Control Flow Analysis

Yu Zhang

Most content comes from <u>http://cs.au.dk/~amoeller/spa/</u> <u>http://staff.ustc.edu.cn/~yuzhang/pldpa</u>

Agenda

- Control flow analysis for TIP with first-class functions
- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for object-oriented languages

TIP with first-class functions

```
inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) { return k; }
foo(n,f) {
 var r;
  if (n==0) { f=ide; }
  r = f(n);
  return r;
}
main() {
 var x,y;
  x = input;
  if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
  return y;
}
```

Control Flow Complications

- First-class functions in TIP complicate CFG construction
 - Several functions may be invoked at a call site
 - This depends on the dataflow
 - But dataflow analysis first requires a CFG
- Same situation for other features, e.g.
 - Function values with free variables (closures)
 - A class hierarchy with objects and methods
 - Prototype objects with dynamic properties

Control Flow Analysis

- A control flow analysis approximates the call graph
 - Conservatively computes possible functions at call sites
 - The trivial answer: all functions
- Control flow analysis is usually flow-insensitive:
 - It is based on the AST
 - The call graph can be used for an interprocedural CFG
 - A subsequent dataflow analysis may use the CFG
- Alternative: use flow-sensitive analysis
 - Potentially on-the-fly, during dataflow analysis

CFA for TIP with first-class functions

• For a computed function call

 $E(E_1, ..., E_n)$

we cannot immediately see which function is called

- A coarse but sound approximation
 - Assume any function with right number of arguments

• Use CFA to get a much better result

CFA Constraints

- Tokens are all functions $\{f_1, f_2, ..., f_k\}$
- For every AST node, v, we introduce the variable
 [v] denoting the set of functions to which v may evaluate

- For function definitions f (...){...}:
 f∈ [[f]]
- For assignments *x* = *E*:
 [*E*]] ⊆ [[*x*]]

CFA Constraints

• For **direct** function calls $f(E_1, ..., E_n)$:

 $\llbracket E_i \rrbracket \subseteq \llbracket a_i \rrbracket$ for $i = 1, ..., n \land \llbracket E' \rrbracket \subseteq \llbracket f(E_1, ..., E_n) \rrbracket$ where *f* is a function with arguments $a_1, ..., a_n$ and return expression *E'*

- For computed function calls *E*(*E*₁, ..., *E_n*):
 f ∈ [[*E*]] ⇒ ([[*E_i*]] ⊆ [[*a_i*]] for *i* = 1, ..., *n* ∧ [[*E*']] ⊆ [[*E*(*E*₁, ..., *E_n*)]])
 for every function *f* with arguments *a*₁, ..., *a_n* and return expression *E*'
 - If consider **typable** programs only:

Only generate constraints for those functions f for which the call would be type correct

Generated Constraints

```
inc(i) { return i+1; }
                                                          dec(j) { return j-1; }
inc ∈ [inc]
                                                          ide(k) { return k; }
dec ∈ [dec]
                                                          foo(n,f) {
ide ∈ [ide]
                                                            var r:
                                                            if (n==0) { f=ide; }
[ide] ⊆ [f]
                                                            r = f(n);
                                                            return r;
[f(n)]⊆[r]
inc \in [f] \Rightarrow [n] \subseteq [i] \land [i+1] \subseteq [f(n)]
                                                          main() {
dec \in [f] \Rightarrow [n] \subseteq [j] \land [j-1] \subseteq [f(n)]
                                                            var x,y;
ide \in [f] \Rightarrow [n] \subseteq [k] \land [k] \subseteq [f(n)]
                                                            x = input;
                                                            if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
[input] \subseteq [x]
                                                            return y;
[foo(x,inc)] \subseteq [y]
[foo(x,dec)] \subseteq [y]
foo ∈ [foo]
foo \in [foo] \Rightarrow [x] \subseteq [n] \land [inc] \subseteq [f] \land [r] \subseteq [foo(x,inc)]
                                                                                             assuming we do not
foo \in [foo] \Rightarrow [x] \subseteq [n] \land [dec] \subseteq [f] \land [r] \subseteq [foo(x,dec)]
                                                                                              use the special rule
                                                                                             for direct calls
main∈[main]
```

(At each call we only consider functions with matching number of parameters)

Least Solution

```
[inc] = {inc}
[dec] = {dec}
[ide] = {ide}
[ide] = {ide}
[f] = {inc, dec, ide}
[foo] = {foo}
[main] = {main}
```

(the solution is the empty set for the remaining constraint variables)

With this information, we can construct the call edges and return edges in the interprocedural CFG

Agenda

- Control flow analysis for TIP with first-class functions
- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for object-oriented languages

CFA for the Lambda Calculus

• The pure lambda calculus

$E \rightarrow \lambda x.E$	(function definition)
$ E_1E_2 $	(function application)
<i>x</i>	(variable reference)

- Assume all λ -bound variables are distinct
- An *abstract closure* λx abstracts the function $\lambda x.E$ in all contexts (values of free variables)
- **Goal**: for each call site $E_1 E_2$ determine the possible functions for E_1 from the set { λx_1 , λx_2 , ..., λx_n }

Closure Analysis

A flow-insensitive analysis that tracks function values:

- For every AST node, v, we introduce a variable [v] ranging over subsets of abstract closures
- For $\lambda x.E$ we have the constraint

 $\lambda x \in [\lambda x.E]$

• For E_1E_2 we have the *conditional* constraint $\lambda x \in \llbracket E_1 \rrbracket \Rightarrow (\llbracket E_2 \rrbracket \subseteq \llbracket x \rrbracket \land \llbracket E \rrbracket \subseteq \llbracket E_1E_2 \rrbracket)$ for every function $\lambda x.E$

Agenda

- Control flow analysis for TIP with first-class functions
- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for object-oriented languages

The Cubic Framework

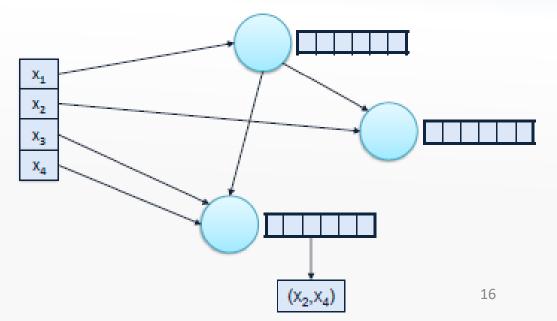
- We have a set of tokens $\{t_1, t_2, ..., t_k\}$
- We have a collection of variables {x₁, ..., x_n} whose values range over subsets of tokens
- A collection of constraints of these forms:

```
• t \in x
• t \in x \Rightarrow y \subseteq z
```

- Compute the unique minimal solution
 - This exists since solutions are closed under intersection
- A cubic time algorithm exists!

The Solver Data Structure

- Each variable is mapped to a node in a DAG
- Each node has a bitvector in $\{0,1\}^k$
 - initially set to all 0's
- Each bit has a list of pairs of variables
 - used to model conditional constraints
- The DAG edges model inclusion constraints
- The bitvectors will at all times directly represent the minimal solution to the constraints seen so far



 $t \in x$

 $t \in x \Rightarrow y \subseteq z$

Adding Constraints (1/2)

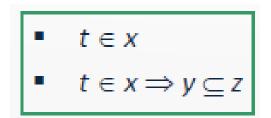
• Constraints of the form $t \in x$:

Х

0

(y,z)

- look up the node associated with x
- set the bit corresponding to t to 1



V

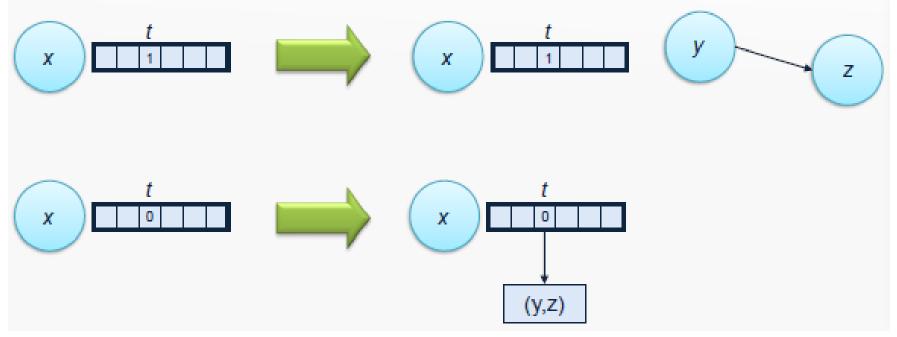
- if the list of pairs for t is not empty, then add the edges corresponding to the pairs to the DAG

Х

Z

Adding Constraints (2/2)

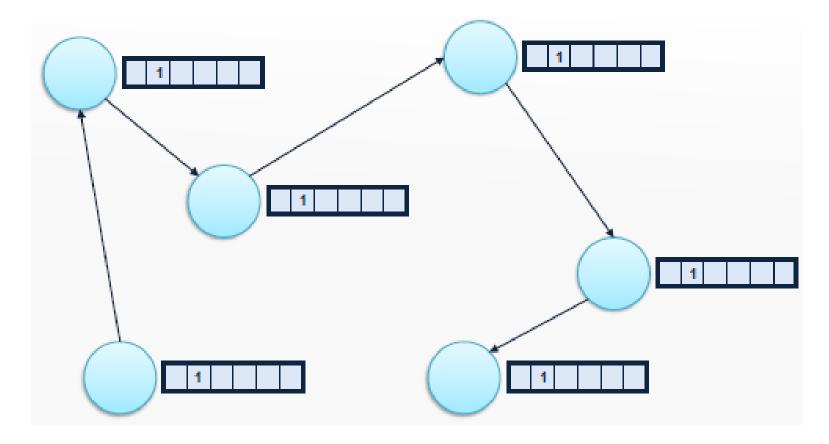
- Constraints of the form $t \in x \Longrightarrow y \subseteq z$.
 - test if the bit corresponding to t is 1
 - if so, add the DAG edge from y to z
 - otherwise, add(y,z) to the list of pairs for t



•	$t \in x$
•	$t \in x \Longrightarrow y \subseteq z$

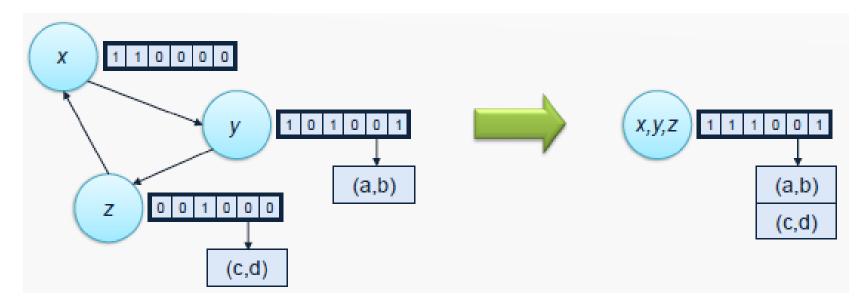
Propagate Bitvectors

 Propagate the values of all newly set bits along all edges in the DAG



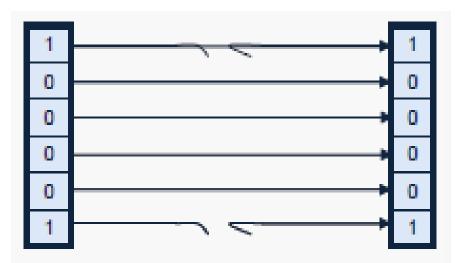
Collapse Cycles

- If a newly added edge forms a cycle:
 - merge the nodes on the cycle into a single node
 - form the union of the bitvectors
 - concatenate the lists of pairs
 - update the map from variables accordingly



Time Complexity(1/2)

- O(n) functions and O(n) applications, with program size n
- O(n) singleton constraints, $O(n^2)$ conditional constraints
- O(n) nodes, O(n^2) edges, O(n) bits per node
- Total time for bitvector propagation: $O(n^3)$
- Total time for collapsing cycles: $O(n^3)$
- Total time for handling lists of pairs: $O(n^3)$



Time Complexity(1/2)

• Adding it all up, the upper bound is $O(n^3)$

- This is known as the *cubic time bottleneck*:
 - Occurs in many different scenarios
 - but $O(n^3/\log n)$ is possible...
- A special case of general set constraints:
 - Defined on sets of terms instead of sets of tokens
 - solvable in time $O(2^{2^n})$

Agenda

- Control flow analysis for TIP with first-class functions
- Control flow analysis for the λ-calculus
- The cubic framework
- Control flow analysis for object-oriented languages

Simple CFA for OO (1/3)

• CFA in an object-oriented language:

• Which method implementations may be invoked?

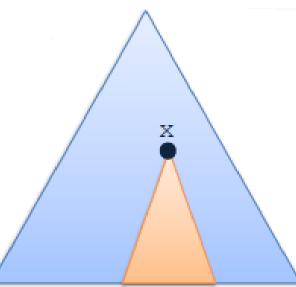
- Full CFA is a possibility...
- But the extra structure allows simpler solutions

Simple CFA for OO (2/3)

- Simplest solution:
 - Select all methods named m with three arguments

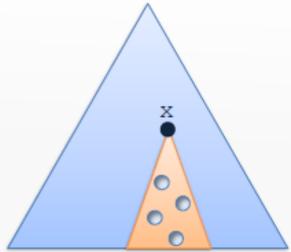
- Class Hierarchy Analysis(CHA):
 - Consider only the part of the class hierarchy rooted by the declared type of x

Collection<T> c ⊨ ... c.add(e)



Simple CFA for OO (3/3)

- Rapid Type Analysis (RTA):
 - Restrict to those classes that are actually used in the program in **new** expressions
 - Start from **main**, iteratively find reachable methods



- Variable Type Analysis (VTA):
 - perform *intraprocedural* control flow analysis