
Pointer Analysis

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

http://staff.ustc.edu.cn/~yuzhang/pldpa

1

http://cs.au.dk/~amoeller/spa/
http://staff.ustc.edu.cn/~yuzhang/pldpa

Agenda

2

Analyzing Programs with Pointers

How do we perform e.g.

constant propagation analysis

when the programming language

has pointers?

(or object references?)

3

Depend on whether x and y point
to the same location, if so, z is -87

Heap Pointers

• For simplicity, we ignore records

- alloc then only allocates a single cell

- only linear structures can be built in the heap

• Let’s at first also ignore functions as values

• We still have many interesting analysis challenges...

4

Pointer Targets

• The fundamental question about pointers:

What cells can they point to?

• We need a suitable abstraction

• The set of (abstract) cells, Cells, contains

- alloc-i for each allocation site with index i

- X for each program variable named X

• This is called allocation site abstraction

• Each abstract cell may correspond to many concrete

memory cells at runtime

5

p =alloc null
*p = z

alloc-1

Points-to Analysis

• Determine for each pointer variable X the set pt(X) of

the cells X may point to

• A conservative (“may points-to”) analysis:

- the set may be too large

- can show absence of aliasing: pt(X)  pt(Y) = 

• We’ll focus on flow-insensitive analyses:

- Take place on the AST

- Before or together with the control-flow analysis

6

Obtaining Points-to Information

• An almost-trivial analysis (called address-taken 取址):

- include all alloc-i cells 注：为程序正文中的分配点

- Include the X cell if the expression &X occurs in the program

• Improvement for a typed language

- Eliminate those cells whose types do not match

• This is sometimes good enough

- and clearly very fast to compute

7

Pointer Normalization

• Assume that all pointer usage is normalized:

- X=alloc P where P is null or an integer constant

- X=&Y

- X=Y

- X=*Y

- *X=Y

- X=null

• Simply introduce lots of temporary variables…

• All sub-expressions are now named

• We choose to ignore the fact that the cells created at

variable declarations are uninitialized

8

Agenda

9

Andersen’s Analysis (1/2)

10

基于集合的包含关系

Andersen’s Analysis (2/2)

11

Example Program

12
Cells= {p, q, x, y, z, alloc-1}

Applying Andersen

13

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = { y}
pt(x) = pt(y) = pt(z) = 𝜙

A Specialized Cubic Solver

14

Original constraint forms

A Specialized Cubic Solver

15

Implementation: SpecialCubicSolver

A Specialized Cubic Solver

16

Agenda

17

Steensgaard’s Analysis

18

基于类型及其等价关系

Steensgaard’s Analysis

19

Applying Steensgaard

20

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = {alloc-1, y, z}

Another Example

21

Recall Our Type Analysis…

22

Agenda

23

Interprocedural Points-to Analysis

• In TIP, function values and pointers may be mixed

together:

(***x)(1,2,3)

• In this case the CFA and the points-to analysis

must happen simultaneously!

• The idea: Treat function values as a kind of

pointers

24

Function Call Normalization

• Assume that all function calls are of the form

x=y(a1,...,an)

• y may be a variable whose value is a function pointer

• Assume that all return statements are of the form

return z;

• As usual, simply introduce lots of temporary

variables…

• Include all function names in Cells

25

CFA with Andersen

26

CFA with Steensgaard

27

Context-sensitive Pointer Analysis

28

Context-sensitive Pointer Analysis

29

Context-sensitive Pointer Analysis

30

Context-sensitive Pointer Analysis

31

• We can go one step further and introduce context-

sensitive heap (a.k.a. heap cloning)

• Let each abstract cell be a pair of

- alloc-i (the alloc with index i) or X (a program variable)

- a heap context from a (finite) set HeapContexts

• This allows abstract cells to be named by the source

code allocation site

and (information from) the current context

• One choice:

- set HeapContexts = Contexts

- at alloc, use the entire current call context as heap context

Context-sensitive Pointer Analysis

with Heap Cloning

32

Agenda

33

Records in TIP

• Field write operations: see SPA …

• Values of record fields cannot themselves be records

• After normalization

- X = {F1: X1,…, Fk: Xk}

- X = alloc{F1: X1,…, Fk: Xk}

- X= Y.F

Let us extend Andersen’s analysis accordingly …

34

Constraint Variables for Record Fields

35

Analysis Constraints

36

Objects as Mutable Heap Records

37

Agenda

38

Null Pointer Analysis

• Decide for every dereference *p, is p different from null?

• (Why not just treat null as a special cell in an Andersen or

Steensgaard-style analysis?)

• Use the monotone framework

- Assuming that a points-to map pt has been computed

• Let us consider an intraprocedural analysis

(i.e. we ignore function calls)

39

A Lattice for null Analysis

• Define the simple lattice Null:

where NN represents “definitely not null”

and ? represents “maybe null”

• Use for every program point the map lattice:

Cells Null

40

Setting Up

• For every CFG node, v, we have a variable ⟦v⟧:

- a map giving abstract values for all cells at the

program point after v

• Auxiliary definition:

(i.e. we make a forward analysis)

41

Null Analysis Constraints

• For operations involving pointers:

- X =alloc P: ⟦v⟧= ???

- X =&Y: ⟦v⟧= ???

- X =Y: ⟦v⟧= ???

- X =*Y: ⟦v⟧= ???

- *X =Y: ⟦v⟧= ???

- X =null: ⟦v⟧= ???

• For all other CFG nodes:

- ⟦v⟧= JOIN(v)

42

where P is null or
an integer constant

Null Analysis Constraints

• For a heap store operation *X =Y we need to model

the change of whatever X points to

• That may be multiple abstract cells(i.e. the cells pt(X))

• With the present abstraction, each abstract heap cell

alloc-i may describe multiple concrete cells

• So we settle for weak update:

*X =Y: ⟦v⟧= store(JOIN(v), X, Y)

where

43

Y)

Null Analysis Constraints

• For a heap load operation X = *Y we need to model

the change of the program variable X

• Our abstraction has a single abstract cell for X

• That abstract cell represents a single concrete cell

• So we can use strong update:

X =*Y: ⟦v⟧= load(JOIN(v), X, Y)

where

44

Strong and Weak Updates

45

The abstract cell alloc-1 corresponds to multiple concrete cells

weak update
*X =Y: ⟦v⟧= store(JOIN(v), X, Y)

strong update

Strong and Weak Updates

46

The points-to set for x contains multiple abstract cells

Null Analysis Constraints

• In each case, the assignment modifies a program

variable

• So we can use strong updates, as for heap load

operations

47

Strong and Weak Updates, Revisited

• Strong update: [c↦new-value]

- possible if c is known to refer to a single concrete cell

- works for assignments to local variables (as long as TIP

doesn’t have e.g. nested functions)

• Weak update: [c↦ (c) ⊔new-value]

- necessary if c may refer to multiple concrete cells

- bad for precision, we lose some of the power of flow-
sensitivity

- required for assignments to heap cells

(unless we extend the analysis abstraction!)

48

Interprocedural Null Analysis

• Context insensitive or context sensitive, as usual…

- at the after-call node, use the heap from the callee

• But be careful!

Pointers to local variables may escape to the callee

- the abstract state at the after-call node cannot simply copy

the abstract values for local variables from the abstract

state

49

Escape Analysis
逃逸分析：分析对象是
否逃逸出一个函数

Using the Null Analysis

• The pointer dereference *p is “safe” at entry of v if

JOIN(v)(p) = NN

• The quality of the null analysis depends on the

quality of the underlying points-to analysis

50

Example Program & Constraints

Andersen generates:

pt(p) = {alloc-1}

pt(q) = {p}

pt(n) = Ø

51

Solution

⟦p=alloc null⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]

⟦q=&p⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]

⟦n=null⟧= [p↦NN, q↦NN, n↦?, alloc-1↦?]

⟦*q=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]

⟦*p=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]

• At the program point before the statement *q=n the

analysis now knows that q is definitely non-null

• … and before *p=n, the pointer p is may be null

• Due to the weak updates for all heap store operations,

precision is bad for alloc-i cells

52

Agenda

53

Points-to Graphs

• Graphs that describe possible heaps:

- nodes are abstract cells

- edges are possible pointers between the cells

• The lattice of points-to graphs is 𝒫(Cells × Cells)
ordered under subset inclusion

(or alternatively, Cells→𝒫(Cells))

• For every CFG node, v, we introduce a constraint variable ⟦v⟧
describing the state after v

• Intraprocedural analysis (i.e. ignore function calls)

54

Constraints

55

Example Program

56

Result of Analysis

• After the loop we have this points-to graph:

• We conclude that

x and y will always

be disjoint

57

Points-to Maps from Points-to Graphs

• A points-to map for each program point v:

pt(X) = { t | (X,t) ⟦v⟧}

• More expensive, but more precise:

- Andersen: pt(x) = { y, z}

- flow-sensitive: pt(x) = { z}

58

Improving Precision with Abstract

Counting

59

Constraints and Better Results

• X = alloc P: …

• *X =Y: …

• …

• After the loop we have this extended points-to graph:

• Thus, alloc-2 nodes form a self-loop

60

Escape Analysis

• Perform a points-to analysis

• Look at return expression

• Check reachability in the points-to

graph to arguments or variables

defined in the function itself

• None of those



no escaping stack cells

61

THANKS

62

