Memory Management

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa

http://staff.ustc.edu.cn/~yuzhang/fpl

Outline

 Memory Management and Problems

* Some Solutions
- Coding standards
- Region-based memory management
- Smart pointer

- Garbage collection

* Rust Language

References

Region-based memory management

Smart Pointers in C++

Garbage Collection, Richard Jones
Inside the JVM
Rust: book, github

https://en.wikipedia.org/wiki/Region-based_memory_management
http://en.cppreference.com/w/cpp/memory
https://www.cs.kent.ac.uk/people/staff/rej/gc.html
https://www.artima.com/insidejvm/resources/index.html
https://www.rust-lang.org/
https://doc.rust-lang.org/book/second-edition/index.html
https://github.com/rust-lang/rust/

Memory Management

e Static data section
o Stack: stack frame

* Heap: store dynamically-allocated objects

- C: malloc, free

 Glibc’s ptmalloc, Doug Lea’s dimalloc

« Efficient concurrent memory allocator

- jemalloc, TBBmalloc, TCMalloc (gperftools)

- Java: new, Garbage Collection

« Richard Jones's the Garbage Collection Page

http://www.malloc.de/en/index.html
http://g.oswego.edu/dl/
http://www.canonware.com/jemalloc/
https://www.threadingbuildingblocks.org/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://code.google.com/p/gperftools/
http://www.cs.kent.ac.uk/people/staff/rej
http://www.cs.kent.ac.uk/people/staff/rej/gc.html

Memory Management Problems

« Safety

Do not access freed memory

« Dangling references to Stack frames or Heap

 double free, use after free

=» Abnormal program termination, denial-of-service attacks

Free dynamically allocated memory when no longer needed
 Memory leak
=» denial-of-service attack

Allocate and copy structures containing a flexible array
member dynamically

=>» Undefined behavior

Only free memory allocated dynamically

=» Depend on the implementation

Memory Management Problems

« Safety (cont'd)

- Allocate sufficient memory for an object

=>» Buffer overflows, the execution of arbitrary code vulnerabillities

* Performance
- Memory hierarchy
« Program locality (temporal, spatial)

- Memory allocator

* VM-intensive: frequent memory allocation and deallocation

Some Solutions

Coding standards
Region-based memory management
Smart pointers (modern C++)

Garbage collection

Coding Standards

SEI CERT Coding Standards (CMU)

- Android, C. C++_ Java. Perl

- Safety and Security Coding Standards for C, 2016
Author: Robert C. Seacord (SEI, CMU)
« Securing Coding in C and C++, 2"d Edition, 2013
- CeimiBing, FF, YW HRE, 2015

C++ Core Guidelines,

- Editors: Bjarne Stroustrup, Herb Sutter
MISRA publications (UK): C/C++

- MISRA: Motor Industry Software Reliability Association
MITRE (USA)

- Common Weakness Enumeration /~H5553 (FRFE) &
- Common Vulnerabilities and Exposures 2>itmiEFISEE

https://wiki.sei.cmu.edu/confluence/
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard?src=spaceshortcut
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/display/perl/SEI+CERT+Perl+Coding+Standard
http://dx.doi.org/10.1049/etr.2016.0024
http://www.informit.com/authors/bio/3312572e-d904-45d5-afcd-389361c0f5af
http://www.informit.com/store/secure-coding-in-c-and-c-plus-plus-9780321822130
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://www.stroustrup.com/
http://herbsutter.com/
https://www.misra.org.uk/
https://www.misra.org.uk/Publications/tabid/57/Default.aspx
https://www.mitre.org/
http://cwe.mitre.org/
http://cve.mitre.org/

Region-based Memory Management

* Region (or zone, arena, memory context)

- A collection of allocated objects that can be efficiently
deallocated all at once

= time performance
 History and concepts
- 1967 Douglas T. Ross's AED Free Storage Package
- [SPP_1990] David R. Hanson, explicit regions in C
- Used in Apache HTTP Server, PostgreSQL, etc.

but, do not provide memory safety
= Memory leak, dangling pointer

https://dl.acm.org/citation.cfm?id=363546
https://doi.org/10.1002/spe.4380200104
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Hanson,+David+R

Region-based Memory Management

* Region inference =» safe memory allocation
- [POPL1988]Ruggieri and Murtagh

« aregion is created at the beginning of each function and
deallocated at the end

 use data flow analysis to determine a lifetime for each static
allocation expression, and assign it to the youngest region

- [POPL 1994] Tofte and Talpin

Polymorphic region type and region calculus, used in SML

« Extended lambda calculus including regions
e, at p: Compute the result of the expression e, and store it in region p;

letregion p in e, end: Create a region and bind it to p; evaluate e,; then
deallocate the region.

https://dl.acm.org/citation.cfm?id=73585
https://dl.acm.org/citation.cfm?doid=363534.363546

Region-based Memory Management

 Generalization to Other PLs
- C
» Cyclone [PLDI 2002], RC, Control-C[CASES 2002]

- Java

« Real time Java, combined with ownership types
- Logic PLs such as Prolog, Mercury
« Disadvantages

- Alarge proportion of dead data in large regions

- Shorter-lifetime regions: difficulty in region inference

https://dl.acm.org/citation.cfm?id=512563
http://www.barnowl.org/research/rc/
https://dl.acm.org/citation.cfm?id=581678

Smart Pointers

Enable automatic, exception-safe, object lifetime management

« Dynamic memory management in C++

- Pointer categories, implemented as class templates
An object can only be referenced by a single smart pointer

e auto ptr(removed in C++17): strict object ownership semantics
{- unique ptr(C++11): unique object ownership semantics

« shared ptr(C++11): shared object ownership semantics
- Reference counted pointer

« weak ptr(C++11): weak reference to an object managed by
std::shared_ptr, call wp.lock() to check whether the object is deleted

- Used to break circular references of std::shared ptr.

« Smart Pointers - What, Why, Which?

http://en.cppreference.com/w/cpp/memory
http://en.cppreference.com/w/cpp/memory/auto_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://ootips.org/yonat/4dev/smart-pointers.html

Garbage Collection

« Garbage
- allocated space that is no longer usable by the program

let x = [[1; 2; 3]; [4]] in
let y [2] :: List.tl x in y

» X is never used again and becomes garbage
« Reachabillity

- Roots: pointers that appear in the env.

- GC: reclaims blocks that are no longer reachable from a set of
roots

- Heap: a directed graph in which the nodes are blocks of memory
and the edges are the pointers between these blocks.

- Reachabillity: computed as a graph traversal

Why Garbage Collection (GC)

* Eliminate a common source of defects
- Storage leak
- Dangling pointer

* Improve abstraction and modularity

- A class need not include code to deal with storage
deallocation

* Programs written in OCaml and Java require GC

GC Technigues

* Requirements

Should identify most garbage

Anything it identifies as garbage must be garbage
Should impose a low added time overhead
Program pauses made by GC should be short

« Basic GC Techniques
- Reference counting

- Mark-and-sweep: mark all reachable objects from a set of
roots, and sweep through memory, deallocating all unmarked
objects

- Copying collection: copy - move reachable objects from the
heap to a new area called the to-space

- Mark-and-compact: compact — compute forwarding addresses,
update pointers and relocate blocks

ldentifying Pointers

 Wayl: Reserve a tag bit in each word
- Use up 3% memory

- Limit the range of integers (and pointers): a 32-bit machine
can address about 2GB (231)

- Small run-time cost: arithmetic or dereference
 Way2: Have the compiler record info that the GC can
guery to find out the types of locations
- More complicated: tightly coupling the GC and compiler
 Way3: GC considers memory unreachable only if there
IS nothing that looks like it might be a pointer to it

- Work well in practice: integers are small, pointers look like
large integers

Other Issues on GC

* Traversing the heap
- Recursive traversal: hard to do when low on free space
- Traversal without recursion or external stack:

* Program pauses

- Generational GC: new and old (long-lived) generations,
minor GC (only scan new generation), major GC
* Intergenerational pointers: pointers located in an old-generation block
that points to a new-generation block
- Incremental GC: let the garbage collector run concurrently
with the rest of the program, instead of pausing the program
« enabling predictable real-time performance

« Complicated synchronization needed between the garbage
collector and the rest of the program

Garbage Collection and Java

Parallel GC vs. Concurrent GC
- Parallel GC: a stop-the-world, multithreaded collector
- Concurrent GC: a mostly concurrent, low-pause collector

Hashcodes

- Object.hashCode(): typically the address of the heap block

Finalization

- finalize(): the GC calls it before reclaiming an object’s block

Package java.lang.ref

- GC cannot reclaim strong references

- GC can reclaim soft reference (REAERTH
reference (—B &INRD[E

ReferenceQueuer,

B{730)

(FFERE LIRS

A5

a|7), weak

IK7), phantom reference (JNZ

FHIRTRIERIUTEIR

https://docs.oracle.com/javase/10/docs/api/java/lang/ref/package-summary.html

AFLZE R EREEHNERE

Go g|e 2020 454
W 155 ARE
2t 30.85 {Z3E5T

5L 27 169 Zikit T2
e=d 1 =it 48.56 (25T

{ TR A F-BeRN R 1 RE

[20220413] How Google plans to use 100%
carbon-free energy in its data centers by 2030

Google Environmental Report 2021

RIZSASRENERS
RiEFERIKHE

FIAEEREMMM) . C. C++%
FEooT LA, Sanitizers> ke &
Tt

FRBPEEIZRHEE (OTC) : RustZ®H
E;rrowﬁ‘ﬁﬁ?ﬁ'fi (BREER ST 57
BIRUSEE(GC): Java, Go, Python,
JavaScripts

FARFeRIEBIEITE, GoaidmFE
iz T

SIITE (RC) : Swift
Far=gelE, {BFMRCA

https://www.gstatic.com/gumdrop/sustainability/google-2021-environmental-report.pdf
https://www.cnbc.com/2022/04/13/google-data-center-goal-100percent-green-energy-by-2030.html

@ 8 <

1972 1980 1995 2009
R RIE HHSADT WWW SitE
($5%t/cast) MEEe VM DevOps<>

S 1T

RFRIES+MMM RFRIES+GC

MHBES HRIR, <FHEFS FRIR, wiER. GRS
TEeE ge BRIE ZAFRLEESD?
| LLVM
25 Eix JLan Arheadg,;(?f-
=443 2
SHTE : g '”le I GolLLV
sul FalconzZ<E

COMPILER INFRASTRUCTURE Jng)Hi':E-I:lxz M

https://github.com/polyglot-compiler/JLang
https://www.azul.com/products/components/falcon-jit-compiler/
https://go.googlesource.com/gollvm/

THANKS

