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Parametric Polymorphism vs. Overloading

• Parametric polymorphism

- Single algorithm for any type

If 𝑓: 𝑡 → 𝑡, then 𝑓: int → int, 𝑓: bool → bool, …

• Overloading

- Single symbol may refer to different algorithms/operations.

- Each algorithm may have different unrelated type.

- Choice of algorithm determined by type context.

• Parametric overloading

- The types being instances of a single type expression over 

some extended set of type variables
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Why Overloading ?

• Many useful functions are not parametric

• Can list membership work for any type?

• Can list sorting work for any type?

member : .  list boolX X X  

sort : .  list  listX X X 
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Why Overloading ?

• Many useful functions are not parametric

• Can list membership work for any type?

- No! Only for types X that support equality.

• Can list sorting work for any type?

- No! Only for types X that support ordering.

member : .  list boolX X X  

sort : .  list  listX X X 
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Variants of Overloading

• Static overloading: static resolution strategy

- Simple semantics: meaning determined statically

- Does not increase expressiveness

- Reduce verbosity, increase modularity and abstraction

• Dynamic overloading

- meaning determined dynamically

- Increase expressiveness

- Extra mechanism to support the dynamic resolution

• Require full or partial type info., or some type-related info. 
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Overloading Mechanisms



Static Overloading

• Approach 1: A function containing overloaded symbols 

=> multiple functions

• e.g. double x = x + x

defines two versions: Int -> Int and Float -> Float

But, how to resolve 

doubles (x, y, z) = (double x, double y, double z)

• 8 possible versions!

=> Exponential growth in number of versions
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Static Overloading

• Approach 2 (used in SML-MLton): restrict the definition, i.e., 

specify one of the possible versions as the meaning

• e.g.  double x = x + x   => double: Int -> Int

double 3 double 3.2 

If you want double: Float -> Float, you need define the function 

explicitly specifying type.

• In Java

- Overloading a method in a class => static resolution

- But if an argument has a runtime type  that is subtype 

of the compile-time time => dynamic resolution
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Dynamic Overloading

• Resolution with a type passing semantics

Runtime type dispatch using a general typecase construct

- High runtime cost of typecase unless type patterns are 

significantly restricted

• Resolution with a type erasing semantics

To avoid the expensive cost of typecase,

restrict the overloaded functions by using tags.

can be elaborated into 

let .  in [ ]f x x x 

let ( ). .  in [ ]f x x x   

 is then elaborated t1.0 ( .o 1.0 )f f 

e.g. Dictionary passing
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Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator. 

But member using ‘==’ does not work in general
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Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator. 

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

(==) :: t -> t-> Bool

thus member is polymorphic, member:: [ t ] -> t-> Bool

If t does not provide a definition of equality, then there is a 

runtime error when equality applied to a value of type t.

=> Violate principle of abstraction
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Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator. 

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way 

(used in current SML)

(==) :: ''t -> ''t-> Bool ''t indicate t is an eqtype variable

member  has precise type, i.e. [ ''t ] -> ''t -> Bool

if t does not support equality, there will be a static error
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Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator. 

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way 

(used in current SML)

(==) :: ‘’t -> ‘’t-> Bool ‘’t indicate t is an eqtype variable

member  has precise type, i.e. [ ‘’t ] -> ‘’t -> Bool

if t does not support equality, there will be a static error

Equality is a special case, 
how can we generalize overloading?Yu Zhang: Overloading and Type Classes



Type Classes

• Type classes are a mechanism in Haskell

- Generalize eqtype to user-defined collections of types 

(called type classes)

member:: (a-> a-> Bool) -> [a] -> a-> Bool

member cmp [] y = False

member cmp (x : xs) y = (cmp x y) || member cmp xs y

• Dictionary-passing style implementation [ESOP1988]

- Type-class declaration – dictionary

- Name of a type class method – label in the dictionary

- Parametric overloading

• pass the dictionary to the function
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type 'a show = {show: 'a -> string}

let show_bool : bool show =
{show = function

| true -> "True“
| false -> "False"}

let show_int : int show =
{show = string_of_int}

class Show a where
show :: a -> String

instance Show Bool where
show True = "True“
show False = "False“

instance Show Int where
show x = Prelude.show x -- internal

Examples: Dictionary Passing

• Haskell • OCaml
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In Haskell
• Show a is type class
• Show Bool and Show Int are 

instances of Show.

In OCaml
• 'a show is dictionary
• show_bool and show_int are 

labels in the dictionary.
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type 'a show = {show: 'a -> string}

let show_bool : bool show =
{show = function

| true -> "True“
| false -> "False"}

let show_int : int show =
{show = string_of_int}

class Show a where
show :: a -> String

instance Show Bool where
show True = "True“
show False = "False“

instance Show Int where
show x = Prelude.show x -- internal

Examples: Dictionary Passing

• Haskell • OCaml
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• print is a restricted polymorphic function, and it applies to values whose types are showable
• In Haskell: Show Bool and Show Int are members of Show class.
• In OCaml: the evidence of being showable, the dictionary, is the explicit argument.

print :: Show a => a -> IO ()
print x = putStrLn $ show x

test_print :: IO () 
test_print = print True

let print : 'a show -> 'a -> unit =
fun {show=show} x -> print_endline (show x)

let test_print : unit =
print show_bool true

Define an overloaded function print:

http://okmij.org/ftp/Computation/typeclass.html
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More Examples

• Type class whose methods have a different of 

overloading: e.g. Num

• An instance with a constraint: 

e.g. a Show instance for all list types [a] where the element 

type a is also restricted to be a member of Show.        

show_list: ‘a show -> ‘a list show   (OCaml)

• A class of comparable types

e.g. class Eq a (Haskell)  or   type 'a eq (OCaml)

• Polymorphic recursion

See http://okmij.org/ftp/Computation/typeclass.html#dict
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Other Implementations

• Type classes as macros

- Static monomorphization (compile-time)

• Take the type-checked code with type classes

• Generate code with no type classes and no bounded 

polymorphism 

vs. C++ templates ? Template instantiation may produce ill-

typed code

• Intentional type analysis (run-time)

Choose the appropriate overloading operation at run-time

See http://okmij.org/ftp/Computation/typeclass.html#dict
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THANKS

• Rust支持trait，这是具有一致性的有限形式的类型类

• 在Scala中，类型类是编程惯例，可以用现存语言特征

比如隐式参数来实现，本身不是独立的语言特征
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