Scope, Function Calls and
Storage Management

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/pldpa

Reading

“Concepts in Programming Languages”
— Chapter 7: Scope, Functions, and Storage Management

— http://theory.stanford.edu/people/jcm/books.html
— https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

CONCEPTS IN

PROGRAMMING
LANGUAGES

John C. Mitchell

Scope, Function Calls and Storage
Management

https://libro.eb20.net/Reader/rdr.aspx?b=221473
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf
https://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

SCOpe local z = 0

1t true then

. local =z 1
Nested blocks, local variables ota _
print (z)
7z = 2
print (z)
Storage management end

- Enter block: allocate space for variables [g8f¢d
- Exits block: some or all space may be deallocated

Static (lexical) scoping (Lua, etc.)

- Global refers to declaration in closest enclosing block
Dynamic scoping

- Global refers to most recent activation record

Simplified Machine Model

Registers Code Data
N
> Stack
Program | | | ,
Counter ["""""""" | T
Environment > Heap
Pointer
——

Scope, Function Calls and Storage Management 4

Activation Record for In-link Block

Control link

| nl—————

Local variables

e Control link

Intermediate results

- Pointer to previous record on
stack

Control link

 Push record on stack

Local variables

- Set new control link to point to
old env ptr

Intermediate results

- Set env ptr to new record

Environment
Pointer

* Pop record off stack

- Follow control link of current
record to reset environment
pointer

Activation record for function

" Control link]
* Return address
Return address .
- Location of code to
Return-result addr execute on function return
Parameters * Return-result address

Local variables - Address In activation

Intermediate results record of cglllng block to
store function return val

e Parameters

- Locations to contain data
from calling block

Environment
Pointer

First-order Functions

« Parameter passing
- pass-by-value: copy value to new activation record
- pass-by-reference: copy pointer to new activation record

« Access to global variables

- global variables are contained in an activation record
higher “up” the stack

 Talil recursion
- an optimization for certain recursive functions

| Control link

Activation record for static scope

——

e Control link

Return address - Link to activation record of
previous (calling) block

 Access link

Return-result addr

Parameters _ o
- Link to activation record of
Local variables closest enclosing block in
Intermediate results .program text
 Difference
- Control link depends on
Environment dynamic behavior of program
Pointer - Access link depends on static

form of program text

Higher-order Functions

* Language features
- Functions passed as arguments
- Functions that return functions from nested blocks
- Need to maintain environment of function
Functions as first class values

« Simpler case
- Function passed as argument
- Need pointer to activation record “higher up” in stack

* More complicated second case
- Function returned as result of function call
- Need to keep activation record of returning function

Closures

* Function value is pair

- closure = < env, code >

* When a function represented by a closure Is called,

- Allocate activation record for call (as always)

- Set the access link in the activation record using the
environment pointer from the closure

Function Argument and Closures

@ Run-time stack with access links
var X =4; X 7
fun f(y) = x*y; 7 Code

for f

fun g(h) = ECC":ESS — N
let j//l
var x=7 aCCess —
==SIN|
h(3) + x; a(f) [access| — ieifit

m) - N7
g(f); v -
h(3) | access I access link set

3 from closure

Scope, Function Calls and Storage Management 11

Function Argument and Closures

Run-time stack with access links

{var x=4; = 5
{ function f(y) 7 Code

{return x*y;} ECC:*‘SS N~ for f
{ function g(h) { j,/

var x=/; dCCESS S
m) return h(3) +x; d = /_
7 () — =

access T
f)- h B
. g(f); s -
h(3) | access I access link set

3 from closure

Scope, Function Calls and Storage Management 12

Summary: Function Arguments

» Use closure to maintain a pointer to the static
environment of a function body

 \WWhen called, set access link from closure

» All access links point “up” in stack
- May jump past activation records to find global vars

- Still deallocate activation records using stack (LIFO)
order

Return Function as Result

« Language feature
- Functions that return “new” functions
- Need to maintain environment of function

« Example
function compose(f,q)
{return function(x) { return g(f (x)) }};

* Function “created” dynamically

- expression with free variables
values are determined at run time

- function value Is closure = env, code
- code not compiled dynamically (in most languages)

Example: Return fctn with Private State

@D mKk_counter : int — (int — int)
— fun mk_counter (init : int) = ¢:nt—>int
let val count = ref |n|t<[Private variable count]
fun counter(inc:int) =

(count := lcount + inc; lcount)

1N closure

counter . . :
End . The value is a closure] ¢ Fu nCtIDn t{:} make CDuntE‘r
} returns a closure

val ¢ = mk_counter(1); | How is correct value of
c(2) +c(2); count determined in c(2) ?

Scope, Function Calls and Storage Management 15

Example: Return fctn with private state

(385

function mk_counter (init) {

var count = Init;

function counter(inc) {count=count+inc; return

count}:

return counter};

b
g

var ¢ = mk_counter(1
c(2) + c(2);

: o Function to "make counter”
returns a closure

e How is correct value of
count determined in c(2) ?

Scope, Function Calls and Storage Management 16

Function Results and Closures

fun mk_counter (init : int) = Py
let val count = ref init \l\'ﬂ;f
fun counter(ingint) = (count := !count + inc; !count]
in counter end

end;
val ¢ = mk_counter(1);
c(2) + c[2); mk_c Code for
access mk_counter
C
mk_counter(1) |access
Init
count
counter

c(2) | access
Inc 2
Call changes cell Code for

value from 1 to 3 counter

Scope, Function Calls and Storage Management

Function Results and Closures

(35)
function mk_counter (init) { 2
var count = inif;
function counter(inc) {count=count+inc; return count};
return counter};
var ¢ = mk_counter(1}; mk_c __D | = Code for
c(2) +c(2); access| —— mk_counter
C i
mk_counter(1l) [3CCESS ~
init 1
count 3
counter —_— ;| \ h

c(2) —//

access ==
Inc 2

Code for

counter

Scope, Function Calls and Storage Management 18

Summary of Scope Issues

Block-structured language uses stack of activation
records

- Activation records contain parameters, local vars, ...

- Also pointers to enclosing scope

Several different parameter passing mechanisms
Tall calls may be optimized

Function parameters/results require closures
- Closure environment pointer used on function call
- Stack deallocation may fall if function returned from call
- Closures do not needed If functions not in nested blocks

Closures via "Upvalues”

* Lua authors wanted lexical scoping (&, ={ERBE/E:
SYEFRE) early on

- difficult due to technical restrictions

« wanted to keep a simple array stack for activation records
e one-pass compiler

* Lua 3.1 with a compromise called upvalues

- In creating a function, make (frozen) copies of the

values of any external variables used by a function.
functionf() =FrERZL: void > (void—>int)
localb=1

return (function () return %b + 1 end) // by 4N Ja 5848 &, upvalue
end

return f()() --> 2 upvalue 72844 C[¥JstaticJa) i AL &

Full Lexical Scoping

* Lua 5.0 got the real thing

« Solution: “Keep local variables in the (array-
based) stack and only move them to the heap If
they go out of scope while being referred by
nested functions.”" (JUCS 11 #7)

function f ()
localb=1
local inc_b = (function () b=b + 1 end)
inc_b()
return (function () return b end)

end “a
return f()() —> 2 closure: —~f& 4 BRI ZUIN _EH AT 17 19 i upvalue

Scope, Function Calls and Storage Management 21

Tail Calls

» tail calls supported since 5.0

- called function reuses the stack entry of the calling
function

* erases Iinformation from stack traces

* only for statements of the form return f£(...)

- return n * fact(n-1) does not result in a tail call

Coroutines

e coroutines—a general control abstraction
- term introduced by Melvin Conway in 1963

- has lacked a precise definition, but implies “the capabillity of
keeping state between successive calls"

« have not been popular in mainstream languages
- but used in Go

e classification:

- full coroutines are stackful, and first-class objects

« stackful coroutines can suspend their execution from within nested
functions

- an asymmetric coroutine is “subordinate” to its caller—can
yield, caller can resume

Coroutines In Lua

 constraints: portability and C integration
- cannot manipulate a C call stack in ANSI C

- Impossible: first-class continuations (as in Scheme),
symmetric coroutines (e.d., in Modula-2)

* Lua 5.0 got full asymmetric coroutines, with create,
resume and yield operations

- ...and PUC-RIo guys gave proof of ample expressive
power LN R EHK

- capture only a partial continuation, from yield to resume
— cannot have C parts there

EE BRI

Coroutine Example

> return (string.gsub("abbc", "b",
function (x) return "B" end))
aBBc
> return (string.gsub("abbc", "b",
coroutine.wrap(function (x)
coroutine.yield("B")
coroutine.yield("C")
end)))
aBCc

THANKS

