
Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa

Some PLs: Lua

Yu Zhang

http://staff.ustc.edu.cn/~yuzhang/pldpa

Scripting Languages

• Common features of a scripting language

- Dynamically typed, Garbage collected,

- Rich standard library, Reflection/metaprogramming

https://libro.eb20.net/Reader/rdr.aspx?b=221473

Scripting langs: so productive

• Key idea: encode program information as you go

- e.g. type information, data lifetime

- No one likes commitment! 无需承诺：先声明再使用

• Easy to use certain idioms hard to express in static

types

- Interfaces/duck typing

- Polymorphism

- Heterogeneous data structures

- Extensible classes

3

Script. langs: semi-specialized

• Bash-like scripting languages

- e.g. Python, Perl

- For file manipulation,data crunching, command line parsing

• Web scripting languages

- e.g. JavaScript, PHP

- Specialized constructs for dealing with webpages or HTTP requests

• Embedded scripting languages

- Mostly just Lua

- Lightweight, easy to build, simple semantics for games, config files

Yu Zhang: Some PLs 4

Why Lua?

• Simplest, cleanest scripting language still in use

• “Correct” scoping

• No class system (but can build our own!)

• Easy to learn in a day

• Born in 1993 at PUC-Rio, Brazil

• https://www.lua.org/pil/

• Data structure: tables (associative arrays)

• Coroutines, extensible semantics, embedding

Yu Zhang: Some PLs 5

The Evolution of Lua, HOPL III, Jun 9-10, 2007.

https://www.lua.org/pil/
https://www.lua.org/doc/hopl.pdf
http://research.ihost.com/hopl

Lua: Overview
• Lua function

• C

Yu Zhang: Some PLs 6

-- Recursive impl.

function fact(n)

if n == 0 then

return 1

else

return n * fact(n-1)

end

end

-- Iterative impl.

function fact(n)

local a = 1

for i = 1, n do

a = a * i

end

return a

end

-- Recursive impl.

int fact(int n) {

if (n == 0)

return 1;

else

return n * fact(n-1);

}

-- Iterative impl.

int fact(int n){

int a = 1, i;

for (i = 1; i<n; i++)

a = a * i;

return a;

}

Lua Implementation

• https://www.lua.org/download.html

- Lua 5.4: Jun 29, 2020, Lua 5.4.4: Jan 26, 2022

- Smallish, e.g. Lua 5.1(Feb 2006) 17000 lines of C

- Portable

- Embeddable

• can call Lua from C and C from Lua

- Clean code

• Good for your “code reading club”

- Efficiency

• Fast for an interpreted scripting language: lang. simplicity helps

• Presently has a register based VM, pre-compilation supported

Yu Zhang: Some PLs 7

https://www.lua.org/download.html
https://www.lua.org/ftp/lua-5.4.4.tar.gz

Lua vs. Modula Syntax

• Designed for productive use

- “Syntactically, Lua is reminiscent of Modula and uses

familiar keywords.” [HOPL]

Yu Zhang: Some PLs 8

-- Lua

function fact(n)

local a = 1

for i = 1, n do

a = a * i

end

return a

end

-- Modula-2

PROCEDURE Fact(n: CARDINAL):

CARDINAL;

VAR a: CARDINAL;

BEGIN

a := 1

FOR i := 1 TO n DO

a := a * i;

END;

RETURN a;

END Fact;

Lua: similarities with Scheme

“The influence of Scheme has gradually increased during Lua’s evolution.”

• Simiarities

- Dynamic typing, first-class values, anonymous functions,

closures, ...

• would have wanted first-class continuations

• function foo() ... end is syntactic sugar for foo = function () ... end

- Scheme has lists as its data structuring mechanism, while

Lua has tables.

- No particular object or class model forced onto the

programmer—choose or implement one yourself.

Yu Zhang: Some PLs 9

Lua History

• Prehistory

- Born in 1993 inside Tecgraf

(Comp. Graphics Tech. Group of PUC-Rio in Brazil)

- Lua creators: Roberto Ierusalimschy, Luiz Henrique de

Figueiredo, and Waldemar Celes

- Lua Ancestors: “These languages, called DEL and SOL,

were the ancestors of Lua.”

• DEL and SOL were domain-specific languages (DSLs) for Tecgraf-

developed interactive graphical programs

- DEL as in "data-entry language“

• for describing data-entry tasks: named and typed fields,

data validation rules, how to input and output data

Yu Zhang: Some PLs 10

SOL

• SOL as in "Simple Object Language"

- a DSL for a configurable report generator for lithology

profiles

• SOL interpreter

- read a report description, and syntax and type check

specified objects and attributes

• syntax influenced by BibTeX

Yu Zhang: Some PLs 11

type @track{ x:number, y:number=23, id=0 }

type @line{ t:@track=@track{x=8}, z:number* }

T = @track{ y=9, x=10, id="1992-34" }

L = @line{ t=@track{x=T.y, y=T.x}, z=[2,3,4] }

Motivation for Lua

- DEL users began to ask for more power, e.g. control flow

(with conditionals and loops)

- SOL implementation finished, but not delivered, as support

for procedural programming was soon to be required

- Conclusion: replace both SOL and DEL by a single, more

powerful language

• Existing Alternatives

- Tcl: "unfamiliar syntax", bad data description support, Unix

only

- Lisps: "unfriendly syntax"

- Python: still in its infancy

Yu Zhang: Some PLs 12

Birth of Lua

• "Lua"—"moon" in Portuguese

- cf. "SOL"—"sun" in Portuguese

• SOL’s syntax for record and list construction

valid in both SOL and Lua.

• Semantics differ:

- tables represent both records and lists;

- track (here) does not name a record type, it names a

function to be applied.

Yu Zhang: Some PLs 13

T = @track{ y=9, x=10, id="1992-34" }

Lua Feature Evolution

• Lua designers have shown good judgement.

• Learn PL design by asking:

- What features were added to Lua and why?

- What features were turned down and why?

• Learn PL implementation by asking:

- How were the features implemented?

- What kind of implementations were not possible due to

- other implementation choices?

Yu Zhang: Some PLs 14

Lua Types

• Lua’s type selection has remained fairly stable.

- Initially: numbers, strings, tables, nil, userdata (pointers to

C objects), Lua functions, C functions

- Unified functions in v3.0; booleans and threads in v5.0

• Tables: any value as index

- early syntax: @(), @[1,2], @{x=1,y=2}

- later syntax: {}, {1,2}, {x=1,y=2}, {1,2,x=1,y=2}

• sparse arrays OK: {[1000000000]=1}

- element referencing sugar: a.x for a["x"]

- tables with named functions for OO

• for inheritance, define a table indexing operation

Yu Zhang: Some PLs 15

Tables

• The syntax of tables has evolved, the semantics of

tables in Lua has not changed at all:

- tables are still associative arrays and can store arbitrary

pairs of values

• Effort in implementing tables efficiently

- Lua 4.0, tables were implemented as pure hash tables,

with all pairs stored explicitly

- Lua 5.0, a hybrid representation for tables: every table

contains a hash part and an array part, and both parts can

be empty. Tables automatically adapt their two parts

according to their contents.

Yu Zhang: Some PLs 16

Extensible Semantics

• Goals

- allow tables to be used as a basis for objects and classes

• fallbacks in Lua 2.1(备选)

- One function per operation (table indexing, arithmetic

operations, string concatenation, order comparisons, and

function calls) 当操作被应用到错误的值时，调用备选函数

• tag methods in Lua 3.0

- tag-specific fallbacks, any value taggable

• metatables and metamethods in Lua 5.0

Yu Zhang: Some PLs 17

x = {}
function f () return -5 end
setmetatable(x, { __unm = f })
return -x --> -5

Expressing OOP Concepts

Yu Zhang: Some PLs 18

Expressing OOP Concepts

Yu Zhang: Some PLs 19

Yu Zhang: Some PLs 20

Overhead issue!

According to the definition, each instance

of an account contains an entry for every

method member, which leads to a lot of

pointers, and a lot of overhead.

Assume you have a class with 30 methods,

then every time you make an instance of

the class, you have to allocate 30 strings

and store them all in a table.

Yu Zhang: Some PLs 21

Expressing OOP Concepts
Use metatables to add a layer of indirection

and to provide dynamic lookup on the

metatable.

A group of related tables may share a common

metatable (which describes

their common behavior).

Line 3 creates object if user does not provide

one; line 4 calls setmetatable to set or change

the metatable of any new object t, and make t

inherit its operations from the A table itself

using the index metamethod, accordingly

reducing the overhead mentioned before.

Yu Zhang: Some PLs 22

Expressing OOP Concepts

The derived class LA is just an instance of A but

extended with member l.

LA inherits new from A. When new at line 20

executes, the self parameter

will refer to LA. Therefore, value at index index

in the metatable of a will be LA. Thus a inherits

from LA, which inherits from A. When calling

a:w at line 21, Lua cannot find a w field in a, so

it looks into LA and there it finds the

implementation for LA:w.

THANKS

23

