
《程序语言设计和程序分析》

Overloading and Type Classes
(Adhoc Polymorphism)

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

 D. Rémy(Cambium project-team): Type systems for PLs

 Chapter 7 Overloading

 [Concepts in PLs] Revised Chapter 7 Type Classes

 PFPL

 Chapter 44 Type Abstractions and Type Classes

 Papers

 [ESOP 1988] Parametric Overloading in Polymorphic PLs

 [POPL 2007] Modular Type Classes

 Implementation

 Implementing, and Understanding Type Classes

 Implementing type classes as OCaml modules

 Types and Propositions:

 [TPHOLs 1997] Type classes and overloading in higher-order logic

Yu Zhang: Overloading and Type Classes

References

http://cristal.inria.fr/~remy/
http://cambium.inria.fr/
http://cristal.inria.fr/~remy/mpri/cours.pdf
https://staff.ustc.edu.cn/~yuzhang/fopl/readings/concepts-ch7r.pdf
http://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_9.pdf
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://okmij.org/ftp/Computation/typeclass.html
http://blog.shaynefletcher.org/search/label/OCamlhttp:/blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
https://link.springer.com/chapter/10.1007/BFb0028402

 Parametric Polymorphism vs. Overloading

Why Overloading

Overloading Mechanisms

 Static / dynamic resolution of overloading

 Parametric Overloading and Type Classes

also known as bounded polymorphism, or type classes

 Dictionary passing

 Macro

 Intentionally type analysis

Yu Zhang: Overloading and Type Classes

Outline

 Parametric polymorphism

 Single algorithm for any type

If 𝑓: 𝑡 → 𝑡, then 𝑓: int → int, 𝑓: bool → bool, …

Overloading

 Single symbol may refer to different algorithms/operations.

 Each algorithm may have different unrelated type.

 Choice of algorithm determined by type context.

 Parametric overloading

 The types being instances of a single type expression over some extended set of

type variables

Yu Zhang: Overloading and Type Classes

Parametric Polymorphism vs. Overloading

int int int float flo has types , ,

but not for any .

at float

X X X X

Many useful functions are not parametric

Can list membership work for any type?

Can list sorting work for any type?

Yu Zhang: Overloading and Type Classes

Why Overloading ?

member : . list boolX X X

sort : . list listX X X

Many useful functions are not parametric

Can list membership work for any type?

 No! Only for types X that support equality.

Can list sorting work for any type?

 No! Only for types X that support ordering.

Yu Zhang: Overloading and Type Classes

Why Overloading ?

member : . list boolX X X

sort : . list listX X X

 Static overloading: static resolution strategy

 Simple semantics: meaning determined statically

 Does not increase expressiveness

 Reduce verbosity, increase modularity and abstraction

Dynamic overloading

 meaning determined dynamically

 Increase expressiveness

 Extra mechanism to support the dynamic resolution

 Require full or partial type info., or some type-related info.

Yu Zhang: Overloading and Type Classes

Variants of Overloading

Overloading Mechanisms

Approach 1:

A function containing overloaded symbols => multiple functions

 e.g. double x = x + x

defines two versions: Int -> Int and Float -> Float

But, how to resolve

doubles (x, y, z) = (double x, double y, double z)

 8 possible versions!

=> Exponential growth in number of versions

Yu Zhang: Overloading and Type Classes

Static Overloading

Approach 2 (used in SML-MLton):

restrict the definition, i.e., specify one of the possible versions as the meaning

 e.g. double x = x + x => double: Int -> Int

double 3 double 3.2

If you want double: Float -> Float, you need define the function explicitly specifying type.

 In Java

 Overloading a method in a class => static resolution

 But if an argument has a runtime type that is subtype of the compile-time time

=> dynamic resolution

Yu Zhang: Overloading and Type Classes

Static Overloading

http://mlton.org/

Resolution with a type passing semantics

Runtime type dispatch using a general typecase construct

 High runtime cost of typecase unless type patterns are significantly restricted

Resolution with a type erasing semantics

To avoid the expensive cost of typecase,

restrict the overloaded functions by using tags.

can be elaborated into

Yu Zhang: Overloading and Type Classes

Dynamic Overloading

let . in []f x x x

let (). . in []f x x x

 is then elaborated t1.0 (.o 1.0)f f

e.g. Dictionary passing

Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==’ does not work in general

Yu Zhang: Overloading and Type Classes

Parametric Overloading

member [] False

member (:) () || member

member [1, 2, 3] 32

member "Haskell" 'k'

y

x xs y x y xs y

Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

(==) :: t -> t-> Bool

thus member is polymorphic, member:: [t] -> t-> Bool

If t does not provide a definition of equality, then there is a runtime error when

equality applied to a value of type t.

=> Violate principle of abstraction

Yu Zhang: Overloading and Type Classes

Parametric Overloading

Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way

(used in current SML)

(==) :: ''t -> ''t-> Bool ''t indicate t is an eqtype variable

member has precise type, i.e. [''t] -> ''t -> Bool

if t does not support equality, there will be a static error

Yu Zhang: Overloading and Type Classes

Parametric Overloading

Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way

(used in current SML)

(==) :: ‘’t -> ‘’t-> Bool ‘’t indicate t is an eqtype variable

member has precise type, i.e. [‘’t] -> ‘’t -> Bool

if t does not support equality, there will be a static error

Yu Zhang: Overloading and Type Classes

Parametric Overloading

Equality is a special case,

how can we generalize overloading?

 Type classes are a mechanism in Haskell

 Generalize eqtype to user-defined collections of types (called type classes)

member:: (a-> a-> Bool) -> [a] -> a-> Bool

member cmp [] y = False

member cmp (x : xs) y = (cmp x y) || member cmp xs y

 Dictionary-passing style implementation [ESOP1988]

 Type-class declaration – dictionary

 Name of a type class method – label in the dictionary

 Parametric overloading

 pass the dictionary to the function

Yu Zhang: Overloading and Type Classes

Type Classes

https://okmij.org/ftp/Computation/typeclass.html

https://link.springer.com/content/pdf/10.1007/3-540-19027-9_9.pdf
https://okmij.org/ftp/Computation/typeclass.html

type 'a show = {show: 'a ->
string}

let show_bool : bool show =
{show = function

| true -> "True“
| false -> "False"}

let show_int : int show =
{show = string_of_int}

class Show a where
show :: a -> String

instance Show Bool where
show True = "True“
show False = "False“

instance Show Int where
show x = Prelude.show x --

internal

Haskell

Yu Zhang: Overloading and Type Classes

Examples: Dictionary Passing

OCaml

In Haskell
• Show a is type class
• Show Bool and Show

Int are instances of
Show.

In OCaml
• 'a show is dictionary
• show_bool and

show_int are labels in
the dictionary.

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

type 'a show = {show: 'a -> string}

let show_bool : bool show =
{show = function

| true -> "True“
| false -> "False"}

let show_int : int show =
{show = string_of_int}

class Show a where
show :: a -> String

instance Show Bool where
show True = "True“
show False = "False“

instance Show Int where
show x = Prelude.show x -- internal

Haskell

Yu Zhang: Overloading and Type Classes

Examples: Dictionary Passing

OCaml

• print is a restricted polymorphic function, and it applies to values whose types are showable
• In Haskell: Show Bool and Show Int are members of Show class.
• In OCaml: the evidence of being showable, the dictionary, is the explicit argument.

print :: Show a => a -> IO ()
print x = putStrLn $ show x

test_print :: IO ()
test_print = print True

let print : 'a show -> 'a -> unit =
fun {show=show} x -> print_endline (show x)

let test_print : unit =
print show_bool true

Define an overloaded function print:

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

 Type class whose methods have a different of overloading: e.g. Num

An instance with a constraint:

e.g. a Show instance for all list types [a] where the element type a is also restricted to

be a member of Show.

show_list: ‘a show -> ‘a list show (OCaml)

A class of comparable types

e.g. class Eq a (Haskell) or type 'a eq (OCaml)

 Polymorphic recursion

See http://okmij.org/ftp/Computation/typeclass.html#dict

Yu Zhang: Overloading and Type Classes

More Examples

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

 Type classes as macros

 Static monomorphization (compile-time)

 Take the type-checked code with type classes

 Generate code with no type classes and no bounded polymorphism

vs. C++ templates ? Template instantiation may produce ill-typed code

 Intentional type analysis (run-time)

Choose the appropriate overloading operation at run-time

See http://okmij.org/ftp/Computation/typeclass.html#dict

Yu Zhang: Overloading and Type Classes

Other Implementations

http://okmij.org/ftp/Computation/typeclass.html

THANKS

• Rust支持trait，这是具有一致性的有限形式的类型类

• 在Scala中，类型类是编程惯例，可以用现存语言特征

比如隐式参数来实现，本身不是独立的语言特征

Yu Zhang: Overloading and Type Classes

https://zh.m.wikipedia.org/wiki/Rust
https://zh.m.wikipedia.org/wiki/Traits_(%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6)
https://zh.m.wikipedia.org/wiki/Scala
https://zh.m.wikipedia.org/w/index.php?title=%E7%BC%96%E7%A8%8B%E6%83%AF%E4%BE%8B&action=edit&redlink=1

