
Pointer Analysis

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Pointer Analysis 2

Agenda

How do we perform e.g.

constant propagation analysis

when the programming

language has pointers?

(or object references?)

Pointer Analysis 3

Analyzing Programs with Pointers

Depend on whether x and y point

to the same location, if so, z is -87

 For simplicity, we ignore records

◼ alloc then only allocates a single cell

◼ only linear structures can be built in the heap

 Let’s at first also ignore functions as values

We still have many interesting analysis challenges...

Pointer Analysis 4

Heap Pointers

 The fundamental question about pointers:

What cells can they point to?

We need a suitable abstraction

 The set of (abstract) cells, Cells, contains

◼ alloc-i for each allocation site with index i

◼ X for each program variable named X

 This is called allocation site abstraction

 Each abstract cell may correspond to many concrete memory cells at

runtime

Pointer Analysis 5

Pointer Targets

p =alloc null
*p = z

alloc-1

Determine for each pointer variable X the set pt(X) of the cells X may

point to

A conservative (“may points-to”) analysis:

◼ the set may be too large

◼ can show absence of aliasing: pt(X)  pt(Y) = 

We’ll focus on flow-insensitive analyses:

◼ Take place on the AST

◼ Before or together with the control-flow analysis

Pointer Analysis 6

Points-to Analysis

An almost-trivial analysis (called address-taken 取址):

◼ include all alloc-i cells 注：为程序正文中的分配点

◼ Include the X cell if the expression &X occurs in the program

 Improvement for a typed language

◼ Eliminate those cells whose types do not match

 This is sometimes good enough

◼ and clearly very fast to compute

Pointer Analysis 7

Obtaining Points-to Information

Assume that all pointer usage is normalized:

◼ X=alloc P where P is null or an integer constant

◼ X=&Y

◼ X=Y

◼ X=*Y

◼ *X=Y

◼ X=null

 Simply introduce lots of temporary variables…

All sub-expressions are now named

We choose to ignore the fact that the cells created at variable

declarations are uninitialized

Pointer Analysis 8

Pointer Normalization

Pointer Analysis 9

Agenda

Pointer Analysis 10

Andersen’s Analysis (1/2)

基于集合的包含关系

Pointer Analysis 11

Andersen’s Analysis (2/2)

Pointer Analysis 12

Example Program

Cells= {p, q, x, y, z, alloc-1}

Pointer Analysis 13

Applying Andersen

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = { y}
pt(x) = pt(y) = pt(z) = 𝜙

Pointer Analysis 14

A Specialized Cubic Solver

Original constraint forms

Pointer Analysis 15

A Specialized Cubic Solver

Implementation: SpecialCubicSolver

Pointer Analysis 16

A Specialized Cubic Solver

Pointer Analysis 17

Agenda

Pointer Analysis 18

Steensgaard’s Analysis

基于类型及其等价关系

Pointer Analysis 19

Steensgaard’s Analysis

Pointer Analysis 20

Applying Steensgaard

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = {alloc-1, y, z}

Pointer Analysis 21

Another Example

Pointer Analysis 22

Recall Our Type Analysis…

Pointer Analysis 23

Agenda

 In TIP, function values and pointers may be mixed together:

(***x)(1,2,3)

 In this case the CFA and the points-to analysis must happen

simultaneously!

 The idea: Treat function values as a kind of pointers

Pointer Analysis 24

Interprocedural Points-to Analysis

Assume that all function calls are of the form

x=y(a1,...,an)

 y may be a variable whose value is a function pointer

Assume that all return statements are of the form

return z;

As usual, simply introduce lots of temporary variables…

 Include all function names in Cells

Pointer Analysis 25

Function Call Normalization

Pointer Analysis 26

CFA with Andersen

Pointer Analysis 27

CFA with Steensgaard

Pointer Analysis 28

Context-sensitive Pointer Analysis

Pointer Analysis 29

Context-sensitive Pointer Analysis

Pointer Analysis 30

Context-sensitive Pointer Analysis

We can go one step further and introduce context-sensitive heap

(a.k.a. heap cloning)

 Let each abstract cell be a pair of

◼ alloc-i (the alloc with index i) or X (a program variable)

◼ a heap context from a (finite) set HeapContexts

 This allows abstract cells to be named by the source code allocation

site

and (information from) the current context

One choice:

◼ set HeapContexts = Contexts

◼ at alloc, use the entire current call context as heap context

Pointer Analysis 31

Context-sensitive Pointer Analysis

Pointer Analysis 32

Context-sensitive Pointer Analysis
with Heap Cloning

Pointer Analysis 33

Agenda

 Field write operations: see SPA …

 Values of record fields cannot themselves be records

After normalization

◼ X = {F1: X1,…, Fk: Xk}

◼ X = alloc{F1: X1,…, Fk: Xk}

◼ X= Y.F

Let us extend Andersen’s analysis accordingly …

Pointer Analysis 34

Records in TIP

Pointer Analysis 35

Constraint Variables for Record Fields

Pointer Analysis 36

Analysis Constraints

Pointer Analysis 37

Objects as Mutable Heap Records

Pointer Analysis 38

Agenda

Decide for every dereference *p, is p different from null?

 (Why not just treat null as a special cell in an Andersen or

Steensgaard-style analysis?)

Use the monotone framework

◼ Assuming that a points-to map pt has been computed

 Let us consider an intraprocedural analysis

(i.e. we ignore function calls)

Pointer Analysis 39

Null Pointer Analysis

Define the simple lattice Null:



where NN represents “definitely not null”

and ? represents “maybe null”

Use for every program point the map lattice:

Cells →Null

Pointer Analysis 40

A Lattice for null Analysis

 For every CFG node, v, we have a variable ⟦v⟧:

◼ a map giving abstract values for all cells at the program point after v

Auxiliary definition:

(i.e. we make a forward analysis)

Pointer Analysis 41

Setting Up

 For operations involving pointers:

◼ X =alloc P: ⟦v⟧= ???

◼ X =&Y: ⟦v⟧= ???

◼ X =Y: ⟦v⟧= ???

◼ X =*Y: ⟦v⟧= ???

◼ *X =Y: ⟦v⟧= ???

◼ X =null: ⟦v⟧= ???

 For all other CFG nodes:

◼ ⟦v⟧= JOIN(v)

Pointer Analysis 42

Null Analysis Constraints

where P is null or
an integer constant

 For a heap store operation *X =Y we need to model the change of

whatever X points to

 That may be multiple abstract cells(i.e. the cells pt(X))

With the present abstraction, each abstract heap cell alloc-i may

describe multiple concrete cells

 So we settle for weak update:

*X =Y: ⟦v⟧= store(JOIN(v), X, Y)

where

Pointer Analysis 43

Null Analysis Constraints

 For a heap load operation X = *Y we need to model the change of the

program variable X

Our abstraction has a single abstract cell for X

 That abstract cell represents a single concrete cell

 So we can use strong update:

X =*Y: ⟦v⟧= load(JOIN(v), X, Y)

where

Pointer Analysis 44

Null Analysis Constraints

Pointer Analysis 45

Strong and Weak Updates

The abstract cell alloc-1 corresponds to multiple concrete cells

weak update
*X =Y: ⟦v⟧= store(JOIN(v), X, Y)

strong update

Pointer Analysis 46

Strong and Weak Updates

The points-to set for x contains multiple abstract cells

 In each case, the assignment modifies a program variable

 So we can use strong updates, as for heap load operations

Pointer Analysis 47

Null Analysis Constraints

 Strong update: [c↦new-value]

◼ possible if c is known to refer to a single concrete cell

◼ works for assignments to local variables (as long as TIP doesn’t have e.g. nested

functions)

Weak update: [c↦ (c) ⊔new-value]

◼ necessary if c may refer to multiple concrete cells

◼ bad for precision, we lose some of the power of flow-sensitivity

◼ required for assignments to heap cells

(unless we extend the analysis abstraction!)

Pointer Analysis 48

Strong and Weak Updates, Revisited

Context insensitive or context sensitive, as usual…

◼ at the after-call node, use the heap from the callee

But be careful!

Pointers to local variables may escape to the callee

◼ the abstract state at the after-call node cannot simply copy the abstract values for

local variables from the abstract state

Pointer Analysis 49

Interprocedural Null Analysis

Escape Analysis
逃逸分析

分析对象是否逃逸出一个函数

 The pointer dereference *p is “safe” at entry of v if

JOIN(v)(p) = NN

 The quality of the null analysis depends on the quality of the

underlying points-to analysis

Pointer Analysis 50

Using the Null Analysis

Andersen generates:

pt(p) = {alloc-1}

pt(q) = {p}

pt(n) = Ø

Pointer Analysis 51

Example Program & Constraints

⟦p=alloc null⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]

⟦q=&p⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]

⟦n=null⟧= [p↦NN, q↦NN, n↦?, alloc-1↦?]

⟦*q=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]

⟦*p=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]

 At the program point before the statement *q=n the analysis now knows

that q is definitely non-null

 … and before *p=n, the pointer p is may be null

 Due to the weak updates for all heap store operations, precision is bad for

alloc-i cells

Pointer Analysis 52

Solution

Pointer Analysis 53

Agenda

 Graphs that describe possible heaps:

◼ nodes are abstract cells

◼ edges are possible pointers between the cells

 The lattice of points-to graphs is 𝒫(Cells × Cells)
ordered under subset inclusion

(or alternatively, Cells→𝒫(Cells))

 For every CFG node, v, we introduce a constraint variable ⟦v⟧ describing

the state after v

 Intraprocedural analysis (i.e. ignore function calls)

Pointer Analysis 54

Points-to Graphs

Pointer Analysis 55

Constraints

Pointer Analysis 56

Example Program

After the loop we have this points-to graph:

We conclude that

x and y will always

be disjoint

Pointer Analysis 57

Result of Analysis

A points-to map for each program point v:

pt(X) = { t | (X,t) ⟦v⟧}

More expensive, but more precise:

◼ Andersen: pt(x) = { y, z}

◼ flow-sensitive: pt(x) = { z}

Pointer Analysis 58

Points-to Maps from Points-to Graphs

Pointer Analysis 59

Improving Precision with Abstract Counting

 X = alloc P: …

 *X =Y: …

…

After the loop we have this extended points-to graph:

 Thus, alloc-2 nodes form a self-loop

Pointer Analysis 60

Constraints and Better Results

 Perform a points-to analysis

 Look at return expression

Check reachability in the points-to

graph to arguments or variables

defined in the function itself

None of those



no escaping stack cells

Pointer Analysis 61

Escape Analysis

Thanks

Pointer Analysis
62

