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How do we perform e.g. 

constant propagation analysis 

when the programming 

language has pointers? 

(or object references?)
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Analyzing Programs with Pointers

Depend on whether x and y point 

to the same location, if so, z is -87



 For simplicity, we ignore records

◼ alloc then only allocates a single cell

◼ only linear structures can be built in the heap

 Let’s at first also ignore functions as values

We still have many interesting analysis challenges...
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Heap Pointers



 The fundamental question about pointers:

What cells can they point to?

We need a suitable abstraction

 The set of (abstract) cells, Cells, contains

◼ alloc-i for each allocation site with index i

◼ X for each program variable named X

 This is called allocation site abstraction

 Each abstract cell may correspond to many concrete memory cells at 

runtime
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Pointer Targets

p =alloc null
*p = z

alloc-1



Determine for each pointer variable X the set pt(X) of the cells X may 

point to

A conservative (“may points-to”) analysis:

◼ the set may be too large

◼ can show absence of aliasing:  pt(X)  pt(Y) = 

We’ll focus on flow-insensitive analyses:

◼ Take place on the AST

◼ Before or together with the control-flow analysis 
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Points-to Analysis



An almost-trivial analysis (called address-taken 取址 ):

◼ include all alloc-i cells    注：为程序正文中的分配点

◼ Include the X cell if the expression &X occurs in the program

 Improvement for a typed language

◼ Eliminate those cells whose types do not match

 This is sometimes good enough

◼ and clearly very fast to compute
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Obtaining Points-to Information



Assume that all pointer usage is normalized:

◼ X=alloc P          where P is null or an integer constant 

◼ X=&Y

◼ X=Y

◼ X=*Y

◼ *X=Y

◼ X=null

 Simply introduce lots of temporary variables…

All sub-expressions are now named

We choose to ignore the fact that the cells created at variable 

declarations are uninitialized
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Pointer Normalization
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Andersen’s Analysis (1/2) 

基于集合的包含关系
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Andersen’s Analysis (2/2) 
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Example Program

Cells= {p, q, x, y, z, alloc-1} 
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Applying Andersen

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = { y}
pt(x) = pt(y) = pt(z) = 𝜙



Pointer Analysis 14

A Specialized Cubic Solver

Original constraint forms
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A Specialized Cubic Solver

Implementation: SpecialCubicSolver



Pointer Analysis 16

A Specialized Cubic Solver
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Steensgaard’s Analysis

基于类型及其等价关系
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Steensgaard’s Analysis
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Applying Steensgaard

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = {alloc-1, y, z}
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Another Example
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Recall Our Type Analysis…
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 In TIP, function values and pointers may be mixed together:

(***x)(1,2,3)

 In this case the CFA and the points-to analysis must happen 

simultaneously!

 The idea: Treat function values as a kind of pointers
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Interprocedural Points-to Analysis



Assume that all function calls are of the form

x=y(a1,...,an)

 y may be a variable whose value is a function pointer

Assume that all return statements are of the form

return z;

As usual, simply introduce lots of temporary variables…

 Include all function names in Cells
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Function Call Normalization
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CFA with Andersen
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CFA with Steensgaard
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Context-sensitive Pointer Analysis
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Context-sensitive Pointer Analysis
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Context-sensitive Pointer Analysis



We can go one step further and introduce context-sensitive heap 

(a.k.a. heap cloning)

 Let each abstract cell be a pair of

◼ alloc-i (the alloc with index i ) or X (a program variable)

◼ a heap context from a (finite) set HeapContexts

 This allows abstract cells to be named by the source code allocation 

site 

and (information from) the current context

One choice: 

◼ set HeapContexts = Contexts

◼ at alloc, use the entire current call context as heap context
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Context-sensitive Pointer Analysis
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Context-sensitive Pointer Analysis 
with Heap Cloning
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 Field write operations: see SPA …

 Values of record fields cannot themselves be records

After normalization

◼ X = {F1: X1,…, Fk: Xk}

◼ X = alloc{F1: X1,…, Fk: Xk}

◼ X= Y.F

Let us extend Andersen’s analysis accordingly …
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Records in TIP
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Constraint Variables for Record Fields
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Analysis Constraints
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Objects as Mutable Heap Records
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Decide for every dereference *p, is p different from null?

 (Why not just treat null as a special cell in an Andersen or 

Steensgaard-style analysis?)

Use the monotone framework

◼ Assuming that a points-to map pt has been computed

 Let us consider an intraprocedural analysis

(i.e. we ignore function calls)
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Null Pointer Analysis



Define the simple lattice Null:



where NN represents “definitely not null” 

and ? represents “maybe null”

Use for every program point the map lattice:

Cells →Null
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A Lattice for null Analysis



 For every CFG node, v, we have a variable ⟦v⟧:

◼ a map giving abstract values for all cells at the program point after v

Auxiliary definition:

(i.e. we make a forward analysis)
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Setting Up



 For operations involving pointers:

◼ X =alloc P: ⟦v⟧= ???

◼ X =&Y: ⟦v⟧= ???

◼ X =Y: ⟦v⟧= ???

◼ X =*Y: ⟦v⟧= ???

◼ *X =Y: ⟦v⟧= ???

◼ X =null: ⟦v⟧= ???

 For all other CFG nodes:

◼ ⟦v⟧= JOIN(v)
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Null Analysis Constraints

where P is null or 
an integer constant



 For a heap store operation *X =Y we need to model the change of 

whatever X points to

 That may be multiple abstract cells(i.e. the cells pt(X)) 

With the present abstraction, each abstract heap cell alloc-i may 

describe multiple concrete cells

 So we settle for weak update:

*X =Y: ⟦v⟧= store(JOIN(v), X, Y)

where
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Null Analysis Constraints



 For a heap load operation X = *Y we need to model the change of the 

program variable X

Our abstraction has a single abstract cell for X

 That abstract cell represents a single concrete cell

 So we can use strong update:

X =*Y: ⟦v⟧= load(JOIN(v), X, Y)

where
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Null Analysis Constraints
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Strong and Weak Updates

The abstract cell alloc-1 corresponds to multiple concrete cells

weak update
*X =Y: ⟦v⟧= store(JOIN(v), X, Y) 

strong update
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Strong and Weak Updates

The points-to set for x contains multiple abstract cells



 In each case, the assignment modifies a program variable

 So we can use strong updates, as for heap load operations
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Null Analysis Constraints



 Strong update: [c↦new-value]

◼ possible if c is known to refer to a single concrete cell

◼ works for assignments to local variables (as long as TIP doesn’t have e.g. nested 

functions)

Weak update: [c↦ (c) ⊔new-value]

◼ necessary if c may refer to multiple concrete cells

◼ bad for precision, we lose some of the power of flow-sensitivity

◼ required for assignments to heap cells 

(unless we extend the analysis abstraction!)
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Strong and Weak Updates, Revisited



Context insensitive or context sensitive, as usual…

◼ at the after-call node, use the heap from the callee

But be careful! 

Pointers to local variables may escape to the callee

◼ the abstract state at the after-call node cannot simply copy the abstract values for 

local variables from the abstract state 
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Interprocedural Null Analysis

Escape Analysis
逃逸分析

分析对象是否逃逸出一个函数



 The pointer dereference *p is “safe” at entry of v if

JOIN(v)(p) = NN

 The quality of the null analysis depends on the quality of the 

underlying points-to analysis
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Using the Null Analysis



Andersen generates:

pt(p) = {alloc-1}

pt(q) = {p}

pt(n) = Ø
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Example Program & Constraints



⟦p=alloc null⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]

⟦q=&p⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]

⟦n=null⟧= [p↦NN, q↦NN, n↦?, alloc-1↦?]

⟦*q=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]

⟦*p=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]

 At the program point before the statement *q=n the analysis now knows 

that q is definitely non-null

 … and before *p=n, the pointer p is may be null

 Due to the weak updates for all heap store operations, precision is bad for 

alloc-i cells
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Solution
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 Graphs that describe possible heaps:

◼ nodes are abstract cells

◼ edges are possible pointers between the cells

 The lattice of points-to graphs is 𝒫(Cells × Cells)
ordered under subset inclusion

(or alternatively, Cells→𝒫(Cells))

 For every CFG node, v, we introduce a constraint variable ⟦v⟧ describing 

the state after v

 Intraprocedural analysis (i.e. ignore function calls)
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Points-to Graphs
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Constraints
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Example Program



After the loop we have this points-to graph:

We conclude that 

x and y will always 

be disjoint
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Result of Analysis



A points-to map for each program point v:

pt(X) = { t | (X,t) ⟦v⟧}

More expensive, but more precise:

◼ Andersen: pt(x) = { y, z}

◼ flow-sensitive:     pt(x) = { z}
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Points-to Maps from Points-to Graphs
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Improving Precision with Abstract Counting



 X = alloc P: …

 *X =Y: …

…

After the loop we have this extended points-to graph:

 Thus, alloc-2 nodes form a self-loop
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Constraints  and Better Results



 Perform a points-to analysis

 Look at return expression

Check reachability in the points-to 

graph to arguments or variables 

defined in the function itself

None of those



no escaping stack cells
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Escape Analysis



Thanks
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