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Interval Analysis

• Compute upper and lower bounds for integers

• Possible applications: 

- array bounds checking

- integer representation

- …

• Lattice of intervals:

Interval = lift ({ [l,h] | l,h ∈ N ∧ l ≤ h })

where

N= {-∝, ..., -2, -1, 0, 1, 2, ..., ∝}

and intervals are ordered by inclusion:

[𝑙1,h1] ⊑ [𝑙2,h2] iff 𝑙2 ≤ 𝑙1 ∧ h1 ≤ h2]
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The Interval Lattice
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Interval Analysis Lattice

• The total lattice for a program point is

𝐿 = 𝑉𝑎𝑟𝑠 → 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

that provides bounds for each (integer) variable

• If using the worklist solver that initializes the worklist with only 

the entrynode, use the lattice lift(L)

- bottom value of lift(L) represents “unreachable program point”

- bottom value of L represents “maybe reachable, but all variables are 

non-integers”

• This lattice has infinite height, since the chain

[0,0] ⊑[0,1] ⊑[0,2] ⊑[0,3] ⊑[0,4]...

occurs in Interval

4



Interval Constraints

• For assignments:

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) 𝑥 → 𝑒𝑣𝑎𝑙(𝐽𝑂𝐼𝑁 𝑣 , 𝐸)

• For all other nodes:

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

where
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Least upper bound



Evaluating Intervals

• The eval functionis an abstract evaluation:

- eval(, x) = (x)

- eval(, intconst) = [intconst,intconst]

- eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• Abstract arithmetic operators:

op([ l1, h1 ],[ l2, h2 ])

= min
x∈ 𝑙1,ℎ1 ,𝑦∈[𝑙2,ℎ2]

𝑥 op 𝑦 , max
x∈ 𝑙1,ℎ1 ,𝑦∈[𝑙2,ℎ2]

𝑥 op 𝑦

• Abstract comparison operators (could be improved):

op([ l1, h1 ],[ l2, h2 ]) = [0,1]
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Fixed-point Problems

• The lattice has infinite height, so the fixed-point algorithm 

does not work 

• In Ln, the sequence of approximants

fi(⊥, ⊥, ..., ⊥)

is not guaranteed to converge

• (Exercise: give an example of a program where this 

happens)

• Restricting to 32 bit integers is not a practical solution

• Widening gives a useful solution …
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Widening

• Introduce a widening function : LnLn so that

(∘f)i(⊥, ⊥, ..., ⊥)

converges on a fixed-point that is a safe approximation 

of each fi(⊥, ⊥, ..., ⊥)

• i.e. the function  coarsens the information
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Turbo Charging the Iterations

9



Widening for Intervals
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Divergence in Action
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Z在while循环之后的

程序点的状态



Divergence in Action
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Correctness of Widening

• Widening works when:

-  is an extensive and monotone function, and

- (L) is a finite-height lattice

• Safety:  i: fi(⊥, ⊥, ..., ⊥) ⊑(°f)i(⊥, ⊥, ..., ⊥)

since f is monotone and  is extensive

• °f is a monotone function (L)(L)

so the fixed-point exists

• Almost “correct by definition”!

• When used in the worklist algorithm, it suffices to apply 

widening on back-edges in the CFG
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Narrowing

• Widening generally shoots over the target

• Narrowing may improve the result by applying f

• Define:

fix = ⨆ f i(⊥, ⊥, ..., ⊥)     fix= ⨆(° f)i(⊥, ⊥, ..., ⊥)

then fix ⊑ fix 

• But we also have that

fix ⊑ f(fix) ⊑ fix 

so applying f again may improve the result and remain 

sound!

• This can be iterated arbitrarily many times

- may diverge, but safe to stop anytime
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Backing up
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Narrowing in Action
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Correctnessof (Repeated) Narrowing
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More Powerful Widening

• Defining the widening function based on constants 

occurring in the given program may not work

18

https://en.wikipedia.org/wiki/McCarthy_91_function

• Note: this example requires interprocedural analysis…



More Powerful Widening
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More Powerful Widening 

for Interval Analysis

• Extrapolates unstable bounds to B:
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For the small example program, we now get the same result as with simple widening plus 
narrowing (but now without using narrowing)


