
《程序语言设计和程序分析》

Scope, Function Calls and Storage Management

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

“Concepts in Programming Languages”

 Chapter 7: Scope, Functions, and Storage Management

 http://theory.stanford.edu/people/jcm/books.html

 https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

张昱: Some PL Features: Lua

Reading

https://libro.eb20.net/Reader/rdr.aspx?b=221473
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

Scope, Function Calls and Storage Management 3

Simplified Machine Model

Control link

 Pointer to previous record on stack

 Push record on stack

 Set new control link to point to old env ptr

 Set env ptr to new record

 Pop record off stack

 Follow control link of current record to

reset environment pointer

Scope, Function Calls and Storage Management 4

Activation Record for In-link Block

Return address

 Location of code to execute on function

return

Return-result address

 Address in activation record of calling

block to store function return val

 Parameters

 Locations to contain data from calling block

Scope, Function Calls and Storage Management 5

Activation record for function

 Parameter passing

 pass-by-value: copy value to new activation record

 pass-by-reference: copy pointer to new activation record

Access to global variables

 global variables are contained in an activation record higher “up” the stack

 Tail recursion

 an optimization for certain recursive functions

Scope, Function Calls and Storage Management 6

First-order Functions

Control link

 Link to activation record of previous (calling)

block

Access link

 Link to activation record of closest

enclosing block in program text

Difference

 Control link depends on dynamic behavior of

program

 Access link depends on static form of

program text

Scope, Function Calls and Storage Management 7

Activation record for static scope

 Language features

 Functions passed as arguments

 Functions that return functions from nested blocks

 Need to maintain environment of function

Functions as first class values

 Simpler case

 Function passed as argument

 Need pointer to activation record “higher up” in stack

More complicated second case

 Function returned as result of function call

 Need to keep activation record of returning function

Scope, Function Calls and Storage Management 8

Higher-order Functions

 Function value is pair

 closure = < env, code >

When a function represented by a closure is called,

 Allocate activation record for call (as always)

 Set the access link in the activation record using the environment pointer from

the closure

Scope, Function Calls and Storage Management 9

Closures

Scope, Function Calls and Storage Management 10

Function Argument and Closures

var x = 4;
fun f(y) = x*y;

fun g(h) =
let

var x=7
in

h(3) + x;
g(f);

Run-time stack with access links ML

{ var x = 4;
{ function f(y)

{return x*y;}
{ function g(h) {

var x=7;
return h(3) + x;

};
g(f);

}}}

Scope, Function Calls and Storage Management 11

Function Argument and Closures

Run-time stack with access links
Lua

Use closure to maintain a pointer to the static environment of a

function body

When called, set access link from closure

All access links point “up” in stack

 May jump past activation records to find global vars

 Still deallocate activation records using stack (LIFO) order

Scope, Function Calls and Storage Management 12

Summary: Function Arguments

 Language feature

 Functions that return “new” functions

 Need to maintain environment of function

 Example

function compose(f,g)

{ return function(x) { return g(f (x)) } };

 Function “created” dynamically

 expression with free variables

values are determined at run time

 function value is closure = env, code

 code not compiled dynamically (in most languages)

Scope, Function Calls and Storage Management 13

Return Function as Result

Scope, Function Calls and Storage Management 14

Example: Return fctn with Private State

mk_counter : int (int int)

c : int int

Private variable count

closure

The value is a
closure

Scope, Function Calls and Storage Management 15

Example: Return fctn with private state

Scope, Function Calls and Storage Management 16

Function Results and Closures

Scope, Function Calls and Storage Management 17

Function Results and Closures

Block-structured language uses stack of activation records

 Activation records contain parameters, local vars, …

 Also pointers to enclosing scope

 Several different parameter passing mechanisms

 Tail calls may be optimized

 Function parameters/results require closures

 Closure environment pointer used on function call

 Stack deallocation may fail if function returned from call

 Closures do not needed if functions not in nested blocks

Scope, Function Calls and Storage Management 18

Summary of Scope Issues

 Lua authors wanted lexical scoping (词法作用域/静态作用域) early on

 difficult due to technical restrictions

 wanted to keep a simple array stack for activation records

 one-pass compiler

 Lua 3.1 with a compromise called upvalues

 In creating a function, make (frozen) copies of the values of any external

variables used by a function.

Scope, Function Calls and Storage Management 19

Closures via "Upvalues"

function f () 高阶函数：void (voidint)

local b = 1

return (function () return %b + 1 end) // b是外部的局部变量, upvalue

end

return f()() --> 2 upvalue 有些像C的static局部变量

 Lua 5.0 got the real thing

 Solution: “Keep local variables in the (array-based) stack and only

move them to the heap if they go out of scope while being referred

by nested functions." (JUCS 11 #7)

Scope, Function Calls and Storage Management 20

Full Lexical Scoping

function f ()
local b = 1
local inc_b = (function () b = b + 1 end)
inc_b()
return (function () return b end)

end
return f()() --> 2

closure: 一个匿名函数加上其可访问的upvalue

tail calls supported since 5.0

 called function reuses the stack entry of the calling function

 erases information from stack traces

only for statements of the form return f(...)

 return n * fact(n-1) does not result in a tail call

Scope, Function Calls and Storage Management 21

Tail Calls

 coroutines—a general control abstraction

 term introduced by Melvin Conway in 1963

 has lacked a precise definition, but implies “the capability of keeping state

between successive calls"

 have not been popular in mainstream languages

 but used in Go

 classification:

 full coroutines are stackful, and first-class objects

 stackful coroutines can suspend their execution from within nested functions

 an asymmetric coroutine is “subordinate” to its caller—can yield, caller can

resume

Scope, Function Calls and Storage Management 22

Coroutines

 constraints: portability and C integration

 cannot manipulate a C call stack in ANSI C

 impossible: first-class continuations (as in Scheme), symmetric coroutines

(e.g., in Modula-2)

 Lua 5.0 got full asymmetric coroutines, with create, resume and

yield operations

 ...and PUC-Rio guys gave proof of ample expressive power

 capture only a partial continuation, from yield to resume — cannot have C

parts there

协程有现场保护

Scope, Function Calls and Storage Management 23

Coroutines in Lua

里约热内卢天主教大学

Scope, Function Calls and Storage Management 24

Coroutine Example

> return (string.gsub("abbc", "b",

function (x) return "B" end))

aBBc

> return (string.gsub("abbc", "b",

coroutine.wrap(function (x)

coroutine.yield("B")

coroutine.yield("C")

end)))

aBCc

