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Flow-sensitivity

• Type checking is (usually) flow-insensitive:

– statements may be permuted without affecting typability

– constraints are naturally generated from AST nodes

• Other analyses must be flow-sensitive:

– the order of statements affects the results

– constraints are naturally generated from 
control flow graph nodes
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Sign analysis

• Determine the sign (+,-,0) of all expressions

• The Sign lattice:

• States are modeled by the map lattice Vars  Sign

where Vars is the set of variables in the program

⊤

+ - 0
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⊥“not of type number”

(or, “unreachable code”)

“any number”

Implementation: TIP/src/tip/analysis/SignAnalysis.scala



Generating constraints

4

var a,b;

a = 42;

b = a + input;

a = a - b;

1

x1 = [a ↦⊤,b ↦⊤]

x2 = x1[a ↦ +]

x3 = x2[b ↦ x2(a)+⊤]

x4 = x3[a ↦ x3(a)-x3(b)]

var a,b

a = 42

b = a + input

a = a - b

1

2

3

4

2

3
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Sign analysis constraints

• The variable ⟦v⟧ denotes a map that gives the sign value
for all variables at the program point after node v

• For variable declarations:
⟦ var x1, ..., xn ⟧ = JOIN(v)[x1 ↦⊤, ..., xn ↦⊤]

• For assignments:
⟦ x = E ⟧ = JOIN(v)[x ↦ eval(JOIN(v),E)]

• For all other nodes:
⟦v⟧ = JOIN(v) 

where JOIN(v) =  ⨆ ⟦w⟧
wpred(v)
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combines information from predecessors

(explained later…)



Evaluating signs

• The eval function is an abstract evaluation:

– eval(,x) = (x)

– eval(,intconst) = sign(intconst)

– eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• : Vars  Sign is an abstract state

• The sign function gives the sign of an integer

• The op function is an abstract evaluation of the 
given operator
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Abstract operators

+  0 - + ⊤

     

0  0 - + ⊤

-  - - ⊤ ⊤

+  + ⊤ + ⊤

⊤  ⊤ ⊤ ⊤ ⊤

-  0 - + ⊤

     

0  0 + - ⊤

-  - ⊤ - ⊤

+  + + ⊤ ⊤

⊤  ⊤ ⊤ ⊤ ⊤

*  0 - + ⊤

     

0  0 0 0 0

-  0 + - ⊤

+  0 - + ⊤

⊤  0 ⊤ ⊤ ⊤

/  0 - + ⊤

     

0   0 0 ⊤

-   ⊤ ⊤ ⊤

+   ⊤ ⊤ ⊤

⊤   ⊤ ⊤ ⊤

>  0 - + ⊤

     

0  0 + 0 ⊤

-  0 ⊤ 0 ⊤

+  + + ⊤ ⊤

⊤  ⊤ ⊤ ⊤ ⊤

==  0 - + ⊤



0

-

+

⊤
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==  0 - + ⊤

     

0  + 0 0 ⊤

-  0 ⊤ 0 ⊤

+  0 0 ⊤ ⊤

⊤  ⊤ ⊤ ⊤ ⊤

(assuming the subset of TIP with only integer values)



Increasing precision

• Some loss of information:

– (2>0)==1 is analyzed as ⊤

– +/+ is analyzed as ⊤, since e.g. ½ is rounded down

• Use a richer lattice for better precision:

• Abstract operators are now 88 tables

⊤

+ 0 -

1

+0 -0

8

⊥

lenovo
线条



• Given a set S, a partial order ⊑ is a binary relation on S 
that satisfies:

– reflexivity: xS: x ⊑ x

– transitivity: x,y,zS: x ⊑ y  y ⊑ z  x ⊑ z

– anti-symmetry: x,yS: x ⊑ y  y ⊑ x  x = y

• Can be illustrated by a Hasse diagram (if finite)

Partial orders
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Upper and lower bounds

• Let X  S be a subset

• We say that yS is an upper bound (X ⊑ y) when

 xX: x ⊑ y

• We say that yS is a lower bound (y ⊑ X) when

 xX: y ⊑ x

• A least upper bound ⨆X is defined by

X ⊑ ⨆X  yS: X ⊑ y ⨆X ⊑ y

• A greatest lower bound ⨅X is defined by

⨅X ⊑ X  yS: y ⊑ X  y ⊑ ⨅X
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Lattices

• A (complete) lattice is a partial order where

⨆X and ⨅X exist for all X  S

• A lattice must have

– a unique largest element, ⊤ = ⨆S 

– a unique smallest element, ⊥ = ⨅S

• If S is a finite set, then it defines a lattice iff

– ⊤ and ⊥ exist in S

– x⊔y and x⊓y exist for all x,y S    (x⊔y is notation for ⨆{x,y})

11
Implementation: TIP/src/tip/lattices/

(exercise)



These partial orders are lattices
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These partial orders are not lattices
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The powerset lattice

• Every finite set A defines a lattice (2A,) where

– ⊥ = 

– ⊤ = A

– x ⊔ y = x  y

– x ⊓ y = x  y {0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}
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Lattice height

• The height of a lattice is the length of the longest 
path from ⊥ to ⊤

• The lattice (2A,) has height |A|

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}
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Map lattice

• If A is a set and L is a lattice, then we obtain
the map lattice:

A  L = { [a1↦x1, a2↦x2, ...] | A={a1, a2, …}  x1, x2 ,… L }

ordered pointwise

• ⊔ and ⊓ can be computed pointwise

• height(A  L) = |A|height(L)
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Example:  A  L where 

• A is the set of program variables

• L is the Sign lattice



Product lattice

• If L1, L2, ..., Ln are lattices, then so is the product:

L1L2 ... Ln = { (x1,x2,...,xn) | xi  Li }

where ⊑ is defined pointwise

• Note that ⊔ and ⊓ can be computed pointwise

• height(L1L2 ... Ln) = height(L1)+ ... + height(Ln)

17

Example:  
each Li is the map lattice A  L from the previous slide,
and n is the number of CFG nodes



Flat lattice

• If A is a set, then flat(A) is a lattice:

• height(flat(A)) = 2

18

a1 a2 ...   an

⊥

⊤



Lift lattice

• If L is a lattice, then so is lift(L), which is:

• height(lift(L)) = height(L)+1

19

⊥



Sign analysis constraints, revisited

• The variable ⟦v⟧ denotes a map that gives the sign value
for all variables at the program point after node v

• ⟦v⟧States where States = Vars  Sign

• For variable declarations:

⟦ var x1, ..., xn ⟧ = JOIN(v)[x1 ↦⊤, ..., xn ↦⊤]

• For assignments:
⟦ x = E ⟧ = JOIN(v)[x ↦ eval(JOIN(v),E)]

• For all other nodes:
⟦v⟧ = JOIN(v) 

where JOIN(v) =  ⨆ ⟦w⟧
wpred(v)

20

combines information from predecessors



Generating constraints

21

var a,b,c;

a = 42;

b = 87;

if (input) {

c = a + b;

} else {

c = a - b;

}

⟦entry⟧ = ⊥ 

⟦var a,b,c⟧ = ⟦entry⟧[a ↦⊤,b ↦⊤,c ↦⊤]
⟦a = 42⟧ = ⟦var a,b,c⟧[a ↦ +]
⟦b = 87⟧ = ⟦a = 42⟧[b ↦ +]
⟦input⟧ = ⟦b = 87⟧
⟦c = a + b⟧ = ⟦input⟧[c ↦ ⟦input⟧(a)+⟦input⟧(b)]
⟦c = a - b⟧ = ⟦input⟧[c ↦ ⟦input⟧(a)-⟦input⟧(b)]
⟦exit⟧ = ⟦c = a + b⟧ ⊔ ⟦c = a - b⟧using l.u.b.



Constraints

• From the program being analyzed, we have constraint 
variables x1, …, xnL and a collection of constraints:

x1 = f1(x1, ..., xn)

x2 = f2(x1, ..., xn)

...

xn = fn(x1, ..., xn)

• These can be collected into a single function f: LnLn: 
f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• How do we find the least (i.e. most precise) value of

x1,...,xn such that x1,...,xn = f(x1,...,xn) (if that exists)???

22

Note that Ln is

a product lattice



Monotone functions

• A function f: L L is monotone when

x,y  L: x ⊑ y  f(x) ⊑ f(y)

• A function with several arguments is monotone if
it is monotone in each argument

• Monotone functions are closed under composition

• As functions, ⊔ and ⊓ are both monotone

• x ⊑ y can be interpreted as “x is at least as precise as y”

• When f is monotone: 
“more precise input cannot lead to less precise output”

23

(exercises)
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Monotonicity for the sign analysis

• The ⊔ operator and map
updates are monotone

• Compositions preserve
monotonicity

• Are the abstract operators 
monotone? 

• Can be verified by a tedious inspection:

– x,y,x’L: x ⊑ x’ x op y ⊑ x’ op y

– x,y,y’L: y ⊑ y’ x op y ⊑ x op y’

24

(exercises)

Example, constraints for assignments:
⟦ x = E ⟧ = JOIN(v)[x↦eval(JOIN(v),E)]



Kleene’s fixed-point theorem

x  L is a fixed-point of f: L  L iff f(x)=x

In a lattice with finite height, every monotone 
function f has a unique least fixed-point:

fix(f) = ⨆ fi(⊥) 

25

i 0

lenovo
标注
克莱尼不动点定理：序理论的不动点定理  L：完全格   f是单调函数f的最小不动点是f的升 Kleene链的最小上界，这个链是在L的底元素上迭代f而获得



Proof of existence

• Clearly, ⊥⊑ f(⊥) 

• Since f is monotone, we also have f(⊥) ⊑ f2(⊥)

• By induction, fi(⊥) ⊑ fi+1(⊥)

• This means that

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ ...  fi(⊥) ...

is an increasing chain

• L has finite height, so for some k:  fk(⊥) = fk+1(⊥) 

• If x ⊑ y then x ⊔ y = y

• So fix(f) = fk(⊥)

26

(exercise)



Proof of unique least

• Assume that x is another fixed-point: x = f(x)

• Clearly, ⊥ ⊑ x

• By induction, fi(⊥) ⊑ fi(x) = x

• In particular, fix(f) = fk(⊥) ⊑ x, i.e. fix(f) is least

• Uniqueness then follows from anti-symmetry

27



Computing fixed-points

The time complexity of fix(f) depends on:

– the height of the lattice

– the cost of computing f

– the cost of testing equality

28

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala

x = ⊥;

do { 

t = x; 

x = f(x); 

} while (xt);



Summary: lattice equations

• Let L be a lattice with finite height

• A equation system is of the form:

x1 = f1(x1, ..., xn)

x2 = f2(x1, ..., xn)

...

xn = fn(x1, ..., xn)

where xi are variables and each fi: L
nL is monotone

• Note that Ln is a product lattice

29



Solving equations

• Every equation system has a unique least solution, 
which is the least fixed-point of the function f: LnLn

defined by

f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• A solution is always a fixed-point 
(for any kind of equation)

• The least one is the most precise

30



Solving inequations

• A inequation system is of the form

x1 ⊑ f1(x1, ..., xn)

x2 ⊑ f2(x1, ..., xn)

...

xn ⊑ fn(x1, ..., xn)

• Can be solved by exploiting the facts that

x ⊑ y  ⇔ x = x ⊓ y

and

x ⊒ y  ⇔ x = x ⊔ y

31

or

x1 ⊒ f1(x1, ..., xn)

x2 ⊒ f2(x1, ..., xn)

...

xn ⊒ fn(x1, ..., xn)



Monotone frameworks

• A CFG to be analyzed, nodes Nodes = {v1,v2, ..., vn}

• A finite-height lattice L of possible answers

– fixed or parametrized by the given program

• A constraint variable ⟦v⟧L for every CFG node v

• A dataflow constraint for each syntactic construct

– relates the value of ⟦v⟧ to the variables for other nodes

– typically a node is related to its neighbors

– the constraints must be monotone functions:

⟦vi⟧ = fi(⟦v1⟧, ⟦v2⟧, ..., ⟦vn⟧)

32

John B. Kam, Jeffrey D. Ullman: Monotone Data Flow Analysis Frameworks. Acta Inf. 7: 305-317 (1977)



Monotone frameworks

• Extract all constraints for the CFG

• Solve constraints using the fixed-point algorithm:

– we work in the lattice Ln where L is a lattice describing
abstract states

– computing the least fixed-point of the combined function:

f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• This solution gives an answer from L for each CFG node

33



Generating and solving constraints

CFG

34

constraints

solution

fixed-point
solver

⟦p⟧ = &int
⟦q⟧ = &int
⟦alloc 0⟧ = &int
⟦x⟧ = 
⟦foo⟧ = 
⟦&n⟧ = &int
⟦main⟧ = ()->int

Conceptually, we separate constraint generation from constraint solving,
but in implementations, the two stages are typically interleaved



Lattice points as answers

the trivial, useless answer

the true answer

our answer (the least fixed-point)
safe answers

unsafe answers

35

Conservative approximation…



x = (⊥, ⊥, ..., ⊥);

do { 

t = x; 

x = f(x); 

} while (xt);

The naive algorithm

• Correctness ensured by the fixed point theorem

• Does not exploit any special structure of Ln or f

(i.e. xLn and f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn)))

36

Implementation: SimpleFixpointSolver



[n  ⊥, f ⊥]

[n  ⊥, f  ⊥]

[n  ⊥, f  ⊥]

[n  ⊥, f  ⊥]

[n  ⊥, f  ⊥]

[n  ⊥, f  ⊥]

[n  ⊥, f ⊥]

[n  ⊥, f  ⊥]

Example: sign analysis
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ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊥, f +]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊥, f +]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f +]

[n  ⊥, f ⊥]

[n  ⊥, f ⊥]

[n  ⊥, f +]

[n  ⊥, f ⊥]

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f +]

[n  ⊤, f ⊤]

[n  ⊥, f ⊥]

[n  ⊤, f +]

[n  ⊥, f +]

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f +]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f +]

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f +]

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f ⊥]

[n  ⊤, f ⊤]

[n  ⊤, f +]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]

[n  ⊤, f ⊤]
(We shall later see how to improve precision for the loop condition)



The naive algorithm

f0(⊥, ⊥, …, ⊥) f1(⊥, ⊥, …, ⊥) … fk(⊥, ⊥, …, ⊥)

1 ⊥ f1
1(⊥, ⊥, …, ⊥) … f1

k(⊥, ⊥, …, ⊥)

2 ⊥ f2
1(⊥, ⊥, …, ⊥) … f2

k(⊥, ⊥, …, ⊥)

… … … … …

n ⊥ fn
1(⊥, ⊥, …, ⊥) … fn

k(⊥, ⊥, …, ⊥)

38

Computing each new entry is done using the previous column

• Without using the entries in the current column that have 
already been computed!

• And many entries are likely unchanged from one column to 
the next!

lenovo
线条

lenovo
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怎么减少对不变的状态转换的重复计算



x1 = ⊥; ... xn = ⊥;

while ((x1,...,xn) ≠ f(x1,..., xn)) {

pick i nondeterministically such
that xi ≠ fi(x1, ..., xn)

xi = fi(x1, ..., xn);

}

Chaotic iteration

We now exploit the special structure of Ln

– may require a higher number of iterations, 

but less work in each iteration
39

Recall that f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

lenovo
标注
只对会改变状态的状态转换进行计算



Correctness of chaotic iteration

• Let xj be the value of x=(x1, ..., xn) in the j’th iteration 
of the naive algorithm

• Let xj be the value of x=(x1, ..., xn) in the j’th iteration 
of the chaotic iteration algorithm

• By induction in j, show j: xj ⊑ xj

• Chaotic iteration eventually terminates at a fixed point

• It must be identical to the result of the naive algorithm 
since that is the least fixed point

40



Towards a practical algorithm

• Computing i:… in chaotic iteration is not practical

• Idea: predict i from the analysis and the structure 
of the program!

• Example: 
In sign analysis, when we have processed 
a CFG node v, process succ(v) next

41



The worklist algorithm (1/2)

• Essentially a specialization of chaotic iteration that 
exploits the special structure of f

• Most right-hand sides of fi are quite sparse:

– constraints on CFG nodes do not involve all others

• Use a map:

dep: Nodes  2Nodes

that for vNodes gives the variables w where v occurs
on the right-hand side of the constraint for w

42



x1 = ⊥; ... xn = ⊥;

W = {v1, ..., vn};

while (W) {

vi = W.removeNext();

y = fi(x1, ..., xn);

if (yxi) {

for (vj  dep(vi)) W.add(vj);

xi = y;

}

}

The worklist algorithm (2/2)

43

Implementation: SimpleWorklistFixpointSolver



Further improvements

• Represent the worklist as a priority queue

– find clever heuristics for priorities

• Look at the graph of dependency edges:

– build strongly-connected components

– solve constraints bottom-up in the resulting DAG

44



Transfer functions

• The constraint functions in dataflow analysis usually 
have this structure:

⟦ v ⟧ = tv(JOIN(v))
where tv: States  States is called
the transfer function for v

• Example:

⟦ x = E ⟧ = JOIN(v)[x ↦ eval(JOIN(v),E)]
= tv(JOIN(v))

where
tv(s) = s[x ↦ eval(s,E)]

45

w1    …  wn

tv
v



Sign Analysis, continued...
• Another improvement of the worklist algorithm:

– only add the entry node to the worklist initially

– then let dataflow propagate through the program
according to the constraints...

• Now, what if the constraint rule for variable declarations was:
⟦ var x1, ..., xn ⟧ = JOIN(v)[x1 ↦ ⊥, ..., xn ↦ ⊥]

(would make sense if we treat “uninitialized” as “no value” instead of “any value”)

• Problem: iteration would stop before the fixpoint!

• Solution: replace Vars  Sign by lift(Vars  Sign)

(allows us to distinguish between “unreachable” and “all variables are non-integers”)

• This trick is also useful for context-sensitive analysis! (later…)

46
Implementation: WorklistFixpointSolverWithReachability,  MapLiftLatticeSolver



Inheritance and Software Reuse

• Virtual Inheritance

- C++ 为解决Diamond 继承问题而提出的解决方案

- Bjarne Stroustrup的Multiple Inheritance for C++

• Mixin

- 类中的方法可以被其他类使用而不必是其他类的父类

- Gilad Bracha等 Mixin-based Inheritance [OOPSLA1990]

• Traits

- 一组方法可以用于扩展一个类的功能

- 源于Self 语言,Traits: An approach to multiple-inheritance subclassing [SIGOA 1982]

- Oscar Nierstrasz等的 Traits: Composable Units of Behaviour[ECOOP 2003]

• Prototypal Inheritance

- 通过原型来对现有的对象进行复用

- 源于Self 语言

- Classifying Prototype-based Programming Languages和 Prototypal 

Inheritance in JavaScript

https://clarazhang.gitbooks.io/compiler-f2017/content/teamwork.html#a-%E7%BB%A7%E6%89%BF%E4%B8%8E%E8%BD%AF%E4%BB%B6%E5%A4%8D%E7%94%A8
https://en.wikipedia.org/wiki/Virtual_inheritance
http://www.stroustrup.com/
https://www.usenix.org/legacy/publications/compsystems/1989/fall_stroustrup.pdf
https://en.wikipedia.org/wiki/Mixin
http://www.bracha.org/
http://www.bracha.org/oopsla90.pdf
https://en.wikipedia.org/wiki/Trait_(computer_programming
https://dl.acm.org/citation.cfm?doid=800210.806468
http://scg.unibe.ch/staff/oscar
https://link.springer.com/chapter/10.1007/978-3-540-45070-2_12
https://en.wikipedia.org/wiki/Prototype-based_programming
http://www.lirmm.fr/~dony/postscript/proto-book.pdf
http://javascript.crockford.com/prototypal.html


Generic Programming

• STL(Standard Template Library)

- Alexander Stepanov是 C++ STL的主要设计和实现者

- C++ STL于1994年向 ANSI/ISO C++ 标准委员会建议，后
经少量修改和扩展于1997年成为官方的 C++ 标准的一部分

• Concepts

- 是对一个类型中所支持的操作的描述，包括语法和语义

- 最早于1998年在 STL 中使用 Concepts: The Future of 

Generic Programming ，该术语出自 Alexander Stepanov

- a bit of background for concepts and C++17—Bjarne

Stroustrup

https://clarazhang.gitbooks.io/compiler-f2017/content/teamwork.html#b-%E6%B3%9B%E5%9E%8B%E7%BC%96%E7%A8%8B
https://en.wikipedia.org/wiki/Standard_Template_Library
http://stepanovpapers.com/
https://en.wikipedia.org/wiki/Concept_(generic_programming
http://www.stroustrup.com/good_concepts.pdf
http://stepanovpapers.com/
https://isocpp.org/blog/2016/02/a-bit-of-background-for-concepts-and-cpp17-bjarne-stroustrup


FixpointSolvers
• LatticeSolver

- [ lattice | analyze() ]

• ▲ SimpleFixpointSolver : LatticeSolver

- [ | analyze(),  fun()]

• MapLatticeSolver[N] :LatticeSolver with Dependencies[N]

- [ | transfer(), funsub(), join()  ]

• SimpleMapLatticeFixpointSolver[N]: SimpleFixpointSolver with MapLatticeSolver[N] 

- [ domain | fun()  ]

• MapLiftLatticeSolver[N]: MapLatticeSolver[N] with Dependencies[N]

• Worklist[N] N: type of the elements in the worklist

- [ | process(), add(), run() ]

• ListSetWorklist[N] : Worklist[N]

- [ worklist | add(), run() ]

• WorklistFixpointSolver[N] : MapLatticeSolver[N] with ListSetWorklist[N] with 

Dependencies[N] 

- [ x | process() ]

• ▲ SimpleWorklistFixpointSolver[N] : WorklistFixpointSolver[N]

• WorklistFixpointSolverWithReachability[N] extends WorklistFixpointSolver[N] with 

MapLiftLatticeSolver[N]

https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L17
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L27
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L33
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L45
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L40
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L60
https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/Dependencies.scala
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L70
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L79
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L85
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L95
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L108
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L124
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L146
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L175
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L202
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L224
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/FixpointSolvers.scala#L243







