Some PLs: Lua

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa


http://staff.ustc.edu.cn/~yuzhang/pldpa

Scripting Languages

 Common features of a scripting language

- Dynamically typed, Garbage collected,

- Rich standard library, Reflection/metaprogramming

tomatic memory management

Java C# OCaml
Swift
More types

JavaScript Python

Fewertypes —

Manual memory management


https://libro.eb20.net/Reader/rdr.aspx?b=221473

Scripting langs: so productive

« Key idea: encode program information as you go
- e.g. type information, data lifetime
- No one likes commitment! GG : SoEBEEFE

« Easy to use certain idioms hard to express in static
types
- Interfaces/duck typing
- Polymorphism
- Heterogeneous data structures
- Extensible classes



Script. langs: semi-specialized

« Bash-like scripting languages
- e.g. Python, Perl

- For file manipulation,data crunching, command line parsing
* Web scripting languages
- e.g. JavasScript, PHP

- Specialized constructs for dealing with webpages or HTTP requests

 Embedded scripting languages
- Mostly just Lua

- Lightweight, easy to build, simple semantics for games, config files



Why Lua?

Simplest, cleanest scripting language still in use
“Correct” scoping

No class system (but can build our own!)

Easy to learn in a day

Born in 1993 at PUC-RIo, Brazil

nttps://www.lua.org/pil/

Data structure: tables (associative arrays)

Coroutines, extensible semantics, embedding
The Evolution of Lua, HOPL Ill, Jun 9-10, 2007.



https://www.lua.org/pil/
https://www.lua.org/doc/hopl.pdf
http://research.ihost.com/hopl

Lua: Overview
* Lua function

-—- Recursive 1mpl. -— Iterative 1mpl.
function fact (n) function fact (n)
1f n == 0 then local a =1
return 1 for 1 = 1, n do
else a =a * 1
return n * fact(n-1) end
end return a
end end
e C
-— Recursive impl. -—- Iterative 1impl.
int fact (int n) { int fact(int n) {
if (n == 0) int a =1, 1;
return 1; for (1 = 1, i<n; 1++)
else a=a * 1;

return n * fact(n-1); return ay



Lua Implementation

https://www.lua.org/download.html

Lua 5.4: Jun 29, 2020, Lua 5.4.4: Jan 26, 2022
Smallish, e.g. Lua 5.1(Feb 2006) 17000 lines of C

Portable

Embeddable
e can call Lua from C and C from Lua

Clean code
« Good for your “code reading club”

Efficiency
 Fast for an interpreted scripting language: lang. simplicity helps
* Presently has a register based VM, pre-compilation supported


https://www.lua.org/download.html
https://www.lua.org/ftp/lua-5.4.4.tar.gz

Lua vs. Modula Syntax

* Designed for productive use

- “Syntactically, Lua is reminiscent of Modula and uses
familiar keywords.” [HOPL]

—— Lua

function fact (n)

local a

—-— Modula-2
PROCEDURE Fact(n: CARDINAL) :
CARDINAL;

VAR a: CARDINAL;
BEGIN

END;
RETURN a;
END Fact;



Lua: similarities with Scheme

“The influence of Scheme has gradually increased during Lua’s evolution.”
* Simiarities
- Dynamic typing, first-class values, anonymous functions,
closures, ...

« would have wanted first-class continuations

« function foo() ... end is syntactic sugar for foo = function () ... end

- Scheme has lists as its data structuring mechanism, while
Lua has tables.

- No particular object or class model forced onto the
programmer—choose or implement one yourself.



Lua History

* Prehistory

Born in 1993 inside Tecgraf
(Comp. Graphics Tech. Group of PUC-RIo in Brazil)

Lua creators: Roberto lerusalimschy, Luiz Henrigue de
Figueiredo, and Waldemar Celes

Lua Ancestors: “These languages, called DEL and SOL,

were the ancestors of Lua.”

« DEL and SOL were domain-specific languages (DSLSs) for Tecgraf-
developed interactive graphical programs

DEL as in "data-entry language”

« for describing data-entry tasks: named and typed fields,
data validation rules, how to input and output data



SOL

« SOL as in "Simple Object Language"

- a DSL for a configurable report generator for lithology
profiles

« SOL interpreter

- read a report description, and syntax and type check
specified objects and attributes

« syntax influenced by BibTeX

type @track{ x:number, y:number=23, id=0 }
type @line{ t:@track=@track{x=8}, zznumber* }
T = @track{ y=9, x=10, id="1992-34" }

L = @line{ t=@track{x=T.y, y=T.x}, z=[2,3,4] }



Motivation for Lua

- DEL users began to ask for more power, e.g. control flow

(wit
- SO

n conditionals and loops)
_ Implementation finished, but not delivered, as support

for

procedural programming was soon to be required

- Conclusion: replace both SOL and DEL by a single, more
powerful language

« EXisting Alternatives
- Tcl: "unfamiliar syntax", bad data description support, Unix
only
- Lisps: "unfriendly syntax" No match for the free,

- Python: still in its infancy

do-it-yourself atmosphere at
Tecgraf




Birth of Lua

» "Lua"—"moon" in Portuguese
- cf. "SOL"—"sun" in Portuguese

« SOL’s syntax for record and list construction
T = @track{ y=9, x=10, id="1992-34" }

valid in both SOL and Lua.

* Semantics differ:
- tables represent both records and lists;

- track (here) does not name a record type, it names a
function to be applied.



L ua Feature Evolution

» Lua designers have shown good judgement.

* Learn PL design by asking:
- What features were added to Lua and why?

- What features were turned down and why?
* Learn PL implementation by asking:
- How were the features implemented?

- What kind of implementations were not possible due to

- other implementation choices?



Lua Types

« Lua’s type selection has remained fairly stable.

- Initially: numbers, strings, tables, nil, userdata (pointers to
C objects), Lua functions, C functions

- Unified functions in v3.0; booleans and threads in v5.0
* Tables: any value as index

early syntax: @(), @[1,2], @{x=1,y=2}

later syntax: {}, {1,2}, {x=1,y=2}, {1,2,x=1,y=2}
« sparse arrays OK: {{1000000000]=1}

element referencing sugar: a.x for a["x"]

tables with named functions for OO
« for inheritance, define a table indexing operation



Tables

* The syntax of tables has evolved, the semantics of
tables in Lua has not changed at all:

- tables are still associative arrays and can store arbitrary
pairs of values

« Effort in implementing tables efficiently

- Lua 4.0, tables were implemented as pure hash tables,
with all pairs stored explicitly

- Lua 5.0, a hybrid representation for tables: every table
contains a hash part and an array part, and both parts can
be empty. Tables automatically adapt their two parts
according to their contents.



Extensible Semantics

Goals

- allow tables to be used as a basis for objects and classes
fallbacks in Lua 2.1(&1%%)

- One function per operation (table indexing, arithmetic
operations, string concatenation, order comparisons, and

function calls) Z3t2(E# N FAZISERAVERT, TRFESI%EREL
tag methods in Lua 3.0

- tag-specific fallbacks, any value taggable

metatables and metamethods in Lua 5.0
x = {}

function f () return -5 end
setmetatable(x, { __unm=f})
return -x --> -5



Expressing OOP Concepts

I A= {}
2 A[TBRT] = 0
3 A["W"] = function(v)
1 A["b"] = A["b"]—v
5 end
by
T A[Tw"(100.0)

(a) class A with two members
1 A= {b =0}
2 function A.wi(self,v)
3 self.b = =elf.b — v
4 end
5
3 a = A
T a.w(l00.0) #»
8 A=nil;
O a.w(l00.0) #»

(c) class A i1s singleton

Yu Zhang: Some |

1 A= {b =0}
2 function A.wiv)
3 A.b=Ab— v
4 end
5
b a = A
T a.w(l100.0) ¢
&8 A=nil
9 a.w(lD0.0) X
(b} Syntactic sugar of (a)
| function A.mew(b)
2 return {b = b}
3 end
4
5 a=Amnew()
6 A.w(a, 5)
I eplaced with a.w(a,5) or a:w(3)

(d) Add new to make instances




Expressing OOP Concepts

S W0 00 =] O s

,_,_,_,_
dd e =

e

L

e =] o

|9
20

21

for k,v in pairs{A) do
LA[k]l=v
end

function LA.new()

local a = A.new ()
a.l = 100
return a

end

function LAw(v)

1f v—self.b >= self.]l then

error " Insufficient”
end
cself .b = self.b — v
end
local a = LA.new ()

LA wia, 5)

(e} Inheritance through class tables

ing: Some PLs

|
2
3
4
5
f

function inheritit)
local new_t = {}
for kK, v in pairs(t) do
new_t[k] = v
end
end

(h) Generic inheritance via a table copy

19



oD B sl LA e W b=

WO G0 o= O e W B =

20

A= {}
function A.mewi(b)
locala= {b=b}
for k.v in pairs{A) do

alk] =w
end
returm a
end
function A:win)
self.b = =self.b — n
end
local a = A.new (500

acwis)

LA = {}
function LA . new (b.1)
local a E {b = b}
a.l = 1
for k,v inmn pairs{(LA) do
alk] = w
end

return a
end
function LA:wimn)
if m—self _b=—=self.1 then

error T Insufficiemt™
end
self . b = self . b — n
end
local a = LA new (50 10
a:-wi5s)

(T ““MNormal™ (WP

Overhead issue!

According to the definition, each instance
of an account contains an entry for every
method member, which leads to a lot of

pointers, and a lot of overhead.

Assume you have a class with 30 methods,
then every time you make an instance of
the class, you have to allocate 30 strings

and store them all in a table.

’hang: Some PLs 20



Expressing OOP Concepts

GO o=l O WA e e a =

== Y =

(]

e = LT B S W

o

19
20
2]

B

A= {b = 0}
function A:mewi(t)
[:1.'-."F{l'

setmetatable(t,{ _ _index = self })
return
end

function A:win)
self.b = self.b — n
end

LA =Amew({l=10})

function LA:wi{v)

if v—self.b>=self.] then
error " Insufficient”™

end

Awl(self . v)
end
a= LAmmew({b= 50, imit= 10})
a:wi(30)

a:wi3ii)

(g) Prototype-based objects

Use metatables to add a layer of indirection
and to provide dynamic lookup on the
metatable.

A group of related tables may share a common
metatable (which describes

their common behavior).

Line 3 creates object if user does not provide
one; line 4 calls setmetatable to set or change
the metatable of any new object t, and make t
inherit its operations from the A table itself
using the index metamethod, accordingly
reducing the overhead mentioned before.

Yu Zhang: Some PLs 21



Expressing OOP Concepts

GO o=l O WA e e a =

L =)

—
—
o

-

e = LT B S W

—
-

L= s

A= {b = 0}
function A:mewi(t)
t=tor{}

setmetatable(t,{ _ _index = self })
return
end

function A:win)
self.b = self.b — n
end

LA =Amew({l=10})

function LA:wi{v)

1f v—self .b>=self.]l then

error " Insufficient”™
end
Awl(self . v)
end

a= LAmmew({b= 50, imit= 10})
a:wi(30)
a:wi(30)

(g) Prototype-based objects

The derived class LA is just an instance of A but
extended with member |.

LA inherits new from A. When new at line 20
executes, the self parameter

will refer to LA. Therefore, value at index index
in the metatable of a will be LA. Thus a inherits
from LA, which inherits from A. When calling
a:w at line 21, Lua cannot find a w field in a, so
it looks into LA and there it finds the
implementation for LA:w.

Yu Zhang: Some PLs 22



THANKS



