

Abstract Interpretation

Most content comes from<http://cs.au.dk/~amoeller/spa/>

张昱

yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

Abstract Interpretation: a solid mathematical foundation for reasoning about static program analyses

■ Is the analysis sound?

(Does it safely approximate the actual program behavior?)

 \blacksquare Is it as precise as possible for the currently used analysis lattice? If not, where can precision losses arise? Which precision losses can be avoided (without sacrificing soundness)?

➔**Require: a precise definition of the semantics of the PL and precise definitions of the analysis abstractions in terms of the semantics**

• Collecting semantics

- Abstraction and concretization
- Soundness
- Optimality
- Completeness

Concrete state: program variables to integers

 $Concrete States = Vars \hookrightarrow \mathbb{Z}$

Constraint variable for each CFG node v

■ $\{v\}$ \subseteq *ConcreteStates* reachable states collecting semantics

Denote the state at the program point immediately after v

The Semantics of Expressions

Concrete execution ➔ **Abstract execution**

ceval: ConcreteStates \times Exp \rightarrow $(\mathcal{P}(\mathbb{Z}))$

E Evaluate *E* relative to a concrete state ρ , and result in a set of possible integer values

 $\operatorname{ceval}(\rho, X) = \{\rho(X)\}\$ $\operatorname{ceval}(\rho, I) = \{I\}$ $\mathit{ceval}(\rho, \text{input}) = \mathbb{Z}$ $\text{ceval}(\rho, E_1 \text{ op } E_2) = \{v_1 \text{ op } v_2 \mid v_1 \in \text{ceval}(\rho, E_1) \land v_2 \in \text{ceval}(\rho, E_2)\}\$

Overload *ceval* **to work on sets of concrete states**

ceval: $\mathcal{P}(Concrete States) \times Exp \rightarrow \mathcal{P}(\mathbb{Z})$

$$
ceval(R,E) = \bigcup_{\rho \in R} ceval(\rho, E)
$$

Possible successors of a CFG node relative to a concrete state ➔ **work on a set of concrete states**

 $csucc: \mathcal{P}(ConcreteStates) \times Nodes \rightarrow \mathcal{P}(Nodes)$

$$
csucc(R, v) = \bigcup_{\rho \in R} csucc(\rho, v)
$$

 $CJOIN(v) =$

 $\{\rho \in \text{ConcreteStates} \mid \exists w \in \text{Nodes} : \rho \in \{w\} \land v \in \text{csucc}(\rho, w)\}\$

Semantics of Statements

A flow-insensitive semantics analysis that tracks function values:

Assignment

 $\{X=E\} = \{\rho[X \mapsto z] \mid \rho \in CJOIN(v) \land z \in \mathit{ceval}(\rho,E)\}\$

Variable declaration

$$
\{\text{var } X_1, \ldots, X_n\} = \{ \rho[X_1 \mapsto z_1, \ldots, X_n \mapsto z_n] \mid \rho \in CJOIN(v) \land z_1 \in \mathbb{Z} \land \cdots \land z_n \in \mathbb{Z} \}
$$

 Initial state $\{[entry]\} = \{\|\}$

 $\{[v]\} = CJOIN(v)$ **Others**

中国科学技术大学 University of Science and Technology of China

 \Box A program with *n* CFG nodes, v_1, \dots, v_n

$$
\begin{aligned} \n\{v_1\} &= cf_{v_1}(\{v_1\}, \dots, \{v_n\}) \\ \n\{v_2\} &= cf_{v_2}(\{v_1\}, \dots, \{v_n\}) \\ \n\vdots \\ \n\{v_n\} &= cf_{v_n}(\{v_1\}, \dots, \{v_n\}) \n\end{aligned}
$$

□ Combine *n* functions into one

$$
cf: (\mathcal{P}(ConcreteStates))^{n} \rightarrow (\mathcal{P}(ConcreteStates))^{n}
$$

$$
cf(x_1, ..., x_n) = (cf_{v_1}(x_1, ..., x_n), ..., cf_{v_n}(x_1, ..., x_n))
$$

$$
x = cf(x) \qquad \text{the semantics of P}
$$

$$
\{P\} = lfp(cf)
$$

var x; $x = 0$; while (input) $\{$ $x = x + 2;$ ł solution 1 solution 2 $\{$ entry $\}$ $\{[\mathbf{x} \mapsto z] \mid z \in \mathbb{Z}\}\$ $\{[\mathbf{x} \mapsto z] \mid z \in \mathbb{Z}\}\$ $\{|\nabla\mathbf{r}|\}\$ $\{[\mathbf{x} \mapsto 0]\}$ $\left\{ \mathbf{x} \mapsto 0 \right\}$ $\{x = 0\}$ $\left[\{[\mathbf{x} \mapsto z] \mid z \in \{0, 2, 4, \dots \} \} \right] \left[\{[\mathbf{x} \mapsto z] \mid z \in \mathbb{Z} \} \right]$ $\{$ input $\}$ $\{[\mathbf{x} = \mathbf{x} + 2] \}$ $\{[\mathbf{x} \mapsto z] \mid z \in \{2, 4, \dots\}\}$ $\{[\mathbf{x} \mapsto z] \mid z \in \mathbb{Z}\}$
 $\{[exit]\}$ $\{[\mathbf{x} \mapsto z] \mid z \in \{0, 2, 4, \dots\}\}$ $\{[\mathbf{x} \mapsto z] \mid z \in \mathbb{Z}\}$ the least solution

Tarski's Fixed Point Theorem for Continuous Functions Functions of Science and Technology of China

 \Box $f: L_1 \rightarrow L_2$ is continuous if $f(\bigsqcup A) = \bigsqcup_{a \in A} f(a)$ **for every** $A \subseteq L$

If is continuous

$$
fix(f) = \bigsqcup_{i \geq 0} f^i(\bot)
$$

(even when L has infinite height!)

is continuous

Semantics vs. Analysis

the semantics of P

$$
\begin{aligned}\n\begin{aligned}\n\left\{\mathbf{b} = 87\right\} &= \{ \left[\mathbf{a} \mapsto 42, \mathbf{b} \mapsto 87, \mathbf{c} \mapsto z\right] \mid z \in \mathbb{Z} \} \\
\left\{\mathbf{c} = \mathbf{a} - \mathbf{b} \right\} &= \{ \left[\mathbf{a} \mapsto 42, \mathbf{b} \mapsto 87, \mathbf{c} \mapsto -45\right] \} \\
\left\{\left[\mathbf{exit}\right] \right\} &= \{ \left[\mathbf{a} \mapsto 42, \mathbf{b} \mapsto 87, \mathbf{c} \mapsto 129 \right], \left[\mathbf{a} \mapsto 42, \mathbf{b} \mapsto 87, \mathbf{c} \mapsto -45 \right] \}\n\end{aligned}\n\end{aligned}
$$

the analysis result of P

$$
\begin{aligned} \n\llbracket \mathbf{b} = 87 \rrbracket &= [\mathbf{a} \mapsto +, \mathbf{b} \mapsto +, \mathbf{c} \mapsto \top] \\ \n\llbracket \mathbf{c} = \mathbf{a} - \mathbf{b} \rrbracket &= [\mathbf{a} \mapsto +, \mathbf{b} \mapsto +, \mathbf{c} \mapsto \top] \\ \n\llbracket \mathbf{exit} \rrbracket &= [\mathbf{a} \mapsto +, \mathbf{b} \mapsto +, \mathbf{c} \mapsto \top] \n\end{aligned}
$$

• Collecting semantics

- Abstraction and concretization
- Soundness
- Optimality
- Completeness

Abstract functions

 $\alpha_{\rm a} : \mathcal{P}(\mathbb{Z}) \to \mathit{Sign}$ Sets of Concrete value \rightarrow sets of abstract value $\alpha_{\mathbf{b}} \colon \mathcal{P}(Concrete States) \to States \ \alpha_{\mathbf{c}} \colon (\mathcal{P}(Concrete States))^{n} \to States \ \alpha_{\mathbf{c}} \colon (\mathcal{P}(Concrete States))^{n} \to States \ \operatorname{State} = Vars \to Sign$ n-tuple of sets of concrete states → those of abstract states
 $\alpha_a(D) = \begin{cases} \bot & \text{if } D \text{ is empty} \\ + & \text{if } D \text{ is nonempty and contains only positive integers} \\ - & \text{if } D \text{ is nonempty and contains only negative integers} \\ 0 & \text{if } D \text{ is nonempty and contains only the integer 0} \\ \top & \text{otherwise} \end{cases}$ for any $D \in \mathcal{P}(\mathbb{Z})$ $\alpha_{\rm b}(R) = \sigma$ where $\sigma(X) = \alpha_{\rm a}(\{\rho(X) \mid \rho \in R\})$ for any $R \subseteq$ ConcreteStates and $X \in Vars$

$$
\alpha_{\rm c}(R_1,\ldots,R_n) = (\alpha_b(R_1),\ldots,\alpha_b(R_n))
$$

for any $R_1,\ldots,R_n \subseteq \textit{ConcreteStates}$

Abstract Interpretation

中国科学技术大学 University of Science and Technology of China

Concretization functions

$$
\gamma_{\mathsf{a}} \colon \mathit{Sign} \to \mathcal{P}(\mathbb{Z})
$$
\n
$$
\gamma_{\mathsf{b}} \colon \mathit{States} \to \mathcal{P}(\mathit{ConcreteStates})
$$
\n
$$
\gamma_{\mathsf{c}} \colon \mathit{States}^n \to \big(\mathcal{P}(\mathit{ConcreteStates})\big)^n
$$
\n
$$
\text{if } s = \bot
$$
\n
$$
\gamma_{\mathsf{a}}(s) = \begin{cases}\n\emptyset & \text{if } s = \bot \\
\{1, 2, 3, \ldots\} & \text{if } s = + \\
\{1, -2, -3, \ldots\} & \text{if } s = - \\
\{0\} & \text{if } s = 0 \\
\mathbb{Z} & \text{if } s = \top\n\end{cases}
$$
\n
$$
\text{for any } s \in \mathit{Sign}
$$
\n
$$
\text{(Note: } \langle \mathsf{a} \rangle \text{ is the following inequality)}
$$

 $\gamma_{\mathbf{b}}(\sigma) = \{ \rho \in \mathit{ConcreteStates} \mid \rho(X) \in \gamma_{\mathbf{a}}(\sigma(X)) \text{ for all } X \in \mathit{Vars} \}$ for any $\sigma \in \text{States}$

$$
\gamma_{\rm c}(\sigma_1,\ldots,\sigma_n) = (\gamma_{\rm b}(\sigma_1),\ldots,\gamma_{\rm b}(\sigma_n))
$$

for any $(\sigma_1,\ldots,\sigma_n) \in \text{States}^n$

Galois Connections

Galois Theory 伽罗瓦理论

all three pairs of abstraction and concretization functions (α_a, γ_a) , (α_b, γ_b) , and (α_c, γ_c) from the sign analysis example are Galois connections Abstract Interpretation

Galois Connections

The concretization function uniquely determines the abstraction function and vice versa:

$$
\gamma(y) = \bigsqcup_{x \in L_1 \text{ where } \alpha(x) \sqsubseteq y} x
$$

$$
\alpha(x) = \bigcap_{y \in L_2 \text{ where } x \sqsubseteq \gamma(y)} y
$$

Galois Connections

 For this lattice, given the "obvious" concretization function, is there an abstraction function such that the concretization function and the abstraction function form a Galois connection? [Not exist]

How should we define $\alpha_a({0})$? Exercise 11.22

the concretization function

$$
\gamma_{a}(s) = \begin{cases} \emptyset & \text{if } s = \bot \\ \{0, 1, 2, 3, \dots\} & \text{if } s = 0+ \\ \{0, -1, -2, -3, \dots\} & \text{if } s = 0- \\ \mathbb{Z} & \text{if } s = \top \end{cases}
$$

□ Assume $\alpha_{\alpha}(\{0\}) = 0$ and $\alpha_{\alpha}(\{0,1\}) = 0$.

x = input > 3; if (!x) { output x; } Flow-insensitive sign analysis → ⁺ → ⁺

Flow-sensitive sign analysis

 $x = input > 3;$ $x \rightarrow 0_{+}$ if (!x) { assert(!x): $[\![v]\!] = \begin{cases} \sigma[x \mapsto \alpha_a(\{0\})] & \text{if } 0 \in \gamma_a(\sigma(x)) \\ \bot & \text{otherwise} \end{cases}$ output x; $x \rightarrow 0$ } where $\sigma = JOIN(v)$

Representation Functions

For ordinary Sign lattice

$$
\beta\colon\mathbb{Z}\to \mathit{Sign}
$$

Representation Function

$$
\beta(d) = \begin{cases}\n+ & \text{if } d > 0 \\
- & \text{if } d < 0 \\
\mathbf{0} & \text{if } d = 0\n\end{cases}
$$

 $\overline{}$

Abstraction Function

$$
\alpha_{\mathsf{a}}(D) = \bigsqcup \{ \beta(d) \mid d \in D \}
$$

• Collecting semantics

- Abstraction and concretization
- Soundness
- Optimality
- Completeness

Optimal Approximations

af is an optimal approximation of cf if

 $af = \alpha \circ cf \circ \gamma$

Optimal Approximations in Sign Analysis?

中国科学技术大学 University of Science and Technology of China

 $\hat{*}$ is optimal:

$$
s_1\widehat{\star} s_2 = \alpha_{\mathbf{a}}\big(\gamma_{\mathbf{a}}(s_1)\cdot \gamma_{\mathbf{a}}(s_2)\big)
$$

eval is not optimal:

$$
\sigma(\mathbf{x}) = T
$$

eval(σ , $\mathbf{x} - \mathbf{x}$) = T

$$
\alpha_{\mathbf{b}}(\text{ceval}(\gamma_{\mathbf{b}}(\sigma), \mathbf{x} - \mathbf{x})) = 0
$$

Even if we could make eval optimal, the analysis result is not always optimal:

$$
x = input;\n y = x;\n z = x - y;\nAbstract Interpretation
$$

We need

- Static analysis (the analysis lattices and constraint rules)
- Language semantics (suitable collecting semantics)
- Abstract/concretization functions that specify the meaning of the elements in the analysis lattice in terms of the semantic lattice

… and then

- If each constituent of the analysis is a sound abstraction of its semantic counterpart, then the analysis is sound
- If an abstraction is optimal, then it is as precise as possible, relative to the choice of analysis lattice
- \blacksquare If the analysis is sound and complete, then the analysis result is as precise as possible, relative to the choice of analysis lattice

Thanks