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2. Parsing 6. Register Allocation
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Source code parsed to produce AST

AST transformed to CFG

Data flow analysis operates on control flow graph (and other
Intermediate representations)

Abstract Control .
Source Object
Code ——  Syntax Flow et Code
Tree Graph

Yu Zhang: Data Flow Analysis
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JASTSs are abstract

B They don’t contain all information in the program

Lle.g., spacing, comments, brackets, parentheses

BMANny ambiguity has been resolved

[le.g., a + b + c produces the same ASTas (a+b) +c

@ Import ast
@ @ source = open(sourcefile, "r").read()

@ @ root = ast.parse(source)

https://astexplorer.net/ https://github.com/s4plus/pyscan

Yu Zhang: Data Flow Analysis 5
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Dlsadvantages of ASTs tOALLLxS

_JAST has many similar forms
Me.g., for, while, repeat...until

Me.g., If, ?:, switch

_1Expressions in AST may be complex, nested
W(42*y)+(z>5712*2z:z + 20)

_1Want simpler representation for analysis
M. .at least, for dataflow analysis

Yu Zhang: Data Flow Analysis 6
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_1A directed graph where

BEach node represents a statement

BEdges represent control flow

_1Statements may be
BASsIgnments X :=y Op Z Or X := 0p Z
BMCopy statements x =y
BBranches goto L or if x relop y goto L

Hetc.

Yu Zhang: Data Flow Analysis 7
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Control-Flow Graph Example FURZLL% S

X:=a+b:

y:=a*Db;

Program point

while (y>a){
y > a holds

a.=—a+1;
X:=a+b

}

Invariants (A28 ):

A property holds at a program point if it holds in
any such state for any execution with any input

y > a at above program point

Yu Zhang: Data Flow Analysis
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Varlatlons on CFGs vERZLA S

_1We usually don’t include declarations (e.g., int x;)

MBut there's usually something in the implementation

_IMay want a unique entry and exit node

m\Von't matter for the examples we give

_IMay group statements into basic blocks

BA sequence of instructions with no branches into or out of the block

Yu Zhang: Data Flow Analysis 9
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X:=a+b; —
y:=a*b
y:=a*b;
while (y > a) { Program point ;
a=a+l y > a holds
X:=a+b
}

_1Can lead to more efficient implementations

_1But more complicated to explain, so...
m\We'll use single-statement blocks in lecture today

Yu Zhang: Data Flow Analysis 10
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ICFGs are much simpler than ASTs

BFewer forms, less redundancy, only simple expressions

_1But...AST Is a more faithful representation

BCFGs introduce temporaries

B ose block structure of program
1So for AST,

BEasier to report error + other messages

MEasier to explain to programmer

BEasier to unparse to produce readable code

Yu Zhang: Data Flow Analysis 11



FEBZLAXE

University of Science and Technology of China

Data flow analysis: Examples

Yu Zhang: Data Flow Analysis 12
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(©))Data Flow Analysis YRAZEA RS

1A framework for proving facts about programs

IReasons about lots of little facts

_1ILittle or no Interaction between facts

m\Works best on properties about how program computes

_1Based on all paths through program

HMincluding infeasible paths

Yu Zhang: Data Flow Analysis 13
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_JAn expression e is available at program point p if
HMe is computed on every path to p, and

HMthe value of e has not changed since the last time e is computed on p

_1Optimization
HIf an expression is avallable, need not be recomputed

LI(At least, if it's still in a register somewhere)

Yu Zhang: Data Flow Analysis 14



lﬁké‘&q}“

(-))) Data Flow Facts FRH2LLX S

University of Science and Technology of China

9F

A
S <O
“ence and Tc‘\\

_1ls expression e available? X:=a+b
_lFacts:

Ma + b Is available

HMa * b Is avallable

Ha + 1 is available

| X=a+b \

Yu Zhang: Data Flow Analysis 15
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IWhat iIs the effect of each statement on the set of facts?

X:=a+b
Stmt Gen Kill yi=a*b
X:=a+b a+b y=>a
y::a*b a*b a=a+1
a+1l,
a=a+1 a+b, X=a+b
a*b

Yu Zhang: Data Flow Analysis 16
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X=a+b
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{a + b}

y>a

{a + b}

ta+b, a*bj j‘\f\; {a + b}
Q \ d.:=4a+

X=a+b

Yu Zhang: Data Flow Analysis 17
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1A joint point Is a program point where two branches meet

_1Available expressions is a forward must problem

BForward = Data flow from in to out

B Must = At join point, property must hold on all paths that are joined

Yu Zhang: Data Flow Analysis 18
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Let s be a statement

M succ(s) = { immediate successor statements of s }
M pred(s) = { iImmediate predecessor statements of s}
M [n(s) = program point just before executing s

B Out(s) = program point just after executing s

In(s) = ns,epred(s) Out(s")
Out(s) = Gen(s) U (In(s) - Kill(s))

B Note: These are also called transfer functions

Yu Zhang: Data Flow Analysis
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1A variable v is live at program point p if
mv will be used on some execution path originating from p...

Hmbefore v Is overwritten

_1Optimization
MmIf a variable is not live, no need to keep it in a register

MmIf variable is dead at assignment, can eliminate assignment

Yu Zhang: Data Flow Analysis 20
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Available expressions is a forward must analysis
M Data flow propagate in same dir as CFG edges

M EXxpr is available only if available on all paths
Liveness Is a backward may problem

B To know if variable live, need to look at future uses

M Variable is live if used on some path

Out(s) = U In(s")

In(s) = Gen(s) U (Out(s) - Kill(s))

s’ e succ(s)

Yu Zhang: Data Flow Analysis 21
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X:=a+b

Fi

a=a+1

Stmt Gen Kill
X:=a+b a, b X
y:=a*b a, b y

y=>a a,y
a=a+1 a a

Yu Zhang: Data Flow Analysis

X:=a+b

IWhat iIs the effect of each statement on the set of facts?

By
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Computing Live Variables BT LAX S
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1a, b}

Xx:=a+b
{x, a, b} : I
y=a*b

{X{xyyaab} /’\;

—
{y, a, b} . I
{y, a, b} K I
{{xyypap} —u

Yu Zhang: Data Flow Analysis 23
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Very Busy Expressions tORsLA RS

_JAn expression e is very busy at point p If

BOn every path from p, expression e is evaluated before the value of e Is
changed

_1Optimization
BCan hoist very busy expression computation

IWhat kind of problem?

BForward or backward? backward

EMay or must? must

Yu Zhang: Data Flow Analysis 24
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1A definition of a variable v Is an assignment to v

1A definition of variable v reaches point p if
BThere IS no intervening assignment to v

1Also called def-use information

IWhat kind of problem?

BmForward or backward?
forward

EMay or must?
may

Yu Zhang: Data Flow Analysis 25
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May Must
Forward Re_ac_:hmg Avalilable expressions
definitions
Backward I__|ve very bl.JSy
variables expressions

_IMost data flow analyses can be classified this way

BA few don't fit: bidirectional analysis

_ILots of literature on data flow analysis

Yu Zhang: Data Flow Analysis 26
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Generalization

Yu Zhang: Data Flow Analysis 27
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[1Dataflow analysis
B A common framework for such analysis
B Computes information at each program point

B Conservative: characterizes all possible program behaviors

[1Methodology

B Describe the information (e.g., live variable sets) using a structure called a lattice

B Build a system of equations based on:

[0 How each statement affects information

[0 How information flows between basic blocks

B Solve the system of constraints

Yu Zhang: Data Flow Analysis 28
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Live variable sets

B Called flow values /%74
B Associated with program points

B Start “empty”, eventually contain solution

Effects of instructions

B Called transfer functions 7 #5.:%4#¢

B Take a flow value, compute a new flow value that captures the effects

B One for each instruction — often a schema

Handling control flow

B Called confluence operator /7 2 F

B Combines flow values from different paths

Yu Zhang: Data Flow Analysis 29
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(&) Data Flow Facts and Lattices tORsLA RS

:ITypica ly, data flow facts form a lattice

BMExample: Available expressions

b

a+b, a*b, a+1 T tO p

a+b, a*b l a+b, a+1
a*b, a+1
a+b
atb\ /a+1
(none) T ”
bottom

Yu Zhang: Data Flow Analysis 30
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Flow values

B Elements of a lattice L = (P, <)

B Flow value v eP

Transfer functions

B Set of functions (one for each instruction)
mF:P->P

Confluence operator

B Merges lattice values
BmC.PXP->P

How does this help us?

Yu Zhang: Data Flow Analysis 31
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1A partial order is a pair (P, <) such that

m <CPxP

m < isreflexive: z <z

g < is anti-symmetric: z <yandy <z =z =1y
g < istransitive: z<yandy<z=xz <z

Yu Zhang: Data Flow Analysis 32
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1A partial order is a lattice if rmandu are defined on any set:

m[1is the meet or greatest lower bound operation:
O zlMNy<zandzly<y %, B LKTR
O ifz<zandz<y,thenz<zly FT#HE

mL| s the join or least upper bound operation:

O zz<zUyandy<zlUy i =

U ifr<zandy<z thenzlUy <2z Sk

Yu Zhang: Data Flow Analysis 33
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) Lattices *ORLEL xS

1A partial order is a lattice if mandu are defined on any set:

m [ is the meet or greatest lower bound operation:

a,b,c sz
upper bound SIS AR S
{a,c}

least upper boundir g EReY {b,c}
l>< ><l ;
S . AP ER

lower bound AR
greatest lower bound \»)

Yu Zhang: Data Flow Analysis 34
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A finite partial order iIs a lattice If meet and join exist for every
pair of elements

1A lattice has unique elements | and Tsuch that

L] rll =_1 rU ]l =2z }%‘7"[4\ Iﬁjt

B 1] =z T =T

1In a lattice,
r<yiffzMNy==x
r<yiffzlUy=1y

Yu Zhang: Data Flow Analysis 35
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Useful Lattices MR L

:I(2 , €) forms a lattice for any set S
m2° s the powerset of S (set of all subsets)
S
LIf (S, <) is a lattice, so is (S, 2)

Hi.e., lattices can be flipped

_1The lattice for constant propagation

//l\
\|

Yu Zhang: Data Flow Analysis 36
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[

[

Combine flow values
B "Merge” values on different control-flow paths
B Result should be a safe over-approximation

B \We use the lattice € to denote “more safe”

Example: live variables

B vl={x1Yy,z}and v2 ={y, w}

B How do we combine these values?
Bv=viuv2={w, XY, z}

B \What is the “S" operator?

B Superset

Yu Zhang: Data Flow Analysis
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Goal: Combine two values to produce the “best” approximation

B [ntuition:
O Givenvl ={x,y, z} and v2 = {y, w}
[ A safe over-approximation is “all variables live”

[0 We want the smallest set

[1 Greatest lower bound
B Givenx,y €eP
B GLB(Xx,y) = z such that

[0 zcxandz<cyand

0 vww S xandw S y=>wC z

B Meet operator: X Ay = GLB(X, y)

Natural “opposite”: Least upper bound, join operator

Yu Zhang: Data Flow Analysis 38
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Out(s) = Top for all statements s
I/ Slight acceleration: Could set Out(s) = Gen(s) u(Top - Kill(s))
W :={ all statements} (worklist)
repeat
Take s from W
In(s) = ﬂs' e pred(s) Out(s’)
temp = Gen(s) U (In(s) - Kill(s))
If (temp !'= Out(s)) {
Out(s) :=temp
W =W U succ(s)
}
until W =09

Yu Zhang: Data Flow Analysis 39
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Monotomatyﬁﬂ i:: tOALLLxS

1A function f on a partial order is monotonic Iif
z<y= f(z) < fy)

_lEasy to check that operations to compute In and Out are

monotonic

HIn(s) = ﬂs,  pred(s) Out(s’)

B temp := Gen(s) U (In(s) - Kill(s))

_1Putting these two together,
m temp := f5(My cpred(s) Out(s'))

Yu Zhang: Data Flow Analysis 40
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_1We know the algorithm terminates because
B The lattice has finite height
B The operations to compute In and Out are monotonic

BOn every iteration, we remove a statement from the worklist and/or move
down the lattice

Yu Zhang: Data Flow Analysis 41
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Out(s) = Top for all statements s
W :={ all statements } (worklist)
repeat

Take s from W

temp = fS(I'I Out(s") (1‘S monotonic transfer fn)

s' e pred(s)

if (temp = Out(s)) {
Out(s) :=temp
W =W U succ(s)

}
until W = @

Yu Zhang: Data Flow Analysis 42
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Lattlces (P, =) tOALLLxS

_1Avalilable expressions

BP = sets of expressions
BS1 n1S2=S1MNS2

BTop = set of all expressions

_IReaching Definitions

BP = set of definitions (assighment statements)
MS1nS2=S1uS2
BTop = empty set

Yu Zhang: Data Flow Analysis 43
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ILiIve variables

BP = sets of variables
BS1NS2=S1uUS2
BTop = empty set

_1Very busy expressions

BP = set of expressions
MS1Mn1S2=S1MNS2

BTop = set of all expressions

Yu Zhang: Data Flow Analysis 44
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Forward vs. Backward
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Out(s) = Top forall s
W = { all statements }

repeat
Take s from W
temp = fS(I_Is’e ed(s) Out(s")

if (temp != Out(s)) {
Out(s) :=temp
W := W U succ(s)

]
until W = @

Yu Zhang: Data Flow Analysis

In(s) = Top for all s

W = { all statements }

repeat
Take s from W
temp = fS(l‘lS c succ() In(s’))
If (temp !'=1In(s)) {
IN(s) :=temp
W = W U pred(s)
}
until W = @

45



Dataflow Solution *@”é'&**é

o &

N
S w®
e, recs
Cnce and Te

Question:

What is the solution we compute?

Start at lattice top, move down

O

O

B Called greatest fixpoint

B \Where does approximation come from?
O

Confluence of control-flow paths

ldeal solution?

B Consider each path to a program point separately

B Combine values at end
B Called meet-over-all-paths solution (MOP)
B When is the fixpoint equal to MOP?

Yu Zhang: Data Flow Analysis 46
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_1We always start with Top
BEvery expression is available, no definitions reach this point
B Most optimistic assumption

M Strongest possible hypothesis

= true of fewest number of states

1Revise as we encounter contradictions

BAlways move down in the lattice (with meet)

_IResult: A greatest fixpoint

Yu Zhang: Data Flow Analysis 47
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_IHow many times can we apply this step:
temp = 1cs(l_ls’e pred(s) OUt(S'))

If (temp '=0ut(s)) { ... }

BClaim: Out(s) only shrinks

* Proof: Out(s) starts out as top

So temp must be < than Top after first step

* Assume Out(s’) shrinks for all predecessors s' of s
* Then Mgy ¢ preqrs) Shrinks

* Since fymonotonic, fs (Mg ¢ preqs) OUL(S')) shrinks

Yu Zhang: Data Flow Analysis 48
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A descending chain in a lattice Is a sequence
B x0x3x1ax23 ..

The height of a lattice Is the length of the longest descending chain In
the lattice

Then, dataflow must terminate in O(n k) time
B n = # of statements in program

B Kk = height of lattice

B assumes meet operation takes O(1) time

Yu Zhang: Data Flow Analysis 49
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L IMFP (Maximal Fixed Point) solution — general iterative
algorithm for monotone frameworks
Malways terminates

Malways computes the right solution

Principles
of Program
+_Analysis

Flemming Nielson et al. Principles of Program
Analysis (2nd Edition). Springer, 2005.

https://github.com/amilajack/rea
ding/tree/master/Type_Systems

Yu Zhang: Data Flow Analysis 50
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Least vs. Greatest Fixpoints tORsLA RS

_1Dataflow tradition: Start with Top, use meet

BTo do this, we need a meet semilattice with top .
3 F A

Emeet semilattice = meets defined for any set
BComputes greatest fixpoint % Ha N bBE (THF)

_1Denotational semantics tradition: Start with Bottom, use join

BComputes least fixpoint

Yu Zhang: Data Flow Analysis 51
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1By monotonicity, we also have

flzny) < f(z)N f(y)

A function fis distributive (F]43BC) if

flxny) = f(z) N f(y)

52
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(©))Accuracy of Data Flow Analysis tORsLA RS

:Ildeally, we would like to compute the meet over all paths

(MOP) solution: ¥ B A #5422 4Rjoin/meet # 7 ik

Bl et f, be the transfer function for statement s

mif pis apath {s, ..., s}, letfy = f.;...;f %I LR E Q)
A 1 475 3 89 56

M|_et path(s) be the set of paths from the entry to s

MOP(s) = l_lpepath(s)fp(T)

1If a data flow problem is distributive, then solving the data
flow equations in the standard way yields the MOP solution,
i.e., MFP = MOP

Yu Zhang: Data Flow Analysis 54



MOP vs. MFP ¥ B#2LEAx X g

MOP (Meet Over All paths)

MFP (Maximal Fixed Point) \x_,{/
flzny) 3

MFP < MOP < PerfectSolution

Yu Zhang: Data Flow Analysis 55
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£)))What Problems are Distributive? ¥EAZLA XS

:IAnaIyses of how the program computes
ML ive variables
HAvailable expressions
B Reaching definitions

m\ery busy expressions

L1AIll Gen/Kill problems are distributive

Yu Zhang: Data Flow Analysis 56
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Bl [if x —— Assume x € {0,1} and B2 & B3 do not update x

Ideal considers only which 2 paths?
B3 B1-B2-B4-B6-B7 (i.e., x=1)
81-B3-B4-B5-B7 (i.e., x=0)

B2

~

Bd |if x == MOP: Also considers unexecuted paths

B1-B2-B4-B5-B7
B6 B1-B3-B4-B6-B7

B5

(~

What changesif x € {0,1,2} ?
B7 B1-B3-B4-B6-B7 is also an Ideal path

Yu Zhang: Data Flow Analysis 57
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A Non-Distributive Example
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_1Constant propagation

distributive

MOP: L% EFTA #12, F2|H
A RI2Z0IEAN3, BRLFEZ
AR A 3

MFP: it Pt iT3Ciaf, &
B HTNRIFR zZER S )

1In general, analysis of what the program computes in not

Yu Zhang: Data Flow Analysis 58
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1Computing MFP is always safe: MFP E MOP
_1When distributive: MOP = MFP

1When non-distributive: MOP may not be computable

(decidable) Entry
HMe.g., MOP for constant propagation // \\
(see Lemma 2.31 of NNH) Q 5/2\
\_s:

L1l

S,
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Practical Implementation
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Practlcal Implementation YERZELRS

1Data flow facts = assertions that are true or false at a
program point

_IRepresent set of facts as bit vector
lFac:ti represented by bit |

Hintersection = bitwise and, union = hitwise or, etc

1“Only” a constant factor speedup

MBut very useful in practice
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1A basic block Is a sequence of statements s.t.

BNo statement except the last in a branch

B There are no branches to any statement in the block except the first

_1In practical data flow implementations,

B Compute Gen/Kill for each basic block

L1Compose transfer functions

mStore only In/Out for each basic block

B Typical basic block ~5 statements
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Order Matters MR L

_JAssume forward data flow problem
Hlet G=(V, E)bethe CFG
Bl et k be the height of the lattice

1If G acyclic, visit in topological order
mVisit head before tall of edge

_IRunning time O(|E|)

BNo matter what size the lattice
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C))) Order Matters — Cycles rEMZLL %S

1If G has cycles, visit in reverse postorder
BOrder from depth-first search

ILet Q = max # back edges on cycle-free path
BNesting depth
MBack edge is from node to ancestor on DFS tree

1Then if Vz.f(z) <z (sufficient, but not necessary)

BRunning time is O((Q + 1)|E|)
[LINote direction of req’t depends on top vs. bottom
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Flow-Sensitivity FEB2LLE g
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_1Data flow analysis is flow-sensitive
B The order of statements Is taken into account

Ml.e., we keep track of facts per program point

_lAlternative: Flow-insensitive analysis
B Analysis the same regardless of statement order

BStandard example: types

O/ x:mnt* x:=... [*xX:int?*
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_IMust vs. May

B (Not always followed in literature)

1Forwards vs. Backwards

1Flow-sensitive vs. Flow-Insensitive

_IDistributive vs. Non-distributive
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2)))Another Approach: Elimination FEBLLL% S

_IRecall in practice, one transfer function per basic block

_IWhy not generalize this idea beyond a basic block?

m“Collapse” larger constructs into smaller ones, combining data flow
equations

BEventually program collapsed into a single node!

B“Expand out” back to original constructs, rebuilding information

Yu Zhang: Data Flow Analysis 67



) Lattices of Functions tORsLA RS

1L et (P, £) be a lattice
1Let M be the set of monotonic functions on P
_1Define f <; g If for all x, f(x) < g(x)

_1Define the function f N g as
m(f 1 g) (x) =1(x) N g(x)

[1Claim: (M, =¢) forms a lattice
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Condltlonals YERZELRS

‘ If \ i
IfThenElse
Then Else

fite = (fthen © fif) M (felge © fif)

Out(if) = fi¢(In(ite)))
Out(then) = (fipen © fif)(In(ite)))
Out(else) = (fo)qe © fif)(In(ite)))
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Elimination Methods: Loops

FEBZLLK g
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|

fwhile

Body

Head >

f head'!

'

While

=

Thead © fbody © fhead

thead © fbody © Jhead © fbody © Jhead
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EI|m|nat|on Methods: Loops (cont'd) ¥*®#%&#% X g

OLet ff = fofe---°f (i times)
m Y =id
1L et

9(7) = Miepo..1(fhead © fbody)” © fhead

_INeed to compute limit as | goes to infinity

MDoes such a thing exist?

_1Observe: g(G+1) < g())

Yu Zhang: Data Flow Analysis 71



Iﬁké‘&q‘f‘

Helght of Function Lattice *ORLEL xS

_JAssume underlying lattice (P, ) has finite height
m\What is height of lattice of monotonic functions?

BClaim: finite

_1Therefore, g(j) converges
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))Non-Reducible Flow Graphs FEBZLL L S

_1Elimination methods usually only applied to reducible flow
graphs
BOnes that can be collapsed

M Standard constructs yield only reducible flow graphs

_1Unrestricted goto can yield non-reducible graphs
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1Can a

BNot g

BMEasy

so do backwards elimination

uite as nice (regions are usually single entry but often not single exit)

_1For bit-vector problems, elimination efficient

to compose functions, compute meet, etc.

_1Elimination originally seemed like it might be faster than

iteration

BNot really the case
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1What happens at a function call?

M| ots of proposed solutions in data flow analysis literature

_1In practice, only analyze one procedure at atime

_1Consequences

B Call to function kills all data flow facts

BMay be able to improve depending on language, e.d., function call may
not affect locals
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More Terminology *OMzALxS

_JAn analysis that models only a single function at atime Is
intraprocedural

_JAn analysis that takes multiple functions into account is
Interprocedural

_JAn analysis that takes the whole program into account
IS...guess?

_INote: global analysis means “more than one basic block,”
but still within a function
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Data Flow Analysis and The Heap *®#%2& 4% ¢
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_1Data Flow Is good at analyzing local variables
BBut what about values stored in the heap?
BNot modeled in traditional data flow

_1In practice: *x :=e
BAssume all data flow facts killed (!)

BOr, assume write through x may affect any variable whose address has
been taken

1In general, hard to analyze pointers
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)) Data Flow Analysis and Optimization FEBLLLAG

_IMoore’s Law: Hardware advances double computing power
every 18 months.

_1Proebsting’s Law: Compiler advances double computing
power every 18 years.

RiFBRALFI8FRE —Z T H S
Bhttps://proebsting.cs.arizona.edu/law.html

B R AR A8 ) A8 K 2960%,

2455 B MM THRA% ., KA L, %R EAA TR R TTHE,
X ER A MARIE S NN IZ FIE TR AN F I,

BHAALR R L R — AR IoE B RN ES.
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