety policy of PointerC.

The correctness of the algorithm, i.e., every node in the
graph must be marked, is not proved here because the pointer
logic has no distinct advantages in that case.

In the C version considered here, as in [9], we modify the
boolean expressions in while and if conditions that make the
boolean conditions explicit to be correctly reflected in pre-
and post- conditions. Assume that short-circuit calculation
is adopted in evaluation of boolean expressions to avoid
excessive modification of the code. The structure of the
binary directed graph nodes can be defined as:

typedef struct struct_node{
boolean m, c;
struct struct_node *l, *r;

}node;
where l and r are respectively pointers to the left and to the
right child (they can be set to NULL). The field m is a mark
of the node. The field c is used internally, to denote which
of the children is currently being explored.

The predicate for the binary directed graph is as follows:
graph(p),{p}N∨({p}N∧graph(p->l)∧graph(p->r))

Pay attention to the difference between this definition and
those of binary tree and binary DAG. In fact, when the graph
has cycles in it, the definition will be expanded infinitely.
But in our case, the fields m and c could be used to identify
cycles so that the definition seems appropriate.

The proof is shown in Figure 2. Due to the limited space,
the assertions at some program points are omitted.

3.2. AIO Remove Request Function in Glibc

In the previous works, we only use the pointer logic to
reason about typical operations on typical data structures,
such as inserting a node into a singly-linked list or a binary
tree. We have not yet verified other practical programs with
shared mutable data structures. Investigations in practical
programs find that graphs and DAGs are mostly represented
by adjacency matrix and so on. It seems that the extension
of the pointer logic is trivial. However, in practical programs
using linked list or binary tree, special data structures and
operations are often designed so that the extended pointer
logic may be helpful. In this subsection, we show how the
extended pointer logic can be used in practice by illustrating
a function taken from GNU C Library [13].

In GNU C Library, the asynchronous I/O operations are
implemented using a request queue. The type of the request
queue node is:

struct requestlist {
int runnning;
struct requestlist *last_fd;
struct requestlist *next_fd;
struct requestlist *next_prio;
struct requestlist *next_run;
//...

};

Figure 3. Request Queue and Ready Queue

Every node holds an I/O request for a file descriptor. Nodes
form a doubly-linked list in order of the file descriptors via
the fields last_fd and next_fd. In the list, last_fd of
the head node and next_fd of the tail node are all NULL.
If there are several I/O requests for one file descriptor, then
the corresponding nodes form a singly-linked list in order of
priority via the field next_prio. The head nodes of these
singly-linked lists are in the doubly-linked list. It’s obvious
that equality of these pointers is certain. And then a singly-
linked list via next_run is formed by some nodes in the
request queue of which the corresponding requests are ready,
so the singly-linked list is called ready queue. The equality
between the pointers in ready queue and those in the doubly-
linked list of request queue is uncertain.

Assume the numbers of nodes in request queue and ready
queue are respectively n + 1 and m + 1, and s and r are
respectively the head pointers of the queues (in Figure 3).
The structure can be defined in the pointer logic as follows:

rq(s,r,n,m)=(∀k:0..n-1.[s(->next_fd)k,
s(->next_fd)k+1->last_fd])∧[s(->next_fd)n]
∧{s->last_fd,s(->next_fd)n+1}N
/* The doubly-linked list of request queue */
∧(∀k:0..n.plist(s(->next_fd)k->next_prio))
/* Each node in the doubly-linked list
links a singly-linked list */

∧ rlist(r,m) /* Ready queue */
∧(∀k:0..n.∀l:0..n.(k!=l⇒s(->next_fd)k

/∈[s(->next_fd)l,s(->next_fd)l+1->last_fd]))
where

plist(p)={p}N∨({p}∧plist(p->next_prio)
∧{p->next_fd,p->last_fd,p->next_run}N)
rlist(r,m)={r(->next_run)m+1}N
∧(∀k:0..m.[r(->next_run)k])
∧(∀k:0..m.∀l:0..m.(k!=l⇒
r(->next_run)k /∈[r(->next_run)l]))

The non-membership assertion in the definition of
rq(s,r,n,m) expresses the pointer fields next_fd of nodes
in the doubly-linked list are not equal to each other. Due to
the limited space, some NULL pointers are ignored, such as
the fields next_run of nodes which are in the doubly-linked
list but not in rlist(r,m), because they are not involved in

{{{graph(root)}}}
void schorr_waite(node * root){

node * t, *p, *q;
{{{graph(root)∧{t, p, q}D}}}
t = root; p = NULL; q = NULL; root = NULL;
{{{graph(t)∧{root, p, q}N }}}
{{{graph(t)∧graph(p)∧{root, q}D}}} /* loop invariant */
while(p!=NULL ∨ (p==NULL ∧ t !=NULL ∧ ¬t->m)) {
{{{(graph(t)∧graph(p->l)∧graph(p->r)∧[p]∧{root,q}N)∨(graph(t->l)∧graph(t->r)∧[t]∧{p,root,q}N∧¬t->m)}}}
if(t==NULL ∨ (t!= NULL ∧ t->m)) {
{{{(graph(p->l)∧graph(p->r)∧[p]∧{t,root,q}N)∨(graph(p->l)∧graph(p->r)∧[p]∧graph(t->l)∧graph(t->r)∧[t]∧{root,q}N)}}}
if(p->c)) { /*pop*/
q = t; t = p; p = p->r; t->r = q; q = NULL;
{{{(graph(t->l)∧[t]∧graph(p)∧{root,q,t->r}N)∨([t]∧graph(p)∧graph(t->r->l)∧graph(t->r->r)∧[t->r]∧{root,q}N)}}}

} else { /* swing */
q = t; t = p->r; p->r = p->l; p->l = q; p->c = true; q = NULL;
{{{(graph(p->r)∧graph(t)∧[p]∧{root,q,p->l}N)
∨(graph(p->r)∧graph(t)∧[p]∧graph(p->l->l)∧graph(p->l->r)∧[p->l]∧{root,q}N)}}}

}
{{{graph(t)∧graph(p)∧{root,q}N }}} /* loop invariant */

} else { /* push, t!=NULL∧¬t->m */
{{{(graph(p->l)∧graph(p->r)∧[p]∧graph(t->l)∧graph(t->r)∧[t]∧{root,q}N∧¬t->m)
∨(graph(t->l)∧graph(t->r)∧[t]∧{p,root,q}N∧¬t->m)}}}

q = p; p = t; t = t->l; p->l = q; p->m = true; p->c = false; q = NULL;
{{{(graph(p->l->l)∧graph(p->l->r)∧[p->l]graph(t)∧graph(p->r)∧[p]∧{root,q}N)
∨(graph(t)∧graph(p->r)∧[p]∧{root,q,p->l}N)}}}
{{{graph(t)∧graph(p)∧{root,q}N }}} /* loop invariant */

}
} /* p==NULL ∧ (t==NULL ∨ (t!=NULL ∧ t->m)) */
{{{graph(t)∧{root,p,q}N }}}

}

Figure 2. The Schorr-Waite Algorithm

the verification.
In the function
void __aio_remove_request
(struct requestlist *last,
struct requestlist *req, int all),

two global variables will be used:
/* Ready queue */
struct requestlist *runlist;
/* Request queue */
struct requestlist *requests;

So we have rq(requests,runlist,n,m). The numbers of
nodes in the doubly-linked list of requests and in runlist
are respectively n + 1 and m + 1.

The function has two pointer type parameters. Intuitively,
the pointer last points to the predecessor of the node
pointed to by req in the singly-linked list. The possible
relations between them can be classified into 4 cases (in
Figure 4). In order to reason in the pointer logic, the defini-
tion of rq(requests,runlist,n,m) should be expanded
to include the pointers req and last. Due to the limited
space, details are given in [15].

Briefly, the function removes the node N pointed to by req
in all the linked relations including request queue and ready
queue. Yet the function does not free the node. If all=1,

all the nodes linked by req in the singly-linked list will
be removed along with the node N. Otherwise, if all=0,
only the node N will be removed and its successor in the
singly-linked list will take its place.

Since it’s unsupported in PointerC, a loop with a break
statement in the original code is modified. In Figure 4, we
show the code and assertions at main points of the function.
More detailed proof is available at [14]. Although it has been
simplified, verification by hand is still very complicated.
Thus the pointer logic should be implemented in tools.

4. Related Work

We extend the pointer logic to support data structures
like graphs in which equality of pointers is uncertain. More
details can be found in the extended version of this paper
[15]. The pointer logic essentially uses the idea of precise
alias analysis in program verification. It represents pointer
information of program points using access path sets and
expresses the effects of statements to pointer information
using Hoare-style inference rules.

Bornat also used Hoare logic to reason about properties
of pointer programs [10]. He treated the heap as a pointer-
indexed collection of objects, each of which is a name-
indexed collection of components. An object-component

{{{rq(requests,runlist,n,m)∧(case1∨case2∨case3∨case4)}}}
void __aio_remove_request(struct requestlist *last,struct requestlist *req,int all){
if(last!=NULL)
{{{rq(requests,runlist,n,m)∧(case3∨case4)}}}
if(all==1) last->next_prio=NULL; else last->next_prio=req->next_prio;
{{{rq(requests,runlist,n,m)∧{req}}}}

else{
if(all==1∨req->next_prio==NULL){
{{{rq(requests,runlist,n,m)∧(case1∨case2)}}}
if(req->last_fd!=NULL) req->last_fd->next_fd=req->next_fd; else requests=req->next_fd;
if(req->next_fd!=NULL) req->next_fd->last_fd=req->last_fd;
{{{rq(requests,runlist,n-1,m)∧(∀i:0..n-1.req6=requests(->next_fd)i)}}}

} else{
{{{rq(requests,runlist,n,m)∧(case1∨case2)}}}
if(req->last_fd!=NULL) req->last_fd->next_fd=req->next_prio; else requests=req->next_prio;
if(req->next_fd!=NULL) req->next_fd->last_fd=req->next_prio;
req->next_prio->last_fd=req->last_fd; req->next_prio->next_fd=req->next_fd;
req->next_prio->running=yes;
{{{rq(requests,runlist,n,m)∧(∀i:0..n.req6=requests(->next_fd)i)}}}

}
{{{(rq(requests,runlist,n-1,m)∧(∀i:0..n-1.req6=requests(->next_fd)i))
∨(rq(requests,runlist,n,m)∧(∀i:0..n.req6=requests(->next_fd)i))}}}
if(req->running==yes){
struct requestlist *runp=runlist; last=NULL;
while(runp!=NULL∧runp!=req){last=runp; runp=runp->next_run;}
if(runp==req) {if(last==NULL) runlist=runp->next_run; else last->next_run=runp->next_run;}

}
{{{(rq(requests,runlist,n-1,m)∧(∀i:0..n-1.req6=requests(->next_fd)i)∧req/∈rlist(runlist,m))
∨(rq(requests,runlist,n,m)∧(∀i:0..n.req6=requests(->next_fd)i)∧req/∈rlist(runlist,m))
∨(rq(requests,runlist,n-1,m-1)∧(∀i:0..n-1.req6=requests(->next_fd)i)∧req/∈rlist(runlist,m-1))
∨(rq(requests,runlist,n,m-1)∧(∀i:0..n.req6=requests(->next_fd)i)∧req/∈rlist(runlist,m-1))}}}

}
}
{{{(rq(requests,runlist,n,m)∨rq(requests,runlist,n-1,m)∨rq(requests,runlist,n-1,m-1)∨rq(requests,runlist,n,m-1))
∧{req}}}}
case1:(last=NULL)∧(∃i:0..n.req=requests(->next_fd)i)∧(∃j:0..m.req=runlist(->next_run)j)
case2:(last=NULL)∧(∃i:0..n.req=requests(->next_fd)i)∧req/∈rlist(runlist,m)
case3:(∃i:0..n.last=requests(->next_fd)i)∧(req=last->next_prio)∧req/∈rlist(runlist,m)
case4:(∃i:0..n.last=requests(->next_fd)i(->next_prio)ip)∧(req=last->next_prio)∧req/∈rlist(runlist,m)

Figure 4. Example of AIO Remove Request Function

reference in the heap corresponds to a double indexing, once
of the heap and once of the object. He introduced axioms
for object component substitution for distinct component
names and used them to prove properties of programs with
shared mutable data structures defined by pointers. As for
inductive auxiliary definitions of data structures, Bornat
defined different operators, such as in the definition of
directed graph:

A*l,r , if A=nil then {}
else {A}∪A.l*l,r∪A.r*l,r fi

DAG is defined based on the definition of directed graph by
including an exclusion set S to break cycles:

A*l,r,S , if A=nil∨A∈S then {}
else {A}∪A.l*l,r,S∪{A}∪A.r*l,r,S∪{A} fi

In comparison, we introduce pointer non-membership as-
sertions to break cycles. However, in Bornat’s approach,
it is uncertain whether nodes are sharing or separate. And

Bornat assumed that data structures except directed graphs
are acyclic, so that the definitions of tree and graph seem
confused. Moreover, to effectively deal with the explosion of
effects produced by an assignment which affects only a sin-
gle location, Bornat introduced spatial-separation assertions
to represent separation of objects or nodes. By contrast, the
uncertainty in our extended pointer logic is restricted that
pointers in the same access path set are definitely equal
and objects which have complete pointer information can
be unambiguously described.

Separation logic also supports data structures like directed
graphs with uncertain equality of pointers. Since separation
logic emphasizes that disjoint heaps have no affects on each
other, it’s convenient to represent the acyclic characteristic of
DAGs. But without mechanisms describing the connections
between disjoint heaps, it’s difficult to represent equality
of access paths or substructure sharing in separation logic.

To label all the sharing substructures of a specific directed
graph, [11] treats the first occurrence of a subgraph encoun-
tered in a left-to-right scan as the defining instance, and
cuts links to the same structure which are encountered later.
These graphs are called partial graphs, i.e., graphs consisting
of named vertices in which not every name maps to a succes-
sor set. Partial graphs can be regarded as graphs with sharing
information collected left-to-right. In [11], the heap predicate
for partial DAGs in separation logic describes a left-to-
right evaluation that similarly accumulates an environment.
This approach overcomes the difficulties in representing
sharing information in separation logic by partial graphs,
but the specifications require too much information about
the environment. In the case of algorithms even as simple
as those which copy and dispose DAGs and graphs [11],
there is much work to do.

As for safety verification, the pointer logic introduces
side conditions in the typing rules so that safety verification
and error detection are implemented internally. For example,
there are no assertions about safety when reasoning about
the Schorr-Waite algorithm in the pointer logic. By contrast,
in Yang’s proof of the Schorr-Waite algorithm [12], the
predicate noDangling(x) is introduced to denote x is not
a dangling pointer. When the CADUCEUS tool is used to
prove the algorithm in [9], the predicate valid(x) is added
similarly.

Moreover, the extension of Hoare logic by Bornat and
separation logic are only applied to simple programs such
as the Schorr-Waite algorithm and the CopyDags function.
More complicated practical programs, such as the example
in subsection 3.2, have not been considered. Although the
proof is done by hand, we will develop plcc to support
automatic verification of complicated programs.

5. Conclusion

In this paper, we extend the pointer logic designed for
PointerC to support verification of pointer programs with
data structures like graphs in which equality of pointers is
uncertain. The inference rules of the extended pointer logic
are proposed according to the actual demand so that they
may not be perfect all the time.

By now, besides the need for supporting tools, another
shortage of reasoning in the pointer logic is that the pro-
grams must be annotated with loop invariants, pre- and
post- conditions. We will try to automatically generate loop
invariants with provided declarations about which kind of
data structure (such as singly-linked list and binary tree) is
pointed to by the variable in the program.

Acknowledgments

This research is supported by the National Natural Sci-
ence Foundation of China under Grant No.90718026 and

Intel China Research Center. Any opinions, findings, and
conclusions contained in this paper are those of the authors
and do not reflect the views of these agencies.

References

[1] J. C. Reynolds. Separation logic: a logic for shared mutable
data structures. In Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science, pages 55-74, July
2002.

[2] Baojian Hua, Yiyun Chen, Lin Ge, and Zhifang Wang. The
PointerC programming language specification. (Technical Re-
port) Available at: http://ssg.ustcsz.edu.cn/lss/doc/index.html.

[3] Yiyun Chen, Baojian Hua, Lin Ge, and Zhifang Wang. A
Pointer Logic for Safety Verification of Pointer Programs.
Chinese Journal of Computers, 31(3), March 2008.

[4] Yiyun Chen, Lin Ge, Baojian Hua, Zhaopeng Li, Cheng Liu,
and Zhifang Wang. A pointer logic and certifying compiler.
Frontiers of Computer Science in China, 1(3), pp. 297-312,
Agust 2007.

[5] Yiyun Chen, Lin Ge, Baojian Hua, Zhaopeng Li, and Cheng
Liu. Design of a certifying compiler supporting proof of pro-
gram safety. In Proceedings of 1st IEEE/IFIP International
Symposium on Theoretical Aspects of Software Engineering,
pages 127-136, IEEE CS press, June 2007.

[6] Zhaopeng Li, Yiyun Chen, Baojian Hua, and Zhifang Wang.
A Revised Pointer Logic for Verification of Pointer Programs.
Accepted by Sixth Asian Workshop on Foundations of Soft-
ware (AWFS’09), Tokyo, Japan, April 6-8, 2009.

[7] Zhifang Wang, Yiyun Chen, Zhenming Wang, Wei Wang, and
Bo Tian. An Extension to Pointer Logic for Verification. In
Proceedings of 2nd IEEE/IFIP International Symposium on
Theoretical Aspects of Software Engineering, pages 49-56,
IEEE CS press, June 2008.

[8] H. Schorr and W. M. Waite. An efficient machine independent
procedure for garbage collection in various list structures.
Commun. ACM, 10:501-506, 1967.

[9] T. Hubert and C. March. A case study of C source code
verification: the Schorr-Waite algorithm. In Proceedings of the
3rd IEEE International Conference on Software Engineering
and Formal Methods, pages 190-199, IEEE CS press, 2005.

[10] R. Bornat. Proving pointer programs in Hoare logic. In Pro-
ceedings of the 5th International Conference on Mathematics
of Program Construction, pages 102-126, July 03-05, 2000.

[11] R. Bornat, C. Calcagno, and P. O’Hearn. Local reasoning,
separation and aliasing. In Proceedings of the Conference on
Semantics, Program Analysis, and Computing Environments
(SPACE’04). Venice, Italy. 2004.

[12] H. Yang. An example of local reasoning in BI pointer logic:
The Schorr-Waite graph marking algorithm. In F. Henglein,
J. Hughes, H. Makholm, and H. Niss, editors, SPACE 2001:
Informal Proceedings of Workshop on Semantics, Program
Analysis and Computing Environments for Memory Manage-
ment, pages 41-68. IT University of Copenhagen, 2001.

[13] The GNU C Library. http://www.gnu.org/software/libc/.
[14] An example of reasoning in extended pointer logic:

AIO Remove Request Function in Glibc. Available at:
http://ssg.ustcsz.edu.cn/lss/papers/.

[15] Hongjin Liang, Yu Zhang, Yiyun Chen, Zhaopeng Li,
Baojian Hua. A Pointer Logic Dealing with Uncertain
Equality of Pointers (Extended Version). Available at:
http://ssg.ustcsz.edu.cn/lss/papers/.

