
Widening and Narrowing

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

1

http://cs.au.dk/~amoeller/spa/

Interval Analysis

• Compute upper and lower bounds for integers

• Possible applications:

- array bounds checking

- integer representation

- …

• Lattice of intervals:

Interval = lift ({ [l,h] | l,h ∈ N ∧ l ≤ h })

where

N= {-∝, ..., -2, -1, 0, 1, 2, ..., ∝}

and intervals are ordered by inclusion:

[𝑙1,h1] ⊑ [𝑙2,h2] iff 𝑙2 ≤ 𝑙1 ∧ h1 ≤ h2]

2

The Interval Lattice

3

Interval Analysis Lattice

• The total lattice for a program point is

𝐿 = 𝑉𝑎𝑟𝑠 → 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

that provides bounds for each (integer) variable

• If using the worklist solver that initializes the worklist with only

the entrynode, use the lattice lift(L)

- bottom value of lift(L) represents “unreachable program point”

- bottom value of L represents “maybe reachable, but all variables are

non-integers”

• This lattice has infinite height, since the chain

[0,0] ⊑[0,1] ⊑[0,2] ⊑[0,3] ⊑[0,4]...

occurs in Interval

4

Interval Constraints

• For assignments:

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) 𝑥 → 𝑒𝑣𝑎𝑙(𝐽𝑂𝐼𝑁 𝑣 , 𝐸)

• For all other nodes:

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

where

5

Least upper bound

Evaluating Intervals

• The eval functionis an abstract evaluation:

- eval(, x) = (x)

- eval(, intconst) = [intconst,intconst]

- eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• Abstract arithmetic operators:

op([l1, h1],[l2, h2])

= min
x∈ 𝑙1,ℎ1 ,𝑦∈[𝑙2,ℎ2]

𝑥 op 𝑦 , max
x∈ 𝑙1,ℎ1 ,𝑦∈[𝑙2,ℎ2]

𝑥 op 𝑦

• Abstract comparison operators (could be improved):

op([l1, h1],[l2, h2]) = [0,1]

6

Not trivial to implement

Fixed-point Problems

• The lattice has infinite height, so the fixed-point algorithm

does not work 

• In Ln, the sequence of approximants

fi(⊥, ⊥, ..., ⊥)

is not guaranteed to converge

• (Exercise: give an example of a program where this

happens)

• Restricting to 32 bit integers is not a practical solution

• Widening gives a useful solution …

7

Widening

• Introduce a widening function : LnLn so that

(∘f)i(⊥, ⊥, ..., ⊥)

converges on a fixed-point that is a safe approximation

of each fi(⊥, ⊥, ..., ⊥)

• i.e. the function  coarsens the information

8

Turbo Charging the Iterations

9

Widening for Intervals

10

Divergence in Action

11

Z在while循环之后的

程序点的状态

Divergence in Action

12

8

Correctness of Widening

• Widening works when:

-  is an extensive and monotone function, and

- (L) is a finite-height lattice

• Safety: i: fi(⊥, ⊥, ..., ⊥) ⊑(°f)i(⊥, ⊥, ..., ⊥)

since f is monotone and  is extensive

• °f is a monotone function (L)(L)

so the fixed-point exists

• Almost “correct by definition”!

• When used in the worklist algorithm, it suffices to apply

widening on back-edges in the CFG

13

Narrowing

• Widening generally shoots over the target

• Narrowing may improve the result by applying f

• Define:

fix = ⨆ f i(⊥, ⊥, ..., ⊥) fix= ⨆(° f)i(⊥, ⊥, ..., ⊥)

then fix ⊑ fix 

• But we also have that

fix ⊑ f(fix) ⊑ fix 

so applying f again may improve the result and remain

sound!

• This can be iterated arbitrarily many times

- may diverge, but safe to stop anytime

14

Backing up

15

Narrowing in Action

16

Correctnessof (Repeated) Narrowing

17

More Powerful Widening

• Defining the widening function based on constants

occurring in the given program may not work

18

https://en.wikipedia.org/wiki/McCarthy_91_function

• Note: this example requires interprocedural analysis…

More Powerful Widening

19

More Powerful Widening

for Interval Analysis

• Extrapolates unstable bounds to B:

20

For the small example program, we now get the same result as with simple widening plus
narrowing (but now without using narrowing)

