
《程序语言设计和程序分析》

Data Flow Analysis

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院



Principles of Programming Analysis

Dragon book: Compilers

Optimizing Compilers for Modern Architectures

Static Program Analysis

Yu Zhang：Data Flow Analysis 2

Resources

https://github.com/amilajack/reading/tree/master/Type_Systems

https://suif.stanford.edu/papers/

Anders Møller

https://github.com/amilajack/reading/tree/master/Type_Systems
https://suif.stanford.edu/papers/
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
http://www.imm.dtu.dk/~hrni/PPA/ppa.html
https://users-cs.au.dk/amoeller/spa/
https://users-cs.au.dk/amoeller/spa/
http://cs.au.dk/~amoeller/


Assembly
Code

Yu Zhang：Data Flow Analysis 3

Compiler Structure

Front End Optimizer Back EndIR IR
Source
Code

1. Lexical Analysis

2. Parsing

3. Semantic Analysis

5. Instruction Selection

6. Register Allocation

7. Instruction Scheduling

Middle End：

4. Analysis/

Optimization



Source code parsed to produce AST

AST transformed to CFG

Data flow analysis operates on control flow graph (and other 

intermediate representations)

Yu Zhang：Data Flow Analysis 4

Compiler Structure



ASTs are abstract

They don’t contain all information in the program

e.g., spacing, comments, brackets, parentheses

Any ambiguity has been resolved

e.g., a + b + c produces the same AST as (a + b) + c

Yu Zhang：Data Flow Analysis 5

ASTs

c+

a b

+

https://github.com/s4plus/pyscan

import ast

…

source = open(sourcefile, "r").read()

root = ast.parse(source)

https://astexplorer.net/

https://github.com/s4plus/pyscan
https://astexplorer.net/


AST has many similar forms

e.g., for, while, repeat...until

e.g., if, ?:, switch

Expressions in AST may be complex, nested

(42 * y) + (z > 5 ? 12 * z : z + 20)

Want simpler representation for analysis

...at least, for dataflow analysis

Yu Zhang：Data Flow Analysis 6

Disadvantages of ASTs



A directed graph where

Each node represents a statement

Edges represent control flow

Statements may be

Assignments x := y op z or x := op z

Copy statements x := y

Branches goto L or if x relop y goto L

etc.

Yu Zhang：Data Flow Analysis 7

Control-Flow Graph (CFG)



x := a + b;

y := a * b;

while (y > a) {

a := a + 1;

x := a + b

}

Yu Zhang：Data Flow Analysis 8

Control-Flow Graph Example

Program point

Invariants (不变式)：

A property holds at a program point if it holds in 

any such state for any execution with any input

y > a at above program point

y > a holds



We usually don’t include declarations (e.g., int x;)

But there’s usually something in the implementation

May want a unique entry and exit node

Won’t matter for the examples we give

May group statements into basic blocks

A sequence of instructions with no branches into or out of the block

Yu Zhang：Data Flow Analysis 9

Variations on CFGs



Can lead to more efficient implementations

But more complicated to explain, so...

We’ll use single-statement blocks in lecture today

Yu Zhang：Data Flow Analysis 10

Control-Flow Graph w/Basic Blocks

x := a + b;

y := a * b;

while (y > a ) {

a := a + 1;

x := a + b

}

Program point

y > a holds



CFGs are much simpler than ASTs

Fewer forms, less redundancy, only simple expressions

But...AST is a more faithful representation

CFGs introduce temporaries

Lose block structure of program

So for AST,

Easier to report error + other messages

Easier to explain to programmer

Easier to unparse to produce readable code

Yu Zhang：Data Flow Analysis 11

CFG vs. AST



Data flow analysis: Examples

Yu Zhang：Data Flow Analysis 12



A framework for proving facts about programs

Reasons about lots of little facts

Little or no interaction between facts

Works best on properties about how program computes

Based on all paths through program

Including infeasible paths

Yu Zhang：Data Flow Analysis 13

Data Flow Analysis



An expression e is available at program point p if

e is computed on every path to p, and

the value of e has not changed since the last time e is computed on p

Optimization

If an expression is available, need not be recomputed

(At least, if it’s still in a register somewhere)

Yu Zhang：Data Flow Analysis 14

Available Expressions



Is expression e available?

Facts:

a + b is available

a * b is available

a + 1 is available

Yu Zhang：Data Flow Analysis 15

Data Flow Facts



What is the effect of each statement on the set of facts?

Yu Zhang：Data Flow Analysis 16

Gen and Kill

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

a := a + 1
a + 1,
a + b,
a * b  



Yu Zhang：Data Flow Analysis 17

Computing Available Expressions 
at Each Program Point

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

{a + b}

{a + b}

{a + b}



A joint point is a program point where two branches meet

Available expressions is a forward must problem

Forward = Data flow from in to out

Must = At join point, property must hold on all paths that are joined

Yu Zhang：Data Flow Analysis 18

Terminology



Let s be a statement

succ(s) =  { immediate successor statements of s }

pred(s) = { immediate predecessor statements of s}

 In(s) = program point just before executing s

Out(s) = program point just after executing s

In(s) = ∩
s′ ∊ pred(s)

Out(s′)

Out(s) = Gen(s) ∪ (In(s) - Kill(s))

Note:  These are also called transfer functions

Yu Zhang：Data Flow Analysis 19

Data Flow Equations



A variable v is live at program point p if

v will be used on some execution path originating from p...

before v is overwritten

Optimization

If a variable is not live, no need to keep it in a register

If variable is dead at assignment, can eliminate assignment

Yu Zhang：Data Flow Analysis 20

Liveness Analysis



Available expressions is a forward must analysis

Data flow propagate in same dir as CFG edges

Expr is available only if available on all paths

Liveness is a backward may problem

To know if variable live, need to look at future uses

Variable is live if used on some path

Out(s) = ∪
s′ ∊ succ(s)

In(s′)

In(s) = Gen(s) ∪ (Out(s) - Kill(s))

Yu Zhang：Data Flow Analysis 21

Data Flow Equations



What is the effect of each statement on the set of facts?

Yu Zhang：Data Flow Analysis 22

Gen and Kill

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a



Yu Zhang：Data Flow Analysis 23

Computing Live Variables

{x, y, a, b}

{x}

{x, y, a}

{x, y, a}

{y, a, b}

{y, a, b}

{x, a, b}

{a, b}

{x, y, a, b}



An expression e is very busy at point p if

On every path from p, expression e is evaluated before the value of e is 

changed

Optimization

Can hoist very busy expression computation

What kind of problem?

Forward or backward?

May or must?

Yu Zhang：Data Flow Analysis 24

Very Busy Expressions

backward

must



A definition of a variable v is an assignment to v

A definition of variable v reaches point p if

There is no intervening assignment to v

Also called def-use information

What kind of problem?

Forward or backward?

May or must?

Yu Zhang：Data Flow Analysis 25

Reaching Definitions

forward

may



Most data flow analyses can be classified this way

A few don’t fit:  bidirectional analysis

Lots of literature on data flow analysis

Yu Zhang：Data Flow Analysis 26

Space of Data Flow Analyses

May Must

Forward
Reaching 

definitions
Available expressions

Backward
Live 

variables

Very busy 

expressions



Generalization

Yu Zhang：Data Flow Analysis 27



Dataflow analysis

 A common framework for such analysis

 Computes information at each program point

 Conservative: characterizes all possible program behaviors

Methodology

 Describe the information (e.g., live variable sets) using a structure called a lattice

 Build a system of equations based on:

 How each statement affects information

 How information flows between basic blocks

 Solve the system of constraints

Yu Zhang：Data Flow Analysis 28

Generalization



 Live variable sets

 Called flow values  流值

 Associated with program points

 Start “empty”, eventually contain solution

 Effects of instructions

 Called transfer functions 迁移函数

 Take a flow value, compute a new flow value that captures the effects

 One for each instruction – often a schema

Handling control flow

 Called confluence operator 合流算子

 Combines flow values from different paths

Yu Zhang：Data Flow Analysis 29

Parts of Live Vars Analysis



Typically, data flow facts form a lattice

Example:  Available expressions

Yu Zhang：Data Flow Analysis 30

Data Flow Facts and Lattices

“top”

“bottom”



 Flow values

 Elements of a lattice L = (P, ≤)

 Flow value v ∈P

 Transfer functions

 Set of functions (one for each instruction)

 𝐹𝑖: P → P

 Confluence operator

 Merges lattice values

 C: P × P → P

How does this help us?

Yu Zhang：Data Flow Analysis 31

Mathematical model



A partial order is a pair such that









Yu Zhang：Data Flow Analysis 32

Partial Orders



A partial order is a lattice if and are defined on any set:

 is the meet or greatest lower bound operation:





 is the join or least upper bound operation:





Yu Zhang：Data Flow Analysis 33

Lattices

交、最大下界

下确界

并、最小上界

上确界



A partial order is a lattice if and are defined on any set:

 is the meet or greatest lower bound operation:





Yu Zhang：Data Flow Analysis 34

Lattices

交、最大下界
下确界

并、最小上界
上确界



A finite partial order is a lattice if meet and join exist for every 

pair of elements

A lattice has unique elements    and    such that





In a lattice, 

Yu Zhang：Data Flow Analysis 35

Lattices (cont’d)

底元、 顶元



(2
S
, ⊆) forms a lattice for any set S

2
S

is the powerset of S (set of all subsets)

If (S, ≤) is a lattice, so is (S, ≥)

i.e., lattices can be flipped

The lattice for constant propagation

Yu Zhang：Data Flow Analysis 36

Useful Lattices

幂集



Combine flow values

 “Merge” values on different control-flow paths

 Result should be a safe over-approximation

 We use the lattice ⊆ to denote “more safe”

Example: live variables

 v1 = {x, y, z} and v2 = {y, w}

 How do we combine these values?

 v = v1 ∪ v2 = {w, x, y, z}

 What is the “⊆” operator?

 Superset

Yu Zhang：Data Flow Analysis 37

Confluence Operator



 Goal: Combine two values to produce the “best” approximation

 Intuition:

 Given v1 = {x, y, z} and v2 = {y, w}

 A safe over-approximation is “all variables live”

 We want the smallest set

 Greatest lower bound

 Given x,y ∈P

 GLB(x,y) = z such that

 z ⊆ x and z ⊆ y and

 ∀w.w ⊆ x and w ⊆ y⇒w ⊆ z

 Meet operator: x ∧ y = GLB(x, y)

 Natural “opposite”: Least upper bound, join operator

Yu Zhang：Data Flow Analysis 38

Meet and Join



Out(s) = Top for all statements s

// Slight acceleration:  Could set Out(s) = Gen(s) ∪(Top - Kill(s))

W := { all statements }     (worklist)

repeat

Take s from W

In(s) := ∩
s′ ∊ pred(s)

Out(s′)

temp := Gen(s) ∪ (In(s) - Kill(s))

if (temp != Out(s)) {

Out(s) := temp

W := W ∪ succ(s)

}

until W = ∅

Yu Zhang：Data Flow Analysis 39

Forward Must Data Flow Algorithm



A function f on a partial order is monotonic if

Easy to check that operations to compute In and Out are 

monotonic

 In(s) := ∩
s′ ∊ pred(s)

Out(s′)

 temp := Gen(s) ∪ (In(s) - Kill(s))

Putting these two together,

 temp := 

Yu Zhang：Data Flow Analysis 40

Monotonicity单调性



We know the algorithm terminates because

The lattice has finite height

The operations to compute In and Out are monotonic

On every iteration, we remove a statement from the worklist and/or move 

down the lattice

Yu Zhang：Data Flow Analysis 41

Termination终止性



Out(s) = Top       for all statements s

W := { all statements }     (worklist)

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ pred(s)
Out(s′)) (f

s
monotonic transfer fn)

if (temp != Out(s)) {

Out(s) := temp

W := W  ∪ succ(s)

}

until W = ∅

Yu Zhang：Data Flow Analysis 42

Forward Data Flow, Again



Available expressions

P = sets of expressions

S1 ⊓ S2 = S1 ∩ S2

Top = set of all expressions

Reaching Definitions

P = set of definitions (assignment statements)

S1 ⊓ S2 = S1 ∪ S2

Top = empty set

Yu Zhang：Data Flow Analysis 43

Lattices (P, ≤)



Live variables

P = sets of variables

S1 ⊓ S2 = S1 ∪ S2

Top = empty set

Very busy expressions

P = set of expressions

S1 ⊓ S2 = S1 ∩ S2

Top = set of all expressions

Yu Zhang：Data Flow Analysis 44

Lattices (P, ≤), cont’d



Yu Zhang：Data Flow Analysis 45

Forward vs. Backward

Out(s) = Top  for all s

W := { all statements }

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ pred(s)
Out(s′))

if (temp != Out(s)) {

Out(s) := temp

W := W ∪ succ(s)

}

until W = ∅

In(s) = Top  for all s

W := { all statements }

repeat

Take s from W

temp := f
s
(⊓

s′ ∊ succ(s)
In(s′))

if (temp != In(s)) {

In(s) := temp

W := W ∪ pred(s)

}

until W = ∅



Question:

 What is the solution we compute?

 Start at lattice top, move down

 Called greatest fixpoint

 Where does approximation come from?

 Confluence of control-flow paths

 Ideal solution?

 Consider each path to a program point separately

 Combine values at end

 Called meet-over-all-paths solution (MOP)

 When is the fixpoint equal to MOP?

Yu Zhang：Data Flow Analysis 46

Dataflow Solution



We always start with Top

Every expression is available, no definitions reach this point

Most optimistic assumption

Strongest possible hypothesis

= true of fewest number of states

Revise as we encounter contradictions

Always move down in the lattice (with meet)

Result:  A greatest fixpoint

Yu Zhang：Data Flow Analysis 47

Fixpoints不动点



How many times can we apply this step:
temp := fs(⊓s′ ∊ pred(s) Out(s′))

if (temp != Out(s)) { ... }

Claim:  Out(s) only shrinks

• Proof:  Out(s) starts out as top

• So temp must be ≤ than Top after first step

• Assume Out(s′) shrinks for all predecessors s′ of s

• Then ⊓s′ ∊ pred(s) shrinks

• Since fs monotonic, fs (⊓s′ ∊ pred(s) Out(s′)) shrinks

Yu Zhang：Data Flow Analysis 48

Termination Revisited



A descending chain in a lattice is a sequence

 x0 ⊐ x1 ⊐ x2 ⊐ ...

 The height of a lattice is the length of the longest descending chain in 

the lattice

 Then, dataflow must terminate in O(n k) time

 n = # of statements in program

 k = height of lattice

 assumes meet operation takes O(1) time

Yu Zhang：Data Flow Analysis 49

Termination Revisited (cont’d)



MFP (Maximal Fixed Point) solution – general iterative 

algorithm for monotone frameworks

always terminates

always computes the right solution

Yu Zhang：Data Flow Analysis 50

Relationship to Section 2.4 of Book (NNH)

https://github.com/amilajack/rea

ding/tree/master/Type_Systems

Flemming Nielson et al. Principles of Program 
Analysis (2nd Edition). Springer, 2005.

https://github.com/amilajack/reading/tree/master/Type_Systems
http://www.imm.dtu.dk/~hrni/PPA/ppa.html


Dataflow tradition:  Start with Top, use meet

To do this, we need a meet semilattice with top

meet semilattice = meets defined for any set

Computes greatest fixpoint

Denotational semantics tradition:  Start with Bottom, use join

Computes least fixpoint

Yu Zhang：Data Flow Analysis 51

Least vs. Greatest Fixpoints

交半格

偏序集且a ⊓ b存在（下确界）



By monotonicity, we also have

A function f is distributive (可分配) if

Yu Zhang：Data Flow Analysis 52

Distributive Data Flow Problems



Joins lose no information

Yu Zhang：Data Flow Analysis 53

Benefit of Distributivity



Ideally, we would like to compute the meet over all paths 

(MOP) solution:

Let fs be the transfer function for statement s

If p is a path {s1, ..., sn}, let fp = fn;...;f1

Let path(s) be the set of paths from the entry to s

If a data flow problem is distributive, then solving the data 

flow equations in the standard way yields the MOP solution, 

i.e., MFP = MOP

Yu Zhang：Data Flow Analysis 54

Accuracy of Data Flow Analysis

将所有路径都join/meet的方法

该路径上所有语句
的转移函数的复合



MOP（Meet Over All paths）

MFP（Maximal Fixed Point）

MFP ≤ MOP ≤ PerfectSolution

Yu Zhang：Data Flow Analysis 55

MOP vs. MFP



Analyses of how the program computes

Live variables

Available expressions

Reaching definitions

Very busy expressions

All Gen/Kill problems are distributive

Yu Zhang：Data Flow Analysis 56

What Problems are Distributive?



Yu Zhang：Data Flow Analysis 57

MOP considers more paths than Ideal



Constant propagation

In general, analysis of what the program computes in not 

distributive

Yu Zhang：Data Flow Analysis 58

A Non-Distributive Example

MOP：先考虑所有路径，得到两

条路径z的值为3，再聚合得到z

的值就是3

MFP：过早地进行交汇运算，最

后并不能得到z的值是多少



Computing MFP is always safe:  MFP ⊑ MOP

When distributive:  MOP = MFP

When non-distributive:  MOP may not be computable 

(decidable)

e.g., MOP for constant propagation

(see Lemma 2.31 of NNH)

Yu Zhang：Data Flow Analysis 59

MOP vs MFP



Practical Implementation

Yu Zhang：Data Flow Analysis 60



Data flow facts = assertions that are true or false at a 

program point

Represent set of facts as bit vector

Fact
i
represented by bit i

Intersection = bitwise and, union = bitwise or, etc

“Only” a constant factor speedup

But very useful in practice

Yu Zhang：Data Flow Analysis 61

Practical Implementation



A basic block is a sequence of statements s.t.

No statement except the last in a branch

There are no branches to any statement in the block except the first

In practical data flow implementations,

Compute Gen/Kill for each basic block

Compose transfer functions

Store only In/Out for each basic block

Typical basic block ~5 statements

Yu Zhang：Data Flow Analysis 62

Basic Blocks



Assume forward data flow problem

Let G = (V, E) be the CFG

Let k be the height of the lattice

If G acyclic, visit in topological order

Visit head before tail of edge

Running time O(|E|)

No matter what size the lattice

Yu Zhang：Data Flow Analysis 63

Order Matters



If G has cycles, visit in reverse postorder

Order from depth-first search

Let Q = max # back edges on cycle-free path

Nesting depth

Back edge is from node to ancestor on DFS tree

Then if                     (sufficient, but not necessary)

Running time is

Note direction of req’t depends on top vs. bottom

Yu Zhang：Data Flow Analysis 64

Order Matters — Cycles



Data flow analysis is flow-sensitive

The order of statements is taken into account

I.e., we keep track of facts per program point

Alternative:  Flow-insensitive analysis

Analysis the same regardless of statement order

Standard example:  types

/* x : int */ x := ... /* x : int */

Yu Zhang：Data Flow Analysis 65

Flow-Sensitivity



Must vs. May

(Not always followed in literature)

Forwards vs. Backwards

Flow-sensitive vs. Flow-insensitive

Distributive vs. Non-distributive

Yu Zhang：Data Flow Analysis 66

Terminology Review



Recall in practice, one transfer function per basic block

Why not generalize this idea beyond a basic block?

“Collapse”  larger constructs into smaller ones, combining data flow 

equations

Eventually program collapsed into a single node!

“Expand out” back to original constructs, rebuilding information

Yu Zhang：Data Flow Analysis 67

Another Approach:  Elimination



Let (P, ≤) be a lattice

Let M be the set of monotonic functions on P

Define f ≤f g if for all x, f(x) ≤ g(x)

Define the function f ⊓ g as

(f ⊓ g) (x) = f(x) ⊓ g(x)

Claim:  (M, ≤ f) forms a lattice

Yu Zhang：Data Flow Analysis 68

Lattices of Functions



Yu Zhang：Data Flow Analysis 69

Elimination Methods:  
Conditionals



Yu Zhang：Data Flow Analysis 70

Elimination Methods:  Loops



Let 𝒇𝒊 = 𝒇°𝒇°⋯ °𝒇 (i times)

 𝒇𝟎 =id

Let

Need to compute limit as j goes to infinity

Does such a thing exist?

Observe:  𝑔(𝑗 + 1) ≤ 𝑔(𝑗)

Yu Zhang：Data Flow Analysis 71

Elimination Methods:  Loops (cont’d)



Assume underlying lattice (P, ≤) has finite height

What is height of lattice of monotonic functions?

Claim:  finite

Therefore, 𝑔(𝑗) converges

Yu Zhang：Data Flow Analysis 72

Height of Function Lattice



Elimination methods usually only applied to reducible flow 

graphs

Ones that can be collapsed

Standard constructs yield only reducible flow graphs

Unrestricted goto can yield non-reducible graphs

Yu Zhang：Data Flow Analysis 73

Non-Reducible Flow Graphs



Can also do backwards elimination

Not quite as nice (regions are usually single entry but often not single exit)

For bit-vector problems, elimination efficient

Easy to compose functions, compute meet, etc.

Elimination originally seemed like it might be faster than 

iteration

Not really the case

Yu Zhang：Data Flow Analysis 74

Comments



What happens at a function call?

Lots of proposed solutions in data flow analysis literature

In practice, only analyze one procedure at a time

Consequences

Call to function kills all data flow facts

May be able to improve depending on language, e.g., function call may 

not affect locals

Yu Zhang：Data Flow Analysis 75

Data Flow Analysis and Functions



An analysis that models only a single function at a time is 

intraprocedural

An analysis that takes multiple functions into account is 

interprocedural

An analysis that takes the whole program into account 

is...guess?

Note:  global analysis means “more than one basic block,” 

but still within a function

Yu Zhang：Data Flow Analysis 76

More Terminology



Data Flow is good at analyzing local variables

But what about values stored in the heap?

Not modeled in traditional data flow

In practice:  *x := e

Assume all data flow facts killed (!)

Or, assume write through x may affect any variable whose address has 

been taken

In general, hard to analyze pointers

Yu Zhang：Data Flow Analysis 77

Data Flow Analysis and The Heap



Moore’s Law:  Hardware advances double computing power 

every 18 months.

Proebsting’s Law:  Compiler advances double computing 

power every 18 years.

编译器优化每18年提高一倍的计算能力

https://proebsting.cs.arizona.edu/law.html

Yu Zhang：Data Flow Analysis 78

Data Flow Analysis and Optimization

虽然硬件计算能力每年增长约60％，
但编译器优化仅贡献4％。基本上，编译器优化工作仅做出很小的贡献。
也许这意味着编程语言研究应该专注于优化以外的事情。
也许程序员的生产力是一个更加富有成效的舞台。

https://proebsting.cs.arizona.edu/law.html


THANKS

Yu Zhang：Data Flow Analysis 79


