
《程序语言设计和程序分析》

Scope, Function Calls and Storage Management

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

“Concepts in Programming Languages”

 Chapter 7: Scope, Functions, and Storage Management

 http://theory.stanford.edu/people/jcm/books.html

 https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

张昱: Some PL Features: Lua

Reading

https://libro.eb20.net/Reader/rdr.aspx?b=221473
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

Scope, Function Calls and Storage Management 3

Simplified Machine Model

Control link

 Pointer to previous record on stack

 Push record on stack

 Set new control link to point to old env ptr

 Set env ptr to new record

 Pop record off stack

 Follow control link of current record to

reset environment pointer

Scope, Function Calls and Storage Management 4

Activation Record for In-link Block

Return address

 Location of code to execute on function

return

Return-result address

 Address in activation record of calling

block to store function return val

 Parameters

 Locations to contain data from calling block

Scope, Function Calls and Storage Management 5

Activation record for function

 Parameter passing

 pass-by-value: copy value to new activation record

 pass-by-reference: copy pointer to new activation record

Access to global variables

 global variables are contained in an activation record higher “up” the stack

 Tail recursion

 an optimization for certain recursive functions

Scope, Function Calls and Storage Management 6

First-order Functions

Control link

 Link to activation record of previous (calling)

block

Access link

 Link to activation record of closest

enclosing block in program text

Difference

 Control link depends on dynamic behavior of

program

 Access link depends on static form of

program text

Scope, Function Calls and Storage Management 7

Activation record for static scope

 Language features

 Functions passed as arguments

 Functions that return functions from nested blocks

 Need to maintain environment of function

Functions as first class values

 Simpler case

 Function passed as argument

 Need pointer to activation record “higher up” in stack

More complicated second case

 Function returned as result of function call

 Need to keep activation record of returning function

Scope, Function Calls and Storage Management 8

Higher-order Functions

 Function value is pair

 closure = < env, code >

When a function represented by a closure is called,

 Allocate activation record for call (as always)

 Set the access link in the activation record using the environment pointer from

the closure

Scope, Function Calls and Storage Management 9

Closures

Scope, Function Calls and Storage Management 10

Function Argument and Closures

var x = 4;
fun f(y) = x*y;

fun g(h) =
let

var x=7
in

h(3) + x;
g(f);

Run-time stack with access links ML

{ var x = 4;
{ function f(y)

{return x*y;}
{ function g(h) {

var x=7;
return h(3) + x;

};
g(f);

}}}

Scope, Function Calls and Storage Management 11

Function Argument and Closures

Run-time stack with access links
Lua

Use closure to maintain a pointer to the static environment of a

function body

When called, set access link from closure

All access links point “up” in stack

 May jump past activation records to find global vars

 Still deallocate activation records using stack (LIFO) order

Scope, Function Calls and Storage Management 12

Summary: Function Arguments

 Language feature

 Functions that return “new” functions

 Need to maintain environment of function

 Example

function compose(f,g)

{ return function(x) { return g(f (x)) } };

 Function “created” dynamically

 expression with free variables

values are determined at run time

 function value is closure = env, code

 code not compiled dynamically (in most languages)

Scope, Function Calls and Storage Management 13

Return Function as Result

Scope, Function Calls and Storage Management 14

Example: Return fctn with Private State

mk_counter : int (int int)

c : int int

Private variable count

closure

The value is a
closure

Scope, Function Calls and Storage Management 15

Example: Return fctn with private state

Scope, Function Calls and Storage Management 16

Function Results and Closures

Scope, Function Calls and Storage Management 17

Function Results and Closures

Block-structured language uses stack of activation records

 Activation records contain parameters, local vars, …

 Also pointers to enclosing scope

 Several different parameter passing mechanisms

 Tail calls may be optimized

 Function parameters/results require closures

 Closure environment pointer used on function call

 Stack deallocation may fail if function returned from call

 Closures do not needed if functions not in nested blocks

Scope, Function Calls and Storage Management 18

Summary of Scope Issues

 Lua authors wanted lexical scoping (词法作用域/静态作用域) early on

 difficult due to technical restrictions

 wanted to keep a simple array stack for activation records

 one-pass compiler

 Lua 3.1 with a compromise called upvalues

 In creating a function, make (frozen) copies of the values of any external

variables used by a function.

Scope, Function Calls and Storage Management 19

Closures via "Upvalues"

function f () 高阶函数：void (voidint)

local b = 1

return (function () return %b + 1 end) // b是外部的局部变量, upvalue

end

return f()() --> 2 upvalue 有些像C的static局部变量

 Lua 5.0 got the real thing

 Solution: “Keep local variables in the (array-based) stack and only

move them to the heap if they go out of scope while being referred

by nested functions." (JUCS 11 #7)

Scope, Function Calls and Storage Management 20

Full Lexical Scoping

function f ()
local b = 1
local inc_b = (function () b = b + 1 end)
inc_b()
return (function () return b end)

end
return f()() --> 2

closure: 一个匿名函数加上其可访问的upvalue

tail calls supported since 5.0

 called function reuses the stack entry of the calling function

 erases information from stack traces

only for statements of the form return f(...)

 return n * fact(n-1) does not result in a tail call

Scope, Function Calls and Storage Management 21

Tail Calls

 coroutines—a general control abstraction

 term introduced by Melvin Conway in 1963

 has lacked a precise definition, but implies “the capability of keeping state

between successive calls"

 have not been popular in mainstream languages

 but used in Go

 classification:

 full coroutines are stackful, and first-class objects

 stackful coroutines can suspend their execution from within nested functions

 an asymmetric coroutine is “subordinate” to its caller—can yield, caller can

resume

Scope, Function Calls and Storage Management 22

Coroutines

 constraints: portability and C integration

 cannot manipulate a C call stack in ANSI C

 impossible: first-class continuations (as in Scheme), symmetric coroutines

(e.g., in Modula-2)

 Lua 5.0 got full asymmetric coroutines, with create, resume and

yield operations

 ...and PUC-Rio guys gave proof of ample expressive power

 capture only a partial continuation, from yield to resume — cannot have C

parts there

协程有现场保护

Scope, Function Calls and Storage Management 23

Coroutines in Lua

里约热内卢天主教大学

Scope, Function Calls and Storage Management 24

Coroutine Example

> return (string.gsub("abbc", "b",

function (x) return "B" end))

aBBc

> return (string.gsub("abbc", "b",

coroutine.wrap(function (x)

coroutine.yield("B")

coroutine.yield("C")

end)))

aBCc

