
Control Flow Analysis

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/


2

Agenda

Control Flow Analysis



3

TIP with first-class functions

Control Flow Analysis



 First-class functions in TIP complicate CFG construction

◼ Several functions may be invoked at a call site

◼ This depends on the dataflow

◼ But dataflow analysis first requires a CFG

 Same situation for other features, e.g.

◼ Function values with free variables (closures)

◼ A class hierarchy with objects and methods

◼ Prototype objects with dynamic properties

4

Control Flow Complications

Control Flow Analysis



A control flow analysis approximates the call graph

◼ Conservatively computes possible functions at call sites

◼ The trivial answer: all functions

Control flow analysis is usually flow-insensitive:

◼ It is based on the AST

◼ The call graph can be used for an interprocedural CFG

◼ A subsequent dataflow analysis may use the CFG

Alternative: use flow-sensitive analysis

◼ Potentially on-the-fly, during dataflow analysis

5

Control Flow Analysis

Control Flow Analysis



 For a computed function call

E(E1, …, En)

we cannot immediately see which function is called

 A coarse but sound approximation

◼ Assume any function with right number of arguments

 Use CFA to get a much better result

6

CFA for TIP with first-class functions

Control Flow Analysis



 Tokens are all functions {f1, f2, …, fk}

 For every AST node, v, we introduce the variable v denoting the set 

of functions to which v may evaluate

 For function definitions f (…){…} :

f ∈ 𝑓

 For assignments x = E:

𝐸 ⊆ 𝑥

7

CFA Constraints

Control Flow Analysis



 For direct function calls f (E1, …, En) :

𝐸𝑖 ⊆ 𝑎𝑖 for 𝑖 = 1,… , 𝑛 ٿ 𝐸′ ⊆ 𝑓(𝐸1, … , 𝐸𝑛)

where f is a function with arguments 𝑎1, … , 𝑎𝑛 and return expression 𝐸′

• For computed function calls E(E1, …, En):

𝑓 ∈ 𝐸 ⇒ 𝐸𝑖 ⊆ 𝑎𝑖 for 𝑖 = 1,… , 𝑛 ٿ 𝐸′ ⊆ 𝐸 𝐸1, … , 𝐸𝑛

for every function 𝑓 with arguments 𝑎1, … , 𝑎𝑛 and return expression 𝐸′

◼ If consider typable programs only：

Only generate constraints for those functions 𝑓 for which the call would be type correct

8

CFA Constraints

Control Flow Analysis



9

Generated Constraints

Control Flow Analysis



10

Least Solution

Control Flow Analysis



11

Agenda

Control Flow Analysis



 The pure lambda calculus

Assume all -bound variables are distinct

An abstract closure x abstracts the function x.E in all contexts 

(values of free variables)

Goal: for each call site E1E2 determine the possible functions for E1

from the set {x1, x2, ..., xn }

12

CFA for the Lambda Calculus

Control Flow Analysis



A flow-insensitive analysis that tracks function values:

 For every AST node, v, we introduce a variable ⟦v⟧ ranging over 

subsets of abstract closures

 For x.E we have the constraint

x ⟦ x.E ⟧

 For E1E2 we have the conditional constraint

x  ⟦E1⟧ (⟦E2⟧⟦x⟧⟦E⟧⟦ E1E2 ⟧)

for every function x.E

13

Closure Analysis

Control Flow Analysis



14

Agenda

Control Flow Analysis



We have a set of tokens {t1, t2, ..., tk}

We have a collection of variables {x1, ..., xn} whose values range over 

subsets of tokens

A collection of constraints of these forms:

Compute the unique minimal solution

◼ This exists since solutions are closed under intersection

A cubic time algorithm exists!

15

The Cubic Framework

Control Flow Analysis



 Each variable is mapped to a node in a DAG

 Each node has a bitvector in {0,1}k

◼ initially set to all 0’s

 Each bit has a list of pairs of variables

◼ used to model conditional constraints

 The DAG edges model inclusion constraints

 The bitvectors will at all 

times directly represent 

the minimal solution to the 

constraints seen so far

16

The Solver Data Structure

Control Flow Analysis



Constraints of the form t x:

◼ look up the node associated with x

◼ set the bit corresponding to t to 1

◼ if the list of pairs for t is not empty, then add the edges corresponding to the pairs to 

the DAG

17

Adding Constraints (1/2)

Control Flow Analysis



Constraints of the form t xyz:

◼ test if the bit corresponding to t is 1

◼ if so, add the DAG edge from y to z

◼ otherwise, add(y,z) to the list of pairs for t

18

Adding Constraints (2/2)

Control Flow Analysis



 Propagate the values of all newly set bits along all edges in the DAG

19

Propagate Bitvectors

Control Flow Analysis



 If a newly added edge forms a cycle:

◼ merge the nodes on the cycle into a single node

◼ form the union of the bitvectors

◼ concatenate the lists of pairs

◼ update the map from variables accordingly

20

Collapse Cycles

Control Flow Analysis



O(n) functions and O(n) applications, with program size n

O(n) singleton constraints, O(n2) conditional constraints

O(n) nodes, O(n2) edges, O(n) bits per node

 Total time for bitvector propagation: O(n3) 

 Total time for collapsing cycles: O(n3) 

 Total time for handling lists of pairs: O(n3) 

21

Time Complexity(1/2)

Control Flow Analysis



Adding it all up, the upper bound is O(n3)

 This is known as the cubic time bottleneck:

◼ Occurs in many different scenarios

◼ but O(n3/log n) is possible…

A special case of general set constraints:

◼ Defined on sets of terms instead of sets of tokens

◼ solvable in time O(22n
)

22

Time Complexity(1/2)

Control Flow Analysis



23

Agenda

Control Flow Analysis



CFA in an object-oriented language:

Which method implementations may be invoked?

 Full CFA is a possibility...

But the extra structure allows simpler solutions

24

Simple CFA for OO (1/3)

Control Flow Analysis



 Simplest solution:

◼ Select all methods named m with three arguments

Class Hierarchy Analysis(CHA):

◼ Consider only the part of the class hierarchy rooted by the declared type of x

25

Simple CFA for OO (2/3)

Control Flow Analysis



Rapid Type Analysis (RTA):

◼ Restrict to those classes that are actually used in the program in new expressions

◼ Start from main, iteratively 

find reachable methods

 Variable Type Analysis (VTA):

◼ perform intraprocedural control flow analysis

26

Simple CFA for OO (3/3)

Control Flow Analysis



Thanks

Control Flow Analysis
27


