
Control Flow Analysis

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

http://staff.ustc.edu.cn/~yuzhang/pldpa

1

http://cs.au.dk/~amoeller/spa/
http://staff.ustc.edu.cn/~yuzhang/pldpa

Agenda

2

TIP with first-class functions

3

Control Flow Complications

• First-class functions in TIP complicate CFG

construction

- Several functions may be invoked at a call site

- This depends on the dataflow

- But dataflow analysis first requires a CFG

• Same situation for other features, e.g.

- Function values with free variables (closures)

- A class hierarchy with objects and methods

- Prototype objects with dynamic properties

4

Control Flow Analysis

• A control flow analysis approximates the call graph

- Conservatively computes possible functions at call sites

- The trivial answer: all functions

• Control flow analysis is usually flow-insensitive:

- It is based on the AST

- The call graph can be used for an interprocedural CFG

- A subsequent dataflow analysis may use the CFG

• Alternative: use flow-sensitive analysis

- Potentially on-the-fly, during dataflow analysis

5

CFA for TIP with first-class functions

• For a computed function call

E(E1, …, En)

we cannot immediately see which function is called

• A coarse but sound approximation

- Assume any function with right number of arguments

• Use CFA to get a much better result

6

CFA Constraints

• Tokens are all functions {f1, f2, …, fk}

• For every AST node, v, we introduce the variable

v denoting the set of functions to which v may

evaluate

• For function definitions f (…){…} :

f ∈ 𝑓

• For assignments x = E:

𝐸 ⊆ 𝑥

7

CFA Constraints

• For direct function calls f (E1, …, En) :

𝐸𝑖 ⊆ 𝑎𝑖 for 𝑖 = 1,… , 𝑛 ٿ 𝐸′ ⊆ 𝑓(𝐸1,… , 𝐸𝑛)

where f is a function with arguments 𝑎1, … , 𝑎𝑛 and return

expression 𝐸′

• For computed function calls E(E1, …, En):

𝑓 ∈ 𝐸 ⇒ 𝐸𝑖 ⊆ 𝑎𝑖 for 𝑖 = 1, … , 𝑛 ٿ 𝐸′ ⊆ 𝐸 𝐸1 , … , 𝐸𝑛

for every function 𝑓 with arguments 𝑎1, … , 𝑎𝑛 and return

expression 𝐸′

- If consider typable programs only：

Only generate constraints for those functions 𝑓 for which the call would

be type correct

8

Generated Constraints

9

Least Solution

10

Agenda

11

CFA for the Lambda Calculus

• The pure lambda calculus

• Assume all -bound variables are distinct

• An abstract closure x abstracts the function x.E in

all contexts (values of free variables)

• Goal: for each call site E1E2 determine the possible

functions for E1 from the set {x1, x2, ..., xn }

12

Closure Analysis

A flow-insensitive analysis that tracks function values:

• For every AST node, v, we introduce a variable ⟦v⟧

ranging over subsets of abstract closures

• For x.E we have the constraint

x ⟦ x.E ⟧

• For E1E2 we have the conditional constraint

x ⟦E1⟧ (⟦E2⟧⟦x⟧⟦E⟧⟦ E1E2 ⟧)

for every function x.E

13

Agenda

14

The Cubic Framework

• We have a set of tokens {t1, t2, ..., tk}

• We have a collection of variables {x1, ..., xn} whose

values range over subsets of tokens

• A collection of constraints of these forms:

• Compute the unique minimal solution

- This exists since solutions are closed under intersection

• A cubic time algorithm exists!

15

The Solver Data Structure

• Each variable is mapped to a node in a DAG

• Each node has a bitvector in {0,1}k

- initially set to all 0’s

• Each bit has a list of pairs of variables

- used to model conditional constraints

• The DAG edges model inclusion constraints

• The bitvectors will at all

times directly represent

the minimal solution to the

constraints seen so far

16

Adding Constraints (1/2)

• Constraints of the form t x:

- look up the node associated with x

- set the bit corresponding to t to 1

- if the list of pairs for t is not empty, then add the edges

corresponding to the pairs to the DAG

17

Adding Constraints (2/2)

• Constraints of the form t xyz:

- test if the bit corresponding to t is 1

- if so, add the DAG edge from y to z

- otherwise, add(y,z) to the list of pairs for t

18

Propagate Bitvectors

• Propagate the values of all newly set bits along all

edges in the DAG

19

Collapse Cycles

• If a newly added edge forms a cycle:

- merge the nodes on the cycle into a single node

- form the union of the bitvectors

- concatenate the lists of pairs

- update the map from variables accordingly

20

Time Complexity(1/2)

• O(n) functions and O(n) applications, with program size n

• O(n) singleton constraints, O(n2) conditional constraints

• O(n) nodes, O(n2) edges, O(n) bits per node

• Total time for bitvector propagation: O(n3)

• Total time for collapsing cycles: O(n3)

• Total time for handling lists of pairs: O(n3)

21

Time Complexity(1/2)

• Adding it all up, the upper bound is O(n3)

• This is known as the cubic time bottleneck:

- Occurs in many different scenarios

- but O(n3/log n) is possible…

• A special case of general set constraints:

- Defined on sets of terms instead of sets of tokens

- solvable in time O(22n
)

22

Agenda

23

Simple CFA for OO (1/3)

• CFA in an object-oriented language:

• Which method implementations may be invoked?

• Full CFA is a possibility...

• But the extra structure allows simpler solutions

24

Simple CFA for OO (2/3)

• Simplest solution:

- Select all methods named m with three arguments

• Class Hierarchy Analysis(CHA):

- Consider only the part of the class hierarchy rooted by

the declared type of x

25

Simple CFA for OO (3/3)

• Rapid Type Analysis (RTA):

- Restrict to those classes that are actually used in the

program in new expressions

- Start from main, iteratively

find reachable methods

• Variable Type Analysis (VTA):

- perform intraprocedural control flow analysis

26

