

Control Flow Analysis

Most content comes from<http://cs.au.dk/~amoeller/spa/>

张昱

yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

• Control flow analysis for TIP with first-class functions

- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for object-oriented languages

TIP with first-class functions


```
inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) \{ return k; \}foo(n, f) {
 var r;
  if (n == 0) \{ \} f=ide; }
  r = f(n);return r;
\mathcal{F}main() \{var x, y;
  x = input;if (x>0) { y = foo(x, inc); } else { y = foo(x, dec); }
  return y;
ļ
```


Control Flow Complications

First-class functions in TIP complicate CFG construction

- \blacksquare Several functions may be invoked at a call site
- This depends on the dataflow
- But dataflow analysis first requires a CFG

■ Same situation for other features, e.g.

- Function values with free variables (closures)
- A class hierarchy with objects and methods
- Prototype objects with dynamic properties

Control Flow Analysis

A control flow analysis approximates the call graph

- Conservatively computes possible functions at call sites
- The trivial answer: *all* functions

Control flow analysis is usually flow-*insensitive***:**

- \blacksquare It is based on the AST
- The call graph can be used for an interprocedural CFG
- \blacksquare A subsequent dataflow analysis may use the CFG

Alternative: use flow-sensitive analysis

 \blacksquare Potentially on-the-fly, during dataflow analysis

CFA for TIP with first-class functions

For a computed function call

 $E(E_1, ..., E_n)$

we cannot immediately see which function is called

A coarse but sound approximation

Assume any function with right number of arguments

Use CFA to get a much better result

CFA Constraints

\square Tokens are all functions $\{f_1, f_2, ..., f_k\}$

□ For every AST node, v, we introduce the variable $\lceil v \rceil$ denoting the set **of functions to which v may evaluate**

For function definitions *f* **(…){…} :** $f \in \llbracket f \rrbracket$ \Box For assignments $x = E$: $\llbracket E \rrbracket \subseteq \llbracket x \rrbracket$

\Box For direct function calls $f(E_1, ..., E_n)$:

 $E_i \mathbb{I} \subseteq \llbracket a_i \rrbracket$ for $i = 1, ..., n \land \llbracket E' \rrbracket \subseteq \llbracket f(E_1, ..., E_n)$

where f is a function with arguments $a_1, ..., a_n$ and return expression E'

• For **computed** function calls $E(E_1, ..., E_n)$:

 $f \in \llbracket E \rrbracket \Rightarrow (\llbracket E_i \rrbracket \subseteq \llbracket a_i \rrbracket$ for $i = 1, ..., n$ $\wedge \llbracket E' \rrbracket \subseteq \llbracket E(E_1, ..., E_n)$

for every function f with arguments $a_1, ..., a_n$ and return expression E^\prime

■ If consider **typable** programs only:

Only generate constraints for those functions f for which the call would be type correct

Generated Constraints


```
inc(i) { return i+1; }
                                                                                                             dec(i) \{ return i-1; \}inc \in [inc]
                                                                                                             ide(k) \{ return k: \}dec \in [dec]foo(n, f) {
ide \in [ide]
                                                                                                                 var r:
\lceil \mathsf{ide} \rceil \subseteq \lceil \mathsf{f} \rceilif (n == 0) { f = ide; }
                                                                                                                 r = f(n):
\llbracket f(n) \rrbracket \subset \llbracket r \rrbracketreturn r:
inc \in [f] \Rightarrow [n] \subseteq [i] \land [i+1] \subseteq [f(n)]
\text{dec} \in \llbracket f \rrbracket \Rightarrow \llbracket n \rrbracket \subseteq \llbracket j \rrbracket \wedge \llbracket j-1 \rrbracket \subseteq \llbracket f(n) \rrbracketmain() fide \in \lceil f \rceil \Rightarrow \lceil n \rceil \subseteq \lceil k \rceil \land \lceil k \rceil \subseteq \lceil f(n) \rceilvar x,y;
\lbrack \lbrack \text{input} \rbrack \subseteq \lbrack \lbrack x \rbrack \rbrackx = input;
[[\text{foo}(x, \text{inc})] \subseteq [[y]]if (x>0) { y = foo(x, inc); } else { y = foo(x, dec); }
                                                                                                                 return y;
[[\text{foo}(x,\text{dec})] \subseteq [[y]]foo \in [foo]
foo \in [foo] \Rightarrow [x] \subseteq [n] \land [inc] \subseteq [f] \land [r] \subseteq [foo(x, inc)]
                                                                                                                                    assuming we do not
\mathsf{foo} \in [\mathsf{foo}] \Rightarrow [\![x]\!] \subseteq [\![n]\!] \land [\![\mathsf{dec}]\!] \subseteq [\![f]\!] \land [\![r]\!] \subseteq [\![\mathsf{foo}(x,\mathsf{dec})]\!]use the special rule
                                                                                                                                    for direct calls.
main \in [main]
```
(At each call we only consider functions with matching number of parameters)

Least Solution


```
\|\text{inc}\| = \{\text{inc}\}\\mathbb{Z}dec\mathbb{Z} = {dec}
\parallelide\parallel = {ide}
\mathbb{F} = {inc, dec, ide}
[[foo] = {foo}\mathbb{R} \mathbb{R} \mathbb{
```
(the solution is the empty set for the remaining constraint variables)

With this information, we can construct the call edges and return edges in the interprocedural CFG

- Control flow analysis for TIP with first-class functions
- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for object-oriented languages

The pure lambda calculus

Assume all -bound variables are distinct

 An *abstract closure x* **abstracts the function** *x***.***E* **in all contexts (values of free variables)**

 \square Goal: for each call site E_1E_2 determine the possible functions for E_1 $\{x_1, x_2, \ldots, x_n\}$

Closure Analysis

A flow-insensitive analysis that tracks function values:

- **For every AST node, v, we introduce a variable** ⟦**v**⟧ **ranging over subsets of abstract closures**
- **For** *x***.***E* **we have the constraint**

 $\lambda x \in \llbracket \lambda x \cdot E \rrbracket$

 \Box For E_1E_2 we have the *conditional* constraint

 $\lambda x \in \llbracket E_1 \rrbracket \Rightarrow (\llbracket E_2 \rrbracket \subseteq \llbracket x \rrbracket \wedge \llbracket E \rrbracket \subseteq \llbracket E_1 E_2 \rrbracket)$

for every function *x***.***E*

- Control flow analysis for TIP with first-class functions
- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for object-oriented languages

The Cubic Framework

- We have a set of tokens $\{t_1, t_2, ..., t_k\}$
- \Box We have a collection of variables $\{x_1, ..., x_n\}$ whose values range over **subsets of tokens**
- **A collection of constraints of these forms:**

```
■ t \in x<br>■ t \in x \Rightarrow y \subseteq z
```
Compute the unique minimal solution

This exists since solutions are closed under intersection

A cubic time algorithm exists!

The Solver Data Structure

Each variable is mapped to a node in a DAG

- **Each node has a bitvector in {0,1}***^k*
	- initially set to all 0's
- **Each bit has a list of pairs of variables**
	- used to model conditional constraints
- **The DAG edges model inclusion constraints**
- **The bitvectors will at all times directly represent the minimal solution to the constraints seen so far**

$$
\begin{array}{|c|}\n\hline\n\bullet & t \in x \\
\hline\n\bullet & t \in x \Rightarrow y \subseteq z\n\end{array}
$$

Adding Constraints (1/2)

\Box Constraints of the form $t \in X$:

- look up the node associated with *x*
- set the bit corresponding to *t* to 1

■ if the list of pairs for t is not empty, then add the edges corresponding to the pairs to the DAG

Adding Constraints (2/2)

Constraints of the form $t \in X \Rightarrow y \subseteq Z$ **:**

- test if the bit corresponding to *t* is 1
- if so, add the DAG edge from *y* to *z*

■ otherwise, add(*y*,*z*) to the list of pairs for *t*

Propagate Bitvectors

Propagate the values of all newly set bits along all edges in the DAG

Collapse Cycles

If a newly added edge forms a cycle:

- \blacksquare merge the nodes on the cycle into a single node
- form the union of the bitvectors
- concatenate the lists of pairs
- update the map from variables accordingly

- **O(***n***) functions and O(***n***) applications, with program size** *n*
- **O(n) singleton constraints, O(***n***²) conditional constraints**
- **O(n) nodes, O(***n***²) edges, O(n) bits per node**
- **Total time for bitvector propagation: O(***n***³)**
- \Box Total time for collapsing cycles: $O(n^3)$
- \Box Total time for handling lists of pairs: $O(n^3)$

Time Complexity(1/2)

\Box Adding it all up, the upper bound is $O(n^3)$

This is known as the *cubic time bottleneck***:**

- Occurs in many different scenarios
- \blacksquare but $O(n^3/\log n)$ is possible...

A special case of general set constraints:

- Defined on sets of *terms* instead of sets of tokens
- solvable in time $O(2^{2^n})$

- Control flow analysis for TIP with first-class functions
- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for object-oriented languages

Simple CFA for OO (1/3)

CFA in an object-oriented language:

 $x.m(a,b,c)$

Which method implementations may be invoked?

Full CFA is a possibility...

■ But the extra structure allows simpler solutions

Simple CFA for OO (2/3)

Simplest solution:

■ Select all methods named m with three arguments

Class Hierarchy Analysis(CHA):

 \blacksquare Consider only the part of the class hierarchy rooted by the declared type of x

Collection<T> $c \models ...$
c.add(e)

Simple CFA for OO (3/3)

Rapid Type Analysis (RTA):

- Restrict to those classes that are actually used in the program in **new** expressions
- **Start from main, iteratively** find reachable methods

Variable Type Analysis (VTA):

■ perform *intraprocedural* control flow analysis

Thanks