

Data Flow Analysis 《程序语言设计和程序分析》

yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

Resources

Principles of Programming Analysis

Dragon book: Compilers

Optimizing Compilers for Modern Architectures

Static Program Analysis

https://github.com/amilajack/reading/tree/master/TypeSystemshttps://suif.stanford.edu/papers/Yu Zhang: Data Flow Analysis

Compiler Structure

Compiler Structure

□ Source code parsed to produce AST

□ AST transformed to CFG

Data flow analysis operates on control flow graph (and other intermediate representations)

□ASTs are *abstract*

They don't contain all information in the program

□e.g., spacing, comments, brackets, parentheses

Any ambiguity has been resolved

 \Box e.g., a + b + c produces the same AST as (a + b) + c

import ast
...
source = open(sourcefile, "r").read()
root = ast.parse(source)

https://github.com/s4plus/pyscan

AST has many similar forms

- e.g., for, while, repeat...until
- ■e.g., if, ?:, switch

Expressions in AST may be complex, nested (42 * y) + (z > 5 ? 12 * z : z + 20)

Want simpler representation for analysis

...at least, for dataflow analysis

□A directed graph where

- Each node represents a statement
- Edges represent control flow

Statements may be

- Assignments x := y op z or x := op z
- Copy statements x := y
- Branches goto L or if x relop y goto L

Control-Flow Graph Example

Variations on CFGs

We usually don't include declarations (e.g., int x;)

But there's usually something in the implementation

May want a unique entry and exit node

Won't matter for the examples we give

May group statements into basic blocks

A sequence of instructions with no branches into or out of the block

Control-Flow Graph w/Basic Blocks

Can lead to more efficient implementations
But more complicated to explain, so...

We'll use single-statement blocks in lecture today

CFGs are much simpler than ASTs

Fewer forms, less redundancy, only simple expressions

But...AST is a more faithful representation

- CFGs introduce temporaries
- Lose block structure of program

□So for AST,

- Easier to report error + other messages
- Easier to explain to programmer
- Easier to unparse to produce readable code

Data flow analysis: Examples

Data Flow Analysis

□A framework for proving facts about programs

Reasons about lots of little facts

Little or no interaction between facts

Works best on properties about how program computes

Based on all paths through program

Including infeasible paths

Available Expressions

□An expression e is available at program point p if

- e is computed on every path to p, and
- the value of e has not changed since the last time e is computed on p

Optimization

- If an expression is available, need not be recomputed
 - □(At least, if it's still in a register somewhere)

Data Flow Facts

□Is expression e available?

General Facts:

- a + b is available
- a * b is available
- a + 1 is available

What is the effect of each statement on the set of facts?

Computing Available Expressions at Each Program Point

□A *joint point* is a program point where two branches meet

Available expressions is a *forward must* **problem**

- Forward = Data flow from in to out
- Must = At join point, property must hold on all paths that are joined

Data Flow Equations

Let s be a statement

succ(s) = { immediate successor statements of s }

pred(s) = { immediate predecessor statements of s}

In(s) = program point just before executing s

Out(s) = program point just after executing s

 $\Box \ln(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$ $\Box \text{Out}(s) = \text{Gen}(s) \cup (\ln(s) - \text{Kill}(s))$

Note: These are also called transfer functions

Liveness Analysis

A variable v is *live* **at program point p if**

v will be used on some execution path originating from p...

before v is overwritten

Optimization

- If a variable is not live, no need to keep it in a register
- If variable is dead at assignment, can eliminate assignment

Data Flow Equations

Available expressions is a forward must analysis

- Data flow propagate in same dir as CFG edges
- Expr is available only if available on all paths

Liveness is a *backward may* problem

- To know if variable live, need to look at future uses
- Variable is live if used on some path

 $\Box \operatorname{Out}(s) = \bigcup_{s' \in \operatorname{succ}(s)} \operatorname{In}(s')$ $\Box \operatorname{In}(s) = \operatorname{Gen}(s) \cup (\operatorname{Out}(s) - \operatorname{Kill}(s))$

What is the effect of each statement on the set of facts?

Computing Live Variables

Very Busy Expressions

□An expression e is *very busy* at point p if

On every path from p, expression e is evaluated before the value of e is changed

Optimization

Can hoist very busy expression computation

What kind of problem?

Forward or backward?

■May or must?

backward must

Reaching Definitions

A definition of a variable v is an assignment to v A definition of variable v reaches point p if

There is no intervening assignment to v

□Also called def-use information

What kind of problem?

Forward or backward?

May or must?

forward

Space of Data Flow Analyses

	May	Must
Forward	Reaching definitions	Available expressions
Backward	Live variables	Very busy expressions

Most data flow analyses can be classified this way

A few don't fit: bidirectional analysis

Lots of literature on data flow analysis

Generalization

Generalization

Dataflow analysis

- A common framework for such analysis
- Computes information at each program point
- Conservative: characterizes all possible program behaviors

Methodology

- Describe the information (e.g., live variable sets) using a structure called a lattice
- Build a system of equations based on:
 - □ How each statement affects information
 - How information flows between basic blocks
- Solve the system of constraints

Parts of Live Vars Analysis

Live variable sets

- Called *flow values 流值*
- Associated with program points
- Start "empty", eventually contain solution

Effects of instructions

- Called *transfer functions* 迁移函数
- Take a flow value, compute a new flow value that captures the effects
- One for each instruction often a schema

□ Handling control flow

- Called confluence operator 合流算子
- Combines flow values from different paths

Data Flow Facts and Lattices

Typically, data flow facts form a lattice

Example: Available expressions

Mathematical model

□ Flow values

- Elements of a lattice $L = (P, \leq)$
- Flow value $v \in P$

□ Transfer functions

- Set of functions (one for each instruction)
- $\blacksquare F_i: \mathbf{P} \to \mathbf{P}$

Confluence operator

- Merges lattice values
- $\blacksquare C: P \times P \to P$

□ How does this help us?

Partial Orders

\Box A partial order is a pair (*P*, \leq) such that

- $\ \ \, \leq \subseteq P\times P$
- \leq is reflexive: $x \leq x$
 - \leq is anti-symmetric: $x \leq y$ and $y \leq x \Rightarrow x = y$
- \leq is transitive: $x \leq y$ and $y \leq z \Rightarrow x \leq z$

□A partial order is a lattice if □and □ are defined on any set:

■ is the *meet* or *greatest lower bound* operation:

- □ if $z \le x$ and $z \le y$, then $z \le x \sqcap y$ 下确界

■ is the *join* or *least upper bound* operation:

- 口 $x \le x \sqcup y$ and $y \le x \sqcup y$ 并、最小上界
- □ if $x \le z$ and $y \le z$, then $x \sqcup y \le z$ ^{上确} $^{\mathbb{A}}$

\Box A partial order is a lattice if \Box and \Box are defined on any set:

■ □ is the *meet* or *greatest lower bound* operation:

Lattices (cont'd)

A finite partial order is a lattice if meet and join exist for every pair of elements

 \Box A lattice has unique elements \perp and \top such that

 $x \sqcap \bot = \bot$ $x \sqcup \bot = x$ 底元、顶元 $x \sqcap \top = x$ $x \sqcup \top = \top$

$\Box \text{In a lattice,} \\ x \leq y \text{ iff } x \sqcap y = x \\ x \leq y \text{ iff } x \sqcup y = y \\ \end{bmatrix}$

Useful Lattices

□(2^S, ⊆) forms a lattice for any set S

2^S is the powerset of S (set of all subsets)

幂集

□If (S, ≤) is a lattice, so is (S, ≥)

■i.e., lattices can be flipped

□The lattice for constant propagation

Combine flow values

- "Merge" values on different control-flow paths
- Result should be a safe over-approximation
- We use the lattice ⊆ to denote "more safe"

Example: live variables

- $v1 = \{x, y, z\}$ and $v2 = \{y, w\}$
- How do we combine these values?
- $v = v1 \cup v2 = \{w, x, y, z\}$
- What is the "⊆" operator?

Superset

Meet and Join

Goal: Combine two values to produce the "best" approximation

- Intuition:
 - Given $v1 = \{x, y, z\}$ and $v2 = \{y, w\}$
 - □ A safe over-approximation is "all variables live"
 - We want the smallest set

Greatest lower bound

- Given x,y ∈P
- GLB(x,y) = z such that
 - $\label{eq:constraint} \Box \ \ z \subseteq x \ \text{and} \ z \subseteq y \ \text{and}$
 - $\Box \quad \forall w.w \subseteq x \text{ and } w \subseteq y \Rightarrow w \subseteq z$
- Meet operator: $x \land y = GLB(x, y)$

□ Natural "opposite": Least upper bound, *join* operator

Forward Must Data Flow Algorithm

Out(s) = Top for all statements s

```
// Slight acceleration: Could set Out(s) = Gen(s) U(Top - Kill(s))
```

```
W := { all statements } (worklist)
```

repeat

```
Take s from W

In(s) := \bigcap_{s' \in pred(s)} Out(s')
temp := Gen(s) \cup (In(s) - Kill(s))
if (temp != Out(s)) {

Out(s) := temp

W := W \cup succ(s)

}

until W = Ø
```


Monotonicity单调性

□A function **f** on a partial order is *monotonic* if

$x \le y \Rightarrow f(x) \le f(y)$

Easy to check that operations to compute In and Out are monotonic

 $\square In(s) := \bigcap_{s' \in pred(s)} Out(s')$

■ temp := Gen(s) U (In(s) - Kill(s))

Putting these two together, temp := $f_s(\sqcap_{s' \in \text{pred}(s)} Out(s'))$

Termination终止性

We know the algorithm terminates because

- The lattice has finite height
- The operations to compute In and Out are monotonic
- On every iteration, we remove a statement from the worklist and/or move down the lattice

Forward Data Flow, Again


```
Out(s) = Top for all statements s
W := { all statements } (worklist)
repeat
   Take s from W
                                   (f monotonic transfer fn)
  temp := f_s(\prod_{s' \in pred(s)} Out(s'))
  if (temp != Out(s)) {
     Out(s) := temp
     W := W \cup succ(s)
```

```
until W = Ø
```


Lattices (P, ≤)

Available expressions

- P = sets of expressions
- ■S1 ⊓ S2 = S1 ∩ S2
- Top = set of all expressions

Reaching Definitions

- P = set of definitions (assignment statements)
- ■S1 ⊓ S2 = S1 ∪ S2

Top = empty set

Live variables

- P = sets of variables
- ■S1 ⊓ S2 = S1 ∪ S2
- Top = empty set

□Very busy expressions

- ■P = set of expressions
- ■S1 ⊓ S2 = S1 ∩ S2
- Top = set of all expressions

Forward vs. Backward

Out(s) = Top for all sW := { all statements } repeat Take s from W $temp := f_{c}(\prod_{s' \in pred(s)} Out(s'))$ if (temp != Out(s)) { Out(s) := temp $W := W \cup succ(s)$ until $W = \emptyset$

ln(s) = Top for all sW := { all statements } repeat Take s from W $temp := f_{s' \in succ(s)} \ln(s'))$ if (temp != ln(s)) { ln(s) := temp $W := W \cup pred(s)$ until $W = \emptyset$

Dataflow Solution

Question:

- What is the solution we compute?
- Start at lattice top, move down
- Called greatest fixpoint
- Where does approximation come from?
- Confluence of control-flow paths

Ideal solution?

- Consider each path to a program point separately
- Combine values at end
- Called meet-over-all-paths solution (MOP)
- When is the fixpoint equal to MOP?

We always start with Top

Every expression is available, no definitions reach this point

Most optimistic assumption

Strongest possible hypothesis

□= true of fewest number of states

Revise as we encounter contradictions

Always move down in the lattice (with meet)

Result: A greatest fixpoint

Termination Revisited

How many times can we apply this step:

 $temp := f_s(\sqcap_{s' \in pred(s)} Out(s'))$

if (temp != Out(s)) { ... }

Claim: Out(s) only shrinks

- Proof: Out(s) starts out as top
 - So temp must be ≤ than Top after first step
- Assume Out(s') shrinks for all predecessors s' of s
- Then $\Pi_{s' \in pred(s)}$ shrinks
- Since f_s monotonic, $f_s (\prod_{s' \in pred(s)} Out(s'))$ shrinks

Termination Revisited (cont'd)

□ A descending chain in a lattice is a sequence

• $x0 \supseteq x1 \supseteq x2 \supseteq ...$

The height of a lattice is the length of the longest descending chain in the lattice

□ Then, dataflow must terminate in O(n k) time

- n = # of statements in program
- k = height of lattice
- assumes meet operation takes O(1) time

MFP (Maximal Fixed Point) solution – general iterative algorithm for monotone frameworks

always terminates

always computes the right solution

Flemming Nielson et al. <u>Principles of Program</u> <u>Analysis</u> (2nd Edition). Springer, 2005.

https://github.com/amilajack/rea ding/tree/master/Type Systems

Dataflow tradition: Start with Top, use meet

To do this, we need a *meet semilattice with top*

meet semilattice = meets defined for any set

Computes greatest fixpoint

偏序集且a □ b存在(下确界)

Denotational semantics tradition: Start with Bottom, use join

Computes least fixpoint

Distributive Data Flow Problems

By monotonicity, we also have

 $f(x\sqcap y)\leq f(x)\sqcap f(y)$

□A function f is distributive (可分配) if

 $f(x\sqcap y)=f(x)\sqcap f(y)$

Benefit of Distributivity

□ Joins lose no information

$$egin{aligned} &k(h(f(\top)\sqcap g(\top))) = \ &k(h(f(\top))\sqcap h(g(\top))) = \ &k(h(f(\top)))\sqcap k(h(g(\top))) \end{aligned}$$

Accuracy of Data Flow Analysis

该路径上所有语句

的转移函数的复合

□Ideally, we would like to compute the meet over all paths (MOP) solution: 将所有路径都join/meet的方法

Let f_s be the transfer function for statement s

If p is a path $\{s_1, ..., s_n\}$, let $f_p = f_n; ...; f_1$

Let path(s) be the set of paths from the entry to s

 $MOP(s) = \sqcap_{p \in path(s)} f_p(\top)$

□If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution, i.e., MFP = MOP

□ MOP (Meet Over All paths)

 $f(x)\sqcap f(y)$

□ MFP (Maximal Fixed Point)

 $f(x \sqcap y)$

□ MFP ≤ MOP ≤ PerfectSolution

What Problems are Distributive?

Analyses of *how* the program computes

- Live variables
- Available expressions
- Reaching definitions
- Very busy expressions

All Gen/Kill problems are distributive

MOP considers more paths than Ideal

Assume $x \in \{0,1\}$ and B2 & B3 do not update x

Ideal considers only which 2 paths? B1-B2-B4-B6-B7 (i.e., x=1) B1-B3-B4-B5-B7 (i.e., x=0)

MOP: Also considers unexecuted paths B1-B2-B4-B5-B7

B1-B3-B4-B6-B7

What changes if $x \in \{0,1,2\}$? B1-B3-B4-B6-B7 is also an Ideal path

A Non-Distributive Example

Constant propagation

MOP: 先考虑所有路径, 得到两条路径z的值为3, 再聚合得到z 的值就是3 MFP: 过早地进行交汇运算, 最 后并不能得到z的值是多少

In general, analysis of *what* the program computes in not distributive

□Computing MFP is always safe: MFP ⊑ MOP

- □When distributive: MOP = MFP
- When non-distributive: MOP may not be computable (decidable)
 - e.g., MOP for constant propagation (see Lemma 2.31 of NNH)

Practical Implementation

Practical Implementation

□Data flow facts = assertions that are true or false at a program point

Represent set of facts as bit vector

■Fact_i represented by bit i

Intersection = bitwise and, union = bitwise or, etc

Only" a constant factor speedup

But very useful in practice

A basic block is a sequence of statements s.t.

- No statement except the last in a branch
- There are no branches to any statement in the block except the first

In practical data flow implementations,

- Compute Gen/Kill for each basic block
 - Compose transfer functions
- Store only In/Out for each basic block
- Typical basic block ~5 statements

Assume forward data flow problem

- Let G = (V, E) be the CFG
- Let k be the height of the lattice

□If G acyclic, visit in topological order

Visit head before tail of edge

Running time O(|E|)

No matter what size the lattice

Order Matters — Cycles

□If G has cycles, visit in reverse postorder

Order from depth-first search

Let **Q** = max **#** back edges on cycle-free path

Nesting depth

Back edge is from node to ancestor on DFS tree

Then if $\forall x.f(x) \leq x$ (sufficient, but not necessary)

Running time is O((Q+1)|E|)

□Note direction of req't depends on top vs. bottom

Data flow analysis is *flow-sensitive*

- The order of statements is taken into account
- I.e., we keep track of facts per program point

Alternative: *Flow-insensitive* analysis

- Analysis the same regardless of statement order
- Standard example: types

□/* x : int */ x := ... /* x : int */

Must vs. May

- (Not always followed in literature)
- **Forwards vs. Backwards**
- **C**Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

Recall in practice, one transfer function per basic block

Why not generalize this idea beyond a basic block?

- Collapse larger constructs into smaller ones, combining data flow equations
- Eventually program collapsed into a single node!
- "Expand out" back to original constructs, rebuilding information

- □Let (P, ≤) be a lattice
- Let M be the set of monotonic functions on P
- $\Box \text{Define } \mathbf{f} \leq_{\mathbf{f}} \mathbf{g} \text{ if for all } \mathbf{x}, \mathbf{f}(\mathbf{x}) \leq \mathbf{g}(\mathbf{x})$
- **Define the function f \sqcap g as**
 - $\blacksquare (f \sqcap g) (x) = f(x) \sqcap g(x)$

Claim: (M, \leq_f) forms a lattice

中国新学校ポ大学 University of Science and Technology of China

 $f_{\mathrm{ite}} = (f_{\mathrm{then}} \circ f_{\mathrm{if}}) \sqcap (f_{\mathrm{else}} \circ f_{\mathrm{if}})$

$$\begin{split} & \text{Out(if)} = f_{\text{if}}(\text{In(ite)})) \\ & \text{Out(then)} = (f_{\text{then}} \circ f_{\text{if}})(\text{In(ite)})) \\ & \text{Out(else)} = (f_{\text{else}} \circ f_{\text{if}})(\text{In(ite)})) \end{split}$$

Elimination Methods: Loops

$$\Box \text{Let } f^{i} = f^{\circ}f^{\circ} \cdots ^{\circ}f \quad (i \text{ times})$$

$$\blacksquare f^{0} = \text{id}$$

$$\Box \text{Let} \qquad g(j) = \sqcap_{i \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^{i} \circ f_{\text{head}}$$

Need to compute limit as *j* **goes to infinity**

- Does such a thing exist?
- $\Box \text{Observe: } g(j+1) \leq g(j)$

Height of Function Lattice

□Assume underlying lattice (P, ≤) has finite height

What is height of lattice of monotonic functions?

Claim: finite

Therefore, g(j) converges

Non-Reducible Flow Graphs

Elimination methods usually only applied to reducible flow graphs

Ones that can be collapsed

Standard constructs yield only reducible flow graphs

Unrestricted goto can yield non-reducible graphs

Can also do backwards elimination

Not quite as nice (regions are usually single *entry* but often not single *exit*)

□For bit-vector problems, elimination efficient

Easy to compose functions, compute meet, etc.

Elimination originally seemed like it might be faster than iteration

Not really the case

What happens at a function call?

Lots of proposed solutions in data flow analysis literature

In practice, only analyze one procedure at a time

Consequences

- Call to function kills all data flow facts
- May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

An analysis that models only a single function at a time is intraprocedural

An analysis that takes multiple functions into account is interprocedural

An analysis that takes the whole program into account is...guess?

■Note: global analysis means "more than one basic block," but still within a function

Data Flow Analysis and The Heap

Data Flow is good at analyzing local variables

But what about values stored in the heap?

Not modeled in traditional data flow

□In practice: *x := e

Assume all data flow facts killed (!)

Or, assume write through x may affect any variable whose address has been taken

In general, hard to analyze pointers

Moore's Law: Hardware advances double computing power every 18 months.

Proebsting's Law: Compiler advances double computing power every 18 years.

- 编译器优化每18年提高一倍的计算能力
- <u>https://proebsting.cs.arizona.edu/law.html</u>

虽然硬件计算能力每年增长约60%,

- 但编译器优化仅贡献4%。基本上,编译器优化工作仅做出很小的贡献。
- 也许这意味着编程语言研究应该专注于优化以外的事情。
- 也许程序员的生产力是一个更加富有成效的舞台。

THANKS