
Memory Management

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa

http://staff.ustc.edu.cn/~yuzhang/fpl

Outline

• Memory Management and Problems

• Some Solutions

- Coding standards

- Region-based memory management

- Smart pointer

- Garbage collection

• Rust Language

References

• Region-based memory management

• Smart Pointers in C++

• Garbage Collection, Richard Jones

• Inside the JVM

• Rust: book, github

https://en.wikipedia.org/wiki/Region-based_memory_management
http://en.cppreference.com/w/cpp/memory
https://www.cs.kent.ac.uk/people/staff/rej/gc.html
https://www.artima.com/insidejvm/resources/index.html
https://www.rust-lang.org/
https://doc.rust-lang.org/book/second-edition/index.html
https://github.com/rust-lang/rust/

Memory Management

• Static data section

• Stack: stack frame

• Heap: store dynamically-allocated objects

- C: malloc, free

• Glibc’s ptmalloc, Doug Lea’s dlmalloc

• Efficient concurrent memory allocator

- jemalloc, TBBmalloc, TCMalloc (gperftools)

- Java: new、Garbage Collection

• Richard Jones's the Garbage Collection Page

http://www.malloc.de/en/index.html
http://g.oswego.edu/dl/
http://www.canonware.com/jemalloc/
https://www.threadingbuildingblocks.org/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://code.google.com/p/gperftools/
http://www.cs.kent.ac.uk/people/staff/rej
http://www.cs.kent.ac.uk/people/staff/rej/gc.html

Memory Management Problems

• Safety

- Do not access freed memory

• Dangling references to Stack frames or Heap

• double free, use after free

 Abnormal program termination, denial-of-service attacks

- Free dynamically allocated memory when no longer needed

• Memory leak

 denial-of-service attack

- Allocate and copy structures containing a flexible array

member dynamically

Undefined behavior

- Only free memory allocated dynamically

 Depend on the implementation

Memory Management Problems

• Safety (cont’d)

- Allocate sufficient memory for an object

Buffer overflows, the execution of arbitrary code vulnerabilities

- ……

• Performance

- Memory hierarchy

• Program locality (temporal, spatial)

- Memory allocator

• VM-intensive: frequent memory allocation and deallocation

Some Solutions

• Coding standards

• Region-based memory management

• Smart pointers (modern C++)

• Garbage collection

Coding Standards

• SEI CERT Coding Standards (CMU)

- Android、C、C++、Java、Perl

- Safety and Security Coding Standards for C，2016

Author: Robert C. Seacord (SEI, CMU)

• Securing Coding in C and C++, 2nd Edition, 2013

• C安全编码标准，译著，机械工业出版社，2015

• C++ Core Guidelines，
- Editors：Bjarne Stroustrup，Herb Sutter

• MISRA publications (UK): C/C++

- MISRA: Motor Industry Software Reliability Association

• MITRE (USA)

- Common Weakness Enumeration 公共弱点（缺陷）枚举

- Common Vulnerabilities and Exposures 公共漏洞和暴露

https://wiki.sei.cmu.edu/confluence/
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard?src=spaceshortcut
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/display/perl/SEI+CERT+Perl+Coding+Standard
http://dx.doi.org/10.1049/etr.2016.0024
http://www.informit.com/authors/bio/3312572e-d904-45d5-afcd-389361c0f5af
http://www.informit.com/store/secure-coding-in-c-and-c-plus-plus-9780321822130
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://www.stroustrup.com/
http://herbsutter.com/
https://www.misra.org.uk/
https://www.misra.org.uk/Publications/tabid/57/Default.aspx
https://www.mitre.org/
http://cwe.mitre.org/
http://cve.mitre.org/

Region-based Memory Management

• Region (or zone, arena, memory context)

- A collection of allocated objects that can be efficiently

deallocated all at once

 time performance

• History and concepts

- 1967 Douglas T. Ross's AED Free Storage Package

- [SPP 1990] David R. Hanson, explicit regions in C

- Used in Apache HTTP Server, PostgreSQL, etc.

but, do not provide memory safety

 Memory leak, dangling pointer

https://dl.acm.org/citation.cfm?id=363546
https://doi.org/10.1002/spe.4380200104
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Hanson,+David+R

Region-based Memory Management

• Region inference  safe memory allocation

- [POPL1988]Ruggieri and Murtagh

• a region is created at the beginning of each function and

deallocated at the end

• use data flow analysis to determine a lifetime for each static

allocation expression, and assign it to the youngest region

- [POPL 1994] Tofte and Talpin

Polymorphic region type and region calculus, used in SML

• Extended lambda calculus including regions

e1 at ρ: Compute the result of the expression e1 and store it in region ρ;

letregion ρ in e2 end: Create a region and bind it to ρ; evaluate e2; then

deallocate the region.

https://dl.acm.org/citation.cfm?id=73585
https://dl.acm.org/citation.cfm?doid=363534.363546

Region-based Memory Management

• Generalization to Other PLs

- C

• Cyclone [PLDI 2002], RC, Control-C[CASES 2002]

- Java

• Real time Java, combined with ownership types

- Logic PLs such as Prolog, Mercury

• Disadvantages

- A large proportion of dead data in large regions

- Shorter-lifetime regions: difficulty in region inference

https://dl.acm.org/citation.cfm?id=512563
http://www.barnowl.org/research/rc/
https://dl.acm.org/citation.cfm?id=581678

Smart Pointers

Enable automatic, exception-safe, object lifetime management

• Dynamic memory management in C++

- Pointer categories, implemented as class templates

An object can only be referenced by a single smart pointer

• auto_ptr(removed in C++17): strict object ownership semantics

• unique_ptr(C++11): unique object ownership semantics

• shared_ptr(C++11): shared object ownership semantics

- Reference counted pointer

• weak_ptr(C++11): weak reference to an object managed by

std::shared_ptr, call wp.lock() to check whether the object is deleted

- Used to break circular references of std::shared_ptr.

• Smart Pointers - What, Why, Which?

http://en.cppreference.com/w/cpp/memory
http://en.cppreference.com/w/cpp/memory/auto_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://ootips.org/yonat/4dev/smart-pointers.html

Garbage Collection

• Garbage

- allocated space that is no longer usable by the program

• x is never used again and becomes garbage

• Reachability

- Roots: pointers that appear in the env.

- GC: reclaims blocks that are no longer reachable from a set of

roots

- Heap: a directed graph in which the nodes are blocks of memory

and the edges are the pointers between these blocks.

- Reachability: computed as a graph traversal

let x = [[1; 2; 3]; [4]] in

let y = [2] :: List.tl x in y

Why Garbage Collection (GC)

• Eliminate a common source of defects

- Storage leak

- Dangling pointer

• Improve abstraction and modularity

- A class need not include code to deal with storage

deallocation

• Programs written in OCaml and Java require GC

GC Techniques

• Requirements

- Should identify most garbage

- Anything it identifies as garbage must be garbage

- Should impose a low added time overhead

- Program pauses made by GC should be short

• Basic GC Techniques

- Reference counting

- Mark-and-sweep: mark all reachable objects from a set of

roots, and sweep through memory, deallocating all unmarked

objects

- Copying collection: copy - move reachable objects from the

heap to a new area called the to-space

- Mark-and-compact: compact – compute forwarding addresses,

update pointers and relocate blocks

Identifying Pointers

• Way1: Reserve a tag bit in each word

- Use up 3% memory

- Limit the range of integers (and pointers): a 32-bit machine

can address about 2GB (231)

- Small run-time cost: arithmetic or dereference

• Way2: Have the compiler record info that the GC can

query to find out the types of locations

- More complicated: tightly coupling the GC and compiler

• Way3: GC considers memory unreachable only if there

is nothing that looks like it might be a pointer to it

- Work well in practice: integers are small, pointers look like

large integers

Other Issues on GC

• Traversing the heap

- Recursive traversal: hard to do when low on free space

- Traversal without recursion or external stack:

• Program pauses

- Generational GC: new and old (long-lived) generations,

minor GC (only scan new generation), major GC

• Intergenerational pointers: pointers located in an old-generation block

that points to a new-generation block

- Incremental GC: let the garbage collector run concurrently

with the rest of the program, instead of pausing the program

• enabling predictable real-time performance

• Complicated synchronization needed between the garbage

collector and the rest of the program

Garbage Collection and Java

• Parallel GC vs. Concurrent GC

- Parallel GC: a stop-the-world, multithreaded collector

- Concurrent GC: a mostly concurrent, low-pause collector

• Hashcodes

- Object.hashCode(): typically the address of the heap block

• Finalization

- finalize(): the GC calls it before reclaiming an object’s block

• Package java.lang.ref

- GC cannot reclaim strong references

- GC can reclaim soft reference (内存不足时被回收), weak

reference (一旦发现即回收), phantom reference (加到
ReferenceQueue中，使程序可以对队列中引用的对象在回收前采
取行动)

https://docs.oracle.com/javase/10/docs/api/java/lang/ref/package-summary.html

内存安全及性能的重要性

Google Environmental Report 2021

[20220413] How Google plans to use 100%
carbon-free energy in its data centers by 2030

提升软件开发产能和软件性能

15.5 太瓦时

总计 30.85 亿美元
电

2020 全年

27,169 名软件工程师
总计 48.56 亿美元

软件
开发

编程语言及其内存安全
是选择的关键

 手工内存管理(MMM) ：C、C++等
需要静态分析工具、Sanitizers来检查
安全性

 所有权转移及检查(OTC) ：Rust等
Borrow检查很慢，但能更好地支持并
发

 垃圾收集(GC)：Java, Go, Python,

JavaScript等
开发产能最佳但运行慢; Go高效编译
和运行

 引用计数（RC）：Swift等
开发产能佳，但需破RC环

https://www.gstatic.com/gumdrop/sustainability/google-2021-environmental-report.pdf
https://www.cnbc.com/2022/04/13/google-data-center-goal-100percent-green-energy-by-2030.html

PL的内存管理演变

1972 1980

抽象ADT
性能
复用

系统编程
(指针/cast)

WWW
JVM
并行

1995 2009

云计算
DevOps等

编译型语言+GC字节码虚拟机 (即时编译 + GC)编译型语言+MMM

开发快，支持跨平台
性能差

性能高
安全性差

开发快、编译快、性能较高
更灵活广泛的表达能力？

多厂商
异构计算

JLan
g

Ahead-Of-
Time 编译

LLVM
后端

Asul Falcon云原生
JIT编译

GoLLV
M

https://github.com/polyglot-compiler/JLang
https://www.azul.com/products/components/falcon-jit-compiler/
https://go.googlesource.com/gollvm/

THANKS

