
Data Flow Analysis

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa

Data Flow Analysis 1

Resources

• Principles of Programming Analysis

• Dragon book: Compilers

• Optimizing Compilers for Modern Architectures

• Static Program Analysis

Data Flow Analysis 2

https://github.com/amilajack/reading/tree/master/Type_Systems

https://suif.stanford.edu/papers/

Anders Møller

https://github.com/amilajack/reading/tree/master/Type_Systems
https://suif.stanford.edu/papers/
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
https://users-cs.au.dk/amoeller/spa/
https://users-cs.au.dk/amoeller/spa/
http://cs.au.dk/~amoeller/

Compiler Structure

• Source code parsed to produce AST

• AST transformed to CFG

• Data flow analysis operates on control flow graph

(and other intermediate representations)

Data Flow Analysis 3

ASTs

• ASTs are abstract

- They don’t contain all information in the program

• E.g., spacing, comments, brackets, parentheses

- Any ambiguity has been resolved

• E.g., a + b + c produces the same AST as (a + b) + c

Data Flow Analysis 4

Disadvantages of ASTs

• AST has many similar forms

- E.g., for, while, repeat...until

- E.g., if, ?:, switch

• Expressions in AST may be complex, nested

- (42 * y) + (z > 5 ? 12 * z : z + 20)

• Want simpler representation for analysis

- ...at least, for dataflow analysis

Data Flow Analysis 5

Control-Flow Graph (CFG)

• A directed graph where

- Each node represents a statement

- Edges represent control flow

• Statements may be

- Assignments x := y op z or x := op z

- Copy statements x := y

- Branches goto L or if x relop y goto L

- etc.

Data Flow Analysis 6

Control-Flow Graph Example

x := a + b;

y := a * b;

while (y > a) {

a := a + 1;

x := a + b

}

Data Flow Analysis 7

Variations on CFGs

• We usually don’t include declarations (e.g., int x;)

- But there’s usually something in the implementation

• May want a unique entry and exit node

- Won’t matter for the examples we give

• May group statements into basic blocks

- A sequence of instructions with no branches into or out

of the block

Data Flow Analysis 8

Control-Flow Graph w/Basic Blocks

• Can lead to more efficient implementations

• But more complicated to explain, so...

- We’ll use single-statement blocks in lecture today

x := a + b;

y := a * b;

while (y > a + b) {

a := a + 1;

x := a + b

}

Data Flow Analysis 9

CFG vs. AST

• CFGs are much simpler than ASTs

- Fewer forms, less redundancy, only simple expressions

• But...AST is a more faithful representation

- CFGs introduce temporaries

- Lose block structure of program

• So for AST,

- Easier to report error + other messages

- Easier to explain to programmer

- Easier to unparse to produce readable code

Data Flow Analysis 10

Data Flow Analysis

• A framework for proving facts about programs

• Reasons about lots of little facts

• Little or no interaction between facts

- Works best on properties about how program

computes

• Based on all paths through program

- Including infeasible paths

Data Flow Analysis 11

Available Expressions

• An expression e is available at program point p if

- e is computed on every path to p, and

- the value of e has not changed since the last time e is

computed on p

• Optimization

- If an expression is available, need not be recomputed

• (At least, if it’s still in a register somewhere)

Data Flow Analysis 12

Data Flow Facts

• Is expression e available?

• Facts:

- a + b is available

- a * b is available

- a + 1 is available

Data Flow Analysis 13

Gen and Kill

• What is the effect of each

statement on the set of facts?

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

a := a + 1
a + 1,
a + b,
a * b

Data Flow Analysis 14

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

{a + b}

{a + b}

{a + b}

Data Flow Analysis 15

Terminology

• A joint point is a program point where two

branches meet

• Available expressions is a forward must problem

- Forward = Data flow from in to out

- Must = At join point, property must hold on all paths

that are joined

Data Flow Analysis 16

Data Flow Equations

• Let s be a statement

- succ(s) = { immediate successor statements of s }

- pred(s) = { immediate predecessor statements of s}

- In(s) = program point just before executing s

- Out(s) = program point just after executing s

• In(s) = ∩
s′ ∊ pred(s)

Out(s′)

• Out(s) = Gen(s) ∪ (In(s) - Kill(s))

- Note: These are also called transfer functions

Data Flow Analysis 17

Liveness Analysis

• A variable v is live at program point p if

- v will be used on some execution path originating from

p...

- before v is overwritten

• Optimization

- If a variable is not live, no need to keep it in a register

- If variable is dead at assignment, can eliminate

assignment

Data Flow Analysis 18

Data Flow Equations

• Available expressions is a forward must analysis

- Data flow propagate in same dir as CFG edges

- Expr is available only if available on all paths

• Liveness is a backward may problem

- To know if variable live, need to look at future uses

- Variable is live if used on some path

• Out(s) = ∪
s′ ∊ succ(s)

In(s′)

• In(s) = Gen(s) ∪ (Out(s) - Kill(s))

Data Flow Analysis 19

Gen and Kill

• What is the effect of each

statement on the set of facts?

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a

Data Flow Analysis 20

Computing Live Variables

{x, y, a, b}

{x}

{x, y, a}

{x, y, a}

{y, a, b}

{y, a, b}

{x, a, b}

{a, b}

{x, y, a, b}

Data Flow Analysis 21

Very Busy Expressions

• An expression e is very busy at point p if

- On every path from p, expression e is evaluated before the

value of e is changed

• Optimization

- Can hoist very busy expression computation

• What kind of problem?

- Forward or backward?

- May or must? backward

must
Data Flow Analysis 22

Reaching Definitions

• A definition of a variable v is an assignment to v

• A definition of variable v reaches point p if

- There is no intervening assignment to v

• Also called def-use information

• What kind of problem?

- Forward or backward?

- May or must? forward

mayData Flow Analysis 23

Space of Data Flow Analyses

• Most data flow analyses can be classified this way

- A few don’t fit: bidirectional analysis

• Lots of literature on data flow analysis

May Must

Forward
Reaching

definitions
Available expressions

Backward
Live

variables
Very busy expressions

Data Flow Analysis 24

Data Flow Facts and Lattices

• Typically, data flow facts form a lattice

- Example: Available expressions
“top”

“bottom”

Data Flow Analysis 25

Partial Orders

• A partial order is a pair such that

-

-

-

-

Data Flow Analysis 26

Lattices

• A partial order is a lattice if and are defined on

any set:

- is the meet or greatest lower bound operation:

•

•

- is the join or least upper bound operation:

•

•

Data Flow Analysis 27

交、最大下界
下确界

并、最小上界
上确界

Lattices

• A partial order is a lattice if and are defined on

any set:

- is the meet or greatest lower bound operation:

•

•

- is the join or least upper bound operation:

•

•

Data Flow Analysis 28

交、最大下界
下确界

并、最小上界
上确界

Lattices (cont’d)

• A finite partial order is a lattice if meet and join

exist for every pair of elements

• A lattice has unique elements and such that

-

-

• In a lattice,

Data Flow Analysis 29

底元、 顶元

Useful Lattices

• (2
S
, ⊆) forms a lattice for any set S

- 2
S

is the powerset of S (set of all subsets)

• If (S, ≤) is a lattice, so is (S, ≥)

- i.e., lattices can be flipped

• The lattice for constant propagation

Data Flow Analysis 30

幂集

Forward Must Data Flow Algorithm

• Out(s) = Top for all statements s
- // Slight acceleration: Could set Out(s) = Gen(s) ∪(Top - Kill(s))

• W := { all statements } (worklist)
• repeat

- Take s from W
- In(s) := ∩

s′ ∊ pred(s)
Out(s′)

- temp := Gen(s) ∪ (In(s) - Kill(s))

- if (temp != Out(s)) {
• Out(s) := temp
• W := W ∪ succ(s)

- }
• until W = ∅

Data Flow Analysis 31

Monotonicity单调性

• A function f on a partial order is monotonic if

• Easy to check that operations to compute In and Out

are monotonic

- In(s) := ∩
s′ ∊ pred(s)

Out(s′)

- temp := Gen(s) ∪ (In(s) - Kill(s))

• Putting these two together,

- temp :=

Data Flow Analysis 32

Termination终止性

• We know the algorithm terminates because

- The lattice has finite height

- The operations to compute In and Out are monotonic

- On every iteration, we remove a statement from the

worklist and/or move down the lattice

Data Flow Analysis 33

Forward Data Flow, Again

• Out(s) = Top for all statements s

• W := { all statements } (worklist)

• repeat

- Take s from W

- temp := f
s
(⊓

s′ ∊ pred(s)
Out(s′)) (f

s
monotonic transfer fn)

- if (temp != Out(s)) {

• Out(s) := temp

• W := W ∪ succ(s)

- }

• until W = ∅

Data Flow Analysis 34

Lattices (P, ≤)

• Available expressions

- P = sets of expressions

- S1 ⊓ S2 = S1 ∩ S2

- Top = set of all expressions

• Reaching Definitions

- P = set of definitions (assignment statements)

- S1 ⊓ S2 = S1 ∪ S2

- Top = empty set

Data Flow Analysis 35

Fixpoints不动点

• We always start with Top

- Every expression is available, no defns reach this

point

- Most optimistic assumption

- Strongest possible hypothesis

• = true of fewest number of states

• Revise as we encounter contradictions

- Always move down in the lattice (with meet)

• Result: A greatest fixpoint

Data Flow Analysis 36

Lattices (P, ≤), cont’d

• Live variables

- P = sets of variables

- S1 ⊓ S2 = S1 ∪ S2

- Top = empty set

• Very busy expressions

- P = set of expressions

- S1 ⊓ S2 = S1 ∩ S2

- Top = set of all expressions

Data Flow Analysis 37

Forward vs. Backward

Out(s) = Top for all s

W := { all statements }

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ pred(s)
Out(s′))

if (temp != Out(s)) {

Out(s) := temp

W := W ∪ succ(s)

}

until W = ∅

In(s) = Top for all s

W := { all statements }

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ succ(s)
In(s′))

if (temp != In(s)) {

In(s) := temp

W := W ∪ pred(s)

}

until W = ∅

Data Flow Analysis 38

Termination Revisited

• How many times can we apply this step:
- temp := f

s
(⊓

s′ ∊ pred(s)
Out(s′))

- if (temp != Out(s)) { ... }

-Claim: Out(s) only shrinks

•Proof: Out(s) starts out as top

- So temp must be ≤ than Top after first step

•Assume Out(s′) shrinks for all predecessors s′ of s

•Then ⊓
s′ ∊ pred(s)

Out(s′) shrinks

•Since f
s

monotonic, f
s
(⊓

s′ ∊ pred(s)
Out(s′)) shrinks

Data Flow Analysis 39

Termination Revisited (cont’d)

• A descending chain in a lattice is a sequence

- x0 ⊐ x1 ⊐ x2 ⊐ ...

• The height of a lattice is the length of the longest

descending chain in the lattice

• Then, dataflow must terminate in O(n k) time

- n = # of statements in program

- k = height of lattice

- assumes meet operation takes O(1) time

Data Flow Analysis 40

Relationship to Section 2.4 of Book (NNH)

• MFP (Maximal Fixed Point) solution – general

iterative algorithm for monotone frameworks

- always terminates

- always computes the right solution

Data Flow Analysis 41

https://github.com/amilajack/readi

ng/tree/master/Type_Systems

Flemming Nielson et al. Principles of
Program Analysis (2nd Edition). Springer,
2005.

https://github.com/amilajack/reading/tree/master/Type_Systems
http://www.imm.dtu.dk/~hrni/PPA/ppa.html

Least vs. Greatest Fixpoints

• Dataflow tradition: Start with Top, use meet

- To do this, we need a meet semilattice with top

- meet semilattice = meets defined for any set

- Computes greatest fixpoint

• Denotational semantics tradition: Start with

Bottom, use join

- Computes least fixpoint

Data Flow Analysis 42

交半格

偏序集且a⊓b存在（下确界）

Distributive Data Flow Problems

• By monotonicity, we also have

• A function f is distributive if

Data Flow Analysis 43

Benefit of Distributivity

• Joins lose no information

Data Flow Analysis 44

Accuracy of Data Flow Analysis

• Ideally, we would like to compute the meet over all

paths (MOP) solution:

- Let f
s

be the transfer function for statement s

- If p is a path {s
1
, ..., s

n
}, let f

p
= f

n
;...;f

1

- Let path(s) be the set of paths from the entry to s

• If a data flow problem is distributive, then solving the

data flow equations in the standard way yields the

MOP solution, i.e., MFP = MOP

Data Flow Analysis 45

将所有路径都join/meet的方法

该路径上所有语句
的转移函数的复合

What Problems are Distributive?

• Analyses of how the program computes

- Live variables

- Available expressions

- Reaching definitions

- Very busy expressions

• All Gen/Kill problems are distributive

Data Flow Analysis 46

A Non-Distributive Example

• Constant propagation

• In general, analysis of what the program

computes in not distributive

Data Flow Analysis 47

MOP vs MFP

• Computing MFP is always safe: MFP ⊑ MOP

• When distributive: MOP = MFP

• When non-distributive: MOP may not be

computable (decidable)

- e.g., MOP for constant propagation (see Lemma 2.31

of NNH)

Data Flow Analysis 48

Practical Implementation

• Data flow facts = assertions that are true or false

at a program point

• Represent set of facts as bit vector

- Fact
i
represented by bit i

- Intersection = bitwise and, union = bitwise or, etc

• “Only” a constant factor speedup

- But very useful in practice

Data Flow Analysis 49

Basic Blocks

• A basic block is a sequence of statements s.t.

- No statement except the last in a branch

- There are no branches to any statement in the block except

the first

• In practical data flow implementations,

- Compute Gen/Kill for each basic block

• Compose transfer functions

- Store only In/Out for each basic block

- Typical basic block ~5 statements

Data Flow Analysis 50

Order Matters

• Assume forward data flow problem

- Let G = (V, E) be the CFG

- Let k be the height of the lattice

• If G acyclic, visit in topological order

- Visit head before tail of edge

• Running time O(|E|)

- No matter what size the lattice

Data Flow Analysis 51

Order Matters — Cycles

• If G has cycles, visit in reverse postorder

- Order from depth-first search

• Let Q = max # back edges on cycle-free path

- Nesting depth

- Back edge is from node to ancestor on DFS tree

• Then if (sufficient, but not necessary)

- Running time is

• Note direction of req’t depends on top vs. bottom

Data Flow Analysis 52

Flow-Sensitivity

• Data flow analysis is flow-sensitive

- The order of statements is taken into account

- I.e., we keep track of facts per program point

• Alternative: Flow-insensitive analysis

- Analysis the same regardless of statement order

- Standard example: types

• /* x : int */ x := ... /* x : int */

Data Flow Analysis 53

Terminology Review

• Must vs. May

- (Not always followed in literature)

• Forwards vs. Backwards

• Flow-sensitive vs. Flow-insensitive

• Distributive vs. Non-distributive

Data Flow Analysis 54

Another Approach: Elimination

• Recall in practice, one transfer function per basic

block

• Why not generalize this idea beyond a basic block?

- “Collapse” larger constructs into smaller ones, combining

data flow equations

- Eventually program collapsed into a single node!

- “Expand out” back to original constructs, rebuilding

information

Data Flow Analysis 55

Lattices of Functions

• Let (P, ≤) be a lattice

• Let M be the set of monotonic functions on P

• Define f ≤
f
g if for all x, f(x) ≤ g(x)

• Define the function f ⊓ g as

- (f ⊓ g) (x) = f(x) ⊓ g(x)

• Claim: (M, ≤
f
) forms a lattice

Data Flow Analysis 56

Elimination Methods: Conditionals

Data Flow Analysis 57

Elimination Methods: Loops

Data Flow Analysis 58

Elimination Methods: Loops (cont’d)

• Let f
i
= f o f o ... o f (i times)

- f
0

= id

• Let

• Need to compute limit as j goes to infinity

- Does such a thing exist?

• Observe: g(j+1) ≤ g(j)

Data Flow Analysis 59

Height of Function Lattice

• Assume underlying lattice (P, ≤) has finite height

- What is height of lattice of monotonic functions?

- Claim: finite

• Therefore, g(j) converges

Data Flow Analysis 60

Non-Reducible Flow Graphs

• Elimination methods usually only applied to

reducible flow graphs

- Ones that can be collapsed

- Standard constructs yield only reducible flow graphs

• Unrestricted goto can yield non-reducible graphs

Data Flow Analysis 61

Comments

• Can also do backwards elimination

- Not quite as nice (regions are usually single entry but

often not single exit)

• For bit-vector problems, elimination efficient

- Easy to compose functions, compute meet, etc.

• Elimination originally seemed like it might be

faster than iteration

- Not really the case

Data Flow Analysis 62

Data Flow Analysis and Functions

• What happens at a function call?

- Lots of proposed solutions in data flow analysis

literature

• In practice, only analyze one procedure at a time

• Consequences

- Call to function kills all data flow facts

- May be able to improve depending on language, e.g.,

function call may not affect locals

Data Flow Analysis 63

More Terminology

• An analysis that models only a single function at a

time is intraprocedural

• An analysis that takes multiple functions into

account is interprocedural

• An analysis that takes the whole program into

account is...guess?

• Note: global analysis means “more than one

basic block,” but still within a function

Data Flow Analysis 64

Data Flow Analysis and The Heap

• Data Flow is good at analyzing local variables

- But what about values stored in the heap?

- Not modeled in traditional data flow

• In practice: *x := e

- Assume all data flow facts killed (!)

- Or, assume write through x may affect any variable whose

address has been taken

• In general, hard to analyze pointers

Data Flow Analysis 65

Data Flow Analysis and Optimization

• Moore’s Law: Hardware advances double

computing power every 18 months.

• Proebsting’s Law: Compiler advances double

computing power every 18 years.

编译器优化每18年提高一倍的计算能力

- https://proebsting.cs.arizona.edu/law.html

Data Flow Analysis 66

硬件计算能力每年以大约60％的速度增长，
而编译器优化仅贡献4％。 基本上，编译器
优化工作仅做出很小的贡献。

https://proebsting.cs.arizona.edu/law.html

