
《程序语言设计和程序分析》

Subtyping
(Dynamic Polymorphism)

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

 PFPL

 Chapter 24 Structural Subtyping

 Chapter 27 Inheritance

 TAPL (pdf)

 Chapter 15 Subtyping

 [Concepts in PLs]

References

Yu Zhang: Subtyping 2

http://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf
http://www.cis.upenn.edu/~bcpierce/tapl/index.html
https://www.asc.ohio-state.edu/pollard.4/type/books/pierce-tpl.pdf
http://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

 Interface

 The external view of an object

 Subtyping

 Relation between interfaces

 Implementation

 The internal representation of an object

 Inheritance

 Relation between implementations

Subtyping and Inheritance

Yu Zhang: Subtyping 3

 Pure dynamically-typed OO languages

 Object implementation and run-time lookup

 Class-based languages (Smalltalk)

 Prototype-based languages (Self, JavaScript)

 Statically-typed OO languages

 C++

 using static typing to eliminate search

 problems with C++ multiple inheritance

 Java

 using Interfaces to avoid multiple inheritance

Various Object-Oriented Languages

Yu Zhang: Subtyping 4

 If interface A contains all of interface B, then A objects can also be

used B objects.

Smalltalk: Subtyping

Point ColorPoint

x:y: x:y:

moveDx:Dy: moveDx:Dy:

x x

y y

draw color

draw

ColorPoint interface contains Point

ColorPoint is a subtype of Point

Yu Zhang: Subtyping 5

 Smalltalk/JavaScript subtyping is implicit

 Not a part of the programming language

 Important aspect of how systems are built

 Inheritance is explicit

 Used to implement systems

 No forced relationship to subtyping

Subtyping and Inheritance

Yu Zhang: Subtyping 6

C++ is an object-oriented extension of C, Bell Labs

Object-oriented features

 Classes

 Objects, with dynamic lookup of virtual functions

 Inheritance

 Single and multiple inheritance

 Public and private base classes

 Subtyping

 Tied to inheritance mechanism

 Encapsulation

 Public, private, protected visibility

C++

Yu Zhang: Subtyping 7

Member functions are either

 Virtual, if explicitly declared or inherited as virtual

 Non-virtual otherwise

 Virtual functions

 Accessed by indirection through ptr in object

 May be redefined in derived (sub) classes

Non-virtual functions

 Are called in the usual way. Just ordinary functions.

 Cannot redefine in derived classes (except overloading)

 Pay overhead only if you use virtual functions

C++: Virtual functions

Yu Zhang: Subtyping 8

 Subtyping in principle

 A <: B if every A object can be used without type error whenever a B object is

required

C++: A <: B if class A has public base class B

 Independent classes not subtypes

C++ Subtyping

Yu Zhang: Subtyping 9

 1990-95 James Gosling and others at Sun

 Syntax similar to C++

Object

 has fields and methods

 is allocated on heap, not run-time stack

 accessible through reference (only ptr assignment)

 garbage collected

Dynamic lookup

 Similar in behavior to other languages

 Static typing => more efficient than Smalltalk

 Dynamic linking, interfaces => slower than C++

Java

Yu Zhang: Subtyping 10

 Similar to Smalltalk, C++

 Subclass inherits from superclass

 Single inheritance only (but Java has interfaces)

 Some additional features

 Conventions regarding super in constructor and finalize methods

 Final classes and methods cannot be redefined

Inheritance

Yu Zhang: Subtyping 11

C++ multiple inheritance

 A single class may inherit from two base classes

 Constraints of C++ require derived class representation to resemble all base classes

 Java interfaces

 A single class may implement two interfaces

 No inheritance (of implementation) involved

 Java implementation (discussed later) does not require similarity between class

representations

Interfaces vs Multiple Inheritance

Yu Zhang: Subtyping 12

 Subtyping judgement 𝜏′ <: 𝜏



 Subsumption rule

Numeric types

 int <: rat <: real

 Product types，Sum types

Subtyping Principles

Γ ⊢ 𝑒: 𝜏′ 𝜏′<: 𝜏

Γ ⊢ 𝑒: 𝜏

𝜏′′ <: 𝜏′ 𝜏′<: 𝜏

𝜏′′ <: 𝜏
𝜏 <: 𝜏

𝐽 ⊆ 𝐼

𝜏𝑖 𝑖∈𝐼 <: 𝜏𝑗 𝑗∈𝐽

Width subtyping
(较宽积类型是较窄积类型的子类型)

𝐽 ⊆ 𝐼

𝜏𝑖 𝑖∈𝐼 <: 𝜏𝑗 𝑗∈𝐽

Yu Zhang: Subtyping 13

 Variance:

 Product and sum types: Depth subtyping (Covariance)

 Partial function types

 covariant in its range.

 contravariant in its domain position

Subtyping Principles

𝜏𝑖
′ <: 𝜏𝑖(∀𝑖 ∈ 𝐼)

𝜏𝑖
′
𝑖∈𝐼

<: 𝜏𝑖 𝑖∈𝐼

𝜏𝑖
′ <: 𝜏𝑖(∀𝑖 ∈ 𝐼)

𝜏𝑖
′
𝑖∈𝐼

<: 𝜏𝑖 𝑖∈𝐼

𝜏2
′ <: 𝜏2

𝜏1 ⇀ 𝜏2
′ <: 𝜏1 ⇀ 𝜏2

𝜏1
′ <: 𝜏1

𝜏1 ⇀ 𝜏2 <: 𝜏1
′ ⇀ 𝜏2

Yu Zhang: Subtyping 14

Quantified Types

 Substitution：If ∆, 𝑡 type ⊢ 𝜏1 <: 𝜏2, and ∆ ⊢ 𝜏 type,

then ∆ ⊢ [𝜏/𝑡]𝜏1 <: [𝜏/𝑡]𝜏2

Subtyping Principles

∆, 𝑡 type ⊢ 𝜏‘ <: 𝜏

∆ ⊢ ∀(𝑡. 𝜏‘) <: ∀(𝑡. 𝜏)

∆, 𝑡 type ⊢ 𝜏‘ <: 𝜏

∆ ⊢ ∃(𝑡. 𝜏‘) <: ∃(𝑡. 𝜏)

Yu Zhang: Subtyping 15

THANKS

Yu Zhang: Subtyping 16

