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Principles of Programming Analysis

Dragon book: Compilers

Optimizing Compilers for Modern Architectures

Static Program Analysis
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Resources

https://github.com/amilajack/reading/tree/master/Type_Systems

https://suif.stanford.edu/papers/

Anders Møller

https://github.com/amilajack/reading/tree/master/Type_Systems
https://suif.stanford.edu/papers/
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
https://users-cs.au.dk/amoeller/spa/
https://users-cs.au.dk/amoeller/spa/
http://cs.au.dk/~amoeller/


Assembly
Code

Yu Zhang：Data Flow Analysis 3

Compiler Structure

Front End Optimizer Back EndIR IR
Source
Code

1. Lexical Analysis

2. Parsing

3. Semantic Analysis

5. Instruction Selection

6. Register Allocation

7. Instruction Scheduling

Middle End：

4. Analysis/

Optimization



Source code parsed to produce AST

AST transformed to CFG

Data flow analysis operates on control flow graph (and other 

intermediate representations)
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Compiler Structure



ASTs are abstract

They don’t contain all information in the program

e.g., spacing, comments, brackets, parentheses

Any ambiguity has been resolved

e.g., a + b + c produces the same AST as (a + b) + c
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ASTs

c+

a b

+

https://github.com/s4plus/pyscan

import ast

…

source = open(sourcefile, "r").read()

root = ast.parse(source)

https://astexplorer.net/

https://github.com/s4plus/pyscan
https://astexplorer.net/


AST has many similar forms

e.g., for, while, repeat...until

e.g., if, ?:, switch

Expressions in AST may be complex, nested

(42 * y) + (z > 5 ? 12 * z : z + 20)

Want simpler representation for analysis

...at least, for dataflow analysis
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Disadvantages of ASTs



A directed graph where

Each node represents a statement

Edges represent control flow

Statements may be

Assignments x := y op z or x := op z

Copy statements x := y

Branches goto L or if x relop y goto L

etc.
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Control-Flow Graph (CFG)



x := a + b;

y := a * b;

while (y > a) {

a := a + 1;

x := a + b

}
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Control-Flow Graph Example

Program point

Invariants (不变式)：

A property holds at a program point if it holds in 

any such state for any execution with any input

y > a at above program point

y > a holds



We usually don’t include declarations (e.g., int x;)

But there’s usually something in the implementation

May want a unique entry and exit node

Won’t matter for the examples we give

May group statements into basic blocks

A sequence of instructions with no branches into or out of the block
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Variations on CFGs



Can lead to more efficient implementations

But more complicated to explain, so...

We’ll use single-statement blocks in lecture today
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Control-Flow Graph w/Basic Blocks

x := a + b;

y := a * b;

while (y > a ) {

a := a + 1;

x := a + b

}

Program point

y > a holds



CFGs are much simpler than ASTs

Fewer forms, less redundancy, only simple expressions

But...AST is a more faithful representation

CFGs introduce temporaries

Lose block structure of program

So for AST,

Easier to report error + other messages

Easier to explain to programmer

Easier to unparse to produce readable code
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CFG vs. AST



Data flow analysis: Examples
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A framework for proving facts about programs

Reasons about lots of little facts

Little or no interaction between facts

Works best on properties about how program computes

Based on all paths through program

Including infeasible paths
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Data Flow Analysis



An expression e is available at program point p if

e is computed on every path to p, and

the value of e has not changed since the last time e is computed on p

Optimization

If an expression is available, need not be recomputed

(At least, if it’s still in a register somewhere)
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Available Expressions



Is expression e available?

Facts:

a + b is available

a * b is available

a + 1 is available
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Data Flow Facts



What is the effect of each statement on the set of facts?
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Gen and Kill

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

a := a + 1
a + 1,
a + b,
a * b  
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Computing Available Expressions 
at Each Program Point

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

{a + b}

{a + b}

{a + b}



A joint point is a program point where two branches meet

Available expressions is a forward must problem

Forward = Data flow from in to out

Must = At join point, property must hold on all paths that are joined
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Terminology



Let s be a statement

succ(s) =  { immediate successor statements of s }

pred(s) = { immediate predecessor statements of s}

 In(s) = program point just before executing s

Out(s) = program point just after executing s

In(s) = ∩
s′ ∊ pred(s)

Out(s′)

Out(s) = Gen(s) ∪ (In(s) - Kill(s))

Note:  These are also called transfer functions

Yu Zhang：Data Flow Analysis 19

Data Flow Equations



A variable v is live at program point p if

v will be used on some execution path originating from p...

before v is overwritten

Optimization

If a variable is not live, no need to keep it in a register

If variable is dead at assignment, can eliminate assignment
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Liveness Analysis



Available expressions is a forward must analysis

Data flow propagate in same dir as CFG edges

Expr is available only if available on all paths

Liveness is a backward may problem

To know if variable live, need to look at future uses

Variable is live if used on some path

Out(s) = ∪
s′ ∊ succ(s)

In(s′)

In(s) = Gen(s) ∪ (Out(s) - Kill(s))
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Data Flow Equations



What is the effect of each statement on the set of facts?
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Gen and Kill

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a
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Computing Live Variables

{x, y, a, b}

{x}

{x, y, a}

{x, y, a}

{y, a, b}

{y, a, b}

{x, a, b}

{a, b}

{x, y, a, b}



An expression e is very busy at point p if

On every path from p, expression e is evaluated before the value of e is 

changed

Optimization

Can hoist very busy expression computation

What kind of problem?

Forward or backward?

May or must?

Yu Zhang：Data Flow Analysis 24

Very Busy Expressions

backward

must



A definition of a variable v is an assignment to v

A definition of variable v reaches point p if

There is no intervening assignment to v

Also called def-use information

What kind of problem?

Forward or backward?

May or must?
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Reaching Definitions

forward

may



Most data flow analyses can be classified this way

A few don’t fit:  bidirectional analysis

Lots of literature on data flow analysis
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Space of Data Flow Analyses

May Must

Forward
Reaching 

definitions
Available expressions

Backward
Live 

variables

Very busy 

expressions



Generalization
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Dataflow analysis

 A common framework for such analysis

 Computes information at each program point

 Conservative: characterizes all possible program behaviors

Methodology

 Describe the information (e.g., live variable sets) using a structure called a lattice

 Build a system of equations based on:

 How each statement affects information

 How information flows between basic blocks

 Solve the system of constraints
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Generalization



 Live variable sets

 Called flow values  流值

 Associated with program points

 Start “empty”, eventually contain solution

 Effects of instructions

 Called transfer functions 迁移函数

 Take a flow value, compute a new flow value that captures the effects

 One for each instruction – often a schema

Handling control flow

 Called confluence operator 合流算子

 Combines flow values from different paths
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Parts of Live Vars Analysis



Typically, data flow facts form a lattice

Example:  Available expressions
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Data Flow Facts and Lattices

“top”

“bottom”



 Flow values

 Elements of a lattice L = (P, ≤)

 Flow value v ∈P

 Transfer functions

 Set of functions (one for each instruction)

 𝐹𝑖: P → P

 Confluence operator

 Merges lattice values

 C: P × P → P

How does this help us?
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Mathematical model



A partial order is a pair such that








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Partial Orders



A partial order is a lattice if and are defined on any set:

 is the meet or greatest lower bound operation:





 is the join or least upper bound operation:




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Lattices

交、最大下界

下确界

并、最小上界

上确界



A partial order is a lattice if and are defined on any set:

 is the meet or greatest lower bound operation:




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Lattices

交、最大下界
下确界

并、最小上界
上确界



A finite partial order is a lattice if meet and join exist for every 

pair of elements

A lattice has unique elements    and    such that





In a lattice, 
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Lattices (cont’d)

底元、 顶元



(2
S
, ⊆) forms a lattice for any set S

2
S

is the powerset of S (set of all subsets)

If (S, ≤) is a lattice, so is (S, ≥)

i.e., lattices can be flipped

The lattice for constant propagation
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Useful Lattices

幂集



Combine flow values

 “Merge” values on different control-flow paths

 Result should be a safe over-approximation

 We use the lattice ⊆ to denote “more safe”

Example: live variables

 v1 = {x, y, z} and v2 = {y, w}

 How do we combine these values?

 v = v1 ∪ v2 = {w, x, y, z}

 What is the “⊆” operator?

 Superset
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Confluence Operator



 Goal: Combine two values to produce the “best” approximation

 Intuition:

 Given v1 = {x, y, z} and v2 = {y, w}

 A safe over-approximation is “all variables live”

 We want the smallest set

 Greatest lower bound

 Given x,y ∈P

 GLB(x,y) = z such that

 z ⊆ x and z ⊆ y and

 ∀w.w ⊆ x and w ⊆ y⇒w ⊆ z

 Meet operator: x ∧ y = GLB(x, y)

 Natural “opposite”: Least upper bound, join operator
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Meet and Join



Out(s) = Top for all statements s

// Slight acceleration:  Could set Out(s) = Gen(s) ∪(Top - Kill(s))

W := { all statements }     (worklist)

repeat

Take s from W

In(s) := ∩
s′ ∊ pred(s)

Out(s′)

temp := Gen(s) ∪ (In(s) - Kill(s))

if (temp != Out(s)) {

Out(s) := temp

W := W ∪ succ(s)

}

until W = ∅
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Forward Must Data Flow Algorithm



A function f on a partial order is monotonic if

Easy to check that operations to compute In and Out are 

monotonic

 In(s) := ∩
s′ ∊ pred(s)

Out(s′)

 temp := Gen(s) ∪ (In(s) - Kill(s))

Putting these two together,

 temp := 
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Monotonicity单调性



We know the algorithm terminates because

The lattice has finite height

The operations to compute In and Out are monotonic

On every iteration, we remove a statement from the worklist and/or move 

down the lattice
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Termination终止性



Out(s) = Top       for all statements s

W := { all statements }     (worklist)

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ pred(s)
Out(s′)) (f

s
monotonic transfer fn)

if (temp != Out(s)) {

Out(s) := temp

W := W  ∪ succ(s)

}

until W = ∅
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Forward Data Flow, Again



Available expressions

P = sets of expressions

S1 ⊓ S2 = S1 ∩ S2

Top = set of all expressions

Reaching Definitions

P = set of definitions (assignment statements)

S1 ⊓ S2 = S1 ∪ S2

Top = empty set
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Lattices (P, ≤)



Live variables

P = sets of variables

S1 ⊓ S2 = S1 ∪ S2

Top = empty set

Very busy expressions

P = set of expressions

S1 ⊓ S2 = S1 ∩ S2

Top = set of all expressions
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Lattices (P, ≤), cont’d
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Forward vs. Backward

Out(s) = Top  for all s

W := { all statements }

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ pred(s)
Out(s′))

if (temp != Out(s)) {

Out(s) := temp

W := W ∪ succ(s)

}

until W = ∅

In(s) = Top  for all s

W := { all statements }

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ succ(s)
In(s′))

if (temp != In(s)) {

In(s) := temp

W := W ∪ pred(s)

}

until W = ∅



Question:

 What is the solution we compute?

 Start at lattice top, move down

 Called greatest fixpoint

 Where does approximation come from?

 Confluence of control-flow paths

 Ideal solution?

 Consider each path to a program point separately

 Combine values at end

 Called meet-over-all-paths solution (MOP)

 When is the fixpoint equal to MOP?
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Dataflow Solution



We always start with Top

Every expression is available, no definitions reach this point

Most optimistic assumption

Strongest possible hypothesis

= true of fewest number of states

Revise as we encounter contradictions

Always move down in the lattice (with meet)

Result:  A greatest fixpoint
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Fixpoints不动点



How many times can we apply this step:
temp := fs(⊓s′ ∊ pred(s) Out(s′))

if (temp != Out(s)) { ... }

Claim:  Out(s) only shrinks

• Proof:  Out(s) starts out as top

• So temp must be ≤ than Top after first step

• Assume Out(s′) shrinks for all predecessors s′ of s

• Then ⊓s′ ∊ pred(s) shrinks

• Since fs monotonic, fs (⊓s′ ∊ pred(s) Out(s′)) shrinks
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Termination Revisited



A descending chain in a lattice is a sequence

 x0 ⊐ x1 ⊐ x2 ⊐ ...

 The height of a lattice is the length of the longest descending chain in 

the lattice

 Then, dataflow must terminate in O(n k) time

 n = # of statements in program

 k = height of lattice

 assumes meet operation takes O(1) time
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Termination Revisited (cont’d)



MFP (Maximal Fixed Point) solution – general iterative 

algorithm for monotone frameworks

always terminates

always computes the right solution

Yu Zhang：Data Flow Analysis 50

Relationship to Section 2.4 of Book (NNH)

https://github.com/amilajack/rea

ding/tree/master/Type_Systems

Flemming Nielson et al. Principles of Program 
Analysis (2nd Edition). Springer, 2005.

https://github.com/amilajack/reading/tree/master/Type_Systems
http://www.imm.dtu.dk/~hrni/PPA/ppa.html


Dataflow tradition:  Start with Top, use meet

To do this, we need a meet semilattice with top

meet semilattice = meets defined for any set

Computes greatest fixpoint

Denotational semantics tradition:  Start with Bottom, use join

Computes least fixpoint
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Least vs. Greatest Fixpoints

交半格

偏序集且a ⊓ b存在（下确界）



By monotonicity, we also have

A function f is distributive (可分配) if
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Distributive Data Flow Problems



Joins lose no information
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Benefit of Distributivity



Ideally, we would like to compute the meet over all paths 

(MOP) solution:

Let fs be the transfer function for statement s

If p is a path {s1, ..., sn}, let fp = fn;...;f1

Let path(s) be the set of paths from the entry to s

If a data flow problem is distributive, then solving the data 

flow equations in the standard way yields the MOP solution, 

i.e., MFP = MOP
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Accuracy of Data Flow Analysis

将所有路径都join/meet的方法

该路径上所有语句
的转移函数的复合



MOP（Meet Over All paths）

MFP（Maximal Fixed Point）

MFP ≤ MOP ≤ PerfectSolution
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MOP vs. MFP



Analyses of how the program computes

Live variables

Available expressions

Reaching definitions

Very busy expressions

All Gen/Kill problems are distributive
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What Problems are Distributive?
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MOP considers more paths than Ideal



Constant propagation

In general, analysis of what the program computes in not 

distributive
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A Non-Distributive Example

MOP：先考虑所有路径，得到两

条路径z的值为3，再聚合得到z

的值就是3

MFP：过早地进行交汇运算，最

后并不能得到z的值是多少



Computing MFP is always safe:  MFP ⊑ MOP

When distributive:  MOP = MFP

When non-distributive:  MOP may not be computable 

(decidable)

e.g., MOP for constant propagation

(see Lemma 2.31 of NNH)
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MOP vs MFP



Practical Implementation
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Data flow facts = assertions that are true or false at a 

program point

Represent set of facts as bit vector

Fact
i
represented by bit i

Intersection = bitwise and, union = bitwise or, etc

“Only” a constant factor speedup

But very useful in practice
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Practical Implementation



A basic block is a sequence of statements s.t.

No statement except the last in a branch

There are no branches to any statement in the block except the first

In practical data flow implementations,

Compute Gen/Kill for each basic block

Compose transfer functions

Store only In/Out for each basic block

Typical basic block ~5 statements
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Basic Blocks



Assume forward data flow problem

Let G = (V, E) be the CFG

Let k be the height of the lattice

If G acyclic, visit in topological order

Visit head before tail of edge

Running time O(|E|)

No matter what size the lattice
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Order Matters



If G has cycles, visit in reverse postorder

Order from depth-first search

Let Q = max # back edges on cycle-free path

Nesting depth

Back edge is from node to ancestor on DFS tree

Then if                     (sufficient, but not necessary)

Running time is

Note direction of req’t depends on top vs. bottom
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Order Matters — Cycles



Data flow analysis is flow-sensitive

The order of statements is taken into account

I.e., we keep track of facts per program point

Alternative:  Flow-insensitive analysis

Analysis the same regardless of statement order

Standard example:  types

/* x : int */ x := ... /* x : int */
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Flow-Sensitivity



Must vs. May

(Not always followed in literature)

Forwards vs. Backwards

Flow-sensitive vs. Flow-insensitive

Distributive vs. Non-distributive
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Terminology Review



Recall in practice, one transfer function per basic block

Why not generalize this idea beyond a basic block?

“Collapse”  larger constructs into smaller ones, combining data flow 

equations

Eventually program collapsed into a single node!

“Expand out” back to original constructs, rebuilding information
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Another Approach:  Elimination



Let (P, ≤) be a lattice

Let M be the set of monotonic functions on P

Define f ≤f g if for all x, f(x) ≤ g(x)

Define the function f ⊓ g as

(f ⊓ g) (x) = f(x) ⊓ g(x)

Claim:  (M, ≤ f) forms a lattice

Yu Zhang：Data Flow Analysis 68

Lattices of Functions
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Elimination Methods:  
Conditionals



Yu Zhang：Data Flow Analysis 70

Elimination Methods:  Loops



Let 𝒇𝒊 = 𝒇°𝒇°⋯ °𝒇 (i times)

 𝒇𝟎 =id

Let

Need to compute limit as j goes to infinity

Does such a thing exist?

Observe:  𝑔(𝑗 + 1) ≤ 𝑔(𝑗)
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Elimination Methods:  Loops (cont’d)



Assume underlying lattice (P, ≤) has finite height

What is height of lattice of monotonic functions?

Claim:  finite

Therefore, 𝑔(𝑗) converges
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Height of Function Lattice



Elimination methods usually only applied to reducible flow 

graphs

Ones that can be collapsed

Standard constructs yield only reducible flow graphs

Unrestricted goto can yield non-reducible graphs
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Non-Reducible Flow Graphs



Can also do backwards elimination

Not quite as nice (regions are usually single entry but often not single exit)

For bit-vector problems, elimination efficient

Easy to compose functions, compute meet, etc.

Elimination originally seemed like it might be faster than 

iteration

Not really the case
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Comments



What happens at a function call?

Lots of proposed solutions in data flow analysis literature

In practice, only analyze one procedure at a time

Consequences

Call to function kills all data flow facts

May be able to improve depending on language, e.g., function call may 

not affect locals
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Data Flow Analysis and Functions



An analysis that models only a single function at a time is 

intraprocedural

An analysis that takes multiple functions into account is 

interprocedural

An analysis that takes the whole program into account 

is...guess?

Note:  global analysis means “more than one basic block,” 

but still within a function
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More Terminology



Data Flow is good at analyzing local variables

But what about values stored in the heap?

Not modeled in traditional data flow

In practice:  *x := e

Assume all data flow facts killed (!)

Or, assume write through x may affect any variable whose address has 

been taken

In general, hard to analyze pointers
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Data Flow Analysis and The Heap



Moore’s Law:  Hardware advances double computing power 

every 18 months.

Proebsting’s Law:  Compiler advances double computing 

power every 18 years.

编译器优化每18年提高一倍的计算能力

https://proebsting.cs.arizona.edu/law.html
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虽然硬件计算能力每年增长约60％，
但编译器优化仅贡献4％。基本上，编译器优化工作仅做出很小的贡献。
也许这意味着编程语言研究应该专注于优化以外的事情。
也许程序员的生产力是一个更加富有成效的舞台。

https://proebsting.cs.arizona.edu/law.html


THANKS
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