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Reading

“Concepts in Programming Languages”
 Chapter 7: Scope, Functions, and Storage Management

 http://theory.stanford.edu/people/jcm/books.html 
 https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf
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https://libro.eb20.net/Reader/rdr.aspx?b=221473
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf


Scope

• Nested blocks, local variables

• Storage management

- Enter block: allocate space for variables

- Exits block: some or all space may be deallocated

• Static (lexical) scoping (Lua, etc.)

- Global refers to declaration in closest enclosing block

• Dynamic scoping

- Global refers to most recent activation record
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Simplified Machine Model

Scope, Function Calls and Storage Management 4



Activation Record for In-link Block

• Control link

- Pointer to previous record on 

stack

• Push record on stack

- Set new control link to point to 

old env ptr

- Set env ptr to new record

• Pop record off stack

- Follow control link of current 

record to reset environment 

pointer

Scope, Function Calls and Storage Management 5



Activation record for function

• Return address

- Location of code to 

execute on function return

• Return-result address

- Address in activation 

record of calling block to 

store function return val

• Parameters

- Locations to contain data 

from calling block
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First-order Functions

• Parameter passing

- pass-by-value: copy value to new activation record

- pass-by-reference: copy pointer to new activation record

• Access to global variables

- global variables are contained in an activation record 

higher “up” the stack

• Tail recursion

- an optimization for certain recursive functions
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Activation record for static scope

• Control link

- Link to activation record of 

previous (calling) block

• Access link

- Link to activation record of 

closest enclosing block in 

program text

• Difference

- Control link depends on 

dynamic behavior of program

- Access link depends on static 

form of program text
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Higher-order Functions

• Language features 

- Functions passed as arguments

- Functions that return functions from nested blocks

- Need to maintain environment of function

Functions as first class values

• Simpler case

- Function passed as argument

- Need pointer to activation record “higher up” in stack

• More complicated second case

- Function returned as result of function call

- Need to keep activation record of returning function
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Closures

• Function value is pair 

- closure = < env, code >

• When a function represented by a closure is called,

- Allocate activation record for call (as always)

- Set the access link in the activation record using the 

environment pointer from the closure
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Function Argument and Closures 
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var x = 4; 
fun f(y) = x*y; 

fun g(h) = 
let 

var x=7 
in 

h(3) + x; 
g(f); 

Run-time stack with access links 
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Function Argument and Closures 
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Run-time stack with access links 
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Lua

{ var x = 4; 
{ function f(y) 

{return x*y;} 
{ function g(h) { 

var x=7;
return h(3) + x; 

};
g(f);

}}} 



Summary: Function Arguments 

• Use closure to maintain a pointer to the static 

environment of a function body 

• When called, set access link from closure 

• All access links point “up” in stack 

- May jump past activation records to find global vars

- Still deallocate activation records using stack (LIFO) 

order 
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Return Function as Result 

• Language feature 

- Functions that return “new” functions 

- Need to maintain environment of function 

• Example 

function compose(f,g) 

{return function(x) { return g(f (x)) }}; 

• Function “created” dynamically 

- expression with free variables 

values are determined at run time 

- function value is closure = env, code 

- code not compiled dynamically (in most languages) 
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Example: Return fctn with Private State 
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mk_counter : int (int int)

c : int int

Private variable count

closure

The value is a closure



Example: Return fctn with private state 
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Function Results and Closures 
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Function Results and Closures 
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Summary of Scope Issues 

• Block-structured language uses stack of activation 

records 

- Activation records contain parameters, local vars, … 

- Also pointers to enclosing scope 

• Several different parameter passing mechanisms 

• Tail calls may be optimized 

• Function parameters/results require closures 

- Closure environment pointer used on function call 

- Stack deallocation may fail if function returned from call 

- Closures do not needed if functions not in nested blocks 
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Closures via "Upvalues"

• Lua authors wanted lexical scoping (词法作用域/静

态作用域) early on

- difficult due to technical restrictions

• wanted to keep a simple array stack for activation records

• one-pass compiler

• Lua 3.1 with a compromise called upvalues

- In creating a function, make (frozen) copies of the 

values of any external variables used by a function.
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function f () 高阶函数：void (voidint)
local b = 1
return (function () return %b + 1 end)  // b是外部的局部变量, upvalue

end
return f()() --> 2 upvalue 有些像C的static局部变量



Full Lexical Scoping

• Lua 5.0 got the real thing

• Solution: “Keep local variables in the (array-

based) stack and only move them to the heap if 

they go out of scope while being referred by 

nested functions." (JUCS 11 #7)

Scope, Function Calls and Storage Management 21

function f ()
local b = 1
local inc_b = (function () b = b + 1 end)
inc_b()
return (function () return b end)

end
return f()() --> 2 closure: 一个匿名函数加上其可访问的upvalue



Tail Calls

• tail calls supported since 5.0

- called function reuses the stack entry of the calling 

function

• erases information from stack traces

• only for statements of the form return f(...)

- return n * fact(n-1) does not result in a tail call
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Coroutines

• coroutines—a general control abstraction

- term introduced by Melvin Conway in 1963

- has lacked a precise definition, but implies “the capability of

keeping state between successive calls" 

• have not been popular in mainstream languages

- but used in Go

• classification:

- full coroutines are stackful, and first-class objects

• stackful coroutines can suspend their execution from within nested 

functions

- an asymmetric coroutine is “subordinate” to its caller—can

yield, caller can resume
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Coroutines in Lua

• constraints: portability and C integration

- cannot manipulate a C call stack in ANSI C

- impossible: first-class continuations (as in Scheme),

symmetric coroutines (e.g., in Modula-2)

• Lua 5.0 got full asymmetric coroutines, with create,

resume and yield operations

- ...and PUC-Rio guys gave proof of ample expressive 

power

- capture only a partial continuation, from yield to resume

— cannot have C parts there

协程有现场保护
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Coroutine Example

Scope, Function Calls and Storage Management 25

> return (string.gsub("abbc", "b",

function (x) return "B" end))

aBBc

> return (string.gsub("abbc", "b",

coroutine.wrap(function (x)

coroutine.yield("B")

coroutine.yield("C")

end)))

aBCc



THANKS
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