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Parametric Polymorphism vs. Overloading

Why Overloading

Overloading Mechanisms

B Static / dynamic resolution of overloading

Parametric Overloading and Type Classes

also known as bounded polymorphism, or type classes
B Dictionary passing
B Macro

B [ntentionally type analysis
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Parametric polymorphism

B Single algorithm for any type
If f:t - t,then f:int - int, f: bool = bool, ...

Overloading
B Single symbol may refer to different algorithms/operations.

B Each algorithm may have different unrelated type.
B Choice of algorithm determined by _type context.

Parametric overloading

B The types being instances of a single type expression over some extended set of
type variables
+ has types int — int — int, float — float — float,

but not X - X — X for any X.
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Many useful functions are not parametric

Can list membership work for any type?

member : V.X.X list > X — bool

Can list sorting work for any type?

sort : VX.X list > X list
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Many useful functions are not parametric

Can list membership work for any type?
member : V.X.X list > X — bool
B No! Only for types X that support equality.

Can list sorting work for any type?

sort : VX.X list > X list
B No! Only for types X that support ordering.
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Static overloading: static resolution strategy

B Simple semantics: meaning determined statically
B Does not increase expressiveness

B Reduce verbosity, increase modularity and abstraction

Dynamic overloading

B meaning determined dynamically
B Increase expressiveness

B Extra mechanism to support the dynamic resolution

[0 Require full or partial type info., or some type-related info.
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Approach 1:
A function containing overloaded symbols => multiple functions

[0 e.g. double x = x + x
defines two versions: Int -> Int and Float -> Float

But, how to resolve

doubles (X, y, z) = (double x, double y, double z)
[J 8 possible versions!

=> Exponential growth in number of versions
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Approach 2 (used in SML-MLton):

restrict the definition, i.e., specify one of the possible versions as the meaning
B e.g. double x=x+x =>double: Int-> Int
double 3 v/ double 3.2 3¢
If you want double: Float -> Float, you need define the function explicitly specifying type.
In Java

B Overloading a method in a class => static resolution

B But if an argument has a runtime type that is subtype of the compile-time time
=> dynamic resolution
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Resolution with a type passing semantics

Runtime type dispatch using a general typecase construct

B High runtime cost of typecase unless type patterns are significantly restricted

Resolution with a type erasing semantics

To avoid the expensive cost of typecase,
restrict the overloaded functions by using tags.

let f=Ax.x+x in [ | e.g. Dictionary passing
can be elaborated into

let f=A(+).Az.c+xin ||
f 1.0 is then elaborated to f (+.) 1.0
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Overloading Equality

1. Equality was overloaded as an operator.
But member using ‘==" does not work in general

member | | y = False

member (x : xs) y = (x == y) || member zs y
member [ 1, 2, 3] 32 v/

member "Haskell" 'k' 3¢
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Overloading Equality

1. Equality was overloaded as an operator.
But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)
(==) ::t->t-> Bool
thus member is polymorphic, member:: [t ] -> t-> Bool

If t does not provide a definition of equality, then there is a runtime error when
equality applied to a value of type t.

=> Violate principle of abstraction

Yu Zhang: Overloading and Type Classes
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Overloading Equality

1. Equality was overloaded as an operator.
But member using ‘==‘ does not work in general

Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way
(used in current SML)

(==) :: "t -> "t-> Bool "t indicate t Is an eqtype variable
member has precise type, i.e. [ "t ] -> "t -> Bool

If t does not support equality, there will be a static error

Yu Zhang: Overloading and Type Classes
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Overloading Equality

1. Equality was overloaded as an operator.
But member using ‘==‘ does not work in general

Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way
(used in current SML)

(==) :: "t -> "t-> Bool “t indicate t is an eqtype variable
member has precise type, i.e. [ "'t]-> "t -> Bool

If t does not support equality, there will be a static error

Equality is a special case,

how can we generalize overloading?
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Type classes are a mechanism in Haskell

B Generalize eqtype to user-defined collections of types (called type classes)
member:: (a-> a-> Bool) -> [a] -> a-> Bool
member cmp [] y = False

member cmp (X : Xs) y = (cmp X y) || member cmp xsy

Dictionary-passing style implementation [ESOP1988]
B Type-class declaration — dictionary

B Name of a type class method — label in the dictionary
B Parametric overloading

[0 pass the dictionary to the function

https://okmij.org/ftp/Computation/typeclass.html
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Haskell OCaml

class Show a where type '‘a show = {show: 'a ->
show :: a -> String string}

instance Show Bool where let show_bool : I?ool show =
show True = "True " {show = function

1

show False = "False ” | true -> "True
| false -> "False"}
instance Show Int where

show x = Prelude.show x -- let show_int : int show =
internal {show = string_of_int}
In Haskell In OCaml
« Show ais type class « 'ashow is diCtionary
« Show Bool and Show - show_bool and
Int are instances of show_int are labels in
Show. the dictionary.
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Haskell OCaml

class Show a where type 'a show = {show: 'a -> string}
show :: a -> String

let show_bool : bool show =

instance Show Bool where {show = function
show True = "True “ | true -> "True
show False = "False | false -> "False"}

u

"

instance Show Int where let show int : int show =
show x = Prelude.show x -- internal {show = string_of_int}

Define an overloaded function print:

print :: Show a => a -> 10 () let print : 'a show -> 'a -> unit =

print X = putStrLn $ show X fun {show=show} x -> print_endline (show x)
test_print :: 10 () let test_print : unit =

test_print = print True print show_bool true

* printis a restricted polymorphic function, and it applies to values whose types are showable
* In Haskell: Show Bool and Show Int are members of Show class.
* In OCaml: the evidence of being showable, the dictionary, is the explicit argument.
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Type class whose methods have a different of overloading: e.g. Num

An Instance with a constraint:

e.g. a Show instance for all list types [a] where the element type a is also restricted to
be a member of Show.

show _list: ‘a show -> ‘a list show (OCaml)

A class of comparable types
e.g. class Eq a (Haskell) or type 'aeqg (OCaml)

Polymorphic recursion

See http://okmij.org/ftp/Computation/typeclass.html#dict
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Type classes as macros

B Static monomorphization (compile-time)
[J Take the type-checked code with type classes
[0 Generate code with no type classes and no bounded polymorphism

vs. C++ templates ? Template instantiation may produce ill-typed code

Intentional type analysis (run-time)

Choose the appropriate overloading operation at run-time

See http://okmij.org/ftp/Computation/typeclass.html#dict
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