Pointer Analysis

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

http://staff.ustc.edu.cn/~yuzhang/pldpa

http://cs.au.dk/~amoeller/spa/
http://staff.ustc.edu.cn/~yuzhang/pldpa

Agenda

Analyzing Programs with Pointers

How do we perform e.g. F &X
constant propagation analysis alloc E
when the programming language oz

has pointers? null

(or object references?)

. S— *X=E;
= 42: | ...

':':x
*y = =87,
F — e

: Depend on whether x and y point
- ?
// 1s z 42 or 87" to the same location, if so, z is -87

Heap Pointers

* For simplicity, we ignore records
- alloc then only allocates a single cell
- only linear structures can be built in the heap

J

X @

=y

-

Q. ¢
O

0—0
] 0—0—0—0—&

» Let's at first also ignore functions as values
* We still have many interesting analysis challenges...

Y

Pointer Targets

The fundamental question about pointers:
What cells can they point to?

p =alloc null
*p =2z

We need a suitable abstraction

The set of (abstract) cells, Cells, contains
- alloc-1 for each allocation site with index |
- X for each program variable named X

This Is called allocation site abstraction

alloc-1

Each abstract cell may correspond to many concrete

memory cells at runtime

Points-to Analysis

* Determine for each pointer variable X the set pt(X) of
the cells X may point to

A conservative (“may points-to”) analysis: ... 5 or —s7
- the set may be too large
- can show absence of aliasing: pt(X) N pt(Y) =9

« We'll focus on flow-insensitive analyses:

- Take place on the AST
- Before or together with the control-flow analysis

Obtaining Points-to Information

» An almost-trivial analysis (called address-taken Z{Z/):

- Include all alloc-i cells

x: AFERL

A

B

- Include the X cell if the expression &X occurs in the program

* Improvement for a typed language

- Eliminate those cells whose types do not match

* This Is sometimes good enough

- and clearly very fast to compute

Pointer Normalization

Assume that all pointer usage Is normalized:

- X=alloc P where P is null or an integer constant
- X=&Y

- X=Y

- X=*Y

- *X=Y

X=null

Simply introduce lots of temporary variables...

All sub-expressions are now named

We choose to ignore the fact that the cells created at
variable declarations are uninitialized

Agenda

Andersen’s Analysis (1/2)

* For every cell ¢, introduce a constraint variable | c]
ranging over sets of cells, i.e. [-]: Cells = P(Cells)

* Generate constraints:
« X=alloc P

X=a&Y
X=Y:
X=7Y
“X=Y:
X=null:

[g$$amaa*§]

alloc-ie [X]

¥ e [IX]
[X]

[Vl c
c € [Y]

— [c] <€ [X] for each ceCells

ce [X

— [[Y] < [[c] for each ceCells

(no constraints)

(For the conditional constraints, there's no need to add a constraint for the cell x if &x does not occur in the program)

10

Andersen’s Analysis (2/2)

The points-to map is defined as:

pt(X) = [X]

The constraints fit into the cubic framework ©
Unigue minimal solution in time O(n?)
In practice, for Java: O(n?)

The analysis is flow-insensitive but directional

— models the direction of the flow of values in assignments

11

var p,q,Xx,y¥,<Z,

p:

X =Y;
X = £,
P o= Z;
p = q;
q = &y;
X = *p;
p = &z;

Cells={p, q, X, Yy, z, al loc-1}

alloc null;

Example Program

X=alloc P:
X=4&Y:

X=Y:

X=*Y.
“X=Y:
X=null:

alloc-ie [X]
Y € [X]

[Y1 c [X]
c € [Y] = [c] < [X] for each celells

c € [X] = [Y] < [[c] for each ceCells

(no constraints)

12

var

oKX
i1

T X O T
Il

Applying Andersen

alloc-1e [p]

p!q!x!ysz; [[F]]E[I]]
alloc null; 12] < [X]
Ys c € [p] = [2] = [[a] for each ceCells
‘s [a] = [P]
= y € [d]
d, c € [P] = [a] < [X] for each ceCells
&y; z < [pl
'.":,'p; .
&z- Smallest solution:
pt(p) ={alloc-1,y, z}
pt(q) = {y}

pt(x) = ptly) =pt(z) = ¢ .

A Specialized Cubic Solver

At each load/store instruction, instead of generating

a conditional constraint for each cell,
generate a single universally quantified constraint:

. fEE

" [Ix] <

-_x_ =

[v]

"Vt e [[x]:

"Vt e [x]:

-_x_ =

[t]

I

I

C

[¥]

[t]

Original constraint forms

r.
r.

-

—

X—=>yCZ

Whenever a token is ad

ded to a set, lazily add new edges
according to the universally quantified constraints

Note that every token is also a constraint variable here

Still cubic complexity, but faster in practice

14

A Specialized Cubic Solver

x.solcCT: ne set of tokens for x (the bitvectors)

X.succ C V: ne successors of x (the edges)

t

t
x.from cV: the first kind of quantified constraints for x
x.tocV: t
W c TxV: a worklist (initially empty)

he second kind of quantified constraints for x

Implementation: SpecialCubicSolver

15

A Specialized Cubic Solver

t € [x]
addToken(t, x)
propagate()

Ix] < [y

addEdge(x, y)
propagate()

vt e [Ix]: [t] < [yl

add y to x.from
for each tin x.sol
addEdge(t, y)

propagate()

vt e [x]: [yl < [zl

add y to x.to
for each t in x.s0l
addEdge(y, t)

propagate()

addToken(t, x):
if t € x.sol
add t to x.sol
add (t, x) to W

addEdge(x, y):
if x # y Ay & X.succ
add y to x.succ
for each tin x.sol
addToken(t, y)

propagate():
while W = &

pick and remove (t, x) from W

for each y in x.from
addEdge(t, y)

for each y in x.to
addEdgel(y, t)

for each y in x.succ
addToken(t, y)

16

Agenda

Steensgaard’s Analysis

View assignments as being bidirectional

Generate constraints: [g;@;@g@%{ﬁ?&%]
+ X=alloc P: alloc-ie [X]

¢ X=4&Y: Y e [X]

* X=Y. [XT =[]

¢ X=7Y: c € [Y] = [c] = [X] for each ceCells
« FX =Y c € [X] = [Y] = [c] for each ceCells

Extra constraints:
¢, GE[[c] = [[e] = [[c;]] and [[c;] N [e,] # D = [[eq] = [[c,]

(whenever a cell may point to two cells, they are essentially merged into one)

Steensgaard’s original formulation uses conditional unification for X = Y-
c € [¥Y] = [X] = [Y] for each ceCells (avoids unifying if Y is never a pointer)

18

Generate constraints:

« X=alloc P
&Y:

X =
X =
X =
*X

Terms:
— term variables, e.g. [X], [a1 10C-i], @ (each representing the possible values of a cell]

Steensgaard’s Analysis

Reformulate as term unification

¥Y:

Y-
=Y

[X]
[X]
[X]
[V]

[X]

=1[alloc-i]
= 1[v]
= [¥]

= Ta A [X] =« where ais fresh
=Ta A [Y] = a where ais fresh

— each a single {unary) term constructor T ¢ (representing pointers)

— each [¢] is now a term variable, not a constraint variable helding a set of cells

Fits with our unification solver! (union-find...)
The points-to map is defined as pt(X) ={ceCells | [X] = T[] }
Note that there is only one kind of term constructor, so unification never fails,

var

wooX O
Il Il Il

T X O T
Il

Applying Steensgaard

P.4,X,Y¥Y,<Z,

alloc null;

Y,

Z,

d,

&y ;

-:':p;
&z:

Ip] = I[[a-'l h:u:.—l]]
Iyl =[x

[2] = [x]

p] =T [2] = oy
= [p]

= Ty]

=Ta, [X] = a,

= 1]z

O
_ — — =

—

Smallest solution:
pt(p) ={alloc-1,vy, z}
pt(q) = {alloc-1,y, z}

20

al
b1l
cl
al
b/
o
b1l

&bl
&cl;
&dl;
&bZ;
&cl;
&dZ;
&c/l;

Another Example

Andersen:

Steensgaard:

21

Recall Our Type Analysis...

Focusing on pointers...

Constraints:

- X=alloc P
« X=4&Y

+ X=Y:

+ X=7Y:

+ FX=VY:

Implicit extra constraint for term eg
It,=1t,=>1¢,=1,

[X] = T[P]
[X] = T[Y]
[X] =[Y]

T[IX]= 1]
[X] = T[v]

uality:

Assuming the program type checks, is the solution
for pointers the same as for Steensgaard’s analysis?

Agenda

Interprocedural Points-to Analysis

In TIP, function values and pointers may be mixed

together:
(***x)(1,2,3)

* |n this case the CFA and the points-to analysis
must happen simultaneously!

 The idea: Treat function values as a kind of
pointers

Function Call Normalization

Assume that all function calls are of the form
X=y(ay,...,a,)

y may be a variable whose value is a function pointer

Assume that all return statements are of the form
return z;

As usual, simply introduce lots of temporary
variables...

Include all function names in Cells

CFA with Andersen

For the function call "q”df'rsenganwys. |
_ alreqq 515
x=y(a;y ..., a,) - mn::j;ﬂfmnnected
and every occurrence of analysisy
fx;y .y x,) {..returnz; }

add these constraints:

felfl
fe Iyl = ([a] < [x] for i=1,....n A [2] < [])

(Similarly for simple function calls)

Fits directly into the cubic framework!

26

CFA with Steensgaard

* For the function call

X=.'l""(ﬂ1! very 'ﬂn)
and every occurrence of

f(x;y .y x) {..returnz; }

add these constraints:

felfl
fe Iyl = ([a] = [x] for i=1,...n A [2] = [x])

* (Similarly for simple function calls)

* Fits into the unification framework, but requires a
generalization of the ordinary union-find solver

27

Context-sensitive Pointer Analysis

foo(a) {
return *a;

}
bar() {

x = alloc null;
y = alloc null;
*x = alloc null;
*vw = alloc null;

q = foo(x);
w = fool(y);

Are ¢ and w aliases?

Context-sensitive Pointer Analysis

* Generalize the abstract domain Cells — P(Cells) to

Contexts — Cells — P(Cells)
(or equivalently: Cells x Contexts — P(Cells))

where Contexts is a (finite) set of call contexts
* As usual, many possible choices of Contexts

— recall the call string approach and the functional approach

* We can also track the set of reachable contexts
(like the use of lifted lattices earlier):

Contexts — lift(Cells — P(Cells))

Does this still fit into the cubic solver?

29

Context-sensitive Pointer Analysis

mk () {
return alloc null;

}

baz() {
var X,y:
x = mk();
y = mk();

Are X and Y aliases? [X]] =fa110c-1}

[[}"']] = {a'l 1 m:—l}

30

Context-sensitive Pointer Analysis

We can go one step further and introduce context-
sensitive heap (a.k.a. heap cloning)

Let each abstract cell be a pair of
- alloc-1 (the alloc with index 1) or X (a program variable)
- a heap context from a (finite) set HeapContexts

This allows abstract cells to be named by the source
code allocation site
and (information from) the current context

One choice:
- set HeapContexts = Contexts
- at alloc, use the entire current call context as heap context

Context-sensitive Pointer Analysis
with Heap Cloning

Assuming we use the call string approach with k=1, so Contexts = {g, C1, Cc2}, and HeapContexts = Contexts

mk () {

return alloc null:

}

baz() {

var X,y:
w = mk():
vy = mk();

Are X and v aliases? [X] ={(a110c-1,c1) }

[[}"']] ={(alloc-1, €2) }

32

Agenda

Records In TIP

Exp — ...
| {Id:Exp, ..., Id:Exp }

| Exp.ld

* Field write operations: see SPA ...
* Values of record fields cannot themselves be records

 After normalization
- X={F;: Xq,..., F X}
- X =alloc{F;: Xq,..., F: X}
- X=Y.F
Let us extend Andersen’s analysis accordingly ...

Constraint Variables for Record Fields

* [[-]: (Cells U (Cells x Fields)) — P(Cells)
where is the set of field names in the program

* Notation: [[c.f] jmeans [(c, f)]

35

Analysis Constraints

« X={F: X, . .,F: X} [XJI<IXFJA..A[X]<IXF]
» X=alloc{F:X,, .., F,2 X, }: alloc-ie[X] A
IX,Jclalloc-iF,JA..A[X]c[alloc-iF]

e X=YF [V.FACN

« X=Y: [Y]IC[X] A [[Y.F] < [X.F] for each FeFields
=*Y: ce[Y]= ([X] A [c.F] c [X.F])

for each ceCells and FeFields

« *X=Y: ce[X]= (VI A [Y.F] C [c.FD)

for each ceCells and FeFields

See example in SPA

36

Objects as Mutable Heap Records

Exp — ...

Id
alloc{Ild:Exp, ..., Id:Exp }

(*Exp) .Id

nul 1
Stm — ...
| Id = Exp;

| (FExp) .1d = Exp;

* E.XinJava corresponds to (¥*E) .Xin TIP (or C)

* (Can only create pointers to heap-allocated records (=objects),
not to variables or to cells containing non-record values

37

Agenda

Null Pointer Analysis

Decide for every dereference *p, is p different from null?

(Why not just treat null as a special cell in an Andersen or
Steensgaard-style analysis?)

Use the monotone framework
- Assuming that a points-to map pt has been computed

Let us consider an intraprocedural analysis
(l.e. we ignore function calls)

39

A Lattice for null Analysis

* Define the simple lattice Null:
7
|
NN

where NN represents “definitely not null”
and ? represents "maybe null”

» Use for every program point the map lattice:
Cells —Null

Setting Up

* For every CFG node, v, we have a variable [v]:

- a map giving abstract values for all cells at the
program point after v

» Auxiliary definition: w] | w,
JOIN(v) = LI [w] AN
wepred(v) y

(.,e. we make a forward analysis)

Null Analysis Constraints

* For operations involving pointers:
|l= 2727

- X =alloc P:
- X =&Y:

- X =Y

- X =*Y;

- *X =Y

- X =null:

[V

|= ?77?
|= ?77?
|= ?77?
|= ?277?

|= ?277?

 For all other CFG nodes:

- [V]= JOIN(V)

where P is null or
an integer constant

Null Analysis Constraints

For a heap store operation *X =Y we need to model
the change of whatever X points to

That may be multiple abstract cells(i.e. the cells pt(X))

With the present abstraction, each abstract heap cell
alloc-1 may describe multiple concrete cells

So we settle for weak update:
*X =Y [V]= store(JOIN(v), X, Y)

where store(c, X, Y) =cla ~ o(a) U o(Y)]
aept(X)

Null Analysis Constraints

For a heap load operation X = *Y we need to model
the change of the program variable X

Our abstraction has a single abstract cell for X

That abstract cell represents a single concrete cell

So we can use strong update:
X =*Y: [V]= load(JOIN(V), X, Y)

where load(s, X, Y) = 6[X ~ Lc(a)]
acpt(Y)

Strong and Weak Updates

concrete E:ﬂiﬂiﬁgﬂ L
I
d ——'Ih' null JI mk() {
|
b []y return alloc null;
=L ’
C J == }
,_‘H"" null
|:| null
abstract execution: a = mk(),
=
=17 b mo:
bl — c = alloc null;
ol - *b = c; // strong update here would be unsound!
d | null- d — ‘:-'fa;
strong update
weak update
is d null here?

*X=y: [v]=store(JOIN(v), X, v) StOr€(0, X, ¥) = ola s Slahe(Y)]

aept

The abstract cellal loc-1 correspondsto multiple concrete cells

45

Strong and Weak Updates

a = alloc null;
b = alloc null;
*a = alloc null;
*bh = alloc null;
1t (...)

X = a;
} else {

X = b:

=
|
-
-
—
—

is C null here?

The points-to set for x contains multiple abstract cells

*X = Nn; // strong update here would be unsound!

46

Null Analysis Constraints

X=alloc P: [v]=JOIN(V)IX+— NN, alloc-1+ 7]
X=&Y: V] = JOIN(V)[X = NN] \
~ _ could be|improved...
X=Y Tv] = JOIN(V)[X = JOIN(V)(Y)]
X=null: [v] = JOIN(V)[X - ?]

In each case, the assignment modifies a program
variable

So we can use strong updates, as for heap load
operations

47

Strong and Weak Updates, Revisited

« Strong update: c[c—new-value]
- possible if ¢ is known to refer to a single concrete cell

- works for assignments to local variables (as long as TIP
doesn’t have e.g. nested functions)

 Weak update: o[c— o(c) Linew-value]
- necessary If ¢ may refer to multiple concrete cells
- bad for precision, we lose some of the power of flow-
sensitivity
- required for assignments to heap cells
(unless we extend the analysis abstraction!)

Interprocedural Null Analysis

« Context insensitive or context sensitive, as usual...
- at the after-call node, use the heap from the callee

« But be careful!
Pointers to local variables may escape to the callee

- the abstract state at the after-call node cannot simply copy
the abstract values for local variables from the abstract

State function F(by, ., b))
4)
Escape Analysis o ; -
WEDHT: HITUSRE | (T]
TL_@H:II_/I\IZI;E& e 1_ result = E;
\ J l

49

Using the Null Analysis

* The pointer dereference *p Is “safe” at entry of v If
JOIN(V)(p) = NN

* The quality of the null analysis depends on the
guality of the underlying points-to analysis

Example Program & Constraints

p = alloc null; Andersen generates:

q = &p; nt(p) = {alloc-1}
= null; _

. t(q) = {p}

‘D = n: ot(n) = &

[p=alloc null]=L[p—=NN,alloc-1+ 7]

[q=&p] = [p=alloc null1][g = NN]

[n=null] = [q=&p][n - 7]

[*q=n] =[n=null][p = [n=null](p)u [n=null](n)]
[*p=n] = [*g=n][alloc-1+ [*g=n](allToc-1)u [*q=n](n)]

51

Solution

[p=alloc null]= [p—=NN, g—=NN, n—=NN, alloc-1-7]
[g=&p]= [p—NN, g—=NN, n>NN, alloc-1~7]
[n=null]= [p—NN, g—=NN, n=?, alloc-1-7?]
[*g=n]= [p—", g—=NN, n—?, alloc-1~7?]

[*pP=n]= [p~"?, g—=NN, n—?, alloc-1~7?]

At the program point before the statement *qg=n the
analysis now knows that g is definitely non-null

... and before *p=n, the pointer p is may be null

* Due to the weak updates for all heap store operations,
precision is bad for alloc-i cells

Agenda

Points-to Graphs

Graphs that describe possible heaps:

- nodes are abstract cells
- edges are possible pointers between the cells

The lattice of points-to graphs is P (Cells X Cells)
ordered under subset inclusion
(or alternatively, Cells—P (Cells))

For every CFG node, v, we introduce a constraint variable [[V]
describing the state after v

Intraprocedural analysis (i.e. ignore function calls)

Constraints

* For pointer operations:
« X=alloc P: [v]=JOIN(XU{(X,alloc-i)}

X =&y [v] = JOIN(VNX U { (X, Y) }
¢ X=V: V] = JJOIN(VNX U { (X, t) | (Y, t)€JOIN(v)}
e X=%y: V] =JOINWNXU{(X, 1) | (Y, s)es, (s, t)JOIN(v)}
e EX=V: V] —JO;‘N(U] U{(s, t) | (X, s)€JOIN(v), (Y, t) € JOIN(v)}
« X=null: [v]=JOIN(v)J, X " note: weak update!
where 6¥v.X = { (s,) | s = X}

JOIN(v) = U [W]
* For all other CFG nodes: wepred(v)

* [v]] =JOIN(v)

55

Example Program

var xX,y,n,p,dq,
X = a]]nc null:

X = null; *y =
n = 1nput;
while (n>0) {

p = alloc null; g = alloc null;
P o= X5 *q = Y;
p; Y =

n-1;

y = alloc null;
Y

°F

Result of Analysis

 After the loop we have this points-to graph:

a11;;i;H:> q a11;:j;\

D
X J Y \
alloc-1 3712i;i;>

Varl x!y!n!p!q;
x = alloc null; y = alloc null;

« \We conclude that *x = null; *y = y;

n = input;

x and y will always ~ Whi'e (=0 4

p = alloc null; q = alloc null;

be disjoint P = X5 *q

Points-to Maps from Points-to Graphs

* A points-to map for each program point v:
pt(X) = { t] (X,t) e[V}

* More expensive, but more precise: y

- Andersen: pt(x) ={vy, z} X
- flow-sensitive: pt(x) = { z} /

&z;

Improving Precision with Abstract
Counting

* The points-to graph is missing information:
— al loc-2 nodes always form a self-loop in the example

* We need a more detailed |lattice:
pcelxcell . (Cell — Count)

where we for each cell keep track of
how many concrete cells that abstract cell
describes

Count=0 1 >1

* This permits strong updates on those \V
that describe precisely 1 concrete cell 1

Constraints and Better Results

X = alloc P: ...
*X =YL

After the loop we have this extended points-to graph:

? q
oc-4

?
D a'l'l@ g i
| ey
alloc-1 aj]ii:fﬁ:)

Thus, alloc-2 nodes form a self-loop

Escape Analysis

Perform a points-to analysis

. baz() {
Look at return expression var x:
Check reachability in the points-to return &x;
graph to arguments or variables h
defined In the function itself .
main() {
var p;
None of those p=baz () ;
sy p=1 ;
U return *p;

no escaping stack cells h

THANKS

