e s » [
YA\ G

‘I'gsﬁl/_}.ll . ‘
"‘;”r \M\re

Wiep and T

University of Science and Technology of China

TIP Language

TIP: Tiny Imperative Programming language

KE
yuzhang@ustc.edu.cn
b EAFHRRKEF

HTHEIHRFERRAFR

\

[P

‘(=))) TIP and its Implementation FEAZLL g

University of Science and Technology of China

.

o o

r*sz‘i \\<\°\°
“Nce and TeC

TIP language
B Minimal C-style syntax

B Enough features to make static analysis challenging and fun

Implementation

B Scala: https://github.com/cs-au-dk/TIP/
B C++ 17: https://github.com/matthewbdwyer/tipc

TIP: Tiny Imperative Programming language 2

https://github.com/cs-au-dk/TIP/
https://github.com/matthewbdwyer/tipc

‘(-)Y) Expresions in TIP *@ﬂé'ﬁ**é
&) Exp

o o
r&;y \\<\°\e
“Nce and TeC

Exp — Int
Id

Exp+Exp | Exp—Exp | Exp* Exp | Exp / Exp
Exp > Exp | Exp==Exp

(Exp)
Tnput

* |& Int represents an integer literal
« Xe& Id represents an identifier (x, y, z, ...)
* Input reads an integer from the input stream

« Comparison operators yield O(false) or 1(true)

TIP: Tiny Imperative Programming language

Statements in TIP *OMzALxS

8
&

9F

X

S «©
e, edl
Cnce and Te

Stm — Id = Exp,;
OUTpPUT Exp;
Stm Stm

if (Exp) {stm} [else {Stm}]’
while (Exp) {Stm}

* In conditions, O is false, all other values are true
« The output statement writes an integer value to the output stream

TIP: Tiny Imperative Programming language

\

[P

Functions in TIP *@ﬂé'ﬁx*é

.
&

N
S <O
‘ence and T

Fun— Id Cid, ..., Id) {

[varid, ..., id;]°
Stm
return Exp;

¥

* The optional var block declares a collection of uninitialized variables

* Function calls are an extra kind of expressions:

Exp— ...| Id (Exp, ..., Exp)

TIP: Tiny Imperative Programming language 5

(=) Pointers tORsLA RS

.
&

9F

o™
3 S
2"’“(‘0 and 1e°

Exp — ...
alloc Exp
& Id

ala

ris Exp
null

Stm — ... | *Exp = Exp;

No pointer arithmetic

TIP: Tiny Imperative Programming language 6

University of Science and Technology of China

¥) Records FEAZLLERS

Exp — ...
| {Id:Exp, .., Id:Exp }
| Exp.ld

Stm — ...
| Id.ld=Exp,;
| (%Exp) .ld = Exp;

Records are passed by value (like structs in C)

For simplicity, values of record fields cannot be records

TIP: Tiny Imperative Programming language 7

{©))) Functions as Values *OMzALxS

op ‘\Qéo'
5 wans®
> and T¢

S;V'l’ur(

Functions are first-class values

The name of a function is like a variable that refers to that function

Generalized function calls

Exp— ... | Exp(Exp, ..., Exp)

Function values suffice to illustrate the main challenges with methods
(in OO languages) and higher-order functions (in functional
languages)

TIP: Tiny Imperative Programming language 8

.

'(=))) Programs ¢tEAZELX G

University of Science and Technology of China

op o

Sor S
e, e
“Nce and TeC

Prog — Fun ... Fun

A program is a collection of functions

The function named main initiates execution

B Its arguments are taken from the input stream

B Its result is placed on the output stream

We assume that all declared identifiers are unique

TIP: Tiny Imperative Programming language

\

Iﬁké‘&q}“

‘(=2)) TIP Examples

9F

FRAZLE*X S

University of Science and Technology of China

o

A

e '
52,(,"‘\. . e

Recursive factorial function

rec(n) {

var T

1t (n==0) {
f=1;

} else {
f=n*rec(n-1);

}

return f;

TIP: Tiny Imperative Programming language

lterative factorial function

ite(n) {
var T;
F = A
while (n>0) {
f = f¥*n;
n = n-1;
}

return T;

10

.

'(2))) Control flow graphs R HZLL XS

University of Science and Technology of China

of &

%k 4 \\\“”‘\
“ice and Te¢

Iterative factorial function T
ite(n) { i
var f; P
f =1; !
while (n>0) { e 1 N>0
F = 1%n; ;ii*n
n = n-1; I
} h=n-1
return T;
) return f

:

TIP: Tiny Imperative Programming language

11

) Normalization FEAZLL g

Normalization: flatten nested expressions, using fresh variables

tl = y+3;
= f(y+3)*5; — t2 = f(tl);
X = t2%5;

TIP: Tiny Imperative Programming language 12

FEBZLAXE

University of Science and Technology of China

ILERLE

TIP: Tiny Imperative Programming language 13

