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Abstract—This paper focuses on the problem of reason-
ing about concurrent assembly code with reentrant locks.
Our verification technique is based on concurrent separation
logic (CSL). In CSL, locks are treated as non-reentrant locks
and each lock is associated with a resource invariant, the
lock-protected resources are obtained and released through
acquiring and releasing the lock respectively. In order to
accommodate for reentrancy, we introduce some additional
notions into our specification language to describe reentrant
level for each acquiring and releasing lock operation. Keeping
track of the reentrant level for each lock in the pre- and post-
conditions enables the program logic to ensure that resources
are not re-acquired upon reentrancy, thus resources owned by a
thread are prevented from reintroducing in the postcondition.
Our framework is fully mechanized. Its soundness has been
verified using the Coq proof assistant. We demonstrate the
usage of our framework through giving a safety proof of a
simple program.

Keywords-reentrant locks, concurrent separation logic,
safety, program logic

I. I NTRODUCTION

It is difficult to write correct concurrent programs due to
potential inter-thread interference at every program point. In
order to reduce the complexity of concurrent programming,
most popular modern languages – Java and C# provide high-
level reentrant locking primitives, which ease concurrent
programming. However, it is difficult to use reentrant locks
correctly and the incorrect usage can result in nasty concur-
rent errors like data races or deadlocks. Existing high-level
languages do not provide any effective mechanisms to avoid
such errors, thus it is important to develop a verification
technique for reasoning about concurrent programs with
reentrant locks. The reentrant mechanism allows a thread to
re-acquire a lock that it already holds. It is important because
it eliminates the possibility of a single thread deadlocking
itself on a lock that it already holds.

Concurrent separation logic(CSL) [1] is an extension of
separation logic[2] for reasoning about shared memory
race-free concurrent programs. Separation logic is a program
logic which is tailored to reason about the heap manipulating
programs. In CSL, the shared memory is partitioned and
each part is protected by a unique mutual exclusive lock.
For each part of the partition, an invariant is assigned to
specify its well-formedness. When a thread acquires one

of the mutual exclusive locks, it treats the part of shared
memory protected by the lock as private. Before releasing
the lock, it must ensure that the part of shared memory
is well-formed with regard to the corresponding invariant.
The ownership of lock-protected shared memory can be dy-
namically transferred among threads, the verification system
ensures that a piece of shared memory is only accessed when
the associated lock is held. However, in the invariants of
CSL, locks are non-reentrant, we cannot directly apply CSL
to reason about concurrent programs with reentrant locks.

In order to adapt CSL to reasoning about concurrent
programs with reentrant locks, we build an abstract machine
model based on an assembly language with RISC-style
instructions and built-in ”lock l ” and ”unlock l ” primitives,
and introduce additional specification constructs to tracethe
reentrant level for each lock. Instead of using the high-
level parallel language proposed by Hoare [3], we use the
assembly language because it has cleaner semantics, which
makes our formulation much simpler. For instance, we do
not use variables, instead we only use register files and
memory. Therefore we can have a quick formulation in
Coq [4] without worrying about variable renaming issues.
Also we do not have to formalize the complicated syntactic
constraints enforced in CSL over shared variables. Another
important reason is that our work at low level can be
easily applied to generate proof-carrying code (PCC) [5].
It seems unavoidable that the proof rule for acquiring a lock
distinguishes between initial acquires and re-acquires. This
is needed because it is quite obviously unsound to simply
assume the resource invariant after a re-acquire. Thus, a
verification system for reentrant locks must keep track of the
reentrant level for each lock that the current thread holds in
the pre- and post conditions, and we have to enrich our spec-
ification language to achieve this requirement. Our system
addresses the safety issues at assembly-level as PCC systems
do. So we do not need to trust the complicated compilation
and optimization and can have a smaller trusted computing
base to build executable PCC package for programs using
reentrant locks. Furthermore, our formal model for reentrant
locks is still general and similar to high-level ones. The
verification technique we describe at assembly-level can be
lifted up to higher levels. This paper makes the following
contributions:



1) As far as we know, this paper first proposes a method
to adapt CSL to fitting for reasoning about concur-
rent assembly code with reentrant locks. We present
a program logic for reasoning about properties of
concurrent assembly code with reentrant locks, and
we prove it sound with respect to the semantics of
reentrant locks.

2) We implement our framework using the Coq proof
assistant, and prove an example under the framework.
The result shows that the adapted inference rules can
be easily applied to verify the concurrent assembly
code with reentrant locks.

The rest of this paper is organized as follows: In section II,
we explain the CSL and its limitation for verifying reentrant
locks. We describe the abstract machine we model and the
program logic for reasoning about concurrent assembly code
with reentrant locks in section III. Section IV presents an
example that are written and proved under our framework.
Finally we discuss the related work and conclusion in
section V and VI.

II. PRELIMINARIES

We give a brief description of separation logic. A more
careful treatment is in [1] and [6]. A simplified syntax for
separation logic is shown in Fig. 1.

Here we briefly demonstrate the logical semantics for each
construct in the syntax. BothA and B are assertions that
describe the heap.l 7→ v holds if the heap consists entirely
of the binding of locationl to valuev. emp holds only on
the empty heap.A∗B holds if the heap can be split into two
disjoint parts such thatA holds on one and B on the other.
A∧B holds if bothA andB hold on the entire heap.A∨B
holds if eitherA or B holds on the heap.∃ x. B holds if
there exists anx that B holds on the heap.∀ x. A holds on
a heap that satisfiesA for all x.

A,B ::= l 7→ v | emp | A∗B | A∧B | A∨B
| ∃ x. B | ∀ x. A

Figure 1. Syntax of Separation Logic

The frame propertyof separation logic requires that if a
program does not go wrong in a particular state with heap
H, then it will not go wrong in a larger state with heap
H⊎H′ (the notion ”⊎” is used to merge two disjoint heaps
into a larger one, we give its formal definition in Fig. 6);
the effect will still be taken onH, leaving the added heap
H′ completely unaffected. Thus the separation conforms to
the following frame rule:

{Q}C{R}
{P∗Q}C{P∗R}

(no variable occurring free in P is modified by C)

If C cannot modify the variables ofP, and if the heap it

manipulates is disjoint from that ofP, then we can reason
aboutC and its effect separately fromP.

CSL introduces the concurrency rule based on separation
logic for reasoning about concurrent programs. The concur-
rency rule given below

{Q1}C1{R1} {Q2}C2{R2}

{Q1∗Q2}C1‖C2{R1∗R2}

describes how concurrent threads with disjoint heap re-
sources can be treated separately. As a concurrent program
executes, heap resources must remain separated but the sep-
aration need not be fixed : the ownership can be transferred
among threads through locking operation. The rule below is
used to deal with the non-reentrant locks for transferring the
ownership of shared resources.

I is a resource invariant associated with a lockl
Γ, l  I ⊢ {emp} lock l{I}

However, we can not directly apply this rule to reason
about concurrent programs with reentrant locks. The main
problem is that a verification system for reentrant locks
has to distinguish between initial lock entries and reentries,
because only after initial entries is it sound to assume a
lock’s resource invariant. This means that initial lock entries
need precondition requiring that the current thread has not
yet held the acquired lock. In Fig. 2, a simple code sequence
is made up of two consecutive statements that acquire the
same lockl . Both the first and the second acquiring lock
l operations lead to obtain additional resource satisfying
invariant I . According to the frame rule and the above
rule , the second acquiring lock operation requires that the
postcondition beI ∗ I . However separation logic treatsI ∗ I
as a false assertion, and this leads to incorrect verification.
The following sections show our technique for solving this
problem and adapting CSL to reasoning about concurrent
programs with reentrant locks.

{emp}
(1) lock l ;

{I} (I is lock l ’s resource invariant )
(2) lock l ;

{I ∗ I} (Wrong!!!)
. . .

Figure 2. CSL does not Support Reentrant Locks

III. T HE FRAMEWORK

A. Abstract Machine

Fig. 3 defines the abstract machine and the syntax of an
assembly language. We extend CAP [7], [8] by adding built-
in primitives ”lock l ” and ”unlock l ” for reentrant locks. The
whole worldW consists of a code heapC, a shared data heap



(World) W ::= (C,H,TS,L)
(ThreadSet) TS ::= (T1, . . . ,Tn)

(ThreadState) S := (H,T,L)
(Thread) Ti ::= (R,pc,tid)
(ThrdID) tid ::= m (nat nums,and m> 0)

(CodeHeap) C ::= (f ; ι)∗
(Heap) H ::= {l ; w}∗

(LockMap) L ::= {l ; (tid,n)}∗

(ReentrantLevel) n ::= i(nat nums,and i> 0)
(RegFile) R ::= {r ; w}∗

(Register) r ::= r0 | . . . | r31

(Labels) f,l,pc ::= i (nat nums)
(Locks) l ::= i (nat nums)
(Word) w ::= i (nat nums)
(Instr) ι ::= add rd,rs,rt | addi rd,rs,w

| sub rd,rs,rt | ld rd,w(rs)
| st rd,w(rs) | beq rs,rt ,f
| lock l | unlock l

(InstrSeq) I ::= ι;I | j f | jr rs

Figure 3. The Abstract Machine

H, a thread setTS which containsn threads(T1, . . . ,Tn) and
a shared lock mappingL.

The code heapC is a partial mapping from code labels
to instructions. The global shared heapH is modeled as
a finite partial mapping from heap locationsl (natural
numbers) to word valuesw (natural numbers). The locking
mapL is a finite mapping from reentrant locks to lock value
pairs ”(tid,n)”, where the integertid identifies the thread
holding the lock exclusively and the integern is the reentrant
level counting how often it currently holds the lock.

The abstract machine has a fixed number of threads. Each
threadTi contains a register fileR, a program counterpc
and its thread identifiertid. Here we allow each thread
to have its own register file and program counter, which
is consistent with most implementation of thread library
where the register file is saved to the execution context when
a thread is preempted. The register fileR is represented
as a total function from registers to words. Each thread’s
program counterpc points to its current command in a
shared code heapC. The set of instructions we present
here are the commonly used subset in RISC machines with
additional reentrant ”lock l ” and ”unlock l ” primitives for
synchronization.

We define the instruction sequenceI as a sequence of
sequential instructions ending with jump or return instruc-
tions. C[pc] extracts an instruction sequence starting from
pc in C, as defined in Fig. 4.(F{a ; b})(x) is used
to formalize memory update in our operational semantics.
MacrosS |H′ and S |L′ are defined for constructing thread
states by replacing the heap and the lock set respectively.

C[pc]
def
=

{

ι ι = C(pc) and ι = j f or jr rs

ι;I ι = C(pc) and I = C[pc+1]

(F{a ; b})(x)
def
=

{

b if x = a
F(x) otherwise

S |H′
def
= (H′,S.T,S.L)

S |L′
def
= (S.H,S.T,L′)

Figure 4. Definition of Representations

B. Operational Semantics

The operational semantics of each instruction is defined
in Fig. 5. The relationNextSι shows the transition of thread
states by executing instructionι. The operational semantics
for most instructions are quite straightforward. Note the
execution of instruction for acquiring locks. It allows a
lock to be re-acquired by one thread and does not lead
to deadlock. There exist three different cases for executing
lock l : when l is not in the domain ofL (means thatl is
free), the current threadtid can exclusively and successfully
acquire the lockl , and set lockl with pair value(tid,1). tid
denotes that lockl is held by threadtid and the reentrant
level ”1” shows that the current program point is at the initial
lock entry of the lockl . Shared resource can be obtained by
the thread through the initial lock acquiring. Whenl is in
the domain ofL and held by the current threadtid, thread
tid tries to re-acquired a held lock. Non-reentrant locking
mechanism makes the current thread block and leads to
deadlock, while our model avoids deadlock through setting
the reentrant level in the lock pair value with the increment
of ”1”. When l is held by the other thread, the current thread
blocks. The semantics for releasing locks is straightforward,
the reentrant level makes acquiring and releasing operation
on the same lock keep in pair.

Fig. 5 also defines(C,S) (C,S′) and (W 7−→ W
′) for

the thread execution and the whole world execution respec-
tively. Note that relation(C,S) (C,S′) is deterministic but
our semantics of the abstract machine(W 7−→ W′) is not
deterministic: the state transition may be made by executing
any thread inW. Also, given aW, there may not always
exist aW′ such that(W 7−→ W′) holds. If there is no such
W′, we say the program gets stuck atW. One important
goal of our program logic is to show that verified programs
never get stuck.

C. Program Logic

1) Assertion Language:Fig. 6 shows the syntax and
semantics of the assertion language. We use the predicate
m over a heap and separation logic connectors∗ in our
assertion language. The assertiona is a predicate over a
thread state.

Most of the definitions are simple and straightforward.
Here we explain some special ones. The assertion ”l 7→ v”



NextSι S S′ where S = (H,(R,pc,tid),L)
if ι = S′ =
add rd,rs,rt (H,(R{rd ; R(rs)+R(rt)},pc+1,tid),L)
addi rd,rs,w (H,(R{rd ; R(rs)+w},pc+1,tid),L)
sub rd,rs,rt (H,(R{rd ; R(rs)−R(rt)},pc+1,tid),L)

ld rd,w(rs) (H,(R{rd ; H(R(rs)+w)},pc+1,tid),L) if R(rs)+w ∈ dom(H)

st rd,w(rs) (H{R(rs)+w; R(rd)},(R,pc+1,tid),L) if R(rs)+w ∈ dom(H)

lock l
(H,(R,pc+1,tid),L{l ; (tid,1)}) if l /∈ dom(L)
(H,(R,pc+1,tid),L{l ; (tid,n+1)}) if L(l) = (tid,n)
(H,(R,pc,tid),L) otherwise

unlock l
(H,(R,pc+1,tid),L{l ; (tid,n−1)}) if L(l) = (tid,n)∧n > 1
(H,(R,pc+1,tid),L/{l}) if L(l) = (tid,n)∧n = 1

j f (H,(R,f,tid),L)
jr rs (H,(R,R(rs),tid),L)

beq rs,rt ,f
(H,(R,f,tid),L) if R(rs) = R(rt)
(H,(R,pc+1,tid),L) if R(rs) 6= R(rt)

ι = C(pc) NextSι S S′

(C,S) (C,S′)
THREADSTEP

∃Tk.Tk ∈ TS∧ (C,(H,Tk,L)) (C,(H′,T′
k,L

′))

(C,H,TS,L) 7−→ (C,H′,(T1 . . . ,T′
k, . . .Tn),L

′)
WORLDSTEP

Figure 5. Operational Semantics

(ThrdStatePred) a ∈ ThreadState→ Prop
(HeapPred) m ∈ Heap→ Prop

m ::= l 7→ v | true | emp | m1∗m2

| m1∧m2 | m1∨m2 | ∃ x. m | ∀ x. m

a ::= ⌊m⌋ | ownk(l ,n) | r = v

| a1∧a2 | a1∨a2 | ∃ x. a | ∀ x. a

true
def
= λH.True

emp
def
= λH.dom(H) = /0

H1 ⊥ H2
def
= dom(H1)∩dom(H2) = /0

l 7→ v
def
= λH.H = {l ; v}

H1⊎H2
def
=

{

H1∪H2 if H1 ⊥ H2

unde f ined otherwise

m1∗m2
def
= λH.∃H1,H2.(H1⊎H2 = H)∧m1H1∧m2H2

⌊m⌋
def
= λS.m S.H

ownk(l ,n)
def
= λS.(k = S.T.tid)∧S.L(l) = (k,n)

r = v
def
= λS.S.T.R(r) = v

Figure 6. Syntax and Semantics of the Assertion Language

holds only if the heap has only one cell at locationl
containing valuev. m1 ∗ m2 means the heap can be split

into two disjoint parts, andm1 and m2 hold over each of
them respectively.⌊m⌋ means predicate over a thread state
containing a heap satisfyingm, we use this syntax to lift
predicates over heap to assertions specifying a thread state.
Predicateownk(l ,n) is used to specify thatl is held by the
threadk with corresponding reentrant leveln. Here, we omit
the semantics of some straightforward connectors, such as
∧,∨,etc.

2) Program Specification:We use the mechanizedmeta-
logic implemented in the Coq proof assistant as our specifi-
cation language. The logic corresponds to higher-order logic
with inductive definitions.

(WorldSpec) φ := ([ψ1, . . . ,ψn],Γ)
(CdHpspec) ψ := {(f1,a1), . . . ,(fn,an)}
(LockINV) Γ := {l ; m}∗

(Well-formed World) φ, [a1, . . . ,an] ⊢ (C,H,TS,L)
(Well-formed Thread) ψ,Γ ⊢ {a}(C,H,T,L)
(Well-formed Code Heap) ψ,Γ ⊢ C : ψ′

(Well-formed Instr. Seq.) ψ,Γ ⊢ {a}pc : ι;I
(Well-formed Instruction) ψ,Γ ⊢ {a}pc : ι

Figure 7. Specification Constructs for the Program Logic

The specification constructs of our logic are presented in
Fig. 7. The world specificationφ contains a collection of
code heap specifications for each thread and a specification



Γ for lock-protected heap. Code heap specificationψ maps
a code label to a predicatea over thread stateS as the
precondition of corresponding instruction sequence. The
specificationΓ of a lock-protected heap maps a lock to an
invariantm specifying the shared heap.

The last five judgments are used to define the well-formed
world, well-formed thread, well-formed code heap, well-
formed instruction sequence and well-formed instruction
respectively. The inference rules for these judgments will
be presented in the following subsection.

a1 ⇒ a2
def
= λS.a1 S → a2 S

a∗m
def
= λS.∃H1,H2,(H1⊎H2 = S.H)∧a S|H1 ∧m H2

ψ◦NextSι
def
= λS.∃S′,NextSιSS′∧ψ(S′.T.pc) S′

∀∗x∈S. P(x)
def
=

{

emp if S= /0
P(xi)∗∀∗x∈S′. P(x) if S= S′⊎{xi}

Figure 8. Auxiliary Definition

3) Inference Rules:The inference rules for a program
and instructions are presented in Fig. 9.

A world is well-formed with regard to a world specifica-
tion φ and thread state predicatesa1, . . . ,an for each thread
when the following conditions hold:

• There is a partition of the global heap inton+1 disjoint
parts, where the shared heapHs satisfies the invariants
specified inΓ andH1, . . . ,Hn satisfy each thread state
predicateak respectively. As in O’Hearn’s original work
on CSL [1], we also require invariants specified inΓ to
be precise, denoted asPrecise(Γ) defined as below.
Every thread of the world is required to be well-formed.
Thus our system support thread-modular verification by
decomposing the verification of multi-threaded program
into that of its component threads.

Precise(m)
def
= ∀H1,H2,H.H1 ⊆ H → H2 ⊆ H →

m H1∧m H2 → H1 = H2

Precise(Γ)
def
= ∀l ∈ dom(Γ). Precise(Γ(l))

• The shared state(Hs, ,L) satisfies the predicateaΓ,
which is defined below. The definition ofaΓ is the
separating conjunction of invariants assigned to the
locks which are free (not in the domain of the globalL).
It ensures that the shared heap are well-formed outside
critical region. Here∀∗ is an indexed, finitely iterated
separating conjunction, which is formalized in Fig. 8.

aΓ
def
= λS.(∀∗l ∈{l | l /∈ dom(S.L)}. Γ(l))S.H

A thread is well-formed if the current thread state satis-
fies the preconditiona and both the code heap and the
instruction sequence are required to be well-formed. Sincea

only specifies the private resource, we use ”filter” operator
”L|tid” formalized below to preventa from having access

to the ownership information of locks not held by the current
thread.

(L|tid)(l)
def
=

{

(tid,n) if L(l) = (tid,n)
undefined otherwise

The ruleCDHP shows that a code heap is well-formed only
if each instruction sequence specified inψ′ is well-formed
with respect to the imported interfaces specified withψ and
the lock specificationΓ.

The ruleINSQ shows that an instruction sequence is well-
formed if it is composed of a single instructionι and another
instruction sequenceI, both of which are well-formed.

A well-formed instructions includes the following cases
with the order of Fig. 9.

• The rule INSN - If the instruction ι is not lock l or
unlock l , it can execute for all thread states specified
by the current thread state predicatea, and the new
modified thread state must satisfy the thread state
predicate for the target address of instructionι given by
ψ. We useψ◦NextSι defined in Fig. 8 to specify the
new modified state generated by executing instruction
ι.

• The ruleLOCK - We have a unified rule for reasoning
about instructionlock l which may be executed at either
the initial entry or reentry. The reentrant locks are
handy in the presence of polymorphism, i.e. where
a given routine that executes lock is called both in
a context where the lock is free and where the lock
was previously acquired. In that sense, whether the
locking operation happens at the initial entry or reentry
cannot be established statically, and the unified rule
LOCK can support reasoning about the either case au-
tomatically. The rule applies when lockl is acquired
at the initial entry or reentry. The thread predicate
((Enl

lk∧m)∨ (Enl
relk∧emp)) is used to enforces the

ownership transfer under the following two cases:
– If the current state satisfies the predicateEnl

lk (de-
fined in Fig. 10) which ensures the lock is free and
enables safely locking operation at the initial entry,
we can carry the knowledgem in the postcondition
given by ψ at the target address of instructionι.
The global invariant ensures that the part of heap
protected byl satisfies the invariantm.

– If the current state satisfies the predicate
Enl
relk (defined in Fig. 10) which ensures the

lock is held by itself and enables safely locking
operation at the reentry, we can use the empty heap
predicateemp to represent nothing is acquired at
the reentry. The part of heap protected byl will
not be reintroduced into the result state.

• The rule UNLOCK is similar with the ruleLOCK, we
use the predicate((Enl

unlk∧ m)∨ (Enl
reunlk∧ emp))

to represent two different cases, one is that the invariant
gets established and the lockl ’s current reentrancy level



φ, [a1, . . . ,an] ⊢ (C,H,TS,L) (Well-formed World)

φ = ([ψ1, . . . ,ψn],Γ) H = Hs⊎H1⊎ . . .⊎Hn Precise(Γ)
aΓ(Hs, ,L) ψk,Γ ⊢ {ak}(C,Hk,Tk,L) for all k∈ {1, . . . ,n}

φ.[a1, . . . ,an] ⊢ (C,H, [T1, . . . ,Tn],L)
WORLD

ψ,Γ ⊢ {a}(C,H,T,L) (Well-formed Thread)

a (H,(R,pc,tid),L|tid) ψ,Γ ⊢ C : ψ ψ,Γ ⊢ {a}pc : C[pc]

ψ,Γ ⊢ {a}(C,H,(R,pc,tid),L)
THRD

ψ,Γ ⊢ C : ψ′ (Well-formed Code Heap)

∀(pc,a) ∈ ψ′ : ψ,Γ ⊢ {a}pc : C[pc]

ψ,Γ ⊢ C : ψ′ CDHP

ψ,Γ ⊢ {a}pc : I (Well-formed Instr. Sequence)

ψ,Γ ⊢ {a′}pc+1 : I ψ{pc+1; a′},Γ ⊢ {a}pc : ι
ψ,Γ ⊢ {a}pc : ι;I

INSQ

ψ,Γ ⊢ {a}pc : ι (Well-formed Instruction)

ι /∈ {lock l ,unlock l} a⇒ ψ◦NextSι

ψ,Γ ⊢ {a}pc : ι
INSN

a∗ ((Enl
lk∧m)∨ (Enl

relk∧emp)) ⇒ ψ◦NextSlock l

ψ,Γ{l ; m} ⊢ {a}pc : lock l
LOCK

a⇒ (ψ◦NextSunlock l )∗ ((Enl
unlk∧m)∨ (Enl

reunlk∧emp))

ψ,Γ{l ; m} ⊢ {a}pc : unlock l
UNLOCK

Figure 9. Inference Rules

is 1; the other is that the specified heap is empty and
the lock l ’s current reentrancy level is bigger than 1.
The predicate enforces that the ownership of the well-
formed shared heap protected by the lockl only be
transferred from private part to the shared part at the
last releasing and the middle unlocking operations do
not change the domain of thread private heap. The
predicateEnl

unlk and Enl
reunlk defined in Fig. 10

enables safely unlocking action taken on the current
state.

Enl
lk

def
= λS.l /∈ dom(S.L)

Enl
relk

def
= λS.(S.T.tid, ) = S.L(l)

Enl
unlk

def
= λS.(S.T.tid,1) = S.L(l)

Enl
reunlk

def
= λS.∃n,(S.T.tid,n) = S.L(l)∧n > 1

Figure 10. Predicates for Enabling Instructions

4) Soundness:The soundness of these inference rules
with respect to the operational semantics of the abstract

machine is proved following the syntactic approach [9].
From the ”progress” and ”preservation” lemmas, we can
guarantee that given a well-formed program under the com-
patible preconditions, the current instruction sequence will
be able to execute without getting ”stuck”. The soundness
of our framework is formally stated as Theorem III.3.

Lemma III.1 (Progress) For any world W =
(C,H,(T1, . . . ,Tn),L), and if ψ, [a1, . . . ,an] ⊢ W, then
for any thread Tk, there existH′,T′

k and L′ such that
(C,(H,Tk,L)) (C,(H′,T′

k,L
′)).

Lemma III.2 (Preservation) φ = ([ψ1, . . . ,ψn],Γ). If
φ, [a1, . . . ,an] ⊢ W and W 7−→ W′, then there exist
a
′
1, . . . ,a

′
n such thatφ, [a′1, . . . ,a

′
n] ⊢ W′.

Theorem III.3 (Soundness) φ = ([ψ1, . . . ,ψn],Γ). If there
exista1, . . . ,an, such thatφ, [a1, . . . ,an]⊢W, then for any n≥
0, there exist a worldW′ anda′1, . . . ,a

′
n such thatW 7−→n W′

and φ, [a′1, . . . ,a
′
n] ⊢ W′.



We have mechanized the complete soundness proof in the
Coq proof assistant. Interested readers can check out our Coq
implementation [10] for more detail.

IV. EXAMPLE

In this section, we give an example to demonstrate
the mechanized verification of safety properties(usually the
shared memory invariant in parallel program) for concurrent
assembly code with reentrant locks.

A simple example is present in Fig. 11, which is the con-
current code that computes the next even number according
to the current value stored in the shared memory location
x. The shared locationx is protected by a reentrant lockl
and the value stored in it is initialized with 0. In high level
code, we unfold the inlined synchronized method located
from line 3 to line 5. The inlined method leads to acquiring
the same lock which has been held by the caller. The lock
l is a reentrant lock, so this code will run correctly without
deadlock.

The corresponding assembly code and assertions are
given in Fig. 12. We verify the code in our framework.
Following MIPS convention, we assumer0 always contains
0. Assertions are shown as annotations enclosed in ”−{}”,
the shared memory locationx protected by the reentrant
lock l specified by the invariantsm that requires the value
stored in shared location is even (∃a,b.x 7→ a∧ a = 2b).
According to CSL, the shared memory is well-formed and
conforms to the invariantm when the corresponding lock is
free. The precondition and postcondition for instructionsin
the example are straightforward, it is trivial to apply the
inference rules in our framework to verify the assembly
code with assertions. Note that the ruleLOCK is applied to
reason about the acquiring lock operation at the initial entry
and the ruleRELOCK is applied to reason about the second
reacquiring lock operation. Only the first locking operation
transfers the shared memory locationx from the shared part
to its private part and the second locking operation acquires
nothing but increasing the reentrancy level by 1. We use the
rules REUNLOCK and UNLOCK to reason about the first and
second releasing operations respectively.

Initially : [x] = 0;

Thread ID : k

//x protected by lock l

1: lock l;

2: [x] := [x] + 1;

3: lock l;

4: [x] := [x] + 1;

5: unlock l;

6: unlock l;

Figure 11. Reentrant Lock Example

m
def
= ∃a,b.x 7→ a∧a = 2b

Γ def
= {l ; m}

−{⌊emp⌋}
lock l ;
−{⌊m⌋∧ownk(l ,1)}
ld r1,x(r0);
−{∃a,b.⌊x 7→ a⌋∧ownk(l ,1)∧ r1 = a∧a = 2b}
addi r1, r1,1;
−{∃a,b.⌊x 7→ a⌋∧ownk(l ,1)∧ r1 = a+1∧a= 2b}
st r1,x(r0);
−{∃a,b.⌊x 7→ a+1⌋∧ownk(l ,1)∧ r1 = a+1∧a= 2b}
lock l ;
−{∃a,b.⌊x 7→ a+1⌋∧ownk(l ,2)∧ r1 = a+1∧a= 2b}
addi r1, r1,1;
−{∃a,b.⌊x 7→ a+1⌋∧ownk(l ,2)∧ r1 = a+2∧a= 2b}
st r1,x(r0);
−{∃a,b.⌊x 7→ a+2⌋∧ownk(l ,2)∧ r1 = a+2∧a= 2b}
−{∃a′,b′.⌊x 7→ a′⌋∧ownk(l ,2)∧ r1 = a′∧a′ = 2b′}
−{⌊m⌋∧ownk(l ,2)}
unlock l ;
−{⌊m⌋∧ownk(l ,1)}
unlock l ;
−{⌊emp⌋}

Figure 12. Assembly Code with Assertions

V. RELATED WORK

Many approaches have been proposed for reasoning about
properties of both sequential and concurrent programs [3],
[11], [12], [13]. But most efforts on concurrent programs
focus on the non-reentrant lock-based programs and do
not consider the reentrant locks. As we present in this
paper, there exist some differences between reasoning about
concurrent programs with non-reentrant locks and those with
reentrant locks.

Peter O’Hearn [1], [6] proposed CSL, which applies the
local-reasoning idea from separation logic [14], [2] to verify
shared-state concurrent programs with memory pointers.
Separation logic assertions are used to capture ownerships
of resources. Separating conjunction enforces the partition
of resources. Verification of sequential threads in CSL is no
different from verification of sequential programs. Memory
modularity is supported by using separating conjunction and
frame rules. However, the rule for acquiring and releasing
resource in CSL cannot be directly applied to verify con-
current programs with reentrant mutual exclusive locks. We
adapt CSL to a concurrent assembly language with reentrant
locks.

In recent years, Shaoet al. have developed CCAP[8],
CMAP[15] and SAGL[13] as extensions to the PCC frame-



work to verify properties of concurrent programs using
locks, which are treated as non-reentrant locks. And we
present an extension to enable verification of concurrent
program using reentrant locks.

A recent work [16] proposes a verification technique for
a concurrent Java-like language with reentrant locks. The
verification technique is based on permission accounting
separation logic. The essential differences between [16] and
our paper are: we focus on verifying concurrent assembly
code with reentrant locks and develop an extension to the
PCC framework; instead of using hand-writing proof, we
provide machine-checkable proof for our framework.

VI. CONCLUSION

In this paper we have presented a system for verifying
concurrent programs using reentrant locks. We modeled an
assembly level machine with built-in reentrant locking prim-
itives. We adapted concurrent separation logic to verifying
concurrent assembly code with reentrant locks. We also used
a simple example to demonstrate the effectiveness of our
framework.
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