
Overloading and Type Classes
(Adhoc Polymorphism)

Yu Zhang

http://staff.ustc.edu.cn/~yuzhang/pldpa

Yu Zhang: Overloading and Type Classes

http://staff.ustc.edu.cn/~yuzhang/tpl

References

• D. Rémy(Cambium project-team): Type systems for PLs

- Chapter 7 Overloading

• [Concepts in PLs] Revised Chapter 7 Type Classes

• PFPL

- Chapter 44 Type Abstractions and Type Classes

• Papers

- [ESOP 1988] Parametric Overloading in Polymorphic PLs

- [POPL 2007] Modular Type Classes

• Implementation

- Implementing, and Understanding Type Classes

- Implementing type classes as OCaml modules

• Types and Propositions:

- [TPHOLs 1997] Type classes and overloading in higher-order logic

Yu Zhang: Overloading and Type Classes

http://cristal.inria.fr/~remy/
http://cambium.inria.fr/
http://cristal.inria.fr/~remy/mpri/cours.pdf
https://staff.ustc.edu.cn/~yuzhang/fopl/readings/concepts-ch7r.pdf
http://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_9.pdf
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://okmij.org/ftp/Computation/typeclass.html
http://blog.shaynefletcher.org/search/label/OCamlhttp:/blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
https://link.springer.com/chapter/10.1007/BFb0028402

Outline

• Parametric Polymorphism vs. Overloading

• Why Overloading

• Overloading Mechanisms

- Static / dynamic resolution of overloading

• Parametric Overloading and Type Classes

also known as bounded polymorphism, or type classes

- Dictionary passing

- Macro

- Intentionally type analysis

Yu Zhang: Overloading and Type Classes

Parametric Polymorphism vs. Overloading

• Parametric polymorphism

- Single algorithm for any type

If 𝑓: 𝑡 → 𝑡, then 𝑓: int → int, 𝑓: bool → bool, …

• Overloading

- Single symbol may refer to different algorithms/operations.

- Each algorithm may have different unrelated type.

- Choice of algorithm determined by type context.

• Parametric overloading

- The types being instances of a single type expression over

some extended set of type variables

Yu Zhang: Overloading and Type Classes

int int int float flo has types , ,

but not for any .

at float

X X X X

    

 

Why Overloading ?

• Many useful functions are not parametric

• Can list membership work for any type?

• Can list sorting work for any type?

member : . list boolX X X  

sort : . list listX X X 

Yu Zhang: Overloading and Type Classes

Why Overloading ?

• Many useful functions are not parametric

• Can list membership work for any type?

- No! Only for types X that support equality.

• Can list sorting work for any type?

- No! Only for types X that support ordering.

member : . list boolX X X  

sort : . list listX X X 

Yu Zhang: Overloading and Type Classes

Variants of Overloading

• Static overloading: static resolution strategy

- Simple semantics: meaning determined statically

- Does not increase expressiveness

- Reduce verbosity, increase modularity and abstraction

• Dynamic overloading

- meaning determined dynamically

- Increase expressiveness

- Extra mechanism to support the dynamic resolution

• Require full or partial type info., or some type-related info.

Yu Zhang: Overloading and Type Classes

Overloading Mechanisms

Static Overloading

• Approach 1: A function containing overloaded symbols

=> multiple functions

• e.g. double x = x + x

defines two versions: Int -> Int and Float -> Float

But, how to resolve

doubles (x, y, z) = (double x, double y, double z)

• 8 possible versions!

=> Exponential growth in number of versions

Yu Zhang: Overloading and Type Classes

Static Overloading

• Approach 2 (used in SML-MLton): restrict the definition, i.e.,

specify one of the possible versions as the meaning

• e.g. double x = x + x => double: Int -> Int

double 3 double 3.2

If you want double: Float -> Float, you need define the function

explicitly specifying type.

• In Java

- Overloading a method in a class => static resolution

- But if an argument has a runtime type that is subtype

of the compile-time time => dynamic resolution

Yu Zhang: Overloading and Type Classes

http://mlton.org/

Dynamic Overloading

• Resolution with a type passing semantics

Runtime type dispatch using a general typecase construct

- High runtime cost of typecase unless type patterns are

significantly restricted

• Resolution with a type erasing semantics

To avoid the expensive cost of typecase,

restrict the overloaded functions by using tags.

can be elaborated into

let . in []f x x x 

let (). . in []f x x x   

 is then elaborated t1.0 (.o 1.0)f f 

e.g. Dictionary passing

Yu Zhang: Overloading and Type Classes

Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==’ does not work in general

Yu Zhang: Overloading and Type Classes

member [] False

member (:) () || member

member [1, 2, 3] 32

member "Haskell" 'k'

y

x xs y x y xs y





Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

(==) :: t -> t-> Bool

thus member is polymorphic, member:: [t] -> t-> Bool

If t does not provide a definition of equality, then there is a

runtime error when equality applied to a value of type t.

=> Violate principle of abstraction

Yu Zhang: Overloading and Type Classes

Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way

(used in current SML)

(==) :: ''t -> ''t-> Bool ''t indicate t is an eqtype variable

member has precise type, i.e. [''t] -> ''t -> Bool

if t does not support equality, there will be a static error

Yu Zhang: Overloading and Type Classes

Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way

(used in current SML)

(==) :: ‘’t -> ‘’t-> Bool ‘’t indicate t is an eqtype variable

member has precise type, i.e. [‘’t] -> ‘’t -> Bool

if t does not support equality, there will be a static error

Equality is a special case,
how can we generalize overloading?Yu Zhang: Overloading and Type Classes

Type Classes

• Type classes are a mechanism in Haskell

- Generalize eqtype to user-defined collections of types

(called type classes)

member:: (a-> a-> Bool) -> [a] -> a-> Bool

member cmp [] y = False

member cmp (x : xs) y = (cmp x y) || member cmp xs y

• Dictionary-passing style implementation [ESOP1988]

- Type-class declaration – dictionary

- Name of a type class method – label in the dictionary

- Parametric overloading

• pass the dictionary to the function

Yu Zhang: Overloading and Type Classes

https://okmij.org/ftp/Computation/typeclass.html

https://link.springer.com/content/pdf/10.1007/3-540-19027-9_9.pdf
https://okmij.org/ftp/Computation/typeclass.html

type 'a show = {show: 'a -> string}

let show_bool : bool show =
{show = function

| true -> "True“
| false -> "False"}

let show_int : int show =
{show = string_of_int}

class Show a where
show :: a -> String

instance Show Bool where
show True = "True“
show False = "False“

instance Show Int where
show x = Prelude.show x -- internal

Examples: Dictionary Passing

• Haskell • OCaml

Yu Zhang: Overloading and Type Classes

In Haskell
• Show a is type class
• Show Bool and Show Int are

instances of Show.

In OCaml
• 'a show is dictionary
• show_bool and show_int are

labels in the dictionary.

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

type 'a show = {show: 'a -> string}

let show_bool : bool show =
{show = function

| true -> "True“
| false -> "False"}

let show_int : int show =
{show = string_of_int}

class Show a where
show :: a -> String

instance Show Bool where
show True = "True“
show False = "False“

instance Show Int where
show x = Prelude.show x -- internal

Examples: Dictionary Passing

• Haskell • OCaml

Yu Zhang: Overloading and Type Classes

• print is a restricted polymorphic function, and it applies to values whose types are showable
• In Haskell: Show Bool and Show Int are members of Show class.
• In OCaml: the evidence of being showable, the dictionary, is the explicit argument.

print :: Show a => a -> IO ()
print x = putStrLn $ show x

test_print :: IO ()
test_print = print True

let print : 'a show -> 'a -> unit =
fun {show=show} x -> print_endline (show x)

let test_print : unit =
print show_bool true

Define an overloaded function print:

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

More Examples

• Type class whose methods have a different of

overloading: e.g. Num

• An instance with a constraint:

e.g. a Show instance for all list types [a] where the element

type a is also restricted to be a member of Show.

show_list: ‘a show -> ‘a list show (OCaml)

• A class of comparable types

e.g. class Eq a (Haskell) or type 'a eq (OCaml)

• Polymorphic recursion

See http://okmij.org/ftp/Computation/typeclass.html#dict

Yu Zhang: Overloading and Type Classes

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

Other Implementations

• Type classes as macros

- Static monomorphization (compile-time)

• Take the type-checked code with type classes

• Generate code with no type classes and no bounded

polymorphism

vs. C++ templates ? Template instantiation may produce ill-

typed code

• Intentional type analysis (run-time)

Choose the appropriate overloading operation at run-time

See http://okmij.org/ftp/Computation/typeclass.html#dict

Yu Zhang: Overloading and Type Classes

http://okmij.org/ftp/Computation/typeclass.html

THANKS

• Rust支持trait，这是具有一致性的有限形式的类型类

• 在Scala中，类型类是编程惯例，可以用现存语言特征

比如隐式参数来实现，本身不是独立的语言特征

Yu Zhang: Overloading and Type Classes

https://zh.m.wikipedia.org/wiki/Rust
https://zh.m.wikipedia.org/wiki/Traits_(%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6)
https://zh.m.wikipedia.org/wiki/Scala
https://zh.m.wikipedia.org/w/index.php?title=%E7%BC%96%E7%A8%8B%E6%83%AF%E4%BE%8B&action=edit&redlink=1

