
Scope, Function Calls and

Storage Management

Yu Zhang

1

Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa

Scope, Function Calls and Storage Management

Reading

“Concepts in Programming Languages”
 Chapter 7: Scope, Functions, and Storage Management

 http://theory.stanford.edu/people/jcm/books.html
 https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

Scope, Function Calls and Storage

Management
2

https://libro.eb20.net/Reader/rdr.aspx?b=221473
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

Scope

• Nested blocks, local variables

• Storage management

- Enter block: allocate space for variables

- Exits block: some or all space may be deallocated

• Static (lexical) scoping (Lua, etc.)

- Global refers to declaration in closest enclosing block

• Dynamic scoping

- Global refers to most recent activation record

Scope, Function Calls and Storage Management 3

Simplified Machine Model

Scope, Function Calls and Storage Management 4

Activation Record for In-link Block

• Control link

- Pointer to previous record on

stack

• Push record on stack

- Set new control link to point to

old env ptr

- Set env ptr to new record

• Pop record off stack

- Follow control link of current

record to reset environment

pointer

Scope, Function Calls and Storage Management 5

Activation record for function

• Return address

- Location of code to

execute on function return

• Return-result address

- Address in activation

record of calling block to

store function return val

• Parameters

- Locations to contain data

from calling block

Scope, Function Calls and Storage Management 6

First-order Functions

• Parameter passing

- pass-by-value: copy value to new activation record

- pass-by-reference: copy pointer to new activation record

• Access to global variables

- global variables are contained in an activation record

higher “up” the stack

• Tail recursion

- an optimization for certain recursive functions

Scope, Function Calls and Storage Management 7

Activation record for static scope

• Control link

- Link to activation record of

previous (calling) block

• Access link

- Link to activation record of

closest enclosing block in

program text

• Difference

- Control link depends on

dynamic behavior of program

- Access link depends on static

form of program text

Scope, Function Calls and Storage Management 8

Higher-order Functions

• Language features

- Functions passed as arguments

- Functions that return functions from nested blocks

- Need to maintain environment of function

Functions as first class values

• Simpler case

- Function passed as argument

- Need pointer to activation record “higher up” in stack

• More complicated second case

- Function returned as result of function call

- Need to keep activation record of returning function

Scope, Function Calls and Storage Management 9

Closures

• Function value is pair

- closure = < env, code >

• When a function represented by a closure is called,

- Allocate activation record for call (as always)

- Set the access link in the activation record using the

environment pointer from the closure

Scope, Function Calls and Storage Management 10

Function Argument and Closures

11

var x = 4;
fun f(y) = x*y;

fun g(h) =
let

var x=7
in

h(3) + x;
g(f);

Run-time stack with access links

Scope, Function Calls and Storage Management

ML

Function Argument and Closures

12

Run-time stack with access links

Scope, Function Calls and Storage Management

Lua

{ var x = 4;
{ function f(y)

{return x*y;}
{ function g(h) {

var x=7;
return h(3) + x;

};
g(f);

}}}

Summary: Function Arguments

• Use closure to maintain a pointer to the static

environment of a function body

• When called, set access link from closure

• All access links point “up” in stack

- May jump past activation records to find global vars

- Still deallocate activation records using stack (LIFO)

order

13Scope, Function Calls and Storage Management

Return Function as Result

• Language feature

- Functions that return “new” functions

- Need to maintain environment of function

• Example

function compose(f,g)

{return function(x) { return g(f (x)) }};

• Function “created” dynamically

- expression with free variables

values are determined at run time

- function value is closure = env, code

- code not compiled dynamically (in most languages)

14Scope, Function Calls and Storage Management

Example: Return fctn with Private State

15Scope, Function Calls and Storage Management

mk_counter : int (int int)

c : int int

Private variable count

closure

The value is a closure

Example: Return fctn with private state

16Scope, Function Calls and Storage Management

Function Results and Closures

17Scope, Function Calls and Storage Management

Function Results and Closures

18Scope, Function Calls and Storage Management

Summary of Scope Issues

• Block-structured language uses stack of activation

records

- Activation records contain parameters, local vars, …

- Also pointers to enclosing scope

• Several different parameter passing mechanisms

• Tail calls may be optimized

• Function parameters/results require closures

- Closure environment pointer used on function call

- Stack deallocation may fail if function returned from call

- Closures do not needed if functions not in nested blocks

19Scope, Function Calls and Storage Management

Closures via "Upvalues"

• Lua authors wanted lexical scoping (词法作用域/静

态作用域) early on

- difficult due to technical restrictions

• wanted to keep a simple array stack for activation records

• one-pass compiler

• Lua 3.1 with a compromise called upvalues

- In creating a function, make (frozen) copies of the

values of any external variables used by a function.

Scope, Function Calls and Storage Management 20

function f () 高阶函数：void (voidint)
local b = 1
return (function () return %b + 1 end) // b是外部的局部变量, upvalue

end
return f()() --> 2 upvalue 有些像C的static局部变量

Full Lexical Scoping

• Lua 5.0 got the real thing

• Solution: “Keep local variables in the (array-

based) stack and only move them to the heap if

they go out of scope while being referred by

nested functions." (JUCS 11 #7)

Scope, Function Calls and Storage Management 21

function f ()
local b = 1
local inc_b = (function () b = b + 1 end)
inc_b()
return (function () return b end)

end
return f()() --> 2 closure: 一个匿名函数加上其可访问的upvalue

Tail Calls

• tail calls supported since 5.0

- called function reuses the stack entry of the calling

function

• erases information from stack traces

• only for statements of the form return f(...)

- return n * fact(n-1) does not result in a tail call

Scope, Function Calls and Storage Management 22

Coroutines

• coroutines—a general control abstraction

- term introduced by Melvin Conway in 1963

- has lacked a precise definition, but implies “the capability of

keeping state between successive calls"

• have not been popular in mainstream languages

- but used in Go

• classification:

- full coroutines are stackful, and first-class objects

• stackful coroutines can suspend their execution from within nested

functions

- an asymmetric coroutine is “subordinate” to its caller—can

yield, caller can resume

Scope, Function Calls and Storage Management 23

Coroutines in Lua

• constraints: portability and C integration

- cannot manipulate a C call stack in ANSI C

- impossible: first-class continuations (as in Scheme),

symmetric coroutines (e.g., in Modula-2)

• Lua 5.0 got full asymmetric coroutines, with create,

resume and yield operations

- ...and PUC-Rio guys gave proof of ample expressive

power

- capture only a partial continuation, from yield to resume

— cannot have C parts there

协程有现场保护

Scope, Function Calls and Storage Management 24

里约热内卢天主教大学

Coroutine Example

Scope, Function Calls and Storage Management 25

> return (string.gsub("abbc", "b",

function (x) return "B" end))

aBBc

> return (string.gsub("abbc", "b",

coroutine.wrap(function (x)

coroutine.yield("B")

coroutine.yield("C")

end)))

aBCc

THANKS

26

