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Parallelism & Concurrency



Parallelism vs. Concurrency

• A parallel program exploits real parallel computing 

resources to run faster while computing the same 

answer.

- Expectation of genuinely simultaneous execution

- Deterministic

• A concurrent program models independent 

agents that can communicate and synchronize.

- Meaningful on a machine with one processor

- Non-deterministic



The Promise of Concurrency

• Speed

- If  a task takes time t on one processor, shouldn’t it take 

time t/n on n processors?

• Availability

- If one process is busy, another may be ready to help

• Distribution

- Processors in different locations can collaborate to solve a 

problem or work together

• Applications

- Vision, cognition etc. appear to be highly parallel activities



Concurrency on Machines

• Multiprogramming

- A single computer runs 

several programs at the 

same time

- Each program proceeds 

sequentially

- Actions of one program 

may occur between two 

steps of  another

• Multiprocessors

- Two or more processors 

may be connected

- Programs on one 

processor communicate 

with programs on another

- Actions may happen 

simultaneously



The Grand Challenge

• Making effective use of multi-core hardware is the 

challenge for programming languages now.

• Hardware is getting increasingly complicated:

- Nested memory hierarchies

- Hybrid processors: GPU + CPU, FPGA...

- Massive compute power sitting mostly idle.

• Need new programming models to program new 

commodity machines effectively.



Challenges

• Concurrent programs are harder to get right

• Some problems are inherently sequential

• Specific issues

- Communication: send or receive information

- Synchronization: wait for another process to act

- Atomicity: do not stop in the middle and leave a mess



Thread

• A multi-threaded program

- has multiple PCs (program 

counter)

- Threads share the same 

address space

- Each thread has its own 

thread control block (TCB) 

to store its state (e.g. 

register state), and its own 

stack (thread-local storage)



Why Use Threads

• Parallelism

- Use a thread per CPU to do a work on multiple CPUs

• Avoid blocking program progress due to low I/O

- Threading enables overlap of I/O with other activities 

within a single program

• much like multiprogramming did for processes across programs



Simple Thread Creation C Code

Many  possible 
execution orderings!



Why it Gets Worse: Shared Data

• Two threads perform mythread()

• Add a number to the shared counter, and do so 1e7 in a loop 

What’s the result?  counter == 20000000?

Yield different and nondeterministic results for different runs!



Problem: Uncontrolled Scheduling

• Understand the low-level code 

- gcc -g to produce instructions including symbol info.

- objdump -d main  to see the assembly code

counter = counter + 1

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

T1 T2

Race  condition: 
results depend on the timing 

execution of the code



Problem: Uncontrolled Scheduling

• Sudden unpredictable delays

- Cache misses (short)

- Page faults (long)

- Scheduling quantum used up (really long)



Wish for Atomicity

• Atomicity

- Execute an instruction sequence as a unit, “all or none” 

- Method 1: use atomic instruction

- Method 2: use atomic block supported by transaction 

memory (TM) system

• Synchronization

- Critical section

• Access shared resource, only one process/thread in the section

- lock … unlock

• Problem: deadlock

pthread_mutex_t mutex; 

...

pthread_mutex_lock(&mutex);

counter = counter + 1;

pthread_mutex_unlock(&mutex);



Locks

• Mutual exclusion

- Deadlock-free, Fairness (lock starve?), performance 

• Locking strategies: 

- Coarse-grained

- Fine-grained: protect different data with different locks

• How to build a lock?

- Hardware primitives

- OS support



Peterson’s Algorithm [1981]

int flag[2];
int turn;
void init() {

flag[0] = flag[1] = 0; // 1->thread wants to grab lock
turn = 0; // whose turn? (thread 0 or 1?)

}
void lock() {

flag[self] = 1; // self: thread ID of caller
turn = 1 - self; // make it other thread’s turn
while ((flag[1-self] == 1) && (turn == 1 - self))

; // spin-wait
}
void unlock() {

flag[self] = 0; // simply undo your intent
}



Mutual Exclusive Primitives 

• Atomic test-and-set

- Instruction atomically reads and writes some location

- Common hardware instruction

- Used to implement a busy-waiting loop to get mutual 

exclusion

• Semaphore

- Avoid busy-waiting loop

- Keep queue of waiting processes

- Scheduler has access to semaphore, process sleeps

- Disable interrupts during semaphore operations

• OK since operations are short



State of the Art

• Concurrent programming is difficult

- Race conditions, deadlock are pervasive

• Languages should be able to help

- Capture useful paradigms, patterns, abstractions

• Concurrent data structures

• Parallel pattern: fork-join, pipeline, data parallelism, 

MapReduce, ...

• Other tools are needed

- Testing is difficult for multi-threaded programs

• Record-replay

• Deterministic multi-threading execution



State of the Art

• Other tools are needed

- Testing is difficult for multi-threaded programs

- Many race-condition detectors being built today

• Static detection: conservative, may be too restrictive

- LockSmith [TOPLAS, 33(1), 2011], Jeffrey S. Foster

• Run-time detection: may be more practical for now

- FastTrack [PLDI 2009], Cormac Flanagan and Stephen N. Freund

• Kernel

- DataCollider [OSDI 2010] , Microsoft

https://dl.acm.org/citation.cfm?id=1890000
http://www.cs.umd.edu/~jfoster/
https://users.soe.ucsc.edu/~cormac/papers/pldi09.pdf
https://users.soe.ucsc.edu/~cormac
http://dept.cs.williams.edu/~freund/papers.html
https://www.usenix.org/conference/osdi10/effective-data-race-detection-kernel
https://www.microsoft.com/en-us/research/publication/effective-data-race-detection-for-the-kernel/?from=http://research.microsoft.com/pubs/139266/datacollider - osdi2010.pdf


Java Concurrency

• Threads

• Communication

- Shared variables

- Method calls

• Mutual exclusion and synchronization

- Every object has a lock (inherited from class Object)

• Synchronized methods and blocks

- Synchronization operations(inherited from class Object)

• wait

• notify

public class Counter {
private long value;
public long getAndIncrement() {

synchronized {
temp = value;
value = temp + 1;

}
return temp;

}
}



Java Thread States



Interaction Between Threads

• Shared variables

- Two threads may assign/read the same variable

- Programmer responsibility

• Avoid race conditions by explicit synchronization

• Method calls

- Two threads may call methods on the same object

• Synchronization primitives

- Each object has internal lock, inherited from Object

- Synchronization primitives based on object locking



Synchronized Methods



Stack<T>: produce,consume Methods

Wait-notify

http://www1.coe.neu.edu/~kokar/java/tut.html

public synchronized void produce (T object) {
stack.add(object);
notify();

}
public synchronized T consume () {

while (stack.isEmpty()) {
try {

wait();
} catch (InterruptedExcepZon e) {  }

}
Int lastElement = stack.size() - 1;
T object = stack.get(lastElement);
stack.remove(lastElement);
return object;

}



Rust
• 16. Fearless Concurrency

use std::sync::Mutex; 

use std::thread; 

fn main() { 

let counter = Arc::new(Mutex::new(0));

let mut handles = vec![];

for _ in 0..10 {

let counter = Arc::clone(&counter);

let handle = thread::spawn( move || { 

let mut num = counter.lock().unwrap();

*num += 1;

});

handles.push(handle);

}

for handle in handles {

handle.join().unwrap(); 

}

println!("Result: {}", *counter.lock().unwrap()); 

}

Arc<T>   
atomic reference counting

https://doc.rust-lang.org/book/second-edition/ch16-00-concurrency.html


Rust: produce - consume

use std::thread; 

use std::sync::mpsc; 

fn main() {

let (tx, rx) = mpsc::channel(); 

thread::spawn(move || { 

let val = String::from("hi"); 

tx.send(val).unwrap(); 

}); 

let received = rx.recv().unwrap(); 

println!("Got: {}", received); 

}



Thread Safety

• Concept

- The fields of an object or class always maintain a valid 

state, as observed by other objects and classes, even 

when used concurrently by multiple threads

• Why is this important?

- Each method preserves state invariants

- Invariants hold on method entry and exit

- What’s “valid state”? Serializability …



Example



Example



Some Issues with RGB Class

• Read/Write conflicts

- If one thread reads while another writes,

the color that is read may not match the color before 

or after

• Write/write conflicts

- It two threads try to write different colors,

result may be a “mix” of R,G,B from two different 

colors.



How to Make Classes Thread-safe

• Synchronize critical sections

- Make fields private

- Synchronize sections that should not run concurrently

• Make objects immutable

- State cannot be changed after object is created

- Use pure functional programming for concurrency

• Use a thread-safe wrapper

- New thread-safe class has objects of original class as fields

- Wrapper class provides methods to access original class 

object



Thread-safe Wrapper



Comparison

• Synchronize critical sections

- Good default approach for building thread-safe classes

- Only way to allow wait() and notify()

• Make objects immutable

- Good if objects are small, simple abstract data type

- Pass to methods without alias issues

• Use a thread-safe wrapper

- Can give clients choice between thread-safe and non-safe

- Works with existing class that is not thread-safe



Performance Issues

• Why not just synchronize everything?

- Performance costs

• Synchronized methods are 4 to 6 times slower than non-

synchronized

- Risks of deadlock from too much locking

• Performance in general

- Unnecessary blocking and unblocking of threads can 

reduce concurrency

- Immutable objects can be short-lived, increase 

garbage collector



Memory Models



Why Memory Models

C1 || C2 Compiler

Memory

Result



Why Memory Models

C1 || C2 Compiler

Memory

Result

Which reads see 
which write?



Sequential Consistent (SC) Model

. . .

Memory

Interleaving semantics:

P1 P2 P3 Pn

[Lamport 1979]



The need of weak memory models

SC model prohibits many optimization:

x = 1;
r1 = y;

y = 1;
r2 = x;

r1 = r2 = 0?

Initially:  x = y = 0

Impossible in SC model, but allowed in x86 or Java.

r1 = y;
x = 1

y = 1;
r2 = x;

Weak memory model allow more behaviors.



• Usability: DRF(data-race free) guarantee

- DRF programs have the same behaviors as in SC 

model

• Not too strong

- Allow common optimization techniques

- In some sense hijacked by the mainstream compiler

• Preserve type-safety and security guarantee

- Cannot be too weak

Design Criteria

Very challenging to satisfy all the requirements!



Compiler Optimization Can Be Smart

r1 = x;
r2 = x;
if (r1 == r2)

y = 2;

r3 = y;
x = r3;

Initially:  x = 0, y = 1

r1 = r2 = r3 = 2?

Must be allowed!

y = 2;
r1 = x;
r2 = r1;
if (true)

Redundant read elim.



Efforts for Java Memory Model (JMM)

• First edition in Java Language Spec

- Fatally flawed, not support key optimizations 
[Pough 2000]

• Current JMM [Manson et al. POPL 2005]

- Based on 5-year discussion and many failed proposals

- “very complex” [Adve & Boehm CACM 2010]

- Surprising behaviors and bugs [Aspinall & Sevcik TPHOLs 2007]

• Next generation: JEP 188, Doug Lea, Dec. 2013, 

updated Jun. 2016

https://dl.acm.org/citation.cfm?id=1787255
https://dl.acm.org/citation.cfm?id=1792237
http://openjdk.java.net/jeps/188
http://g.oswego.edu/


Happens-Before Order

Program execution: a set of events, and some 
orders between them.

po:

Time

T1

T2

rel

acq rel

acq

sw:

Happens-before order (hb): transitive closure of posw
po: program order    sw: synchronize-with

[Lamport 1978]



Happens-Before Order

Time

T1

T2

po:

rel

acq rel

acq

sw:

Happens-before order (hb): transitive closure of posw

w1 w2

r

w1
hb

w2 w1
hb

r

Not: w2
hb

r r
hb

w2



Happens-Before Memory Model (HMM)

Time

T1

T2

rel

acq rel

acq

w1 w2

r

Read can see 
(1) the most recent write that happens-before it, or
(2) a write that has no happens-before relation.

r could see both w1 (which happens-before it) 
and w2 (with which there is no happens-before relation)



HMM – Relaxed Ordering

x = 1;
r1 = y;

y = 1;
r2 = x;

r1 = r2 = 0?

Initially:  x = y = 0

Allowed in HMM



HMM – Examples with Global Analysis

r1 = x;
r2 = x;
if (r1 == r2)

y = 2;

r3 = y;
x = r3;

Initially:  x = 0, y = 1

r1 = r2 = r3 = 2?

Speculation: r3 reads 2

Allowed in HMM!

Justified!



HMM – Out-of-Thin-Air Read

r1 = x;

y = r1;

r2 = y;

x = r2;

r1 = r2 = 42?

Initially:  x = y = 0

Allowed in HMM!

Speculation: r1 will get 42 Justified!

May break the security and 
type-safety of Java!



r1 = x;
r2 = x;
if (r1 == r2)

y = 2;

r3 = y;
x = r3;

r1 = r2 = r3 = 2?

Speculation: r3 reads 2

r1 = x;

y = r1;

r2 = y;

x = r2;

r1 = r2 = 42?

Speculation: r1 will get 42

Good speculation. 
Should allow!

Bad speculation. 
Disallow!



Java Memory Model

• Semantics of multithreaded access to shared memory

- Competitive threads access shared data

- Can lead to data corruption

- Need semantics for incorrectly synchronized programs

• Determines

- Which program transformations are allowed

• Should not be too restrictive

- Which program outputs may occur on correct 

implementation

• Should not be too generous

http://www.cs.umd.edu/users/pugh/java/memoryModel/jsr-133-faq.html

http://www.cs.umd.edu/users/pugh/java/memoryModel/jsr-133-faq.html


Memory Hierarchy

Old memory model placed complex constraints on read, load, store, etc.



Race Conditions

• “Happens-before” order

- Transitive closure of program order and synchronizes-with 

order

• Conflict

- An access is a read or a write

- Two accesses conflict if at least one is a write

• Race condition

- Two accesses form a data race if they are from different 

threads, they conflict, and they are not ordered by 

happens-before



Race Conditions

• “Happens-before” order

- Transitive closure of program order and synchronizes-with 

order

• Conflict

- An access is a read or a write

- Two accesses conflict if at least one is a write

• Race condition

- Two accesses form a data race if they are from different 

threads, they conflict, and they are not ordered by 

happens-before

Subtle issue: program order 

as written, or as compiled

and optimized?



Memory Model Question

• How should the compiler and run-time system be 

allowed to schedule instructions?

• Possible partial answer

- If instruction A occurs in Thread 1 before release of lock, 

and B occurs in Thread 2 after acquire of same lock, then 

A must be scheduled before B

• Does this solve the problem?

- Too restrictive: if we prevent reordering in Thread 1,2

- Too permissive: if arbitrary reordering in threads

- Compromise: allow local thread reordering that would be 

OK for sequential programs



JMM – Surprising Results

C1;

lock l;
C2;

unlock l;

C3

lock l;
C1;
C2;

unlock l;

C3

lock l;
C1;

unlock l;
lock l;

C2;
unlock l;

C3
Adding more 
synchronization may 
increase behaviors!



JMM – Surprising Results (2)

C1; C3C2;
C1;
C2;

C3;

Inlining threads may increase behaviors!

More:

Re-ordering independent operations may change 
behaviors.

Adding/removing redundant reads may change 
behaviors.



Instruction Order and Serializability

• Compilers can reorder instructions

- If two instructions are independent, do in any order

- Take advantage of registers, etc.

• Correctness for sequential programs

- Observable behavior should be same as if program 

instructions were executed in the order written

• Sequential consistency for concurrent programs

- If program P has no data races, then memory model 

should guarantee sequential consistency

- Question: what about programs with races?

• Much of complexity of memory model is for reasonable behavior 

for programs with races (need to test, debug, …)



Happens-Before Orderings

• Starting a thread happens-before the run method 

of the thread

• The termination of a thread happens-before a join 

with the terminated thread

• Volatile fields

• Many util.concurrent methods set up happens-

before orderings

- Placing an object into any concurrent collection 

happen-before the access or removal of that element 

from the collection



Example: Concurrent Hash Map

• Implements a hash table

- Insert and retrieve data elements by key

- Two items in same bucket placed in linked list

- Allow read/write with minimal locking

• Tricky: https://www.ibm.com/developerworks/java/library/j-jtp08223/

“ConcurrentHashMap is both a very useful class for many concurrent 

applications and a fine example of a class that understands and 

exploits the subtle details of the JMM to achieve higher performance.

ConcurrentHashMap is an impressive feat of coding, one that 

requires a deep understanding of concurrency and the JMM. Use it, 

learn from it, enjoy it -- but unless you're an expert on Java 

concurrency, you probably shouldn't try this on your own. ”

https://www.ibm.com/developerworks/java/library/j-jtp08223/


ConcurrentHashMap

• Concurrent operations

- Read: no problem

- Read/write: OK if different lists

- Read/write to same list: clever tricks sometimes avoid locking



ConcurrentHashMap Tricks

• Immutability

- List cells are immutable, except for data field

=>read thread sees linked list, even if write in progress

• Add to list

- Can cons to head of list, like Lisp lists

• Remove from list

- Set data field to null, rebuild list to skip this cell

- Unreachable cells eventually garbage collected



Problem with Language Specification

• Java Lang. Spec. allows access to partial objects

Thread created within constructor can access the object not fully constructed



Nested Monitor Lockout Problem

• Background: wait and locking

- wait and notify used within synchronized code

• Purpose: make sure that no other thread has called method 

of same object

- wait within synchronized code causes the thread to 

give up its lock and sleep until notified

• Allow another thread to obtain lock and continue processing

• Problem

- Calling a blocking method within a synchronized 

method can lead to deadlock



Nested Monitor Lockout Example



Preventing Nested Monitor Deadlock

• Two programming suggestions

- No blocking calls in synchronized methods, or

- Provide some non-synchronized method of the 

blocking object

• No simple solution that works for all programming 

situations



Reading

http://www.cs.umd.edu/~pugh/java/memoryModel/

http://openjdk.java.net/jeps/188

Foundations of the C++ concurrency memory model，
Boehm & Adve, PLDI 2008

http://www.cs.umd.edu/~pugh/java/memoryModel/
http://openjdk.java.net/jeps/188
https://dl.acm.org/citation.cfm?id=1375591

