Data Flow Analysis

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa

Data Flow Analysis 1

Resources

Principles of Programming Analysis

Dragon book: Compilers

Optimizing Compilers for Modern Architectures
Static Program Analysis

Compilers -
Principles, Techniques, & Tools Prlnc|ples | ._
RV of Program Static Program Analysis
. Ana|y5|s Anders Maller and Michael 1. Schwartzbach

Anders Mgller

1
Jetirey D, mar

https://github.com/amilajack/reading/tree/master/Type_Systems
https://suif.stanford.edu/papers/

Data Flow Analysis 2

https://github.com/amilajack/reading/tree/master/Type_Systems
https://suif.stanford.edu/papers/
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
https://users-cs.au.dk/amoeller/spa/
https://users-cs.au.dk/amoeller/spa/
http://cs.au.dk/~amoeller/

Source

Abstract
Syntax

Compiler Structure

Tree

Control
Flow

Graph

Object

» Source code parsed to produce AST

« AST transformed to CFG

» Data flow analysis operates on control flow graph
(and other Intermediate representations)

ASTs

 ASTs are abstract
- They don’t contain all information in the program
* E.g., spacing, comments, brackets, parentheses

- Any ambiguity has been resolved

 E.g., a+ b+ c produces the same ASTas(a+b)+c

Disadvantages of ASTs

* AST has many similar forms

- E.q., for, while, repeat...until
- E.qg., If, ?:, switch

* Expressions in AST may be complex, nested
-42*y)+(z>5712*z2:z + 20)

» Want simpler representation for analysis
- ...at least, for dataflow analysis

Control-Flow Graph (CFG)

* A directed graph where

- Each node represents a statement
- Edges represent control flow

« Statements may be
- Assignments X ==y op Z or X .= 0p Z
- Copy statements x .=y
- Branches goto L or if x relop y goto L
- etc.

Control-Flow Graph Example

X:=a+b;

y:=a*Db; T

while (y > a) {

a=a+1;

X:=z=a+b

X:=a+b

Data Flow Analysis

Variations on CFGs

* We usually don’t include declarations (e.g., int Xx;)
- But there’s usually something in the implementation

 May want a unigue entry and exit node
- Won't matter for the examples we give

* May group statements into basic blocks

- A sequence of instructions with no branches into or out
of the block

Control-Flow Graph w/Basic Blocks

X:=a+Db;

y:=a*b; et

while (y > a + b) { '
a.=—a+1; ;
X:=a+b y>a

}

* Can lead to more efficient implementations

* But more complicated to explain, so...

- We'll use single-statement blocks in lecture today

CFG vs. AST

 CFGs are much simpler than ASTs

- Fewer forms, less redundancy, only simple expressions

* But...AST Is a more faithful representation

- CFGs Introduce temporaries

- Lose block structure of program
« So for AST,

- Easier to report error + other messages
- Easier to explain to programmer

- Easier to unparse to produce readable code

Data Flow Analysis

A framework for proving facts about programs
Reasons about lots of little facts

Little or no Interaction between facts

- Works best on properties about how program
computes

Based on all paths through program

- Including infeasible paths

Avalilable Expressions

* An expression e Is available at program point p If
- e Is computed on every path to p, and

- the value of e has not changed since the last time e Is
computed on p

* Optimization
- If an expression Is avallable, need not be recomputed

* (At least, if it's still in a register somewhere)

Data Flow Facts

* Is expression e available? | it \
* Facts:
- a + b is available t;ﬂ
- a* b is avallable
y>a

- a + 1is available
| a=a+1 \
| X:=a+b |

Data Flow Analysis

13

Gen and Kill

 \WWhat is the effect of each
statement on the set of facts?

Stmt Gen Kill
X:=a+b a+b
y:=a*b a*b

a+1
a=a+1 a+b
a*b

Data Flow Analysis

| X:=a+b |
| y=a*b |
y>a

| a=a+1 |
| X:=a+b |

14

Computing Available Expressions

") \
X:=a+b
fa+ b} ————
y=a*'b
{a+Db,a*Db} fa + b}
y>a
{a+b,a*h) : ‘ {a + b}
7\ f {a + b}
a:=a+1
X:=a+b

{a + b} N

Data Flow Analysis 15

Terminology

» Ajoint point Is a program point where two
branches meet

* Avallable expressions is a forward must problem

- Forward = Data flow from in to out

- Must = At join point, property must hold on all paths
that are joined

Data Flow Equations

 Let s be a statement

- succ(s) = { Immediate successor statements of s }
- pred(s) = { iImmediate predecessor statements of s}
- In(s) = program point just before executing s

- Out(s) = program point just after executing s

* In(s) = ﬂs, c pred(s) Out(s’)

* Out(s) = Gen(s) U (In(s) - Kill(s))
- Note: These are also called transfer functions

Liveness Analysis

* Avariable v is live at program point p If

- v will be used on some execution path originating from

D...
- before v Is overwritten

* Optimization
- If a variable iIs not live, no need to keep It In a register

- If variable Is dead at assignment, can eliminate
assignment

Data Flow Equations

Avallable expressions Is a forward must analysis
- Data flow propagate in same dir as CFG edges

- Expr is available only if available on all paths
Liveness Is a backward may problem

- To know If variable live, need to look at future uses

- Variable is live if used on some path

Out(s) = US, ¢ succ(s) In(s")

In(s) = Gen(s) U (Out(s) - Kill(s))

Gen and Kill
 \WWhat is the effect of each
X:=a+b
statement on the set of facts? w
Stmt Gen Kill | y:=a*b |
y>a

X:=a+b a, b X
a=a+1
y > a a,y
X=a+b
a=a+1l a a

Data Flow Analysis

y:=a*hb a, b y

Computing Live Variables

{a, b} | \
{x, a, b}

{xyyaab} //“:
{y, a, b} K i {x}
{y, a, b} !

{{xyyaap} —‘J

Data Flow Analysis

21

Very Busy Expressions

* An expression e Is very busy at point p If

- On every path from p, expression e Is evaluated before the
value of e Is changed

* Optimization
- Can hoist very busy expression computation

* What kind of problem?

- Forward or backward?
- May or must? backward

Must

Reaching Definitions

A definition of a variable v Is an assignment to v

A definition of variable v reaches point p If
- There Is no intervening assignment to v

Also called def-use information

What kind of problem?

- Forward or backward?

may

Space of Data Flow Analyses

May Must
Forward Re_aghmg Avallable expressions
definitions
Backward Live Very busy expressions
variables y y eXp

* Most data flow analyses can be classified this way

- Afew don't fit: bidirectional analysis

» Lots of literature on data flow analysis

Data Flow Facts and Lattices

* Typically, data flow facts form a lattice

- Example: Avallable expressmns
a+b, a*b, a+1 ()F)

RN

a+b, a*b a+b, a+1

a*b, a+1
,::::::><::;h+
a*b\ /

(none)

“bottom”

Partial Orders

A partial order is a pair (P, <) such that

IA A A A

CPxP
is reflexive: z < zx
1s anti-symmetric: z <yandy<z =z =y

1s transitive: c<yandy<z=zx <2

Data Flow Analysis

26

L attices

» A partial order is a lattice If mrandu are defined on

any set:

- ['11s the meet or greatest lower bound operation:
o rMy<zandzxlNy<y ﬁ@x Exj(??q
+ ifz<zand z2<y,then z <zMy A

- LIIs the join or least upper bound operation:
: r<zlyandy<zlUy . m/h B
° ifmﬁzandyﬁz,thenmUygz—I:E?ﬁ

L attices

» A partial order is a lattice If mrandu are defined on
any set:

- ['11s the meet or greatest lower bound operation:

b, 7N
Ieastﬂz::ttzzllj: > ?}li\) %%ﬁ%jﬁ?ﬁ
least upper bound {a,b} {a,c} {b,c}
1>< ><| o

lower bound {a} S {i’} /{C} FE. /D BESL
E‘C
i SO L

Data Flow Analysis 28

Lattices (cont'd)

» Afinite partial order is a lattice if meet and join
exist for every pair of elements

» Alattice has unique elements L and Tsuch that

- 1l =_1 zUl ==z F‘lfﬁ}\ Tﬁﬁj
- Il =z xUT =T

* |In a lattice,
r<yiff aMy==x
r<yifftzlUy=y

Useful Lattices

+ (2°, c) forms a lattice for any set S

- 2° is the powerset of S (set of all subsets)

SRS
+ If (S, <) is a lattice, so is (S, 2)

- l.e., lattices can be flipped

* The lattice for constant propagation

7 I\
\“/

1

Forward Must Data Flow Algorithm

» Out(s) = Top for all statements s

- [/ Slight acceleration: Could set Out(s) = Gen(s)_U(Top - Kill(s))
« W = {all statements} (worklist)
* repeat

- Take s from W

- In(s) = ﬂs, pred(s) Out(s’)

- temp = Gen(s) U (In(s) - Kill(s))
- If (temp = Out(s)) {

» Qut(s) :=temp

* W =W U succ(s)

-
e untilW =20

Monotonicity E. i £

* A function f on a partial order is monotonic If
z <y= f(z) < f(y)

« Easy to check that operations to compute In and Out

are monotonic

- In(s) = ﬂS, pred(s) Out(s’)

- temp = Gen(s) U (In(s) - Kill(s))

» Putting these two together,
- temp = fs (HS’Epred(S)Out(SI))

Termination#% IF 14

* We know the algorithm terminates because
- The lattice has finite height
- The operations to compute In and Out are monotonic

- On every Iteration, we remove a statement from the
worklist and/or move down the lattice

Forward Data Flow, Again

* Out(s) = Top for all statements s

« W :={all statements} (worklist)
* repeat
- Take s from W
- temp = fs(rls, pred(s) Out(s")) (fS monotonic transfer fn)
- If (temp !'= Out(s)) {
« Out(s) :=temp
« W:=W U succ(s)
-}
e untitW=29

Lattices (P, <)

* Avallable expressions
- P = sets of expressions
-S1nNS2=5S1MNS2
- Top = set of all expressions
* Reaching Definitions

- P = set of definitions (assignment statements)
-S1nS2=S1uS2
- Top = empty set

Fixpoints /31 &

* We always start with Top

- Every expression is available, no defns reach this
point
- Most optimistic assumption

- Strongest possible hypothesis

= true of fewest number of states
 Revise as we encounter contradictions

- Always move down In the lattice (with meet)

* Result: A greatest fixpoint

Lattices (P, <), cont'd

* Live variables
- P = sets of variables
-S1nNS2=5S1uUS2
- Top = empty set

* Very busy expressions

- P = set of expressions
-S1nNS2=51MNS2

- Top = set of all expressions

Forward vs. Backward

Out(s) = Top for all s In(s) = Top for all s
W = { all statements } W = { all statements }
repeat repeat
Take s from W Take s from W
temp = fS(rIS,Epred(S) Out(s")) temp = fs(rls'esucc(s) In(s’))
If (temp = Out(s)) { If (temp !=In(s)) {
Out(s) :=temp In(s) :=temp
W = W U succ(s) W = W U pred(s)
} }

until W =@ until W =@

Termination Revisited

 How many times can we apply this step:

- t =f (M Out(s’
=mp s(s’ € pred(s) uy(s’)

- If (temp = Out(s)) { ... }
-Claim: Out(s) only shrinks
* Proof: Out(s) starts out as top

- So temp must be < than Top after first step

* Assume Out(s’) shrinks for all predecessors s' of s

*Then M Out(s’) shrinks
fs’epred(s) f _—
Since f monotonic, f (I Out(s")) shrinks
S S(s' € pred(s) (8))

Termination Revisited (cont'd)

* A descending chain In a lattice Is a sequence
- X0 x1 3 x20 ...

* The height of a lattice Is the length of the longest
descending chain in the lattice

* Then, dataflow must terminate in O(n k) time
- n = # of statements In program
- k = height of lattice
- assumes meet operation takes O(1) time

Relationship to Section 2.4 of Book (NNH)

 MFP (Maximal Fixed Point) solution — general
iterative algorithm for monotone frameworks

- always terminates

- always computes the right solution

Principles
of Program
«_Analysis

Flemming Nielson et al. Principles of
Program AnaIySIS (an EdItIOn). Sprmger’ https://github.com/amilajack/readi
2005 na/tree/master/Type Systems

Data Flow Analysis 41

https://github.com/amilajack/reading/tree/master/Type_Systems
http://www.imm.dtu.dk/~hrni/PPA/ppa.html

Least vs. Greatest Fixpoints

» Dataflow tradition: Start with Top, use meet

/.

- To do this, we need a meet semilattice with top %2 4%

- meet semilattice = meets defined for any set
- Computes greatest fixpoint JRFEE BabfEE (FHR)

 Denotational semantics tradition: Start with
Bottom, use join

- Computes least fixpoint

Distributive Data Flow Problems

* By monotonicity, we also have
flxMy) < f(z) N f(y)

o A function f Is distributive If
flxNy) = f(z) N f(y)

Benefit of Distributivity

e Joins lose no Information

Accuracy of Data Flow Analysis

 |deally, we would like to compute the meet over all

paths (MOP) solution: i E B4 join/meet B ¥E

- Letf be the transfer function for statement s
> Zg 2 g iEA]
- If p Is a path {51’ sn}, let BRI E A

- Let path(s) be the set of paths from the entry to s
MOP(s) = pepath(s)fp(T)

* |f a data flow problem is distributive, then solving the
data flow equations In the standard way yields the
MOP solution, I.e., MFP = MOP

What Problems are Distributive?

* Analyses of how the program computes
- Live variables
- Avallable expressions
- Reaching definitions

- Very busy expressions

» All Gen/KIll problems are distributive

A Non-Distributive Example

» Constant propagation

* In general, analysis of what the program
computes In not distributive

Data Flow Analysis

47

MOP vs MFP

 Computing MFP Is always safe: MFP E MOP
* When distributive: MOP = MFP

* When non-distributive: MOP may not be
computable (decidable)

- e.g., MOP for constant propagation (see Lemma 2.31
of NNH)

Practical Implementation

 Data flow facts = assertions that are true or false
at a program point

* Represent set of facts as bit vector

- Fa(:ti represented by bit |
- Intersection = bitwise and, union = bitwise or, etc

* “Only” a constant factor speedup
- But very useful in practice

Basic Blocks

* A Dbasic block Is a sequence of statements s.t.

- No statement except the last in a branch

- There are no branches to any statement in the block except
the first

* |n practical data flow implementations,

- Compute Gen/Kill for each basic block

« Compose transfer functions

- Store only In/Out for each basic block

- Typical basic block ~5 statements

Order Matters

» Assume forward data flow problem

- Let G = (V, E) be the CFG
- Let k be the height of the lattice

 If G acyclic, visit in topological order

- Visit head before tail of edge
* Running time O(|E|)

- No matter what size the lattice

Order Matters — Cycles

 If G has cycles, visit In reverse postorder
- Order from depth-first search

* Let Q = max # back edges on cycle-free path
- Nesting depth
- Back edge Is from node to ancestor on DFS tree

* Thenif vz f(z) < 2 (Sufficient, but not necessary)

- Running time is O((Q + 1)|E|)
* Note direction of req’t depends on top vs. bottom

Flow-Sensitivity

» Data flow analysis is flow-sensitive
- The order of statements Is taken into account

- l.e., we keep track of facts per program point

» Alternative: Flow-insensitive analysis

- Analysis the same regardless of statement order

- Standard example: types

e *x:Int* x:=../*x:Int*

Terminology Review

Must vs. May

- (Not always followed In literature)
Forwards vs. Backwards
Flow-sensitive vs. Flow-insensitive

Distributive vs. Non-distributive

Another Approach: Elimination

* Recall In practice, one transfer function per basic

block

* Why not ger

- “Collapse”

eralize this idea beyor

arger constructs into sma

data flow equations

d a basic block?

ler ones, combining

- Eventually program collapsed into a single node!

- "Expand out” back to original constructs, rebuilding

Information

| attices of Functions

Let (P, <) be a lattice
Let M be the set of monotonic functions on P
Define f Sf g If for all x, f(x) < g(x)

Define the function f M g as
- (T 11 g) (x) =1(x) I g(x)

Claim: (M, Sf) forms a lattice

Elimination Methods: Conditionals

'

If i
IfThenElse
Then Else

fite = (fthen‘:J 1f) (ft:;-lseCj if)

Out(if) = fi¢(In(ite)))
Out(then) = (finen © fif)(In(ite)))
Out(else) = (felse © fif)(In(ite)))

Elimination Methods: Loops

| |

Head > While
Body

fwhile = Jhead™
Thead © fbody © Jhead
fhead © fbody © fhead © fbody © fhead 1"

Data Flow Analysis 58

Elimination Methods: Loops (cont'd)

letf'=fofo..of (itimes)
- f%=id
Let 9(J) = Micfo..5](fhead © fbody)i © Jhead

Need to compute limit as | goes to infinity

- Does such a thing exist?
Observe: g(j+1) = g(j)

Height of Function Lattice

* Assume underlying lattice (P, <) has finite height
- What is height of lattice of monotonic functions?
- Claim: finite

* Therefore, g(J) converges

Non-Reducible Flow Graphs

* Elimination methods usually only applied to
reducible flow graphs

- Ones that can be collapsed

- Standard constructs yield only reducible flow graphs

* Unrestricted goto can yield non-reducible graphs

Comments

e Can also do backwards elimination

- Not quite as nice (regions are usually single entry but
often not single exit)

* For bit-vector problems, elimination efficient

- Easy to compose functions, compute meet, etc.

* Elimination originally seemed like it might be
faster than iteration

- Not really the case

Data Flow Analysis and Functions

* What happens at a function call?

- Lots of proposed solutions in data flow analysis
literature

* In practice, only analyze one procedure at a time

 Consequences

- Call to function kills all data flow facts

- May be able to improve depending on language, e.g.,
function call may not affect locals

More Terminology

An analysis that models only a single function at a
time Is Intraprocedural

An analysis that takes multiple functions into
account Is interprocedural

An analysis that takes the whole program into
account Is...guess?

Note: global analysis means “more than one
basic block,” but still within a function

Data Flow Analysis and The Heap

» Data Flow Is good at analyzing local variables
- But what about values stored in the heap?
- Not modeled in traditional data flow

* In practice: *x :=e
- Assume all data flow facts killed (!)

- Or, assume write through x may affect any variable whose
address has been taken

* In general, hard to analyze pointers

Data Flow Analysis and Optimization

« Moore’s Law: Hardware advances double
computing power every 18 months.

* Proebsting’'s Law: Compliler advances double

computing power every 18 years.

I P U BF L8 -1 13 — T B TH AL g
- https://proebsting.cs.arizona.edu/law.html
FEE AT H AR e 1 RE A LAR 2960 %6 B IS,
M m e AN GTERA % . FEAS |, Zmikas
Pt TAEA A AR 2N DT Rk

Data Flow Analysis 66

https://proebsting.cs.arizona.edu/law.html

