
Flow Sensitive Analysis

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

1

http://cs.au.dk/~amoeller/spa/

Agenda

2

Constant Propagation Optimization

3
https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

Constant Propagation Analysis

• Determine variables with a constant value

• Flat lattice:

4

Constraints for Constant Propagation

• Essentially as for the Sign analysis…

• Abstract operator for addition:

5

Agenda

6

Live Variables Analysis

• A variable is live at a program point its value may

be read later in the remaining execution

• Undecidable, but the property can be

conservatively approximated

• The analysis must only reply dead if the variable

is really dead

- No need to store the values of dead variables

7

A Lattice for Liveness

• A powerset lattice of program variables

8

The Control Flow Graph

9

Setting Up

• For every CFG node v we have a variable v

- the subset of program variables that are live at the program

point before v

• Since the analysis is conservative, the computed set

may be too large

• Auxiliary definition

- JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ڂ 𝑤

10

分析出的是可能
的活跃变量集合

Liveness Constraints

• For the exit node

𝑒𝑥𝑖𝑡 = ∅

• For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

• For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

• For variable declarations

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

• For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

11

Generated Constraints

𝑒𝑥𝑖𝑡 = ∅

if (𝐸) = while 𝐸 = output 𝐸
= 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

12

Least Solution

Many non-trivial answers!
13

Optimizations

• Variables y and z are never live at the same time

they can share the same variable location

• The value assigned in z=z-1 is never read

the assignment can be skipped

•better register allocation
•a few clock cycles saved

14

Time Complexity

(for the naive algorithm)

• With n CFG nodes and k variables:

- the lattice Ln has height k∙n

- so there are at most k ∙ n iterations

• Subsets of Vars(the variables in the program) can be

represented as bitvectors:

- each element has size k

- each ∪, \, = operation takes time O(k)

• Each iteration uses O(n) bitvector operations:

- so each iteration takes time O(k ∙ n)

• Total time complexity: O(k2n2)

• Exercise: what is the complexity for the worklist algorithm?

15

Ln是CFG中n个node要计算的程序点
状态的取值的范围

一次迭代的状态转移函数f: Ln Ln

Agenda

16

Available Expressions Analysis

• A (non-trivial) expression is available at a program

point if its current value has already been computed

earlier in the execution

• The approximation generally includes too few

expressions

- The analysis can only report “available” if the expression is

definitely available

- No need to re-compute available expressions

(e.g. common subexpression elimination)

17

A Lattice for Available Expressions

A reverse powerset lattice of nontrivial expressions

18

Reverse Powerset Lattice

19

Flow Graph

20

Setting Up

• For every CFG node v we have a variable v

- the subset of expressions that are available at the

program point after v

• Since the analysis is conservative, the computed

set may be too small

• Auxiliary definition

JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ځ 𝑤

21

Auxiliary Functions

• The function X↓x removes all expressions from X

that contain a reference to the variable x

• The function exps(E) is defined as:

- exps(intconst) = ∅

- exps(x) = ∅

- exps(input) = ∅

- exps(E1op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2)

but don’t include expressions containing input

22

Availablity Constraints

• For the entry node

𝑒𝑛𝑡𝑟𝑦 = ∅

• For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

• For assignments

𝑥 = 𝐸 = (𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸) ↓ 𝑥

• For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

23

Generated Constraints

24

𝑒𝑛𝑡𝑟𝑦 = ∅

if (𝐸) = while 𝐸 = output 𝐸

= 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

𝑥 = 𝐸 = (𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸) ↓ 𝑥

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

Least Solution

25
Many non-trivial answers!

Optimizations

• We notice that a+b is available before the loop

• The program can be optimized (slightly):

26

引入临时变量记录表达式的值，便
于在表达式所引用的变量修改后重
新计算并记录新值，也便于后面实
施复写传播，发现更多优化机会

Agenda

27

Very Busy Expressions Analysis

• A (nontrivial) expression is very busy if it will

definitely be evaluated before its value changes

• The approximation generally includes too few

expressions

- the answer “verybusy” must be the true one

- Very busy expressions may be pre-computed

(e.g. loop hoisting)

• Same lattice as for available expressions

28

一个表达式在程序点非常忙当它无论沿

哪条路径从那个点到终止点都会被计算

An Example Program

29

The analysis shows that a*b is very busy

Code Hoisting

30

Setting Up

• For every CFG node v we have a variable v

- the subset of expressions that are very busy at the program

point before v

• Since the analysis is conservative, the computed set

may be too small

• Auxiliary definition

- JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ځ 𝑤

31

必须其后的每条路径上都
very busy才能称为very busy

Very Busy Constraints

• For the exit node

𝑒𝑥𝑖𝑡 = ∅

• For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

• For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ 𝑒𝑥𝑝𝑠 𝐸

• For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

32

Agenda

33

Reaching Definitions Analysis

• The reaching definitions for a program point are

those assignments that may define the current

values of variables

• The conservative approximation may include too

many possible assignments

34

A Lattice for Reaching Definitions

The powerset lattice of assignments

35

Reaching Definitions Constraints

• The function X↓x removes assignments to x from X

• For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ {𝑥 = 𝐸}

• For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

• Auxiliary definition

- JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ڂ 𝑤

36

Def-use Graph

• Reaching definitions define the def-use graph:

- like a CFG but with edges from def to use nodes

- basis for dead code elimination and code motion

37

只有赋值语句才可能有出边，
表示该定值被引用；若定值
语句无出边则可删除

Forward vs. Backward

• A forward analysis:

- computes information about the past behavior

- examples: available expressions, reaching definitions

• A backward analysis:

- computes information about the future behavior

- examples: liveness, very busy expressions

38

May vs. Must

• A may analysis:

- describes information that is possibly true

- an over-approximation

- examples: liveness, reaching definitions

• A must analysis:

- describes information that is definitely true

- an under-approximation

- examples: available expressions, very busy expressions

39

Classifying Analyses

40

Agenda

41

Initialized Variables Analysis

• Compute for each program point those variables that

have definitely been initialized in the past

• (Called definite assignment analysis in Java and C#)

• forward must analysis

• Reverse powerset lattice of all variables

JOIN 𝑣 = ሩ

𝑤∈𝑝𝑟𝑒𝑑(𝑣)

𝑤

• For assignments: 𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ∪ {𝑥}

• For all others: 𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

42

