Widening and Narrowing

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Interval Analysis

« Compute upper and lower bounds for integers

« Possible applications:
- array bounds checking
- Integer representation

e Lattice of intervals:
Interval = lift ({ [Lh] |Lh € N Al <h})

where
N={-«, ...,-2,-1,0, 1, 2, ..., <}
and intervals are ordered by inclusion:
[l1,h1] E [L,,h,]iff [, < 1; Ahy < h,]

The Interval Lattice
e

[, 0] /”< [0,]
/ [-2,1] [-1,2] \
[-o 3 1] M [1 ,n:\]

[-2,0] [-1,1] [0,2]

[—DE,—E] 1..."% W a.,*'r [E’I:]

[—zx, -1] [-1,0] [0,1] [1,2] 7

1 1
s @
' '
L r
1 .

' &

u .

1 T
5 i

]

[_2 L_E] [_1!_1] [D:G] [1:]-] [%_:2]

Interval Analysis Lattice

* The total lattice for a program point is
L =Vars — Interval

that provides bounds for each (integer) variable

* If using the worklist solver that initializes the worklist with only
the entrynode, use the lattice lift(L)

- bottom value of lift(L) represents “unreachable program point”

- bottom value of L represents “maybe reachable, but all variables are
non-integers”

« This lattice has infinite height, since the chain

[0,0] £[0,1] £]0,2] £[0,3] £[0,4]...
occurs in Interval

Interval Constraints

* For assignments:

[x = E]] =JOIN(v)|x — eval(JOIN(v), E)]

 For all other nodes:

where

[v] = JOIN(v)

Least upper bound

=
JOIN(v) = U[w]

w e pred(v)

Evaluating Intervals

 The eval functionis an abstract evaluation:
- eval(o, X) = o(X)

- eval(o, Intconst) = [intconst,intconst]

- eval(o, E, 0p E,) = op(eval(c,E,),eval(c,E,))

» Abstract arithmetic operators:

@([|1, h1],[|2, h2]) / Not trivial to implement
= min X0pYy, max X0
[Xe[llrhl]»ye[lz'hZ] p y Xe[llrhl]ryE[ZZIhZ] p y]

* Abstract comparison operators (could be improved):
op([l4, hy L.l 15, hy]) = [0,1]

Fixed-point Problems

The lattice has infinite height, so the fixed-point algorithm
does not work ®

In L", the sequence of approximants
fi(L, L,.., L)
IS not guaranteed to converge

(Exercise: give an example of a program where this
happens)

Restricting to 32 bit integers is not a practical solution
Widening gives a useful solution ...

Widening

* Introduce a widening function : L"—L" so that
(wof)i(L, L, ..., L)

converges on a fixed-point that is a safe approximation
ofeach fi(L, L, ..., L)

e |.e. the function o coarsens the information

Turbo Charging the Iterations

Widening for Intervals

The function ® is defined pointwise on L"

Parameterized with a fixed finite subset B /N

— must contain -0 and o (to retain the T element)

— typically seeded with all integer constants occurring in
the given program

ldea: Find the nearest enclosing allowed interval
On single elements from Interval :
o([a,b]) = [max{ieB|i<a}, min{ieB|b<i}]
o(l)=1

10

Divergence in Action

y = 03
X = 7;
X = X+1;
while (input) {
X = 7/;
X = X+1;
y = y+1;

X—>1,y—>1]

x—>[8,8],y—>10,1]]
x—> [8,8],y—>[0,2]
x—> [8,8],y—>[0,3].

1

Ewhilef@E A2 IaHY

=3

[FRHYPIRTS

N —

11

Divergence in Action

y = 0;
X = 7;
X = X+1;

while (input) {
X = 7;
X = X+1;
y = y+1;

}

~

X —
X —

X —>

X—>1,y— 1]
| [7,0
[7 ,0]
[7 ,]

i Y=
Y
2

0,1]]
0,7]]

[0,0]]

B = {_G{], {:}J 1: ?.F Dl:]}

12

Correctness of Widening

Widening works when:
- ® IS an extensive and monotone function, and
- o(L) is a finite-height lattice

Safety: Vi:fi(L, L, ..., L) E(°f(L, L, .., L)
since f Is monotone and o IS extensive

»°f Is a monotone function o(L)— (L)
so the fixed-point exists

Exercise 4.16: A function f: L. —+ L where L is a lattice is exfensioe when
¥z e L: x C f(x). Assume L is the powerset lattice 21%1-234} Give examples

Almost “correct by definition”!

When used in the worklist algorithm, it suffices to apply
widening on back-edges in the CFG

13

Narrowing

Widening generally shoots over the target
Narrowing may improve the result by applying f

Define:
fix=Uf'(L, L, .. L) fixo=U@°f)(L, L,..., L)
then fix E fix ®
But we also have that
fix E f(fixw) E fiX ®
so applying f again may improve the result and remain
sound!
This can be iterated arbitrarily many times
- may diverge, but safe to stop anytime

Backing up

Narrowing in Action

y = 0;
X = 7;
X = X+1;

while (input) {
X = 7;
X = X+1;
y = y+1;

}

~

X—> 1L, y—>1]

X = [7,»],y—> [0,1]]
X —> [7s°°]:y_> [0’7]]
X —> [7,],y—> [0,]]

(x> [8,8],y > [0,]]

B = {_i.'-ﬂ, {:}J 1: ?.F Dl:]}

16

Correctnessof (Repeated) Narrowing

* f(fixo) E of(fixn)) = (o=f)(fixn) = fixo
since m is extensive
— by induction we also have, for all i:
f*l{fixwm) C f'(fixm) CE fixo
— i.e. f*Y{(fixw) is at least as precise as f'(fixo)
* fix C fixo hence f(fix) = fix E f(fix®)
by monotonicity of f
— by induction we also have, for all i:
fix & f'(fixm)
— i.e. fI(fixw) is a sound approximation of fix

17

More Powerful Widening

* Defining the widening function based on constants
occurring in the given program may not work

f(x) { "McCarthy’s 91 function”
var r;
1T (x > 100) {
r=x — 10;
} else {
r=f(f(x + 11));
¥
return r;
¥

.https:l/l/en.wiI<ipedia.or.g/\)vill<i/l\/|cCa rthy_9i_fu nction

* Note: this example requires interprocedural analysis...

18

More Powerful Widening

* A widening is a function V: L x L =L that is extensive in
both arguments and satisfies the following property:
for all increasing chains z, E z, E ...,
the sequencey, =z, ..., V., =V; V Z.,; ,... CONvVerges

(i.e. stabilizes after a finite number of steps)

* Now replace the basic fixed point solver by computing
Xg= L, ..., X;,y =%, V F(X;), ... until convergence

19

More Powerful Widening
for Interval Analysis

« Extrapolates unstable bounds to B:

[a;,b,] V[a;,b,] =
[if a, < a, then a, else max{ieB|i<a,},
if b, < b, then b, else min{ieB|b,=<i}]

The V operator on L is then defined pointwise down
individual intervals

For the small example program, we now get the same result as with simple widening plus
narrowing (but now without using narrowing)

20

