SRLLIFXEL:

University of Science and Technology of China

Pointer Analysis

Most content comes from http://cs.au.dk/~amoeller/spa/

KE

yuzhang@ustc.edu.cn

T EAFRRKKF
T HEIAF EERFIE

http://cs.au.dk/~amoeller/spa/

FRBAEZRL%S

University of Science and Technology of China

* Introduction to pointer analysis
* Andersen’s analysis
* Steensgaard’s analysis

Pointer Analysis 2

University of Science and Technology of China

Analyzing Programs with Pointers ¥R LA %G

o % %
lence

N
0
> and Te°

How do we perform e.g. E— &X
constant propagation analysis '?1 loc £
when the programming ok
language has pointers? null
(or object references?)
S— *X=E;

5 = 42 | ..

¥y = -87/;

Z = *X;

Depend on whether x and y point

// is z 42 or -877

to the same location, if so, z is -87

Pointer Analysis 3

Heap Pointers i S

o o
r‘sz‘i \\<‘°\°
“Nce and TeC

For simplicity, we ignhore records
B alloc then only allocates a single cell

B only linear structures can be built in the heap

—0O0—9
000

4 0—O0—0—0—&

Let’s at first also ignore functions as values

We still have many interesting analysis challenges...

Pointer Analysis 4

\

& 24

(=))) Pointer Targets ¢¥EBZLLL S

University of Science and Technology of China

X
&
A
O

and Te°

9F
Seie,
Nce

The fundamental question about pointers:

What cells can they point to? p =alloc null | alloc-1

We need a suitable abstraction

The set of (abstract) cells, Cells, contains

B alloc-1 for each allocation site with index |

B X for each program variable named X

This I1s called allocation site abstraction

Each abstract cell may correspond to many concrete memory cells at
runtime

Pointer Analysis 5

'(-))) Points-to Analysis ¢FHAZLAXS

University of Science and Technology of China

8
op o

SEV"l’ur(

O
o and T

Determine for each pointer variable X the set pt(X) of the cells X may
point to

X o= 42;
Yy = -87;

A conservative (“may points-to”) analysis: Z = "%;
[/ is z 42 or -877

B the set may be too large

B can show absence of aliasing: pt(X) N pt(Y) =9

We'll focus on flow-insensitive analyses:
B Take place onthe AST

B Before or together with the control-flow analysis

Pointer Analysis 6

Obtalnlng Points-to Information ¥R AZLELX G

University of Science and Technology of China

An almost-trivial analysis (called address-taken ZV#f):
B include all alloc-i cells E: AALF E P 9458 &

B Include the X cell if the expression &X occurs in the program

Improvement for a typed language

B Eliminate those cells whose types do not match

This Is sometimes good enough

B and clearly very fast to compute

Pointer Analysis 7

\

& 24

Pointer Normalization *EML LA S

X
32\‘.
A
O

and Te°

9F
Seie,
Nce

Assume that all pointer usage is normalized:

B X=alloc P where P is null or an integer constant

B X=&Y

B X=Y

B X=*Y

B *X=Y

m X=null

Simply introduce lots of temporary variables...

All sub-expressions are now named

We choose to ignore the fact that the cells created at variable
declarations are uninitialized

Pointer Analysis 8

AE TP EER

University of Science and Technology of China

* |ntroduction to pointer analysis
* Andersen’s analysis

Pointer Analysis 9

) Andersen’ s Analysis (1/2) *@”é'{“*é

2 &

@ LN
% &
VA &

e and T

8
o ¥

S, o8

* For every cell ¢, introduce a constraint variable | c]
ranging over sets of cells, i.e. [-]: Cells — P(Cells)

* Generate constraints: [E?%é%@ﬁ*?ﬁ}
« X=alloc P: alloc-ie [X]
¢« X=4&Y: Y € [X]
* X=Y. [YT < [X]
¢ X=7Y. c € [Y] = [[c] € [X] for each ceCells
¢ TX=Y c € [X] = [[Y] < [c] for each ceCells
« X=nhull: (no constraints)

(For the conditional constraints, there's no need to add a constraint for the cell x if &x does not oocur in the program)

Pointer Analysis 10

Andersen s Analysis (2/2) FHBZLL XS

rsity of Sci and Technology of Chin

* The points-to map is defined as:

pt(X) = [X]

* The constraints fit into the cubic framework ©
* Unique minimal solution in time O(n?)
* |n practice, for Java: O(n?)

* The analysis is flow-insensitive but directional

— models the direction of the flow of values in assignments

11

Example Program * QYO? é d{ihﬂ(gy fChé

var p,d,X,Y,Z;
p = alloc null;

A= X=alloc P: alloc-ie [X]

X = Z, X =&Y Y € [X]

P = Z; X=Y: [Y] c [IX]

D = q; = =Y. c € [¥Y] = [[c] < [X] for each ceCells
&! “X=Y: c € [X] = [Y] < [c] for each ceCells

9 = Y X=null: (no constraints)

X = =R

p = &z;

Cells={p, q, x,y, z, al loc-1}

Pointer Analysis 12

Applylng Andersen ¥ @ B2 LK% X &

var p,d.X,V,Zz: alloc-1 e [p]
p = alloc null; [[y]]::x]]
. [2] =[]
X =Y, c € [p] = [z2] = [a] for each ceCells
il [a] < [P]
P =z y < [a}
P = (4, c € [p] = [a] < [x] for each ceCells
q = &y; z € [p]
X =P Smallest solution:
p = &z; pt(p) = { alloc-1, vy, z}

pt(q) = { vy}
. pt(_X) = pt(y) = pt(z) = ¢

(=2)) A Specialized Cubic Solver ¥EAZLA xS

op %

S w®
e,
Cnce and Te

« At each load/store instruction, instead of generating

a conditional constraint for each cell,
generate a single universally quantified constraint:

"t EM Original constraint forms
" [x] < Iyl " tex

" Vte |x]: [t <yl " tex=DyCz

" Vte [x]: [yl < [t]

* Whenever a token is added to a set, lazily add new edges
according to the universally quantified constraints

* Note that every token is also a constraint variable here

* Still cubic complexity, but faster in practice

Pointer Analysis 14

A Specialized Cubic Solver *ORLEL xS

* x.s0lcCT: the set of tokens for x (the bitvectors)

« x.succccV: the successors of x (the edges)

» xfromcV: the first kind of quantified constraints for x

* XtocCV: the second kind of quantified constraints for x

« WcCTxV: a worklist (initially empty)

Implementation: SpecialCubicSolver

Pointer Analysis 15

FRAZLE*X S

University of Science and Technology of China

A Specialized Cubic Solver

’{k é ‘&' 2
@ X
~- 0
=y
1958
;F: R &
<
P
&"k’“c(, anid ch‘(\‘\o

9F

» t e [x]
addToken(t, x)
propagate()

* lxl < vl

addEdge(x, v)
propagate()

« YVt e [x]: [t] < [yl

add y to x.from
for each t in x.50l

addEdge(t, vy)
propagate()

« Yt e [[x]: [yl = [[t]

add y to x.to
for each t in x.s0l
addEdge|(y, t)

propagate()

addToken(t, x):
if t & x.sol

add t to x.sol
add (t, x) to W

addEdge(x, y):
if x =y Ay & X.succ
add y to x.succ
for each t in x.sol
addToken(t, vy)

propagate():
while W = 5

pick and remove (t, x) from W

for each y in x.from
addEdge(t, vy)

for each y in x.to
addEdge(y, t)

for each y in x.succ
addToken(t, y)

Pointer Analysis

AE TP EER

University of Science and Technology of China

* |ntroduction to pointer analysis
* Andersen’s analysis

Pointer Analysis 17

X

.
\°®

9F

S

Steensgaard’ s Analysis

* View assignments as being bidirectional

* Generate constraints:
« X=alloc P:

* Extra constraints:

X =&Y
X=Y:
X="Y:
*X=Y

[%?%@&H%ﬁ%%]

alloc-ie [X]

Ve [X]

X1 = 1Y

c € [Y] = [c] = [X] for each ceCells
¢ € [X] = [Y] = [[c] for each ceCells

¢, GE[c] = [[e,] = [[e;] and [[e;] N [[e;] # D = [[eq] = [,]

(whenever a cell may point to two cells, they are essentially merged into one)

Steensgaard’s original formulation uses conditional unification for X =Y
c € [Y] = [X] = [Y] for each ceCells (avoids unifying if ¥ is never a pointer)

Pointer Analysis

FRAZLE*X S

University of Science and Technology of China

18

Steensgaard’ s Analysis *EMZLRES

X a

2 &
@ LN
1958))
2 N\—~—4 &
3. N
5 &
S
and Te

8
op o
S S

ey,

ce

* Reformulate as term unification
* (Generate constraints:

« X=alloc P: X] = 1[alToc~i]

* X=4Y: X] = 1]Y]

* X=Y X] =1Y]

¢ X=7Y: Y] = Ta A [X] = a where ais fresh

¢ FX=Y: X] = Ta A [Y] = a where ais fresh
* Terms:

— term variables, e.g. [X], [a1 1oc-i], & (each representing the possible values of a cell)
— each a single (unary) term constructor T¢ (representing pointers)

— each [c] is now a term variable, not a constraint variable holding a set of cells

* Fits with our unification solver! (union-find...)
* The points-to map is defined as pt(X) ={ceCells | [X] = 1[c] }
* Note that there is only one kind of term constructor, so unification never fails,

Pointer Analysis 19

Applying Steensgaard *ORLEL xS

var p,q,X,Y,Z; [p] = T]alloc-1]
p = alloc null; [y1 = [x]
X = Y; [2] = [X]
X = Z; [p] = Ta, [z] = a,
Y [a] = [P]
e al = T[]

’_ [[J]=I{12 [[7":]]='12
a=4&; p] - 1[2]
X = *p;
p = &z;

Smallest solution:
pt(p) = { alloc-1, vy, z}
pt(q) = {alloc-1, vy, z}

20

\

A FRMFLAE %S

® v

g £ A n Ot h e r Exa m p I e University of Science and Technology of China
O 5 ch\“\"‘\o%

al = &bl;
bl = &cl;
cl = &d1;
al/ = &bZ;
b2 = &cZ;
cl = &dZ2;
bl = &c/;

Pointer Analysis 21

)Recall Our Type Analysis...

FEBZLLK g

rsity of Scie

and Technology o fCh

* Focusing on pointers...

* (Constraints:

+ Xx=alloc P: [X] = 1[P]
+ X=&Y: [X] = 1]Y]
* X=V [X1=1[Y]

* X=7Y Tx]=1v]
+ FX=Y [X]=1]v]

* |Implicit extra constraint for term equality:
It,=1t,=>1¢, =1,

* Assuming the program type checks, is the solution
for pointers the same as for Steensgaard’s analysis?

Pointer Analysis

22

AE TP EER

University of Science and Technology of China

* Introduction to pointer analysis
* Andersen’s analysis

Pointer Analysis 23

|nterprocedura| Points-to Analysis ¥8#Z &4

In TIP, function values and pointers may be mixed together:
(***x)(1,2,3)

In this case the CFA and the points-to analysis must happen
simultaneously!

The idea: Treat function values as a kind of pointers

Pointer Analysis 24

Function Call Normalization FUBZLLL S

op ‘\Qéo'
5 wans®
> and T¢

Seie, e

Assume that all function calls are of the form

X=y(ay,...,a,)

y may be a variable whose value is a function pointer

Assume that all return statements are of the form

return z;

As usual, simply introduce lots of temporary variables...

Include all function names in Cells

Pointer Analysis 25

'(=2)) CFA with Andersen tORsLA RS

o

A
Sz, '
e, oeia e

* For the function call :ff:@fﬁ analysjs s
B a
X = .ll""(ﬂj g seey an) ycfﬂjﬁy CONnecteq

and every occurrence of
fx;y .y x) {..returnz; }

add these constraints:

felfl
fe vyl = ([a] < [[x] for i=1,....n A [2] < [x])

* (Similarly for simple function calls)

* Fits directly into the cubic framework!

Pointer Analysis 26

CFA with Steensgaard

FEBZLLK g

rsity of Scie and Technology of Chin

* For the function call

}{'=_'y"(ﬂ'1, ey ﬂn)
and every occurrence of

fx;y ..y x,) {..returnz; }
add these constraints:

felfl
fe Y1 = ([a] = [x] for i=1,....n A [2] = [x])

* (Similarly for simple function calls)

* Fits into the unification framework, but requires a
generalization of the ordinary union-find solver

Pointer Analysis

27

'(=))) Context-sensitive Pointer Analysis ¥EAZLAE S

o o
r*sz‘i \\<\°\°
“Nce and TeC

foo(a) {
return *a;

bar() {

x = alloc null;
y = alloc null;
“x = alloc null;
v = alloc null;

q = foo(x);
w = foo(y);

Are g and W aliases?

Pointer Analysis 28

) Context-sensitive Pointer Analysis FEAZLL S

rsity of Science and Technology o fCh

* Generalize the abstract domain Cells — P(Cells) to
Contexts — Cells — P(Cells)
(or equivalently: Cells x Contexts — P(Cells))

where Contexts is a (finite) set of call contexts
* As usual, many possible choices of Contexts

— recall the call string approach and the functional approach

* We can also track the set of reachable contexts
(like the use of lifted lattices earlier):

Contexts — lift(Cells — P(Cells))

Does this still fit into the cubic solver?

) Context-sensitive Pointer Analysis FEAZLL S

rsity of Science and Technology of Chin

mk() {
return alloc null;

}

baz() {

var X,y;
x = mk();

y = mk();
[X] = |{a'|'|c:e:—l}
[yl = {a110c-1}

Are X and ¥ aliases?

Pointer Analysis 20

\

& 24

Context-sensitive Pointer Analysis FURZLL% S

.
o o

&

3 S
e, ol
“Ice and T

We can go one step further and introduce context-sensitive heap
(a.k.a. heap cloning)

Let each abstract cell be a pair of
M alloc-i (the alloc with index i) or X (a program variable)
B a heap context from a (finite) set HeapContexts

This allows abstract cells to be named by the source code allocation
site
and (information from) the current context

One choice:
B set HeapContexts = Contexts

B at alloc, use the entire current call context as heap context

Pointer Analysis 31

GCUITILCALTOCTIOIUVE FUITILCT Alldlyolo

S . ‘ T
C\c Wlth Heap Clonlng ﬁve@yoﬁnfmﬁhnﬁgyﬁCh%

o O
3
S o
e,
Cnce and Te

Assuming we use the call string approach with k=1, so Contexts = {g, C1, Cc2}, and HeapContexts = Contexts

mk () {

return alloc null;

baz() {

var x,Vy;
x = mk():
y = mk();

Are X and vy aliases? [[;.r;]] ={(alloc-1, c1) }

[[}'"]] = { (alloc-1, I:E]-}

Pointer Analysis 32

AE TP EER

University of Science and Technology of China

* Introduction to pointer analysis
* Andersen’s analysis

Pointer Analysis 33

(=))) Records in TIP ¢RAZLLX G

University of Science and Technology of China

.
o &

S

N
0
> and Te°

“ence

Exp — ...
| {Id:Exp, ..., Id:Exp }

| Exp.ld

Field write operations: see SPA ...

Values of record fields cannot themselves be records

After normalization

B X ={F;: X,..., F: X}

B X =alloc{F;: X,..., F: X}
B X=Y.F

Let us extend Andersen’s analysis accordingly ...

Pointer Analysis 34

)) Constraint Variables for Record Fields FEB2E L X g

[-1: (Cells U (Cells x Fields)) — P(Cells)
where is the set of field names in the program

* Notation: [[c.f] [means [(c,)]

35

Analysis Constraints *ORLEL xS

« X={F:X,.,F: X} [XJcCIXFJA..A[X]<CXF]
» X=alloc{F:X,, .., F:X, }: alloc-ie[X] A
IX;Jclalloc-iFJA..AlX]c[alloc-iFf]

- X=YF [Y.F]cC[X]

* X=Y: [[YIC[X] A [Y.F] € [X.F] for each FeFields
* X=7Y: ce[Y]= ([cJ<[X] A [c.F]c[X.F])

for each ceCells and FeFields

« *X=V: ce[X]= (IVIcc] A [Y.FI < [c.AD)

for each ceCells and FeFields

See example in SPA

\

Il

'(=2)) Objects as Mutable Heap Records ruALAxS

8
op o

S

S &
Tepe, ot
“Ice and T

Exp — ...

Id
alloc{/Id:Exp, .., Id:Exp }

(*Exp) .Id
null

Stm — ...

| Id = Exp;
| (FExp) .1d = Exp;

* E.XinJava corresponds to (*E) . Xin TIP (or C)

* (Can only create pointers to heap-allocated records (=objects),
not to variables or to cells containing non-record values

Pointer Analysis 37

AE TP EER

University of Science and Technology of China

* |ntroduction to pointer analysis
* Andersen’s analysis

Pointer Analysis 38

\

[P

Null Pointer Analysis rEALA xS

.
o o
e \‘\o\o
S oS
“Nce and TeC

Decide for every dereference *p, is p different from null?

(Why not just treat null as a special cell in an Andersen or
Steensgaard-style analysis?)

Use the monotone framework

B Assuming that a points-to map pt has been computed

Let us consider an intraprocedural analysis
(I.e. we ignore function calls)

Pointer Analysis 39

A Lattice for null Analysis "z @”é 4“‘ é

Define the simple lattice Null:

7
|
NN

where NN represents “definitely not null”
and ? represents “maybe null”

Use for every program point the map lattice:
Cells ->Null

Pointer Analysis 40

\

[P

]
A . ¥EBZLELXG
'(-))) Setting U ‘
g 2 g p University of Science and Technology of China

)

[&

"% S
“Nce and TeC

For every CFG node, v, we have a variable [[v]:

B a map giving abstract values for all cells at the program point after v

W,

Auxiliary definition:

JOIN(v) = LI [w]

wepred(v)

(l.e. we make a forward analysis)

Pointer Analysis 41

Null Analysis Constraints *EML LA S

op ‘\Q%'
5 wans®
> and T

27{’%

‘e

For operations involving pointers:
B X =alloc P: [V]= ?7?7
X =&Y: [V]= 77?7 :

X =&Y V1 where P is null or
| X=Y. [v]= ?7?7? an integer constant
B X =*Y; V)= 2?7
m X =Y; V)= 2?7
m X =null [V]= ?7?7
For all other CFG nodes:

m [v]= JOIN(V)

Pointer Analysis 42

Null Analysis Constraints *EML LA S

o
'
and 7o

9F
S,
Nce

For a heap store operation *X =Y we need to model the change of
whatever X points to

That may be multiple abstract cells(i.e. the cells pt(X))

With the present abstraction, each abstract heap cell alloc-i may
describe multiple concrete cells

So we settle for weak update:
*X =Y: [v]= store(JOIN(v), X, Y)

where

store(c, X, Y) =cla = o(a) U o(Y)]
ae pt(X)

Pointer Analysis 43

.

5
S
= 2
= g
s o
N s
2 <5
o, Yo

N
0
> and Te°

Null Analysis Constraints Mo T

For a heap load operation X =*Y we need to model the change of the

program variable X

Our abstraction has a single abstract cell for X

That abstract cell represents a single concrete cell

So we can use strong update:

X =*Y: [v]= load(JOIN(v), X, Y)

where
load(c, X, Y) = o[X = Uo(a)]
aept(Y)

44

Pointer Analysis

\

Il

'(-))) Strong and Weak Updates FEBZLL% S

University of Science and Technology of China

8
op o

S

S &
Tene, o™
“Ice and T

concrete execution:
. . =i
= 1 null
(S8 mk () {
b E_H'F'—': return alloc null;
|
Ih_._l
c| | ==’ ¥
'_',h"""' null
d | null f—
abstract execution: = mk(),
N b = mk(Q);
i — | c = alloc null;
u *b = C; // strong update here would be unsound!
d — ‘:-':'a;

weak update strong update
s d null here? xX =Y: [v]= store(JOIN(v), X 7ye(c, X, ¥) = ola H{gfcxﬁ:kﬁ(Y)]

aept

The abstract cell al loc-1 corresponds to multiple concrete cells

Pointer Analysis 45

(=))) Strong and Weak Updates

is C null here?

a = alloc null;
b = alloc null;
*a = alloc null;
*bh = alloc null;
if (...) {

X = aj;
} else {

FRAZLE*X S

University of Science and Technology of China

X = n,; // strong update here would be unsound!

The points-to set for x contains multiple abstract cells

Pointer Analysis

NuII Analysis Constraints "’ @ ?" 3 'ﬁ* é

In each case, the assignment modifies a program variable

So we can use strong updates, as for heap load operations

» X=alloc P: [v]=JOIN(V)IX—NN,alloc-1+7?]
¢ X=&Y: T = JOIN(V)[X = NN] \
~ _ could belimproved...
¢ X=V: Iv]| = JOIN(V)[X + JOIN(V)(Y)]
* X=null: [v] = JOIN(V)[X - ?]

\

& 24

Strong and Weak Updates, Revisited FEAZLAL %G

University of Science and Technology of China

.
o % %
Tence

N
'
and Te°

Strong update: o[c—new-value]
B possible if ¢ is known to refer to a single concrete cell

B works for assignments to local variables (as long as TIP doesn’t have e.g. nested
functions)

Weak update: o[cr o(c) LiInew-value]

B necessary if c may refer to multiple concrete cells

B bad for precision, we lose some of the power of flow-sensitivity

B required for assignments to heap cells
(unless we extend the analysis abstraction!)

Pointer Analysis

48

\

[P

Interprocedural Null Analysis FEAZLL %G

University of Science and Technology of China

.

[&

D < 5
“Nce and TeC

Context insensitive or context sensitive, as usual...

B at the after-call node, use the heap from the callee

But be careful!
Pointers to local variables may escape to the callee

B the abstract state at the after-call node cannot simply copy the abstract values for
local variables from the abstract state function f(by, ., by

g Escape Analysis h

HER ST et

| pPsEmlat— R | D |
L N= E;

Pointer Analysis 49

Usmg the Null Analysis FEAZLL S

The pointer dereference *p is “safe” at entry of v if
JOIN(V)(p) = NN

The quality of the null analysis depends on the quality of the
underlying points-to analysis

Example Program & Constraints FRBZLAX G

Andersen generates:

p = alloc null;

q = &p; ot(p) = {alloc-1}
n = null; 0t(q) = {p}

*q = n;

“p = n: nt(n) = J

[p=alloc null]=L[p+~NN,alloc-1+ 7]

[q=&p] =[p=alloc null][q~ NN]
[n=null] = [g=&p][n - 7]

[*q=n] = [n=nul1][p~ [n=null](p) u [n=null1](n)]
[*p=n] = [*g=n][al Toc-1~ [*g=n](alloc-1) U [*q=n](n)]

Pointer Analysis 51

\

RPN Y » ¢
3 Soluti $FRAZLEXS
g £ O u I o n University of Science and Technology of China

7
Seie,
Nce

o
'
and Te°

[p=alloc null]=[p~NN, g~=NN, n—»NN, alloc-1-7?]
[q=&p]= [p>NN, g—=NN, n=NN, alloc-1-7?]
[n=null]=[p~NN, g~NN, n»?, alloc-1»7?]
[*g=n]=[p~7?, g—NN, n»?, alloc-1-»7?]

[*p=n]=[p~?, g—=NN, n=?, alloc-1-7]

At the program point before the statement *g=n the analysis now knows
that g is definitely non-null

... and before *p=n, the pointer p is may be null

Due to the weak updates for all heap store operations, precision is bad for
alloc-i cells

Pointer Analysis 52

AE TP EER

University of Science and Technology of China

* Introduction to pointer analysis
* Andersen’s analysis

Pointer Analysis 53

\

Points-to Graphs ¢EBAZLEX g

University of Science and Technology of China

&
'
and Te°

o
Seie,
Nce

Graphs that describe possible heaps:
B nodes are abstract cells
B edges are possible pointers between the cells

The lattice of points-to graphs is P(Cells x Cells)
ordered under subset inclusion
(or alternatively, Cells—P(Cells))

For every CFG node, v, we introduce a constraint variable [[v] describing
the state after v

Intraprocedural analysis (i.e. ignore function calls)

Pointer Analysis 54

TER * @ é* é & * é
@ LN °
{(-2)) Constraints Sy of Strce and Tty o1
,2 s &

* For pointer operations:
« X=alloc P: [v] =JOIN(VIXU{(X, alloc-i)}

e X=&Y: V] =JOINWNXU{(X,Y)}

v X=vY V] = JOINVIX U { (X, t) | (Y, t) eJOIN(V)}

e X=%y: V] =JOINWNXU{ (X, t) | Y, s)eo, (s, t)cJOIN(V)}

» ¥X=Y. V] =JOINW) U{(s, 1) | (X,5)€JOIN(v), (Y, t) JOIN(v)}
+ X=null: [v]=JOIN(V){X "~ note: weak update

where oy X = {(s,t)ec | s = X)

JOIN(v) = U [[w]]
* For all other CFG nodes: wepred(v)

* [v]] =JOIN(v)

Example Program * @y ?;* é d{ihi{;gy fChé

var X,y,n,p,d;
X = a]]nc null:

y Y
X = null; *y = y;
n = 1nput;
while (n>0) {
p = alloc null; q = alloc null;

= alloc null;

\

[P

'(=))) Result of Analysis ¢FRAZLAL S

University of Science and Technology of China

.

[&

D < 5
“Nce and TeC

After the loop we have this points-to graph:
p aﬂ@ q a'I'IQ
X J y \

alloc-1 aﬂ‘iﬂi\-i)

var X,y,n,p,q,

We conclude that x = alloc null; y = alloc null;
_ *x = null; *y = vy;
x and y will always n = input;
Co while (n>0) {

be disjoint p = alloc null; g = alloc null;
“p o= X; *q =y;
X =P, Y =0,
n = n-1;

}

Pointer Analysis 57

Points-to Maps from Points-to Graphs *Q“é‘&*é

9F
St
Nce

©
A

'
and Te°

A points-to map for each program point v:
pt(X) ={ t| (Xt) e[v]}

More expensive, but more precise: X = &y:
B Andersen: pt(x) ={vy, z} X = &z;
B flow-sensitive: pt(x) = { 2} /

Pointer Analysis 58

* The points-to graph is missing information:

— al loc-2 nodes always form a self-loop in the example

* We need a more detailed lattice:
pcelixcell . (Cell — Count)

where we for each cell keep track of
how many concrete cells that abstract cell

describes
Count=0 1 >1

* This permits strong updates on those \V
that describe precisely 1 concrete cell 1

Pointer Analysis

FRAZLE*X S

\C I m prOVi ng PreCiSion With AbSt ra Ct Cou nti ng University of Science and Technology of China

59

) Constraints and Better Results FRBZLE %S

X = alloc P: ...
*X =Y ...

After the loop we have this extended points-to graph:

? {f*“\
?
;;;;j> q alloc-4

0] alloc-
+ . < al
alloc-1 aq]iﬁ:ﬁj:)

Thus, alloc-2 nodes form a self-loop

Pointer Analysis 60

.

())) Escape Analysis

FRAZLE*X S

University of Science and Technology of China

op \Q%

S 0
7o, B
“ce and TeC

Perform a points-to analysis

Look at return expression

Check reachability in the points-to
graph to arguments or variables
defined in the function itself

None of those

J

no escaping stack cells

Pointer Analysis

baz() {

var X;
return &x;

¥
main() {

var p;
p=baz () ;
“p=1;
return *p;

61

FEBZLAXE

University of Science and Technology of China

ILERLE

Pointer Analysis

62

