22D R . 4
¥ 158)] 1 ‘

./':"“ E
% O ”-d“(v,ﬂ,;:‘

University of Science and Technology of China

Scope, Function Calls and Storage Management

(EFESWITMEFSH)

KE

yuzhang@ustc.edu.cn

T EAFRRKEF
il ﬁ—ﬂ’ﬂ"i‘ 5 ’}i*—'j- 'z

FRAZLE*X S

University of Science and Technology of China

[1“Concepts in Programming Lanquages”
- Chapter 7: Scope, Functions, and Storage Management

- http://theory.stanford.edu/people/icm/books.html

CONCEPTS IN
PROGRAMMING
LANGUAGES

- https://homepages.dcc.ufmg.br/~camarao/lp/concepts

5k 2: Some PL Features: Lua

https://libro.eb20.net/Reader/rdr.aspx?b=221473
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

Iﬁké‘&q}“

(©))) Simplified Machine Model FRHZEL XS

University of Science and Technology of China

[
r\%i \‘\o\o
9y e

“ce and T

Registers Code Data

-
~ Stack
A
Program | | | ,
Counter ["""""""" | T
Environment -~ HEE‘D
Pointer
—

Scope, Function Calls and Storage Management 3

Iﬁké‘&ﬂif‘

©))) Activation Record for In-link Block FEBZLL XS

University of Science and Technology of China

o,-\;;

N

3 S

e, o
“ice and Te¢

B Pointer to previous record on stack Local variables
Push record on stack Intermediate results
B Set new control link to point to old env ptr

B Set env ptr to new record Control link
Pop record off stack Local variables

B Follow control link of current record to Intermediate results

reset environment pointer

Environment
Pointer

Scope, Function Calls and Storage Management 4

Iﬁké‘&ﬂif‘

Activation record for function

FRAZLE*X S

University of Science and Technology of China

o

%

N

3 S

e, o
“ice and Te¢

Return address

B Location of code to execute on function
return

Return-result address

B Address in activation record of calling
block to store function return val

Parameters

B |ocations to contain data from calling block

Scope, Function Calls and Storage Management

. Control link

E—

Return address

Return-result addr

Parameters

Local variables

Intermediate results

Environment
Pointer

Iﬁké‘&ﬂif‘

K4

0
c g
@ b
N %
7 <
3 A
) o'

S

\

3 S

e, o
“ice and Te¢

First-order Functions +FRB2LLXS

University of Science and Technology of China

Parameter passing

B pass-by-value: copy value to new activation record

B pass-by-reference: copy pointer to new activation record

Access to global variables

B global variables are contained in an activation record higher “up” the stack

Talil recursion

B an optimization for certain recursive functions

Scope, Function Calls and Storage Management 6

Activation record for static scope FRHZLL XS

University of Science and Technology of China

o
D \‘\o\o
S -

“ce and TeC

Control link . control link]
B Link to activation record of previous (calling)
block Return address
Access link Return-result addr
B Link to_ activatior_l record of closest B
enclosing block in program text
Difference Local variables
B Control link depends on dynamic behavior of Intermediate results
program
B Access link depends on static form of
program text Environment
Pointer

Scope, Function Calls and Storage Management 7

Iﬁké‘&ﬂif‘

¢))) Higher-order Functions tEAZLL* g

University of Science and Technology of China

9F

N

Sor o0
e, oS
“ce and TeC

Language features
B Functions passed as arguments

B Functions that return functions from nested blocks
B Need to maintain environment of function
Functions as first class values

Simpler case

B Function passed as argument

B Need pointer to activation record “higher up” in stack

More complicated second case
B Function returned as result of function call

B Need to keep activation record of returning function

Scope, Function Calls and Storage Management 8

Iﬁké‘&#‘

® <
= &
< bt
W &
A

9F

S

Closures FEAZLEL*XS

University of Science and Technology of China

A
s S
e, o
“Ice and T

Function value is pair

B closure =<env, code >

When a function represented by a closure is called,

B Allocate activation record for call (as always)

B Set the access link in the activation record using the environment pointer from
the closure

Scope, Function Calls and Storage Management 9

X a

Function Argument and Closures

FRAZLE*X S

University of Science and Technology of China

.
\ee:,\

9F

&

S
(% ‘\

Run-time stack with access links

Code

V4 for f

y Code
/_ for g

NS

X 4
access '—'7
f —-fj’/'
access —
g —
g(f) | access —]
h —
X 7/
h(3) |access| —
y 3

Scope, Function Calls and Storage Management

access link set
from closure

10

X a

Function Argument and Closures

FRAZLE*X S

University of Science and Technology of China

.
\ee:,\

9F

&

S
(% ‘\

{var x = 4;
{ function f(y)
{return x*y;}
{ function g(h) {
var x=7/;
=) return h(3) +x;
};
g(f);
1

Run-time stack with access links

Code

V4 for f

y Code
/_ for g

NS

X 4
access '—'7
f —-fj’/'
access —
g —
g(f) | access —]
h —
X 7/
h(3) |access| —
y 3

Scope, Function Calls and Storage Management

access link set
from closure

11

Iﬁké‘&ﬂif‘

® <
c -4
% P
< bk
W S
% S
&

7

S

Summary: Function Arguments FEBZLK 2

University of Science and Technology of China

\

3 S

e, o
“ice and Te¢

Use closure to maintain a pointer to the static environment of a
function body

When called, set access link from closure

All access links point “up” in stack

B May jump past activation records to find global vars

B Still deallocate activation records using stack (LIFO) order

Scope, Function Calls and Storage Management 12

Iﬁké‘&#‘

'(=))) Return Function as Result

FRAZLE*X S

University of Science and Technology of China

9F

A
S5 <O
Ve, et
“Nce and TeC

Language feature
B Functions that return “new” functions

B Need to maintain environment of function

Example
function compose(f,g)
{ return function(x) { return g(f (x)) } };

Function “created” dynamically

B expression with free variables
values are determined at run time

B function value is closure = env, code

B code not compiled dynamically (in most languages)

Scope, Function Calls and Storage Management

13

University of Science and Technology of China

Example: Return fctn with Private State FRHZLL XS

&

9F

X
e '
e, oeia e

CMD o | m.k__coun_ter L int — (int — int)
fun mk_counter (init: int) = ¢:nt=>nt
let val count = ref init€ Private variable count]
fun counter(inc:int) =

(count := lcount + inc; lcount)

n closure

counter . - -
The value is a] e Function to "make counter
End; losure
returns a closure

val ¢ = mk_counter(1); | How is correct value of
c(2) +c(2); count determined in c(2) ?

Scope, Function Calls and Storage Management 14

University of Science and Technology of China

Example: Return fctn with private state FEAZHAL %G

function mk_counter (init) {

var count = Init;

function counter(inc) {count=count+inc; return
count}:

return counter};

var ¢ = mk_counter(1); Function to “make counter”
c(2) + ¢(2); returns a closure

e How is correct value of
count determined in c(2) ?

Scope, Function Calls and Storage Management 15

X

Function Results and Closures FABEZELXS

1
é University of Science and Technology of China

8

N

op 5%
S ¥

(%

ce

fun mk_counter (init : int) = Py
let val count = ref init \l\'ﬂ;f
fun counter(ingint) = (count := !count + inc; !count]
in counter end
end;
Code for
mk_counter

val c = mk_counter(l1);

e(2) + ¢(2); mk_c]

adCCess]

C e

mk_counter(1) |acCess -
init 1
count —

counter —-;/ >
c(2) |access —

Inc 2
Call changes cell Code for

value from 1 to 3 counter

Scope, Function Calls and Storage Management 16

X

Function Results and Closures FABEZELXS

1
é University of Science and Technology of China

.

&

o o
S S

o,

ce

(35)
function mk_counter (init) { 2
var count = inif;
function counter(inc) {count=count+inc; return count};
return counter};
var ¢ = mk_counter(1}; mk_c __D | = Code for
c(2) +c(2); access| —— mk_counter
C i
mk_counter(1l) [3CCESS ~
init 1
count 3
counter —_— ;| \ h

c(2) —//

access ==
Inc 2

Code for

counter

Scope, Function Calls and Storage Management 17

Iﬁké‘&ﬂif‘

Summary of Scope Issues ACE X E AR

University of Science and Technology of China

7

\

S oo
e, edl
“ce and TeC

Block-structured language uses stack of activation records

B Activation records contain parameters, local vars, ...

B Also pointers to enclosing scope

Several different parameter passing mechanisms

Tall calls may be optimized

Function parameters/results require closures

B Closure environment pointer used on function call
B Stack deallocation may fail if function returned from call

B Closures do not needed If functions not in nested blocks

Scope, Function Calls and Storage Management 18

Iﬁké‘&ﬂif‘

® 3
c 2
% P
< bk
W S
% 5
&

9F

S

Closures via "Upvalues” +HBELLX G

University of Science and Technology of China

\

s S

e, o
“ice and Te¢

Lua authors wanted lexical scoping (ia);E4E R E/E7S{ER) early on

B difficult due to technical restrictions

[0 wanted to keep a simple array stack for activation records
[J one-pass compiler

Lua 3.1 with a compromise called upvalues

B In creating a function, make (frozen) copies of the values of any external
variables used by a function.

function f () TR void = (void=>int)

local b =1

return (function () return %b + 1 end) // b4l RE A&, upvalue
end

return fO)() --> 2 upvalue {4 CHystatic/ 4 &

Scope, Function Calls and Storage Management 19

Iﬁké‘&#‘

2))) Full Lexical Scoping ¢RBZLAL XS

University of Science and Technology of China

9F

A
S5 <O
Ve, et
“Nce and TeC

Lua 5.0 got the real thing

Solution: “Keep local variables in the (array-based) stack and only
move them to the heap if they go out of scope while being referred
by nested functions." (JUCS 11 #7)

function f ()

local b =1
local inc_b = (function () b = b + 1 end)
inc_b()
return (function () return b end)
end

return f()() --> 2
closure: —AMEX RN EHRT 5 A Hupvalue

Scope, Function Calls and Storage Management 20

Iﬁké‘&ﬂif‘

() Tail Calls ¢EHAZEAL %G

University of Science and Technology of China

9F

\

S oo
e, edl
“ce and TeC

_Itail calls supported since 5.0

M called function reuses the stack entry of the calling function

[1 erases information from stack traces

_lonly for statements of the form return £(...)

B return n * fact(n-1) does not result in a tail call

Scope, Function Calls and Storage Management 21

Iﬁké‘&ﬂif‘

® 3
c -4
% P
< bk
W S
% 5
&

9F

S

Coroutines AKX F X ER

University of Science and Technology of China

\

3 S

e, o
“ice and Te¢

coroutines—a general control abstraction

B term introduced by Melvin Conway in 1963

B has lacked a precise definition, but implies “the capability of keeping state
between successive calls”

have not been popular in mainstream languages
B but used in Go

classification:

M full coroutines are stackful, and first-class objects

[0 stackful coroutines can suspend their execution from within nested functions

B an asymmetric coroutine is “subordinate” to its caller—can yield, caller can
resume

Scope, Function Calls and Storage Management 22

Iﬁké‘&ﬂif‘

® 3
c -4
% P
< bk
W S
% 5
&

9F

S

Coroutines in Lua AKX F X ER

University of Science and Technology of China

\

3 S

e, o
“ice and Te¢

constraints: portability and C integration

B cannot manipulate a C call stack in ANSI C

B impossible: first-class continuations (as in Scheme), symmetric coroutines
(e.g., in Modula-2)

Lua 5.0 got full asymmetric coroutines, with create, resume and
yield operations

B ._.and PUC-RIio guys gave proof of ample expressive power

AN 7R T HOK T
B capture only a partia contlnuaﬁon, from yield to resume — cannot have C

parts there
LSRR R X

Scope, Function Calls and Storage Management 23

Iﬁké‘&ﬂif‘

<
=] g
Z &
[} 9
%, N
5 O
&

Coroutine Example

FRAZLE*X S

University of Science and Technology of China

9F S
N
S o
e, P
“ce and TeC

> return (string.gsub("abbc", "b",
function (x) return "B" end))
aBBc
> return (string.gsub("abbc", "b",
coroutine.wrap(function (x)
coroutine.yield("B")
coroutine.yield("C")
end)))
aBCc

Scope, Function Calls and Storage Management

24

